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On the dichotomy of Perron numbers and

beta-conjugates

Jean-Louis Verger-Gaugry ∗

Abstract. Let β > 1 be an algebraic number. A general definition of a beta-conjugate

of β is proposed with respect to the analytical function fβ(z) = −1 +
P

i≥1
tiz

i associated

with the Rényi β-expansion dβ(1) = 0.t1t2 . . . of unity. From Szegö’s Theorem, we study

the dichotomy problem for fβ(z), in particular for β a Perron number: whether it is a

rational fraction or admits the unit circle as natural boundary. The first case of dichotomy

meets Boyd’s works. We introduce the study of the geometry of the beta-conjugates with

respect to that of the Galois conjugates by means of the Erdős-Turán approach and take

examples of Pisot, Salem and Perron numbers which are Parry numbers to illustrate it. We

discuss the possible existence of an infinite number of beta-conjugates and conjecture that

all real algebraic numbers > 1, in particular Perron numbers, are in C1∪C2∪C3 after the

classification of Blanchard/Bertrand-Mathis.
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1 Introduction

This note is concerned with the rich interplay between number theory and dynamical

systems of numeration, for which numeration means numeration in base β, where β

is a real algebraic number > 1 [2] [7] [8] [31] [38].

Let us recall some definitions to fix notations. The real number β > 1 is a Perron

number if and only if it is an algebraic integer and all its Galois conjugates β(i) satisfy:
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|β(i)| < β for all i = 1, 2, . . . , d − 1, if β is of degree d ≥ 1 (with β(0) = β). Let P be

the set of Perron numbers. We will assume throughout the paper that the numeration

basis β is noninteger. The Rényi β-expansion of 1 is by definition denoted by

dβ(1) = 0.t1t2t3 . . . and corresponds to 1 =

+∞
∑

i=1

tiβ
−i , (1.1)

where t1 = ⌊β⌋, t2 = ⌊β{β}⌋, t3 = ⌊β{β{β}}⌋, . . . (⌊x⌋ and {x} denote the integer

part, resp. the fractional part, of a real number x). The digits ti belong to the

finite alphabet Aβ = {0, 1, 2, . . . , ⌊β⌋} by construction. We will say that β is a Parry

number (previously called a beta-number by Parry [36]) if dβ(1) is finite or ultimately

periodic (i.e. eventually periodic); in particular, we say that a Parry number β is

simple if dβ(1) is finite.

Parry [36] has shown that Parry numbers are algebraic integers. Parry numbers

(simple or non-simple) are Perron numbers (Theorem 7.2.13 and Proposition 7.2.21 in

Lothaire [31]). The converse is wrong, somehow mysterious. This defines a dichotomy

in P: the subset of Perron numbers which are Parry numbers, the subset of P which

are not Parry numbers.

The main motivation of the present work is the following: on one hand, dβ(1) =

0.t1t2 . . . entirely controls the β-shift [11] making the sequence (ti)i≥1 a very important

one with values in the alphabet Aβ , on the other hand in the philosophy of Pólya

and Ostrowski, an analytic function is entirely defined by the coefficient vector of

its Taylor series at one point of its domain of definition. Here, the idea consists in

studying the β-shift by means of the Taylor series fβ(z) defined below in (1.2), where
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precisely its coefficient vector is exactly the sequence (ti)i≥0 up to the constant term

−1. Then the correspondance between the Rényi β-expansion dβ(1) of unity and

the analytical function fβ(z) becomes canonical, what allows the exploration of the

β-shift in terms of analytical functions. What appears first is the possible existence

of beta-conjugates, whose exploration was made first by Boyd [14] for Pisot numbers

(Section 4).

We explore in particular in this note the set of Perron numbers, and their beta-

conjugates, by means of the Erdős-Turán approach [10] [20] [26] [28] [34] applied to

the analytical function fβ(z) or to its family of polynomial sections, using Hurwitz

Theorem ([33] p. 4).

Let us give the definition of fβ(z) and the only two forms that can be taken by

this function. Let β > 1 be a real number and dβ(1) = 0.t1t2 . . .. Let t0 = −1. Define

fβ(z) :=

+∞
∑

i=0

tiz
i (1.2)

of the complex variable z. If dβ(1) is infinite, its radius of convergence is 1.

Dichotomy principle (D): by Szegő’s Theorem [46], [19] p 324–7, addressed to

power series with coefficients in a finite subset of C (the alphabet Aβ), we deduce

(Section 3) that fβ(z) is either equal to

(i) U(z) + zm+1 V (z)

1 − zn+1
where U(z) = −1 +

∑m
i=1 aiz

i, V (z) =
∑n

i=0 biz
i are

polynomials with coefficients in Aβ and m ≥ 1, n ≥ 0 rational integers, for

which the respective strings of coefficients (ai)i, (bi)i satisfy the admissibility

conditions of Parry [36] [23] [24], or
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(ii) fβ(z) is an analytic function which is not continued beyond the unit circle (which

is its natural boundary).

Szegő’s theorem is a generalization of simpler theorems due to Borel, Carlson,

Fatou, Pólya [18] [37]. The dichotomy of P corresponds exactly to this dichotomy of

analytical functions, the first case corresponding exactly to the definition of a Parry

number; in particular the case of a simple Parry number corresponds to V (z) ≡ 0.

The power series fβ(z) is related to the zeta function of beta-transformation, i.e.

ζ̂β(z) in the sense of Takahashi [48], or ζβ(z) in the sense of Flatto, Lagarias and

Poonen [21] (Appendix in [21] for comparison) :

fβ(z) =
−1

ζ̂β(z)
=

−1

ζβ(z)
for β a non-simple Parry number; (1.3)

see also Solomyak [45], Boyd [14]. The advantage of working with fβ(z) is that the

coefficients ti lie in a finite subset of C, what allows the simultaneous application of

the dichotomy principle (D) and of the Erdős-Turán approach, while it is not the

case for the coefficients of the Taylor series (at z = 0) of ζβ(z), resp. ζ̂β(z). In this

correspondance (1.3) poles become zeroes. We will take the following definition for a

beta-conjugate; this definition coincides with that of Boyd [14] in the case where β is

a non-simple Parry number.

Definition 1.1. Let β > 1 be an algebraic number. A beta-conjugate of β is the

inverse ξ−1 of a complex number ξ such that

fβ(ξ) = 0, with ξ−1 6= any Galois conjugate β(i) of β.
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The set of zeroes of fβ(z) is the disjoint union of a subset of inverses of Galois

conjugates of β and the subset of the inverses of the beta-conjugates of β. In the case

(D)(i) the subset of Galois conjugates concerned contains all the Galois conjugates.

In the case (D)(ii) this subset may contain (see (P4) below, and Section 3.1) no Galois

conjugate of β of modulus strictly greater than 1.

Since the existence of beta-conjugates is still mysterious, the following problems

are relevant (for β > 1 an algebraic number):

Case (D)(i):

(P1) What is the number and the geometry of the beta-conjugates of β with respect

to the geometry of the Galois conjugates of β, as a function of the sequence of

digits (ti) in dβ(1)?

Case (D)(ii):

(P2) Under which condition(s) is the number of beta-conjugates of β empty, finite,

or infinite?

(P3) Are the beta-conjugates of β algebraic or transcendental numbers (fβ(z) being

transcendental)?

(P4) Does the analytical function fβ(z) (knowing that fβ(β−1) = 0) cancel at all the

inverses β(i)−1
of the Galois conjugates β(i) of β which are such that |β(i)| > 1?

Concerning the set of Perron numbers P and its arithmetics (Lind [30] pp 292–5):

(P5) How does the set of Perron numbers spread over the two cases of (D)?
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(P6) What are the relative proportions of irreducible Perron numbers in (D)(i) and

in (D)(ii)?

Recall that the set of simple Parry numbers (Theorem 5 in [36]), resp. the set

P of Perron numbers (Proposition 2 in [30]), is dense in (1, +∞). The (non-unique)

factorization of a Perron number β = βi1βi2 . . . βis
into a finite number of irreducible

Perron numbers, in finitely many ways, corresponds to a factorization of the beta-shift

and of ζβ(z) ([30] Theorem 4 and p. 298), therefore of fβ(z).

The locus of the zeroes of the functions fβ(z) for all real numbers β > 1 is explored

in Section 2 and discussed by comparison with older results. The geometry of this

locus may give sufficient conditions for a Perron number not to be a Parry number

(Section 3). In Section 3.2 we discuss the existence and the nature of the zeroes of

fβ(z) when β > 1 is not a Parry number, trying to answer to (P2). In Section 4 we

give partial results to (P1) when β is a Parry number: we show how the Erdős-Turán

approach [20] [28] refines Theorem 2.3 and correlates the set of Galois conjugates to

the set of beta-conjugates. Examples of Pisot, Salem and Perron numbers are given

for illustrating this correlation.

2 Locus of zeroes

Recall that a section of a power series is a polynomial obtained by truncating the

“tail” of the power series. Let Sn(z) = −1 +
∑n

i=1 tiz
i be the nth-section of fβ(z),

for n ≥ 1.
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Proposition 2.1. Let β > 1 be a noninteger real number. The open disc D(0, 1
⌊β⌋+1 )

contains no zero of fβ(z).

Proof. This is a consequence of Hurwitz Theorem (Marden [33] p. 4) and of the

following Proposition applied to the sections of fβ(z).

Proposition 2.2. Let k ≥ 1 be an integer. Let κ > 0 and (αi)1≤i≤k be complex

numbers such that |αi| < κ (1 ≤ i ≤ k). Then the polynomial −1+α1z +α2z
2 + . . .+

αkzk has no root within the open disc D(0, 1
κ+1 ).

Proof. This is classical, see Barbeau [3] p. 188, ex. 30. See also Mignotte [35] and

Theorem 3.4 in Yamamoto [51].

Let us improve Proposition 2.1.

Theorem 2.3. Let m ≥ 1 be an integer. The region of the open unit disc in the

complex plane “inside” the curve Cm defined by

Cm :
|z|2

1 − |z| =

∣

∣

∣

∣

−2

m
+

z(2 − z)

1 − z

∣

∣

∣

∣

(2.1)

is zerofree for fβ(z) with β > 1 any noninteger real number such that m = ⌊β⌋. The

curve Cm is symmetrical with respect to the real axis. If m ≥ 2, it has two connected

components: the first one Cunit
m defines a neighborhood of the unit circle, with a cusp

at z = 1, and the second one Cbubble
m a small neighborhood of z = β−1, which contains

the open interval (1/(m + 1), 1/m) of the real axis; the small neighborhood of β−1

delimited by Cbubble
m only contains the zero β−1 of fβ(z).
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Proof. This is a consequence of Proposition 2.4, (2.1) being a reformulation of (2.3)

since:

∣

∣

∣

∣

−2

m
+

z(2 − z)

1 − z

∣

∣

∣

∣

=
1

⌊β⌋

∣

∣

∣

∣

−2 + 2(⌊β⌋ + 1)z − ⌊β⌋z2

1 − z

∣

∣

∣

∣

.

Figure 1 illustrates the case m = 2. The small neighborhood of β−1 delimited by

Cbubble
m only contains one zero of fβ(z) which is z = 1/β itself by the following funda-

mental identity:

−1 +

∞
∑

i=1

tiz
i = (−1 + βz)

(

1 +

∞
∑

j=1

T j
β(1)zj

)

, |z| < 1, (2.2)

where Tβ is the β-transform: T 1
β = Tβ : [0, 1] → [0, 1], x → βx mod 1, T j+1

β (x) =

Tβ(T j
β(x)), j ≥ 0, and T 0

β = Id. Indeed, the zeros 6= β−1 of −1 +
∑∞

i=1 tiz
i are those

of 1 +
∑∞

j=1 T j
β(1)zj by (2.2); but the power series 1 +

∑∞
j=1 T j

β(1)zj is a particular

case of the power series with (real) coefficients in [0, 1] studied by Solomyak [45]. From

[45] the zeroes are in a subset of D(0, 1) (called G in [45]) which does not contain any

neighborhood of any element of the interval (0, 1). Hence the claim.

The zeros 6= β−1 of fβ(z) cluster near the unit circle in the region delimited by

Cunit
m .

Proposition 2.4. Let β > 1. Let z be a zero of fβ(z) in 0 < |z| < 1. Then

⌊β⌋|z|2
1 − |z| ≥

∣

∣

∣

∣

−2 + 2(⌊β⌋ + 1)z − ⌊β⌋z2

1 − z

∣

∣

∣

∣

. (2.3)

Proof. If z is a zero of fβ(z) in the unit open disc D(0, 1), then

fβ(z) = −1 + ⌊β⌋z +
⌊β⌋
2

∞
∑

k=2

zk + h(z)
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Figure 1. Zerofree region of the analytical function fβ(z), delimited by the curve Cm,

for β an algebraic number such that m = ⌊β⌋. Here, m = 2.
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with

h(z) =
⌊β⌋
2

∞
∑

k=2

ukzk |uk| ≤ 1, for all k ≥ 2,

and

|h(z)| ≤ ⌊β⌋
2

|z|2
1 − |z| .

For |z| < 1,

fβ(z) =
−2 + 2(⌊β⌋ + 1)z − ⌊β⌋z2

2(1 − z)
+ h(z).

If (2.3) is not satisfied, then fβ(z) would be 6= 0.

The following Theorem holds true for all numeration bases β in an open interval

of the type (1, C) with 1 < C < +∞.

Theorem 2.5. For all C > 1 the set of zeroes of the functions fβ(z) where β runs

over (1, C) lies within the closed ball

|z| ≤ 2 ⌊C⌋.

Proof. This comes from Marden [33] ex. 35.5, p 122 applied to the sections of fβ(z):

indeed, for any polynomial section a0 + a1z
n1 + a2z

n2 + . . . + akznk of fβ(z) (with all

ais nonzero in Aβ), all its zeroes lie in the disk

|z| ≤ max

{

∣

∣

∣

∣

a0

a1

∣

∣

∣

∣

1/n1

,

∣

∣

∣

∣

2anj

anj+1

∣

∣

∣

∣

1
nj+1−nj

}

j = 1, 2, . . . , k − 1.

Here |a0| = 1, n1 = 1 and a1 = ⌊β⌋. Then the radius of this disk is

≤ max
j=1,...,k−1

∣

∣

∣

∣

2anj

anj+1

∣

∣

∣

∣

1
nj+1−nj

≤ max
j=1,...,k−1

∣

∣

∣

∣

2⌊β⌋
1

∣

∣

∣

∣

1
nj+1−nj

≤ 2⌊β⌋.
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We now conclude using Hurwitz Theorem ([33] p. 4) for the zeroes of the Taylor series

fβ(z).

Therefore, in case (D)(i) the zeroes 6= β−1 of fβ(z) lie between the curve Cm

(resp. Cunit
m if m ≥ 2) and the circle of radius 2(m + 1) centred at the origin, for

m = ⌊β⌋ ≥ 1; in case (D)(ii) the zeroes 6= β−1 of fβ(z) lie between the curve Cm

(resp. Cunit
m if m ≥ 2) and the unit circle. The locus of all possible zeroes 6= β−1 of

fβ(z) in |z| < 1, for all β > 1, is represented in Figure 1 in [45] (it has a spike on R−).

When m goes to infinity the sequence of curves
(

Cbubble
m

)

m≥1
shrinks to 0 while the

sequence
(

Cunit
m

)

m≥1
shrinks monotonously towards the centre of the unit disc and

converges to the limit curve

Cunit
∞ :

|z|
1 − |z| =

∣

∣

∣

∣

2 − z

1 − z

∣

∣

∣

∣

. (2.4)

This limit curve has a cusp at z = 1. Denote by τ = 1+
√

5
2 the golden mean.

Proposition 2.1 is improved as follows.

Proposition 2.6. The points z0 = −1
τ , z = 1 belong to Cunit

∞ and any z ∈ Cunit
∞ , z 6=

z0, z 6= 1, is such that

1

τ
< |z| < 1.

In particular, for every noninteger real number β > 1, β 6= τ , the zeros 6= β−1 of

fβ(z) have a modulus > 1/τ .

Proof. Corollary 4.2 in [21], Corollary 2.3 in [45].
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3 Beta-conjugates, Galois conjugates and dichotomy

Let β > 1 be a real number, m = ⌊β⌋. The inverses of the zeroes 6= β−1 of fβ(z)

lie within the curve which is the image of Cunit
∞ by the transformation z → 1/z by

Theorem 2.3. The following Proposition indicates the maximal possible thickening of

the image of this curve when β runs over a neighbourhood of infinity.

Proposition 3.1. Let ǫ be a fixed real number such that 0 < ǫ ≤ 2. Then for all real

numbers β such that 2/ǫ ≤ ⌊β⌋, the inverses of the zeroes of fβ(z) lie in

{

z ∈ C | 1

|z|(|z| − 1)
≤
∣

∣

∣

∣

2z − 1

z(z − 1)

∣

∣

∣

∣

+ ǫ

}

. (3.1)

Proof. The image of Cm (given by (2.1)) by z → 1/z is the curve defined by

1

|z|(|z| − 1)
=

∣

∣

∣

∣

−2

m
+

2z − 1

z(z − 1)

∣

∣

∣

∣

, m = ⌊β⌋, (3.2)

and

∣

∣

∣

∣

−2

m
+

2z − 1

z(z − 1)

∣

∣

∣

∣

≤
∣

∣

∣

∣

2z − 1

z(z − 1)

∣

∣

∣

∣

+ ǫ

since 2
⌊β⌋ ≤ ǫ. We deduce (3.1).

The limit curve Cunit
∞

−1
:

1

|z| − 1
=

∣

∣

∣

∣

2z − 1

z − 1

∣

∣

∣

∣

, (3.3)

independent of β, obtained by allowing ǫ to zero and by multiplying by |z| > 1, in

(3.2), contains the domain Φ of the inverses of the zeroes 6= β−1 of the functions

fβ(z), for all β > 1, which was extensively studied in [45]. Figure 2 in [45] represents
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the boundary of the domain Φ, which is claimed related to all Parry numbers β > 1,

but which is actually related to the whole collection of real numbers β > 1 by the

definition of B in [45], p. 478–9.

Whether the inverse of a Galois conjugate of an algebraic number β > 1 is a zero

or not of fβ(z) receives a clear answer in the first case of (D), not in the second case.

3.1 The rational fraction case

In this paragraph fβ(z) is assumed to be a rational fraction according to (D)(i), and

β is a Parry number, hence a Perron number. We have:

fβ(z) =
(1 − zn+1)U(z) + zm+1V (z)

1 − zn+1
.

Since it cancels at β−1 and is an element of Q[z], it cancels at the inverses of

the Galois conjugates of β. Then the numerator is a multiple of P ∗
β (z), where

P ∗
β (X) = XdPβ(1/X) is the reciprocal polynomial of the minimal polynomial Pβ(X)

of β (deg(β) = d ≥ 2). The function fβ(z) takes the form

fβ(z) =
P ∗

β (z)R∗
β(z)

1 − zn+1
(3.4)

where R∗
β(X) ∈ Q[X ] is the reciprocal polynomial of the complementary factor Rβ(X)

of Boyd [14].

It seems difficult to establish an approximative equation of the boundary of Φ.

Therefore, the following simple geometric criterium may be useful.
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Proposition 3.2. If β > 1 is a Perron number which admits one Galois conjugate

outside Cunit
∞

−1
, given by (3.3), e.g. if

(i) one Galois conjugate of modulus is > τ
(

= 1+
√

5
2

)

, or if

(ii) a real conjugate is > 1,

then β is not a Parry number.

Proof. If we assume that β is a Perron number with one Galois conjugate β′ outside

Cunit
∞

−1
and that β is a Parry number, the inverse β′−1 would be a zero of fβ(z).

The contradiction comes from the definition of Cunit
∞ . In particular for (i) , the case

β′ > τ is impossible by Proposition 2.6; and for (ii), the case 1 < β′ < β leads to a

contradiction. Indeed

fβ(
1

β′ ) would be = 0, with
1

β
<

1

β′ < 1

but the zerofree region in |z| < 1 delimited by Cunit
m , with m = ⌊β⌋, contains the open

interval (β−1, 1).

See also Remark 7.2.23 in Lothaire [31] for a direct proof of (ii).

Proposition 3.2(i) is of course addressed to Perron numbers > τ . For Perron

numbers in the interval (1, τ) we have for instance the following result, which is

related to the question of smallest Salem numbers [44].

Proposition 3.3. Assume that there exists a sequence of Salem numbers (βi)i≥1

which converges to 1 . Then there exists i0 ≥ 1 such that

i ≥ i0 =⇒ βi is not a Parry number.
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Proof. By Theorem 5.1 in [21] there exists θ > 0 such that for every Parry number β

in (1, 1 + θ) there exists a constant c > 0 such that the zeroes of fβ(z) are all in the

annulus

1

β
+

2π2(β − 1)

| log(β − 1)|3 + c

(

(β − 1) log | log(β − 1)|
| log(β − 1)|4

)

< |z| < 1. (3.5)

Assume now that there exists i large enough such that βi is simultaneous in (1, 1+

θ) and is a Parry number. Then the inverses of the Galois conjugates of βi would all

be in the open annulus defined by (3.5), and never on the unit circle. But limj→+∞

deg(βj) = +∞, and βi has deg(βi) −2 Galois conjugates on |z| = 1. This is of course

a contradiction.

The existence of a sequence of Salem numbers as in Proposition 3.3 is unlikely in

the context of Lehmer’s Conjecture [29] and Lind-Boyd’s Conjecture [12] [40] which

proposes explicitely the possible Perron polynomials for Perron numbers close to 1.

3.2 The second case: Hadamard type theorems, frequencies of

digits

In this paragraph fβ(z) is assumed to admit the unit circle as natural boundary

(D)(ii), and β > 1 is not a Parry number.

Theorem 1 in Salem ([41] p. 161) implies that every power series fβ(z) maps the

open unit disc densely into the complex plane:

fβ(D(0, 1)) = C.
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This result is independent of Szegö’s dichotomy theorem. Searching for beta-conjugates

of β can then be deduced from the establishment of new theorems which complete

this result by showing that the onto property of power series fβ(z) holds in D(0, 1) as

well (putting apart the trivial zero β−1). It is the Picard property ([50] for lacunary

power series). Even though the Picard property is satisfied, new theorems are also

needed to formulate the zeroes of fβ(z), their number and their geometry.

There are almost no result in this direction. Let us mention the following conse-

quence of a theorem of Fuchs [25]. To take into account the nonzero coefficients ti of

fβ(z), let us define the sequence (anq
)q≥0 by extracting the nonzero digits from the

sequence t1t2t3 . . . in the increasing order. Then

fβ(z) =

+∞
∑

q=0

anq
znq with 0 = n0 < 1 = n1 < n2 < n3 < . . .

and an0
= −1(= t0), an1

= ⌊β⌋(= t1), etc.

We say that fβ(z) =
∑∞

j=0 anj
znj contains Hadamard gaps if there exists θ > 0

such that

nq+1 − nq > θnq for all q ≥ 1. (3.6)

For β > 1 an algebraic number, in particular a Perron number, the existence of

Hadamard gaps requires [49]

1 <
log(M(β))

log(β)
and 0 < θ <

log(M(β))

log(β)
− 1 (3.7)

where M(β) = a
∏d−1

i=0 max{1, |β(i)|} denotes the Mahler measure of β (with a the

leading (positive) coefficient of the minimal polynomial Pβ(X) of β).
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Theorem 3.4. If β > 1 is not a Parry number which is such that fβ(z) =
∑+∞

j=0 anj
znj

contains Hadamard gaps, then the number of beta-conjugates of β is infinite.

Proof. It is a direct consequence of Theorem 1 in Fuchs [25].

The possibility of an infinite number of zeroes of fβ(z) claimed by Theorem 3.4 is

not surprising in the context of the following conjecture proposed in [21].

Conjecture 1. (Flatto, Lagarias, Poonen) The set of real numbers β > 1 such that

fβ(z) has infinitely many zeros in the open unit disc has full Lebesgue measure.

This Conjecture is addressed to transcendental numbers, mostly, and does not

say anything on the possibility of an infinite number of zeroes of fβ(z) when β is an

algebraic number which is not a Parry number.

In the same way, the question whether the inverses of the Galois conjugates of β

are zeroes of fβ(z) remains open. Proposition 3.2 answers partially, and negatively,

to this question. For instance, β = (5 +
√

5)/2 is a quadratic Perron number which

has a real conjugate > 1 and therefore is not a Parry number. On the contrary, it is

not because the Galois conjugates of a Perron number β all lie in int(Φ) that β is a

Parry number (for instance, the quadratic Perron number β = (1 +
√

13)/2 ([45] p.

483)).

Remark 3.5. The assumptions of Theorem 3.4 are probably unrealistic because of the

frequencies of the digits occuring in dβ(1) by [36], known for almost all βs. Indeed,

Parry proved, for almost all β > 1, that the frequency of the digit κ ∈ Aβ in dβ(1) =
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0.t1t2t3 . . . exists by the ergodic theorem of Birkhoff and that it is equal to

=















νβ

[

κ
β , κ+1

β

)

if κ ∈ {0, 1, . . . , ⌊β⌋ − 1}

νβ

[ ⌊β⌋
β , 1

)

if κ = ⌊β⌋

where νβ is the unique ergodic measure on [0, 1] associated with the β-shift; it is

equivalent to the Lebesgue measure. But, under the assumptions of Theorem 3.4, the

frequency of the digit 0 in dβ(1) is 1, and the frequencies of the other digits 6= 0 in

this β-expansion are zero. This is impossible since all the intervals
[

κ
β , κ+1

β

)

, κ =

1, 2, . . . , ⌊β⌋ − 1 are of Lebesgue measure 1
β > 0. We deduce that the existence of

Hadamard gaps almost never occurs (see also Schmeling [42]). But Theorem 3.4 is

addressed to real numbers β > 1 and is questionable for algebraic numbers β > 1,

whose set is countable. Therefore it has still to be proved that the set of algebraic

numbers, in particular Perron numbers, which satisfy the assumptions of Theorem

3.4 is not empty.

Let us recall the classification of the numeration bases introduced by Bertand-

Mathis, as cited in Blanchard [11] [49]. They are based on the gaps of dβ(1) and on

the language L(Sβ) of the β-shift:

C1 = {β > 1 | dβ(1) is finite}.

C2 = {β > 1 | dβ(1) is ultimately periodic but not finite}.

C3 = {β > 1 | dβ(1) is infinite, contains bounded strings of 0′s, but is not

ultimately periodic}.
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C4 = {β > 1 | dβ(1) does not contain some words of L(Sβ), but contains

strings of 0′s with unbounded length}.

C5 = {β > 1 | dβ(1) contains all words of L(Sβ)}.

The set of Parry numbers is C1 ∪ C2. The set of Perron numbers which are not

Parry numbers is conjecturally included in C3.

4 Erdős-Turán approach

4.1 Uniform clustering near the unit circle

The Erdős-Turán approach [20] allows a more accurate description of the zeroes of

the functions fβ(z), β > 1, which have a tendancy to cluster uniformly near the unit

circle, in the sense of Weyl [28]. We will apply it by using the following theorem.

Theorem 4.1. Let β > 1 be a real number. If the roots of

k
∑

j=0

ajz
j , |aj | ∈ {0, 1, 2, . . . , ⌊β⌋}, a0ak 6= 0,

are denoted by

zν = rνeiφν ,

then there exist two constants C1, C2 > 0, such that

(i) for every angular sector 0 ≤ α < η ≤ 2π,
∣

∣

∣

∣

∣

∣

1

k

∑

α≤φν≤η

1 − η − α

2π

∣

∣

∣

∣

∣

∣

2

< C1discrep(k) (4.1)
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(ii) for 0 < ρ < 1,

(

1 −
#{zν | 1 − ρ ≤ |zν | ≤ 1

1−ρ}
k

)

≤ C2
1

ρ
discrep(k), (4.2)

with

discrep(k) :=
log(

∑k
j=0 |aj |)) − 1

2 log |a0| − 1
2 log |ak|

k
(4.3)

and the function discrep(k) tends to zero when k tends to infinity.

Proof. (i) is a consequence of Theorem I in Erdös-Turán [20], and (ii) of Theorem 3

in [28]. Since a0ak 6= 0 and |aj| ≤ ⌊β⌋ for j = 0, 1, . . . , k, we deduce

discrep(k) ≤ log((1 + k)⌊β⌋))
k

→ 0 , k → +∞.

Indeed, Theorem 4.1 can be applied either to

• the numerator P ∗
β (z)R∗

β(z) of fβ(z) (see (3.4)) in the first case (D)(i), or to

• the collection of the sections of fβ(z), in the second case (D)(ii), since the zeroes

of the analytical function fβ(z) are the accumulation points of the set of zeroes

of the sections Sn(z) = −1 +
∑n

i=1 tiz
i of fβ(z), and conversely, by Hurwitz’s

Theorem ([33], p. 4).

We will report elsewhere the second case and will develop the first case on examples

in the next Subsections. The constants C1 and C2 are computed in [20] [28]: C1 =

162, C2 = 2, for general polynomials and can be optimized, as well as the discrepancy

function [10] [26] [34].
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Theorem 4.1 is an interesting tool for detecting the existence of the beta-conjugates

of an algebraic number β and for understanding their distribution near the unit circle.

This can be seen as follows: first it is easy to check that the moduli of the coefficients

of the polynomial P ∗
β (z)R∗

β(z), as given by (3.4), are all in the alphabet Aβ , so that

we can apply Theorem 4.1. Then we fix the angular opening η − α of the sector

Tα,η := {z ∈ C | α ≤ arg z ≤ η}.

We now rotate Tα,η around the origin. This means that we apply (4.1) to the sector

Tα+x,η+x, for any x ∈ [0, 2π]. Since, for any x ∈ [0, 2π] η − α = (η + x) − (α + x), we

should have:

∣

∣

∣

∣

∣

∣

1

k

∑

α+x≤φν≤η+x

1 − η − α

2π

∣

∣

∣

∣

∣

∣

2

< C1discrep(k) for all x ∈ [0, 2π]. (4.4)

Then the strategy consists in chosing an opening η − α of Tα,η which is canoni-

cally linked to the angular distribution of the Galois conjugates of β, and to use the

counting measure x → 1
k

∑

α+x≤φν≤η+x 1 of (4.4) to detect, in this rotating sector,

the beta-conjugates of β in the (angular) holes left by the Galois conjugates, these

holes corresponding to a finite number of values of x. This process counts the beta-

conjugates with a possible multiplicity which is induced by the geometry of the Galois

conjugates. A natural possibility for the opening angle η − α, which depends upon

the asymptotic expression of the discrepancy (= rhs of (4.1)) when k goes to infinity,

is of the form C3

√

k
log k where C3 is a constant.
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The remarkable point is that the inequality (4.1) is addressed to the union of the

collection of zeroes which arise from the Galois conjugate and of the collection of

beta-conjugates, then establishing a correlation between these two sets of zeroes.

The value of the discrepancy controls this angular counting process: the smaller it

is, the better is the angular distribution of the roots of P ∗
β (z)R∗

β(z). This discrepancy

tends to zero when the degree k tends to infinity as (4.3).

4.2 Examples

The Perron numbers β > 1 the beta-conjugates of which are studied by the Erdős-

Turán approach are taken among families of Perron numbers indexed by one integer

(Subsections 4.2.1 to 4.2.3) or by several integers (Subsection 4.2.4). In each case the

discrepancy, which controls the inequality (4.1), goes to zero when the degree of β

increases (β running in a given family).

4.2.1 Selmer’s Perron numbers in the class C1 Let us consider the dominant

root β = βd ∈ (1, 2) of the polynomial Xd+1 − Xd − 1 for d ≥ 4 an integer. These

Perron numbers β were studied by Selmer [43]. The minimal polynomial Pβ(X) of β

is equal to Xd+1−Xd − 1 if and only if d 6≡ 4 (mod 6). If d ≡ 4 (mod 6) then, writing

d = 6q + 4, the minimal polynomial Pβ(X) of β is the quotient of Xd+1 − Xd − 1 by

X2−X +1; in this case, the degree of β is d−1 and the number of Galois conjugates

of β inside the open unit disc D(0, 1) is 2(1 + 2q), resp. outside the closed unit disc,
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is 1 + 2q (including β). The Rényi β-expansion of unity is

dβ(1) = 0.10d−11

in both cases, which is finite, what provides a sequence of Perron numbers (βd) in

C1. We have: limd→∞ βd = 1. In both cases, the corresponding analytical function

fβ(z) is −1 + z + zd+1. If d ≡ 4 (mod 6), fβ(z) is equal to the product of φ6(z) by

−1+z2ϕ(z) where ϕ(z) is a product of cyclotomic polynomials (Table 1). Recall that

the nth cyclotomic polynomial is φn(X) :=
∏

k(X − e2iπk/n) where k runs over all

(strictly) positive integers less than n that are relatively prime to n (n ≥ 2). Its zeros

are the beta-conjugates −j,−j2 (i.e. e−iπ/3, eiπ/3), roots of φ6(z), and the inverses

of the Galois conjugates of β (including β−1).

The “angular” spaces (holes) left at Re(z) = 1/2 by the Galois conjugates are

occupied by the two beta-conjugates in order to satisfy the regularity condition of the

distribution of zeros of the sections of fβ(z) by Theorem 4.1. The two beta-conjugates

−j,−j2 are independant of d. If d 6≡ 4 (mod 6), β has no beta-conjugate, the angular

distribution of the Galois conjugates satisfying by itself the regularity condition (4.1)

of Theorem 4.1.
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Table 1: Function fβ(z) for some Selmer’s Perron numbers βd such that d ≥ 4, d ≡

4 (mod 6). The beta-conjugates of βd are the (d-independent) roots of φ6(z).

d β fβ(z)

4 1.32471 . . . φ6(z)(−1 + z2φ2(z))

10 1.18427 . . . φ6(z)(−1 + z2φ2(z)φ18)

16 1.13390 . . . φ6(z)(−1 + z2φ2(z)φ10(z)φ30(z))

22 1.10695 . . . φ6(z)(−1 + z2φ2(z)φ14(z)φ42(z))

28 1.08986 . . . φ6(z)(−1 + z2φ2(z)φ18(z)φ54(z))

34 1.07794 . . . φ6(z)(−1 + z2φ2(z)φ22(z)φ66(z))

40 1.06909 . . . φ6(z)(−1 + z2φ2(z)φ26(z)φ78(z))

46 1.06222 . . . φ6(z)(−1 + z2φ2(z)φ18(z)φ10(z)φ30(z)φ90(z))

...
...

...

64 1.04844 . . . φ6(z)(−1 + z2φ2(z)φ18(z)φ14(z)φ42(z)φ126(z))

70 1.04522 . . . φ6(z)(−1 + z2φ2(z)φ46(z)φ138(z))

76 1.04244 . . . φ6(z)(−1 + z2φ2(z)φ10(z)φ30(z)φ50(z)φ150(z))

...
...

...

604 1.00802 . . . φ6(z)(−1 + z2φ2(z)φ18(z)φ134(z)φ402(z)φ1206(z))

...
...

...

4.2.2 Bassino’s infinite family of cubic Pisot numbers Let k ≥ 2 be an integer.

Let β = βk be the dominant root of the minimal polynomial

Pβ(X) = X3 − (k + 2)X2 + 2kX − k.



27

-1 -0.5 0.5 1

-1

-0.5

0.5

1

�

�

Figure 2. Inverses of the Galois conjugates (•) and of the beta-conjugates (⋄) of the

Perron number β = 1.08986 . . . dominant root of X29 −X28 − 1. The beta-conjugates

−j,−j2 of β lie within the angular holes left by the Galois conjugates.
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We have: k < βk < k + 1 and limk→+∞(βk − k) = 0. The set (βk) is a subset of the

class C1 [4]. The length of dβk
(1) is 2k + 2 and

fβk
(z) = −1 + kz +

k−1
∑

i=2

(

(i − 1)zi + (k − i + 1)zk+i+1
)

+ kzk + zk+1 + kz2k+2.

The case k = 30 is illustrated in Figure 3. Let us write Pβ(X) = (X−β)(X−α)(X−α)

where ℑm α > 0. The large “angular” sector {z ∈ C | argα < arg z < 2π − arg α}

left free between the two Galois conjugates of βk is occupied regularly by the beta-

conjugates. It suffices to take a sector of opening angle equal to argα and rotate

it anticlockwise from α to detect two beta-conjugates approximately at each integer

multiple of argα, within this sector. The multiplicity of 2 arises from the fact that

α is very close to the first beta-conjugate of β, with a dedoubling in the vicinity of

z = −1. The beta-conjugates appear as roots of products of cyclotomic polynomials

for each k, of a certain type, though we have no general proof of this fact.

4.2.3 Boyd’s infinite families of Pisot and Salem numbers A great number

of examples of beta-conjugates of Pisot numbers and Salem numbers β, when dβ(1)

is eventually periodic, can be found in several publications of Boyd [13] [14] [15] [16].

Let us reformulate the following two results of Boyd in view of examplifying Theorem

4.1.
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Figure 3. Galois conjugates (⋄) and beta-conjugates (•) of the cubic Pisot number

β = 30.0356 . . ., dominant root of X3 − 32X2 + 60X − 30. The beta-conjugates are

the roots of φ2(X)φ3(X)φ6(X)φ10(X)φ10(−X)φ30(X)φ30(−X)φ31(X).
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Proposition 4.2. Let β = βk, with k ≥ 3 an integer, be the Pisot number, dominant

root of the minimal polynomial

Pβ(X) =















Vk(X)

X − 1
if k even,

Vk(X)

X2 − 1
if k odd,

where

Vk(X) = X6k+1(X − 2) + X5k(X2 − X + 1) − X4k+1(X − 1)

− X3k(X2 − 2X + 1) − X2k + Xk(X2 − X + 1) − X + 1.

Then

dβ(1) = 0.(1k−1010k−210k+11k−10k1)(1k−2010k−11k−1010k−210k+1)ω

for which the preperiod is of length 5k + 1 and the period of length 5k, and

fβ(z) =
P ∗

β (z)R∗
β(z)

1 − z5k
with R∗

β(X) =















X4k − X3k − 1 k even,

(1 + X)(X4k − X3k − 1) k odd.

Proof. This is Proposition 5.4 in Boyd [14] (Figure 4 with k = 11).

In Proposition 4.2, βk < 2 for all k ≥ 3 and limk→+∞ βk = 2; the beta-conjugates

of β are simple roots of the complementary factor.

Proposition 4.3. Let β = βa be the Salem number of degree 6, dominant root of the

minimal polynomial

Pβ(X) = X6 + (−a + 1)X5 − aX4 − 2aX3 − aX2 + (−a + 1)X + 1

with a ≥ 4 an integer. Then,
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Figure 4. Beta-conjugates of the Pisot number β = β11 = 1.99926 . . ., of degree 66,

dominant root of Pβ11
(X) (Proposition 4.2). They are the roots of (1 + X)(X44 +

X11 − 1). The beta-conjugates are near the unit circle between the Galois conjugates

(not represented) so that their union is regularly angularly distributed in the sense of

Theorem 4.1.
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dβ(1) = a1(a − 2)a1.

((a−2)0a00(a−2)11(a−2)00a0(a−2)20(a−4)31(a−4)20(a−2)2(a−2)02(a−4)13(a−4)02)ω

for which, for all integer a ≥ 4, the preperiod is of length 5 and the period of length

33, and

fβ(z) =
Pβ(z)R∗

β(z)

1 − z33
with R∗

β(X) = φ2(X)φ6(X)(X9 − X7 − 1)φ33(X).

Proof. This is Proposition 4.3 in [15] (Figure 5).

As in the above example the set of beta-conjugates of βa is independent of the

integer a ≥ 4, so that this set does not characterize the Salem number βa.

In the example of Figure 5 (with a = 4), the counting process in small (rotating)

sectors takes into account the multiplicity of 3, which is the number of real roots > 0

of fβ(z).

4.2.4 Confluent Parry numbers They were studied by Frougny [22] and Bernat

[5] [6]. By definition, a confluent Parry number β is a Parry number which satisfies

dβ(1) = 0.kd−1
1 k2

for some integers d ≥ 2, k1 ≥ k2 ≥ 1. Such Parry numbers form a subclass of Perron

numbers (βd,k1,k2
) in C1. For such a Perron number, we have

fβ(z) = −1 + k1(z + z2 + . . . + zd−1) + k2z
d

By Theorem 2 in Brauer [17] the polynomial

Xdfβ(1/X)
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Figure 5. a-independent beta-conjugates (•) of the Salem number β = βa, for a ≥ 4

an integer, dominant root of X6 − (a − 1)X5 − aX4 − 2aX3 − aX2 − (a − 1)X + 1.

They are the roots of φ2(X)φ6(X)(X9 +X2 −1)φ33(X). The beta-conjugates lie near

the unit circle “between” the Galois conjugates (⋄, represented here with a = 4 ) so

that their union is regularly distributed in the sense of Theorem 4.1.
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is irreducible for all integers d ≥ 2, k1 ≥ k2 ≥ 1. This implies that the minimal

polynomial Pβ(X) of β is equal to −Xdfβ(1/X). This means that β has no beta-

conjugate and therefore that the angular distribution of its Galois conjugates is very

regular in the sense of Theorem 4.1. This is illustrated in Figure 6 for k1 = 9, k2 = 4

and d = 40.

Such Parry numbers are Pisot numbers by the following theorem of Brauer: it

suffices to consider

(1 − X)Xdfβ(1/X) = Xd+1 − (1 + k1)X
d + (k1 − k2)X + k2.

Theorem 4.4. Let z0 be a point on the unit circle which has the same argument as

−a1. Assume that the coefficients of the polynomial

f(X) = Xn + a1X
n−1 + . . . an, ai ∈ C,

satisfy

|a1| = 1 + |a2| + |a3| + . . . + |an|.

Then the point z0 may be a root of f(z); at most one root different from z0 lies in the

exterior of the closed unit disc or on the unit circle while the others are in the open

unit disc.

Proof. Brauer [17] p 254.
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Figure 6. Galois conjugates ( 6= β) of the Perron number β = 9.999 . . ., dominant root

of Pβ(X) = X40 − 9
P

39

i=1
Xi − 4, and confluent Parry number (β is a Pisot number).

The absence of beta-conjugates is controlled by the great regularity of the angular

distribution of the Galois conjugates, by Theorem 4.1.
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(2004), 125–149.

[28] C.P. Hughes and A. Nikeghbali, The zeros of random polynomials cluster uniformly

near the unit circle, arXiv:math/0406376v3 [math.CV] 3 Jun 2007.

[29] D.H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. 34 (1933),

461–479.



39

[30] D. Lind, The entropies of topological Markov shifts and a related class of algebraic

integers, Erg. Th. Dyn. Syst. 4 (1984), 283–300.

[31] M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, (2003).

[32] K. Mahler, Arithmetic properties of lacunary power series with integral coefficients,

J. Austr. Math. Soc. 5 (1965), 56–64.

[33] M. Marden, The geometry of the zeros of a polynomial in a complex variable, Amer.

Math. Soc. Math Surveys Number III (1949).
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