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A novel experimental scheme has been developed in order to measure the heat capacity of mass
selected clusters. It is based on controlled sticking of atoms on clusters. This allows one to construct
the caloric curve, thus determining the melting temperature and the latent heat of fusion in the case
of first-order phase transitions. This method is model-free. It is transferable to many systems since
the energy is brought to clusters through sticking collisions. As an example, it has been applied to
Na+

90 and Na+

140. Our results are in good agreement with previous measurements.

PACS numbers: 36.40.-c, 34.10.+x, 82.60.Nh

I. INTRODUCTION

Although melting is a universal property of bulk mat-
ter, no quantitative theory of this phenomenon is known.
A possible way to tackle the problem is to study small
systems, expecting that the number of degrees of free-
dom is low enough for the theory to be tractable. On
the other hand, this makes comparison to experiments
harder, since melting of very small particles cannot be
seen directly. It has been shown however, that caloric
curves could theoretically [1, 2, 3] and experimentally
[4, 5] be used to characterize the melting transition. Gen-
erally, the melting temperatures of clusters are much
lower than in the bulk, but higher temperatures have
been reported for tin [6] and for gallium [7]. The most
thorough study on small clusters is that of Schmidt et al

[4]. They found that the melting temperature of small
sodium particles (in the range of a hundred atoms) is
far from monotonous as a function of size. The latent
heat per atom also varies considerably. Those variations
originate from a complex interplay between electronic,
geometric and entropic effects [5, 8].

The general scheme for cluster calorimetry is the fol-
lowing. Clusters are produced at a given temperature T
using a buffer gas as a heat bath. They are mass selected
and then some energy E is added to the clusters in order
to bring them to a known reference state. An increase
δT of the temperature is compensated by a decrease δE
of the energy needed to reach the same state. The heat
capacity is then deduced as the ratio C(T ) = δE/δT .
A peak in the curve C(T) is the signature of a phase
transition. The maximum of this peak gives the melting
temperature and its area is the latent heat [2].

In the existing experimental methods, the energy E
is brought either by a laser [4] or by collisions [7]. The
method of Ref. 4 is accurate but requires a laser exci-
tation. If photoabsorbtion is very efficient for metallic
clusters, this is not the case for all kind of nanoparti-
cles: most of them often undergo direct photodissociation
rather than heating. This drawback can be overcome by
the collisional technique [7]. There is price to pay how-
ever because the determination of the amount of energy
transferred by inelastic collisions relies on a model.

Another method, which is not based on the determina-
tion of the caloric curve, has been used to extract melting
temperatures [9]: one measures the mobility of clusters
in a drift tube, from which collision cross sections are de-
duced. A variation of the cross section as a function of
the temperature is the signature of the phase transition.
This method is the only one able to detect a second-order
phase transition. Nevertheless, it relies on a subtle effect
that might be hard to detect. Since we can also mea-
sure collision cross sections in our experiment [10], we
should also be able to detect the transition in a similar
way, but preliminary measurements have not yet revealed
any evidence of second order phase transition in sodium
clusters.

This paper reports a new way to acquire caloric curves
of mass selected clusters. Basically, as in previous ex-
periments, we take advantage of the relation between
evaporation rate and internal energy: the reference state,
hence its internal energy, corresponds to a given evapo-
ration rate. In our case the energy is brought by stick-

ing collisions. In this way, unlike in Ref. 7, the energy
is increased at each collision by a well defined quantity
Ec +D, where Ec is the collision energy and D the disso-
ciation energy. Moreover, as our method does not require
laser excitation, it is easily transferable to many differ-
ent systems. Furthermore, our method is parameter free:
performing the experiment at two different collision en-
ergies allows us to get rid of the unknown dissociation
energies in the final expression of the heat capacity. In
this paper, we demonstrate the validity of our method
using sodium clusters, in order to compare our results
with those of Ref. 5.

In the following, we first introduce the principle of
the method used for extracting the caloric curves (Sec-
tion II), then we briefly describe the experimental setup
(Section III). The evolution of the number of sticking in
the multicollision regime is discussed in section IV. Sec-
tion V is devoted to a detailed description of the method
whose validity and robustness is discussed with the help
of Monte Carlo simulations in section VI. Finally, in
section VII, we show the experimental caloric curves ob-
tained for Na+

90 and Na+
140 and compare them to previous

results.
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II. PRINCIPLE OF THE METHOD

When performing calorimetry with nanoclusters, there
is no way to measure the temperature after adding energy
to the system, in contrast to macroscopic systems, where
the temperature can be monitored as a function of added
energy. Only the initial temperature can be fixed by a
suitable preparation of the system. Another difficulty is
related to the fact that measurements are performed on
an assembly of clusters with some statistics involved. In
order to illustrate the principle of the method, we neglect
all statistical effects here. Further details are given in
section V.

So we assume that all the clusters have initially a given
internal energy E0(T ). The purpose of the experiment is
to add a known amount of energy ∆E to the cluster such
as to bring it to a well defined and recognizable state.
The energy Ef = E0(T ) + ∆E of this state is not neces-
sarily known. All we need is that Ef does not depend on
the partition between E0 and ∆E. In our experiment,
this final state is given by the condition that its lifetime
is equal to the detection time in the experiment. Other
experiments (see refs. 4, 7) use slight variations of this
condition. The fact that this state is well defined is given
by the theory of the evaporative ensemble[11]: since the
lifetime with respect to evaporation depends exponen-
tially on the energy, fixing the lifetime, even loosely, gives
a well-defined value to the energy.

There are various ways to pour energy into the cluster.
Haberland’s group uses photons[4], Jarrold’s uses inelas-
tic collisions with a rare gas[7]. In our group, we use
sticking collisions. In this case, the size n is increased by
one at each collision and the added energy is Dn+1 +Ec,
where Dn is the dissociation energy of the cluster of size
n and Ec the collision energy in the center of mass frame
(it is easily shown that the rotational energy can be ne-
glected). Basically, the energy Ef is reached when no
more sticking collision is possible, that is, the maximum
number of sticking collisions depends on the initial en-
ergy. Fig. 1 illustrates this schematically. The solid line
represents the internal energy E0(T ) of the cluster as a
function of its temperature. A first order phase tran-
sition shows up as a smooth jump in this curve (which
gives a peak in the heat capacity). The vertical arrows
in the figure represent the quantities Dn + Ec. Ef is
depicted as constant, although it depends slightly on the
size reached after the stickings have occurred. As the ini-
tial temperature is increased, the cluster can stand less
and less sticking. Five situations are depicted where the
number of sticking evolves from 5 to 1. Before and af-
ter the phase transition, the number of sticking evolves
slowly. But at the phase transition it evolves much more
rapidly due to the rapid change in energy as the temper-
ature increases.

Of course, the scheme presented on Fig. 1 is oversim-
plified. The main correction is that even if the initial
energy is supposed to be well defined, the number of
sticking collisions results from a statistical process, with
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FIG. 1: (Color on line) Illustration of the principle of our
experiment. The cluster energy is plotted as a function of the
initial temperature. Each small vertical arrow represents the
quantity Dn +Ec. Ef is the energy such that the dissociation
time equals the observation time in our experiment. As the
initial temperature is increased, less and less sticking are ob-
served. This decrease in the number of sticking evolves more
rapidly as a phase transition occurs.

Poisson probability. Furthermore, it is impossible to rule
out evaporation during the process. For the sake of sim-
plicity however, let us assume for the present discussion
that we can extract from the experiment a well defined
“maximum number of sticking” nmax for a given initial
temperature. It is then theoretically possible to obtain
the initial internal energy E0 of a cluster of initial size j
as:

E0 = Ef −

nmax
∑

i=1

(Dj+i + Ec) (1)

This equation cannot be used directly however, be-
cause neither Ef nor the Dn’s are known. We get rid of
this problem by using a differential method. The basic
idea is to measure the number of sticking nmax(T, Ec1

)
and nmax(T, Ec2

) as a function of the initial tempera-
ture T for two different collision energies Ec1

and Ec2
,

and to find two temperatures T1 and T2 such that
nmax(T1, Ec1

) = nmax(T2, Ec2
) (see Fig. 2). Then, Ef

and the Dn’s are the same in both processes. This can
be written as:

Ef = E0(T1) +

nmax
∑

i=1

(Dj+i + Ec1
) (2)

= E0(T2) +

nmax
∑

i=1

(Dj+i + Ec2
) (3)

In a first approach, one can neglect the variation of
the collisional energies with the number of sticking. By
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FIG. 2: (Color on line) Schematic view of the average number
of sticking as a function of the temperature. Two curves are
shown corresponding to two energies of collision Ec1 and Ec2 ,
with Ec2 > Ec1 . When the collision energy is increased at a
given temperature less sticking occurs.

subtracting Eq. 2 to Eq. 3 and using a finite differential
approximation, one can derive:

∂E0

∂T
≈ nmax

Ec1
− Ec2

T2 − T1
(4)

Let us recall that this equation is a rough approxima-
tion however. It is useful for the understanding of the
principle of the differential method, but it has been es-
tablished with a number of simplifying hypotheses. Spe-
cially, the quantity nmax is not well defined. Instead, we
will show in section IV that a well defined and relevant
quantity is the average number of sticking. This quan-
tity can be easily extracted from the experimental mass
spectra after sticking.

III. EXPERIMENTAL SETUP

The experimental setup is depicted in Figure 3 and has
already been described in details elsewhere [10]. The key
points of the experiment are highlighted in the following.

The clusters are produced in a gas aggregation source.
A crucible filled with sodium is heated up to 573 K. The
source walls are cooled down with liquid nitrogen. A
controlled flux of cold Helium (173 K) flows through the
hot sodium vapor and condensation occurs. A hollow
cathode discharge in the crucible ionizes the produced
clusters.

The helium buffer gas brings the sodium clusters to the
next stage of the experiment, the thermalization cham-
ber. Its temperature can be set between 140 K and 500 K.
Clusters thermalization occurs thanks to collision with
the helium buffer gas (≈ 105 collisions). Out of the ther-
malization chamber flows a continuous beam of charged,

FIG. 3: Schematic view of the experiment.

temperature controlled, sodium clusters. The size dis-
tribution is controlled by varying the helium gas flow,
the temperature of the crucible and the output diameter
of the thermalization chamber. Typically, the center of
the size distribution ranges from 30 to 300 atoms with a
width of about 100.

We then apply pulsed voltages to electrodes in order to
mass select, energy focus and slow down the clusters. The
first acceleration stage consisting in 3 electrodes serves
two purposes: first it allows a first raw mass selection,
but more importantly, it is used to bring the clusters at
the distance Dfoc with a linear relation between their
kinetic energy and their position. Clusters of different
sizes will reach Dfoc at different times. By applying a
voltage on the energy focusing electrode at a specific time
Tfoc, we compensate the energy dispersion for a given size
of clusters, giving all of them the same energy to a very
good accuracy.

Mass selected clusters are then decelerated with a grad-
ual potential barrier until they reach the end of the slow-
ing down apparatus. The voltages applied on electrodes
are then suddenly shut down.

At this point, clusters are mass selected, thermalized
and slowed down to a known controlled kinetic energy.
They enter a cylindrical collision cell (5 cm long, 2.5 cm
radius, 5 mm entrance and exit holes). The vapor den-
sity ρ of sodium atoms in the cell is controlled by the
temperature Tcel. After colliding, clusters finally reach
the second acceleration stage, which, used in combina-
tion with a reflectron, gives us the size distribution at
the output of the cell.

Clusters can be routinely slowed down to Ek = 10 eV.
The full width at half maximum of the kinetic energy
distribution is about 2 eV. The mean collision energy in
the center of mass frame is given by

Ec =
Ek

n + 1
+

3nkBTcel

2(n + 1)
. (5)

where the second term is the contribution from the mean
kinetic energy of the atoms in the vapor.
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Our raw experimental data are the mass spectra
recorded at the output of the cell, after parent clusters
have undergone collisions. The mass spectra are recorded
as a function of several parameters such as the initial
temperature of the clusters, the density in the cell or the
kinetic energy Ek.

The pulsed voltages are operated at 200 Hz, and mass
spectra are generally averaged over 6000 sweeps. The
thermalizer or cell temperature is ramped (1 K/minute)
and mass spectra are continuously acquired with the fol-
lowing sequence:

- Mass spectrum at Ec1

- Background spectrum at Ec1

- Mass spectrum at Ec2

- Background spectrum at Ec2

until the final temperature is reached. Background peaks
originate from masses close to the selected one, which,
although not ideally transmitted through the energy fo-
cusing device, can also cross the collision cell and be de-
tected. These peaks are present in the absence of sodium
vapor in the cell. Background spectra are obtained by
slightly changing Tfoc so that neither the chosen mass
nor any other mass is energy focused.

In the following section we analyze the evolution of
the mass distributions at the output of the cell as the
experimental parameters are varied.

IV. MASS DISTRIBUTIONS IN THE

MULTICOLLISION REGIME

When the thermalized, mass selected clusters fly
through the cell, they undergo a number of collisions,
depending on the density of atoms in the cell. If the col-
lision energy is low enough, those collisions lead to the
sticking of sodium atoms onto the clusters [12]. Fig. 4
shows the evolution of the size distribution at the exit of
the cell when the atom density ρ is increased. These spec-
tra are obtained for Na+

90 slowed down to Ek = 20 eV and
thermalized at a temperature T = 146 K. The top panel,
for almost no density in the cell, demonstrates the ability
of our setup to mass select the clusters Na+

90. As can be
seen, peaks appear after the selected mass. Particular
care has been taken in order to eliminate these back-
ground peaks. Then, as the density is increased, bigger
sizes appear. Since the collision energy is low (0.25 eV in
the center of mass frame) compared to the dissociation
energy (about 1 eV) and the clusters have a low temper-
ature, several stickings are observed (up to 8 in the lower
panel of Figure 4).

Starting from a cluster of size j, a convenient way to
quantify the number of stickings, is to use the size distri-
bution barycenter n. It is calculated as:

n =

∑

i i × I(i)
∑

i I(i)
(6)

86 88 90 92 94 96 98 100
  

 

 = 5.1x1019 m-3

n

 

 

 

 = 1.3x1019 m-3

 

 

 

 = 0.04x1019 m-3

FIG. 4: Size distributions for Na+

90 clusters going through
the cell with T = 146 K and Ek = 20 eV. As the density in
the cell increases (from top to bottom), the number of sticking
onto Na+

90 increases.

where I(i) is the integrated signal of clusters of size i+ j.
Fig. 5 shows the evolution of n as a function of the

vapor density in the cell for Na+
90 with Ek = 20 eV and

T = 146 K. The barycenter first increases until it reaches
a plateau at n ≈ 4.5 for a density of 0.3×1020 m−3. It
then decreases continuously and can even reach negative
values. Two competitive reactions occur in the cell that
govern the evolution of the size distribution, the sticking
of an atom onto the cluster:

Na+
n + Na → Na+

n+1 (7)

E = E0 + Dn+1 + Ec (8)

and the evaporation:

Na+
n → Na+

n−1 + Na (9)

E = E0 − Dn − ε (10)

where E and E0 are the internal energies after and before
reaction respectively, Dn are the dissociation energies of
cluster of size n, Ec is the collision energy in the center
of mass frame and ε the fragment kinetic energy. Three
regimes can be distinguished:

1. The number of sticking increases linearly with the
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FIG. 5: Evolution of the sticking distribution barycenter as a
function of the density of sodium atoms in the cell for Na+

90,
T = 146 K and Ek = 20 eV. Three regimes can be distin-
guished: (1) linear increase, (2) saturation and (3) decrease.

density. Each collision leads to a sticking and E
remains low enough so that no evaporation occurs.

2. The number of sticking reaches a maximum (sat-
uration). At each collision, the internal energy is
increased by the dissociation energy Dn plus the
collision energy Ec. When the internal energy gets
high enough, evaporation sets in and counterbal-
ances the sticking: the mean evaporation time is
nearly equal to the mean time between two colli-
sions.

3. After saturation is reached, each extra collision
leads to evaporation. Sticking-evaporation cycles
increase the internal energy of the clusters by Ec−ε
(ε ≈ kBT ). Since ε < Ec, after a number of
evaporation-sticking cycles, the clusters heat up
and evaporation dominates.

The reliability of our method rests on the fact that the
state of energy Ef on Fig. 1 can be reached in the course
of the flight through the cell. Thus, the density has to
be high enough so that regime (2) or (3) occurs. This
implies that evaporation occurs also during the process,
so that the analysis leading to Eq. (4) has to be refined
in order to account for evaporation. This is done in the
next section.

V. EXTRACTION OF THE CALORIC CURVES

A. Mathematical expression for the heat capacity

Let us consider a cluster of initial energy E0 and size
j when it enters the cell. Suppose now that it undergoes
i collisions during its flight through the cell, and that

the final observed number of stickings is n, with n < i
because some evaporation occurs. Our basic hypothesis
is that no matter the detailed history of these events, the
final value of n depends only on the total energy E which
has been brought to the cluster:

E = E0 + iEc + f (11)

where f is an unknown quantity, which depends on the
various values of the dissociation energies but neither on
E0 nor on Ec. There is no need in knowing f , as it does
not appear in the final expression of the heat capacity.
This hypothesis amounts to say that the number of evap-
orations is such as to bring back the cluster to the energy
Ef defined in section II, and thus depends only on the
excess energy E − Ef .

Now, all three quantities E0, Ec and i are statisti-
cally distributed. In this treatment, we suppose that the
widths of the E0 and Ec distributions are small respec-
tive to their averages, so that E0 can be replaced by its
average E0(T ) and Ec by its average Eq. (5). The main
statistical effects come from the distribution of the num-
ber of collisions i, whose width is close to the average.
The probability P (i) is a Poisson law :

P (i) =
ıie−ı

i!
(12)

with an average ı, which can be easily computed knowing
the density ρ in the cell.

Computing the mean number of sticking, we obtain:

n =
∑

i

P (i)n(E0(T ) + iEc). (13)

By the implicit functions theorem, we have:

∂E0

∂Ec

∣

∣

∣

∣

n

= −
∂n

∂Ec

/

∂n

∂E0
(14)

The two derivatives on the r.h.s. above are given by:

∂n

∂E0
=
∑

i

P (i)
∂n

∂E
(E0(T ) + iEc) (15)

∂n

∂Ec

=
∑

i

iP (i)
∂n

∂E
(E0(T ) + iEc) (16)

We now use a specific property of the Poisson law:

iP (i) = ı
(

P (i) +
∂P (i)

∂ı

)

(17)

so that Eq. (16) can be rewritten as:

∂n

∂Ec

= ı

(

∂n

∂E0
+

∂2n

∂E0∂ı

)

(18)

So far, we neglected the change in cluster kinetic en-
ergy after each collision. When the number of collisions
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FIG. 6: (Color on line) Experimental data showing the
barycenter n as a function of the initial temperature for Na+

140

clusters. The two curves correspond to collision energies of
Ec1 = 0.14 eV and Ec2 = 0.21 eV

becomes large, this has to be accounted for through an
effective value E∗

c , which is to a good approximation:

E∗

c = Ec

j + 1

ı

(

1 −

(

j

j + 1

)ı
)

(19)

We use now

C(T ) =
dE0

dT
(20)

together with equations (14 and (18), and we eventually
obtain the final expression for the heat capacity:

C(T ) = −ı

(

1 +
∂2n

∂T∂ı

/

∂n

∂T

)

∂E∗

c

∂T

∣

∣

∣

∣

n

(21)

We describe in the next section how the different terms
in Equation (21) are deduced from the experiment.

B. Practical extraction of C(T ) from experimental

curves

In order to use Eq. (21), we need three partial deriva-
tives and the value of ı. All these quantities can be ex-
tracted from experiment.

1. The derivative
∂Ec

∂T

∣

∣

∣

∣

n

The method can be summarized as follows (see Fig. 6
for an illustration):

1. We record the barycenter n of the size distribution
as a function of the initial cluster temperature for
two different kinetic energies of the clusters Ec1

and
Ec2

.
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FIG. 7: Monte Carlo simulation of n(ρ) for two initial
temperatures of Na+

90 clusters: 146 K (circles) and 293 K
(squares) (see Section VI for details). The kinetic energy of
the cluster is 20 eV. The bottom scale is in average number
of collisions ı whereas the top scale is in vapor density. At
low density, the number of sticking is equal to the number of
collisions. S1 and S2 are the slopes used in the determination

of ∂2n
∂ı∂T

.

2. We then chose a given value of the barycenter. For
this value, we record the two corresponding tem-
peratures T1 and T2 (as shown on Fig. 6).

3. We approximate:

∂Ec

∂T

∣

∣

∣

∣

n

=
Ec2

− Ec1

T2 − T1
(22)

2. Determination of ı

The average number of collisions ı can be considered
to be the same for the two collision energies Ec1

and Ec2
,

as long as the difference δEc remains small enough (in
other words, that the method is indeed differential). For
instance, for clusters as small as Na+

30 at Ek = 15 eV
and 20 eV (that correspond to 0.53 and 0.70 eV collision
energies) and for a density ρ = 0.2×1020 m−3 in the cell,
Monte Carlo simulations (see next section) show that the
average number of collisions are respectively 2.11 and
2.08. As one can see, the difference is small enough that
it can be neglected. Note that as the cluster size increases
it becomes even easier to fulfill this requirement.

The average number of collisions ı is deduced from sat-
uration curves such as the ones presented in Figure 7.
There is no need in knowing the value of the cross sec-
tions to determine this parameter. The main reason is
that in regime (1), each collision leads to a sticking. The
proportionality factor between the cell density ρ and ı is
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FIG. 8: (Color on line) Evolution of the size distribution
barycenter as a function of the density of sodium atoms in the
cell for Na+

90 for (a) three different initial temperatures (the
kinetic energy is Ek = 20 eV) and (b) two different kinetic
energies (T = 213 K). Full lines are the results of Monte Carlo
simulations (see Section VI).

thus deduced from the initial slope of the curves. Actu-
ally collisions at high impact parameter might not lead
to sticking. These collisions involve a very small energy
exchange anyway, so that they can be neglected[12].

3. The derivatives
∂2n

∂T∂ı
and

∂n

∂T

The principle is presented on Fig. 7 too. The slopes S1

and S2 are the derivatives ∂n
∂ı

at temperatures T1 and T2

respectively. ∂2n
∂T∂ı

is then estimated as (S2 − S1)/(T2 −
T1). Note that its value does not depend on the collision
energy (which needs nevertheless to be the same for the
two curves at T1 and T2).

Finally the derivative ∂n
∂T

is evaluated using the curves
n(T ) (see Fig. 6).
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FIG. 9: (Color online) Simulation of the internal energy dis-
tribution for three different densities in the cell: (a) 0.1, (b)
0.32 and (c) 0.72×1020 m−3. The initial temperature of the
clusters is 146 K and Ek=20 eV. Peaks are labeled by the size
of the clusters.

VI. MONTE CARLO SIMULATION:

VALIDATION OF THE METHOD

A. Description of the simulations

Realistic Monte Carlo simulations have been per-
formed in order to check the validity of the method under
real conditions where the above analytical ideal approach
might be invalidated by a number of details that are not
taken into account: initial internal and collisional energy
distributions, spatial divergence due to collisions, varia-

tions of ∂2n
∂T∂ı

, dissociation events between the output of
the cell and the detector,...

The initial internal energy of the clusters is randomly
picked such that the average energy is equal to:

〈E〉 =
(3j − 6)hν0

e
hν0

kB T − 1
(23)

where j is the number of atoms in the cluster, h the
Planck constant, ν0 the vibration frequency. The fre-
quency ν0 is taken from 13 and is equal to 2.3×1012 Hz.
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The phase transition is taken into account by adding the
latent heat Lj(T ) to 〈E〉 in the following way assuming
a gaussian peak in the heat capacity:

Lj(T ) = Lj0

(1 − erf(−
(T−Tjf )

∆Tj
))

2
(24)

where Tjf is the temperature of the phase transition, ∆Tj

is the width of the phase transition and erf is the error
function. Lj0 is the latent heat for a cluster of size j. This
way we simulate the broadening of the phase transition
for a finite system.

The evaporation rate is estimated using a Weisskopf
approximation:

Γevap = 8πν0(3j − 7)σ
(1 − Dj/E)3j−8

E
(25)

where σ is the sticking cross section to the cluster of size
j − 1. The collision rate is given by:

Γcoll = ρσvrel. (26)

where vrel is the relative velocity of the cluster and the
sticking atom. The velocity distribution of atoms is as-
sumed to follow a Boltzman distribution.

At each collision, the change in speed of the clusters
is taken into account. Since only clusters with the right
velocity are detected, clusters that undergo a lot of colli-
sions become too slow to be detected and are discarded
in the simulation.

We first checked that our Monte Carlo simulations
could reproduce the experimental results of Figs. 5 and 8.
The agreement between the simulations and the experi-
mental data is good. In order to reproduce correctly the
experimental results it is important to put in the correct
latent heat and melting temperature for Na+

90. We took
Tf = 205 K and L = 8 meV/atom for the melting tem-
perature and the latent heat respectively. On the other
hand, for the other sizes the latent heat and temperature
of fusion can be chosen arbitrarily: there is no change in
the curve n(ρ).

For the dissociation energies, only values of Dn up to
n=37 [14] are available. In the simulations presented
here, the dissociation energies are all taken equal to
0.94 eV.

These simulations allow us to follow the evolution of
the internal energy distribution of the clusters as a func-
tion of their size as the density in the cell is varied. In
Figure 9 we present the energy distribution of the clus-
ters for three different densities in the cell. In Figure 9(a)
the density in the cell is 0.1 × 1020 m−3, corresponding
to an average number of sticking n ≈ 3 (in this case
evaporation is completely negligible so that each collision
leads to a sticking). We see in the figures well separated
peaks corresponding to the different masses obtained af-
ter the cell. The energy separation between the peaks
correspond to the dissociation energy plus the collision
energy. The width of the peaks originates mainly from

the initial canonical energy distribution. This can be
seen from the n = 90 energy distribution: indeed, in this
example part of the parent clusters did not collide nor
evaporate. Nevertheless, as the cluster size increases we
observe an increase in the width. This comes from the
width of the collision energy distribution which adds at
each new collision.

In Figure 9(b), the density is 0.32× 1020 m−3 (ı ≈ 7).
This corresponds to the saturated case (regime (2) of
Figure 5). If we consider the sizes n = 93 and 94, the
internal energy distribution becomes bimodal: the high
energy part comes from the evaporation of bigger clus-
ters. For the two biggest sizes, namely n = 95 and 96, one
can see as well that the energy separation between the
peaks gets smaller. In fact, there is a strong contribution
coming from the evaporation of n = 96 clusters in the in-
ternal energy distribution of the n = 95 clusters. For the
size n = 96, there is of course also contribution from the
evaporation of bigger sizes that are not observed. Indeed
due to their high evaporation rate, they evaporate before
detection.

As the density is increased to 0.72 × 1020 m−3 (Fig-
ure 9(c)), all clusters end up with almost the same inter-
nal energy. In this last case the average number of colli-
sions is about 17, much more than the maximum number
of sticking observed (which is about 6). The observed in-
ternal energy is the maximum energy clusters can bear
without evaporating before detection. In this case the
observed clusters have all undergone evaporation.

Despite the complicated evolution of the internal en-
ergy of the clusters as the number of collision increases,
the size distribution, for a given collision energy and den-
sity in the cell, is still essentially governed by the internal
energy of the incoming cluster. Furthermore, as shown
below, the fact that clusters of a specific size don’t have
necessarily a well defined internal energy do not prevent
the determination of the caloric curves.

B. Test of the method of section V

In order to test the method of section V, we start from
a theoretical caloric curve for Na+

90 and we perform a
set of simulations that mimics the experimental curves.
Then, using these fake experimental curves, we apply
the method and we extract a caloric curve, which is then
compared to the theoretical one we started with.

First of all, two saturation curves at Ek = 20 eV were
simulated for two initial temperatures of the clusters,
namely 146 K and 293 K. These curves are presented
in Fig 7 and, as already shown, allow to calculate the
various terms involved in Eq. (21).

Mass spectra were then simulated at Ec ≈ 0.4 and
0.5 eV as a function of the initial temperature of Na+

90

clusters. 5000 trajectories were simulated at each tem-
perature. Two set of simulations were performed at two
different vapor densities, corresponding respectively to
ı = 5.3 and ı = 10.6. In the first case the working density
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FIG. 10: (Color online) The thick solid line is the caloric
curve introduced in the simulation (L = 8 meV/atom,
Tf=205 K and ∆T= 30 K). The dotted curves correspond
to the caloric curves obtained by setting the second deriva-
tive in Eq. 21 to 0 whereas for the curves in thin solid line it
is taken into account. The top panel correspond to ı = 5.3
and the bottom one to ı = 10.6

roughly corresponds to the maximum of the saturation
curve (see Fig 7). It would not be a very good choice in a
real experiment since the curvature of ∂n

∂ı
, thus the value

of the second derivative in Eq. (21), is maximum. For
ı = 10.6, the second derivative in Eq. (21) is much smaller
because the saturation curves already become much more
parallel (see Fig 7).

Figure 10 shows a comparison between the theoreti-
cal caloric curve introduced in the calculation and the
curves deduced from the simulation of the experiment.
Fig. 10(a) corresponds to ı = 5.3 and Fig. 10(b) to
ı = 10.6.

In order to evaluate the effect of the second deriva-
tive in Eq. (21), two curves are represented for each va-
por density in each panel of Fig. 10, respectively with
and without this term. For ı = 10.6, within the noise,
the curves are virtually indistinguishable. On the other
hand, for ı = 5.3, although the general shape of the
caloric curve is correctly obtained with or without the
second derivative, a quantitative agreement is obtained
only by having it taken into account. The correction
nicely improves the curve even in this unfavorable case.
Nevertheless the smallest the correction the more accu-

rate the result. Note that the noise is more important for
ı = 5.3 than for ı = 10.6: since the mean energy differ-
ence is roughly ıδEc, the two curves n(T ) get closer for
small ı values.

As already mentioned the simulations presented here
are done with all clusters having the same dissociation
energies. Nevertheless, we carefully checked that the in-
troduction of magic numbers (i.e. higher dissociation
energies) for arbitrary sizes does not influence our deter-
mination of the caloric curve.

Furthermore we performed simulations with randomly
chosen temperature of fusion, latent heat and width of
the transition for cluster sizes other than the initial one,
and again this does not affect our determination of the
latent heat and temperature of fusion of the initial cluster
size.

From these simulations, we find our method particu-
larly robust. The simulations demonstrate that the av-
erage number of sticking n is a well suited quantity to
characterize the size distribution, even when evaporation
dominates, provided Eq. (21) is used.

VII. EXAMPLES OF EXPERIMENTAL

RESULTS WITH Na+

90 AND Na+

140

We present in Figure 11 the experimental caloric curves
obtained for Na+

90 and Na+
140 clusters. The melting tem-

perature is obtained from these curves as the maximum
of the peak. The latent heat is deduced by integrating
the peak area, after removing the base line (grey filled
area under the curves in figure 11). The caloric curve for
Na+

90 was not measured previously. We find a melting
temperature of 205 ±5 K and a latent heat per atom of
8 ±2 meV.

For the Na+
140 clusters, the melting temperature is

272 ±4 K and the latent heat is 14 ±2 meV/atom. This
is consistent with previous measurements by Schmidt et

al [5] (Tfus = 262 K, L = 11 meV/atom).
The results for Na+

90 are quite noisy: this is due to the
relatively small latent heat of this cluster and the fact
that the width of the transition is relatively large. Nev-
ertheless we can still identify a peak in the caloric curve
for this disfavoring case. We observe that the latent heat
increases at high temperatures. Such an increase has al-
ready been observed, although less pronounced (see [4]
for Na+

192 and [15] for Na+
139). It might be due to either

a rising background due to a high Debye temperature or
a melting occurring in several steps. However the noise
level is such that we can not confirm the significance of
this increase in our case.

As shown from Fig. 10 the exact choice of the vapor
density in the cell is not critical. Nevertheless, an optimal
choice exists. As already mentioned in Sec. VI, it can be
chosen so that it minimizes the noise. In order to mini-
mize the second derivative in Eq. (21), the vapor density
ρ has to be chosen high enough such that the curves
n(ρ) become almost parallel. On the other hand, if ρ be-
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FIG. 11: (Color online) Experimental caloric curves for (a)
Na+

90 and (b) Na+

140 clusters. C(T ) is in unit of kB per degree
of freedom. The full lines represent the latent heat used in the
simulations (see Eq. 24) and are used to guide the eye. The
grey filled area under the curves represent the latent heat.

comes too large, evaporation becomes too strong and the
signal gets scattered over many mass peaks, which is un-
favorable for the statistics. Furthermore the background
pressure in the collision chamber gets too high and leads

to unwanted collisions out of the cell. Finally, too large
ı result in angular scattering of the clusters.

The use of a differential method has several advan-
tages. First, we do not need to know the dissociation
energies. Second, the presence of magic numbers is not
a problem with this method. Indeed, any accident in the
curves n(T ) is canceled out by the differentiation. These
all in one make this method reliable and precise. On
the other hand, noise is a drawback. Since we rely on
the calculation of finite differences for the determination
of the caloric curves, and that the experimental data is
discrete, the numerical differentiation is inherently noisy.

VIII. CONCLUSION

We have developed a novel experimental method for
the measurement of caloric curves of small nanoparti-
cles based on the sticking of atoms onto clusters. We
have mathematically established the method and shown
with the help of simulations that it is extremely robust.
It associates the accuracy of the photoexcitation meth-
ods and the large application field of collisional methods.
Moreover, its principle makes it rigorously independent
on preliminary assumptions about properties such as dis-
sociation energies or collisional energy transfer.

We have experimentally demonstrated the use of the
method on sodium clusters (namely Na+

90 and Na+
140).
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