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The so-called eigenvalues and eigenfunctions of the infinite Laplacian ∆ ∞ are defined through an asymptotic study of that of the usual p-Laplacian ∆ p , this brings to a characterization via a non-linear eigenvalue problem for a PDE satisfied in the viscosity sense. In this paper, we obtain an other characterization of the first eigenvalue via a problem of optimal transportation, and recover properties of the first eigenvalue and corresponding positive eigenfunctions.

INTRODUCTION

An eigenvalue of the p-Laplacian is a real number λ ∈ R such that the problem -div(|Du| p-2 Du) = λ|u| p-2 u in Ω, u = 0 on ∂Ω, has at least one non trivial solution in W 1,p 0 (Ω). Here solution is intended in the distributional sense and Ω is assumed to be a regular, bounded, open subset of R N .

Much is unknown about the eigenvalues of the p-Laplacian and we will give a short presentation of some related open questions in section §2.

In this paper, we shall focus on the asymptotic of the above eigenvalue problem as the parameter p goes to +∞. This is a standard strategy in analysis (for example in the homogenization and relaxation theories) to look at the asymptotic problem and then to try to deduce qualitative and quantitative informations on the approximating problems and the limit problem as well as reasonable conjectures.

The asymptotic as p → ∞ of the p-Laplacian eigenvalue problem was introduced in [START_REF] Juutinen | The ∞-eigenvalue problem[END_REF] and then perfectioned in [START_REF] Juutinen | The infinity Laplacian: examples and observations[END_REF][START_REF] Juutinen | On the higher eigenvalues for the ∞-eigenvalue problem[END_REF][START_REF] Champion | Asymptotic behavior of non linear eigenvalue problems involving p-Laplacian type operators[END_REF]. In these papers the authors proved that if (λ p ) N <p<∞ is a generalized sequence of eigenvalues of the p-Laplacian such that lim p→∞ λ 1/p p = Λ and u p are corresponding eigenfunctions such that u p p ≤ C and u p → u uniformly, then u is a viscosity solution of

     min{|∇u| -Λu , -∆ ∞ u} = 0 in {u > 0}, -∆ ∞ u = 0 in {u = 0}, max{-|∇u| -Λu , -∆ ∞ u} = 0 in {u < 0}, (1.1)
where the infinite Laplacian of u is given by ∆ ∞ u = i,j u x i x j u x i u x j . According to the definition given in [START_REF] Juutinen | On the higher eigenvalues for the ∞-eigenvalue problem[END_REF] this means that u is an eigenfunction of the ∞-Laplacian for the ∞-eigenvalue Λ.

The aim of this paper is to introduce a different asymptotic problem as p → ∞ of the first eigenvalue problem which relates the problem to an optimal transportation problem, to start an analysis of the limiting problem as well as propose some related questions and a few answers. The idea that a transport equation appears in the limit as p → ∞ goes back to [START_REF] Bhattacharya | Limits as p → ∞ of ∆ p u p = f and related extremal problems[END_REF]. The explicit connection of this limit with the optimal transportation problem was first exploited in [START_REF] Evans | Differential Equations methods for the Monge-Kantorovich Mass Transfer Problem[END_REF] and in the setting of the eigenvalues problems appeared also in [START_REF] Garc Ía Azorero | The Neumann problem for the ∞-Laplacian and the Monge-Kantorovich mass transfer problem[END_REF].

The main reason to focus our study on the first eigenvalue is that the restriction u λ,V of an eigenfunction u λ (for some eigenvalue λ of the p-Laplacian operator) to one of its nodal domains V is indeed an eigenfunction for the first eigenvalue of the corresponding p-Laplacian operator for this domain V . A close study on the first eigenvalue (and related eigenfunctions) of the p-Laplacian operator is then of great help to understand the properties of the eigenfunctions of higher eigenvalues. This was in particular illustrated in [START_REF] Juutinen | On the higher eigenvalues for the ∞-eigenvalue problem[END_REF].

The paper is organized as follows. Section §2 is devoted to review basic notions and results concerning the eigenvalues of the p-Laplacian. In section §3 we propose a new asymptotic analysis as p goes to ∞, and make the link with an optimal transport problem in section §4. In the final section §5 we show how the proposed asymptotic analysis may be applied to obtain some informations on the limits obtained.

DEFINITIONS AND PRELIMINARY RESULTS

Nonlinear eigenvalues of the p-Laplacian.

We shall denote by • p the usual norm of L p (Ω) (or L p (Ω; R N ) when dealing with the gradient of some element of W 1,p 0 (Ω)). An eigenvalue of the p-Laplacian operator -∆ p is a real number λ for which the problem

(P λ p ) -∆ p u := -div(|∇u| p-2 ∇u) = λ|u| p-2 u in Ω, u = 0 on ∂Ω, (2.1) 
has a non-zero solution in W 1,p 0 (Ω). This problem (and its generalizations to monotone elliptic operators) has been widely studied in the literature and for more detailed treatment we refer to [START_REF] Appell | Nonlinear spectral theory[END_REF][START_REF] Browder | Lusternik-Schnirelman category and nonlinear elliptic eigenvalue problems[END_REF][START_REF] Coffman | Lyusternik-Schnirelman theory and eigenvalue problems for monotone potential operators[END_REF][START_REF] Garc Ía Azorero | Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues[END_REF][START_REF] Garc Ía Azorero | Comportement asymptotique des valeurs propres du p-laplacien[END_REF][START_REF] Juutinen | On the higher eigenvalues for the ∞-eigenvalue problem[END_REF][START_REF] Lindqvist | On a nonlinear eigenvalue problem[END_REF]. Much is still unknown about the eigenvalues of the p-Laplacian operator. A good understanding of the set of the eigenvalues would permit some progress on more general nonlinear equations involving the p-Laplacian (e.g. a good definition of jumping nonlinearity) as well as some progress on parabolic equations involving the p-Laplacian. Let us report some classical results. It is known that λ is an eigenvalue if and only if it is a critical value for the Rayleigh quotient

v → Ω |∇v| p dx Ω |v| p dx = ∇v p p v p p
which is a Gateaux differentiable functional on W 1,p 0 (Ω) outside the origin. Moreover, a sequence (λ k p ) k≥1 of eigenvalues can be obtained as follows (we refer to [START_REF] Garc Ía Azorero | Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues[END_REF] and [START_REF] Lindqvist | On a nonlinear eigenvalue problem[END_REF] for details). Denote by Σ k p (Ω) the set of those subsets G of W 1,p 0 (Ω) which are symmetric (i.e. G = -G), contained in the set {v : v p = 1}, strongly compact in W 1,p 0 (Ω) and with Krasnoselskii genus γ(G) ≥ k (we refer to [START_REF] Struwe | Variational Methods[END_REF] for more details on the Krasnoselskii genus), and set

λ k p = inf G∈Σ p k (Ω) sup u∈G ∇u p p .
Then each λ k p defined as above is an eigenvalue of the p-Laplacian operator and λ k p → +∞ as k → ∞. Moreover λ 1 p is the smallest eigenvalue of -∆ p , it is simple (see [START_REF] Belloni | A direct uniqueness proof for equations involving the p-Laplace operator[END_REF] for a short proof) and the operator -∆ p doesn't have any eigenvalue between λ 1 p and λ 2 p .

A second sequence (µ k p ) k of eigenvalues was introduced in Theorem 5 of [START_REF] Drábek | Resonance problems for the p-Laplacian[END_REF]. This sequence is also obtained by a infsup operation but in this case the inf operation is performed on a smaller class of sets than Σ k p (we refer the reader to [START_REF] Drábek | Resonance problems for the p-Laplacian[END_REF] for more details). It is only known that λ 1 p = µ 1 p and λ 2 p = µ 2 p . Some interesting questions related to our analysis are the following: does it hold λ k p = µ k p for all p and k? Is it true that {λ k p } k≥1 is the entire set of eigenvalues?

The relevance of these questions may be also understood in the light of a theorem of Fredholm alternative for the p-Laplacian which appear in [START_REF] Appell | Nonlinear spectral theory[END_REF] (namely theorem 12.12 therein).

Finally let us report a basic estimate for the first eigenvalue which is a consequence of the following characterization:

λ 1 p = min Ω |∇u| p dx | u ∈ W 1,p 0 (Ω), u p = 1 . (2.2)
Denote by

R 1 = sup{r| ∃x 0 s.t. B(x 0 , r) ⊂ Ω},
the radius of the biggest ball inscribed in Ω then Lemma 2.1.

For each p ∈ [1, ∞), we have (λ 1 p ) 1/p ≤ 1 R 1 and then lim sup p→∞ (λ 1 p ) 1/p ≤ 1 R 1 .
Proof. Let B(x, R 1 ) be a ball inscribed in Ω, then v(x) := max{R 1 -|x-x|, 0} belongs to W 1,p 0 (Ω) and it is enough to test the minimality in (2.2) against v/ v p to obtain the desired estimate.

As the main focus of the paper will be on the generalized sequence of the first eigenvalue we will simplify the notations and write λ p for λ 1 p . Up to subsequences we may then assume that (λ p ) 1/p → Λ ∞ and we will in fact prove that Λ ∞ = 1 R 1 . This has already been proved in [START_REF] Juutinen | The ∞-eigenvalue problem[END_REF] and then in [START_REF] Juutinen | On the higher eigenvalues for the ∞-eigenvalue problem[END_REF][START_REF] Champion | Asymptotic behavior of non linear eigenvalue problems involving p-Laplacian type operators[END_REF]. Here we deduce this equality from a minimality property of u p and from the Monge-Kantorovich (or optimal transportation) problem obtained in the limit as p → ∞.

Γ-convergence.

A crucial tool in the analysis of this paper will be the following concept of Γconvergence.

Let X be a metric space, a sequence of functionals

F n : X → R is said to Γ-converge to F ∞ at x if F ∞ (x) = Γ -lim inf F n (x) = Γ -lim sup F n (x), (2.3) 
where

Γ -lim inf F n (x) = inf lim inf F n (x n ) : x n → x in X , Γ -lim sup F n (x) = inf lim sup F n (x n ) : x n → x in X .
(2.4)

The Γ-convergence was introduced in [START_REF] De Giorgi | Su un tipo di convergenza variazionale[END_REF], for an introduction to this theory we refer to [START_REF] Maso | An Introduction to Γ-Convergence[END_REF] and [START_REF] Attouch | Variational convergence for functions and operators[END_REF]. We report a classical theorem which includes some properties of the Γ-convergence that we shall use in the following.

Theorem 2.2. Assume that the sequence (F n ) n∈N of functionals Γ-converges to F ∞ on X. Assume in addition that the sequence (F n ) n is equi-coercive on X. Then

lim n→+∞ inf x∈X F n (x) = inf x∈X F ∞ (x)
and one has

F ∞ (x ∞ ) = inf x∈X F ∞ (x) for any cluster point x ∞ of a sequence (x n ) n∈N such that ∀n ∈ N F n (x n ) ≤ inf x∈X F n (x) + ε n with ε n → 0 as n → ∞.

THE ASYMPTOTIC BEHAVIOR AS p → ∞.

Recall that, for any p > N, λ p stands for the first eigenvalue of the p-Laplace operator. We shall denote by u p the unique corresponding eigenfunction which is positive in Ω and such that

u p p = Ω u p p (x)dx 1/p = 1. (3.1)
We also introduce the following measures:

σ p := |∇u p | p-2 ∇u p λ p dx, f p := u p-1 p dx, µ p := |∇u p | p-2 λ p dx. (3.2) 
Lemma 3.1. The above measures satisfy the following inequalities for p > 2:

Ω ∇u p λ 1/p p p dx = 1, Ω d|f p | ≤ |Ω| 1/p , Ω d|µ p | ≤ |Ω| 2/p , Ω d|σ p | ≤ |Ω| 1/p . Then there exists u ∞ ∈ Lip(Ω) ∩ C 0 (Ω) with u ∞ ∞ = 1, f ∞ ∈ M + b (Ω) a probability measure, µ ∞ ∈ M + b (Ω) and ξ ∞ ∈ L 1 µ∞ (Ω) d such that, up to subsequences: u p → u ∞ uniformly on Ω, f p * ⇀ f ∞ in M b (Ω), µ p * ⇀ µ ∞ in M + b (Ω), σ p * ⇀ σ ∞ := ξ ∞ µ ∞ in M b (Ω, R N ).
Proof. The second bound is an easy consequence of Hölder's inequality and of the assumption |u p | p dx = 1. To obtain the remaining estimates, it is sufficient to show the first equality and then apply Hölder's inequality. As u p solves (2.1), by multiplying the PDE (2.1) by u p and integrating by parts we get

Ω |∇u p | p dx = λ p Ω |u p | p dx = λ p .
By the above estimates, for any N ≤ q < +∞, (u p ) p>q is bounded in W 1,q 0 (Ω), more precisely, using Holder's inequality, we get:

Ω |∇u p (x)| q dx ≤ ( Ω |∇u p | p dx) q p |Ω| 1-q/p = (λ 1/p p ) q |Ω| 1-q/p .
As a consequence, fixing q > N, we obtain that (u p ) p>q is precompact in C(Ω) and, up to subsequences, the uniform convergence to some u ∞ holds.

Using again the estimates above, we get (up to subsequences) the existence of a weak* limit f ∞ for (f p ) p , σ ∞ for (σ p ) p and µ ∞ for (µ p ) p in M b (Ω). Note that, as we are on a compact set, the convergence of (f p ) p is tight. From this convergence it comes that |f ∞ (Ω)| ≤ 1. To obtain the reverse inequality we observe that for all p one has u p df p = 1 so that in the limit u ∞ df ∞ = 1. On the other hand it follows from the Holder inequality applied with 1 < q < p that

u p q ≤ u p p |Ω| 1 q -1 p = |Ω| 1 q -1 p .
Taking the limit as p → +∞ and then as q → +∞ yields

u p ∞ ≤ 1. Therefore 1 = u ∞ df ∞ ≤ u ∞ ∞ |f ∞ (Ω)| ≤ 1 so that f ∞ is a probability measure on Ω. Moreover, thanks to lemma 3.1 of [10], we can write σ ∞ = ξ ∞ µ ∞ for some ξ ∞ ∈ L 1 µ∞ (Ω) d .
We devote the rest of the paper to the properties of the limits

u ∞ , f ∞ , σ ∞ , µ ∞ .
A first Γ-convergence approach.

If we consider f p as known, we may introduce the following variational problem:

(P p ) min u∈W 1,p 0 (Ω) 1 pλ p Ω |∇u(x)| p dx -f p , u .
By the definitions of u p and f p , it follows that u p is the unique minimizer of (P p ). Moreover, since the solution set of the problem (P λp p ) is spanned by u p , we may consider (P p ) as a variational formulation of (2.1) for λ = λ p . Then we have: Proposition 3.2. The sequence (min(P p )) p converges to the minimum of the following optimization problem:

(P ∞ ) min{-< f ∞ , u >: u ∈ Lip(Ω), |∇u| ≤ Λ ∞ a.e., u = 0 on ∂Ω}, and u ∞ minimizes (P ∞ ). Proof. For p > N let F p : C 0 (Ω) → R ∪ {+∞} defined by F p (u) :=      1 p Ω ∇u λ 1/p p p dx -f p , u if u ∈ W 1,p 0 (Ω), +∞, otherwise.
We claim that the family (F p ) p>N Γ-converges in C 0 (Ω) to F ∞ given by

F ∞ (u) := -f ∞ , u if u ∈ Lip(Ω) and |∇u| ≤ Λ ∞ a.e. in Ω +∞, otherwise,
with respect to the norm of the uniform convergence. We first show the Γlim inf inequality, that is:

Γ -lim inf p→+∞ F p ≥ F ∞ (3.3)
Let (v p ) p>N converging uniformly to v, then we have:

f p , v p → f ∞ , v . (3.4) 
We shall prove that lim inf

p→+∞ F p (v p ) ≥ F ∞ (v).
We may assume that lim inf p→+∞ F p (v p ) < +∞, that is (thanks to (3.4)):

M := lim inf p→+∞ 1 p Ω ∇v p λ 1/p p p dx < +∞.
It then remains to check that v is Lipschitz continuous and satisfies |∇v| ≤ Λ ∞ a.e. in Ω. Let N < q < p, then the W 1,q -norm of ( vp λ 1/p p ) p is bounded. Indeed, as for t > 0 the function s → (t s -1) s is monotone increasing on ]0, +∞[ :

1 q Ω ∇v p λ 1/p p q dx ≤ 1 p Ω ∇v p λ 1/p p p dx + (1/q -1/p)|Ω|.
Then, possibly extracting a subsequence we may assume vp λ 1/p p ⇀ v Λ∞ in W 1,q 0 (Ω) and then:

Ω ∇v Λ ∞ q dx 1/q ≤ lim inf p→∞ Ω ∇v p λ 1/p p q dx 1/q ≤ (q M -|Ω|) 1/q .
Letting q go to +∞ we get |∇v| ≤ Λ ∞ almost everywhere on Ω. This concludes the proof of (3.3). The Γlim sup inequality, i.e. Γlim sup p→+∞ F p (v) ≤ F (v), follows by considering the constant sequence (v p ) p≥1 := (v) p≥1 .

The Proposition now follows as a consequence of Theorem 2.2 and of the uniform convergence of (u p ) p to u ∞ .

We shall now see that the measure σ ∞ plays its role in the classical dual problem associated to (P ∞ ), as shown in Proposition 3.6 below. We first identify the dual problem for (P ∞ ). Proposition 3.3 (Duality for the limit problem). By convex duality we have:

min(P ∞ ) = -min(P * ∞ ) := -min λ∈P(∂Ω) min σ∈M b (R N ) N {Λ ∞ R N |σ| : -div(σ) = f ∞ -λ in R N }. (3.5)
Moreover the minimum of (P * ∞ ) can also be expressed as:

min(P * ∞ ) := min σ∈M b (R N ) N {Λ ∞ Ω |σ| : spt(σ) ⊂ Ω, -div(σ) ∈ M b (R N ) and -div(σ) = f ∞ in Ω}.
The equalities -div(σ) = f ∞λ in R N and -div(σ) = f ∞ in Ω should be understood in the sense of distributions, that is:

-div(σ) = f ∞ -λ in R N means: ∇ϕ • σ = ϕ d(f ∞ -λ) ∀ϕ ∈ C ∞ c (R N ), -div(σ) = f ∞ in Ω means: ∇ϕ • σ = ϕ df ∞ ∀ϕ ∈ C ∞ c (Ω).
The proof of Proposition 3.3 requires the following Lemma:

Lemma 3.4. Let u ∈ Lip(Ω) such that |∇u| ≤ Λ ∞ a.e.
in Ω and u = 0 on ∂Ω. Then there exists a sequence

(u n ) n in C ∞ c (R N
) such that for any n ∈ N:

u n → u uniformly in Ω u n is Λ ∞ -Lipschitz and u n = 0 on a neighborhood of ∂Ω.
Proof. We denote by ũ the function u extended by 0 outside Ω. For any ε > 0 we set:

θ ε (t) = 0 if |t| ≤ Λ ∞ ε t -sign(t)Λ ∞ ε if |t| ≥ Λ ∞ ε.
The function θ ε • ũ remains Λ ∞ -Lipschitz and satisfies:

θ ε • ũ(x) = 0 as soon as d(x, ∂Ω) ≤ ε. (3.6) 
We now make a standard regularization by convolution setting for any ε > 0 and n ∈ N:

ψ n,ε (x) = B(0,1/n) ρ n (x)(θ ε • ũ)(x -y) dy
where

ρ n := 1 n ρ(n × •) is a standard mollifier obtained from a function ρ satisfying ρ ∈ C ∞ (R N , [0, +∞[), spt(ρ) ⊂ B(0, 1), B(0,1) ρ(x) dx = 1.
For any n ≥ 2 ε , the function ψ n,ε is C 1 , Λ ∞ -Lipschitz and, by (3.6), equals 0 on

R N \ {x ∈ Ω, d(x, ∂Ω) ≤ ε 2 }.
Moreover we have the following convergences:

ψ n,ε → θ ε • ũ uniformly on Ω as n → +∞, θ ε • ũ → ũ uniformly on Ω as ε → 0.
By extracting a diagonal subsequence of (ψ n,ε ) n,ε , we get the desired sequence (u n ) n .

Proof of Proposition 3.3. The above lemma allows us to rewrite problem (P ∞ ) in the following way:

min(P ∞ ) = inf{-< f ∞ , u >: u ∈ C 1 (R N ) ∩ C c (R N ), |∇u| ≤ Λ ∞ , u = 0 on ∂Ω}.
We introduce the operator A :

C c (R N ) → C c (R N ) N of domain C 1 (R N )∩C c (R N ) defined
as Au := ∇u for all u in its domain. We also introduce the characteristic functions χ B Λ∞ and χ C defined by:

∀Φ ∈ C c (R N ) N , χ B Λ∞ (Φ) = 0 if |Φ(x)| ≤ Λ ∞ , ∀x ∈ R N +∞ elsewhere. ∀ϕ ∈ C c (R N ). χ C (ϕ) = 0 if ϕ(x) = 0, ∀x ∈ ∂Ω +∞ elsewhere.
We have:

min(P ∞ ) = -max{< f ∞ , u > -(χ B Λ∞ • A + χ C )(u) : u ∈ C c (R N )} = -(χ B Λ∞ • A + χ C ) * (f ∞ ) = -(χ B Λ∞ • A) * ▽ χ * C * * (f ∞ )
where ▽ is the inf-convolution, that is for all

f ∈ M + b (R N ): (χ B Λ∞ • A) * ▽ χ * C (f ) = inf λ∈M + b (R N ) {(χ B Λ∞ • A) * (f -λ) + χ * C (λ)}.

Now, by classical computations, we have that for all

λ ∈ M + b (R N ) (χ B Λ∞ • A) * (f -λ) = inf σ∈domA * {χ * B Λ∞ (σ) : A * (σ) = f -λ} = inf σ∈M b (R N ) N {Λ ∞ |σ| : -div(σ) = f -λ in R N }
and:

χ * C (λ) = sup u∈Cc(R N ), u=0 on ∂Ω < λ, u >= 0 if spt(λ) ⊂ ∂Ω +∞ elsewhere.
The inf-convolution thus gives:

(χ B Λ∞ • A) * ▽ χ * C (f ) = inf λ∈M + b (∂Ω) inf σ∈M b (R N ) N {Λ ∞ d|σ| : -div(σ) = f -λ in R N }
which happens to be a convex, lower semi-continuous function in f . By consequence:

min(P ∞ ) = -inf λ∈M + b (∂Ω) inf σ∈M b (R N ) N {Λ ∞ d|σ| : -div(σ) = f ∞ -λ in R N }.
We notice that if λ is not a probability then the second infimum is +∞, otherwise it is a minimum. This proves the thesis.

The previous result of course holds for the approximating problems:

Proposition 3.5 (Duality for the approximating problems). For every p > 1, setting p ′ = p p-1 , by standard duality we have:

min(P p ) = -min(P * p ) := -min σ∈L p ′ (R N ) { 1 p ′ λ p ′ -1 p Ω |σ| p ′ dx : spt(σ) ⊂ Ω, -divσ ∈ M b (R N ) and -divσ = f p in Ω}. (3.7)
Sketch of the proof. As in the proof of Proposition 3.3, it can be proved that:

min(P p ) = inf (G • A + χ C )(u)-< f p , u >: u ∈ C 1 (R N ) ∩ C c (R N ) = -(G • A + χ C ) * (f p ) where G(Φ) is defined for all Φ ∈ C c (R N , R N ) by G(Φ) = 1 pλp |Φ(x)| p dx. Its Fenchel transform is for any ρ ∈ M b (R N , R N ): G * (σ) = 1 p ′ λ p ′ -1 p |ρ| p ′ dx if ρ ≪ dx with ρ = ρ dx,

+∞

otherwise.

The rest of the proof follows that of Proposition 3.3.

It can now be checked that also the dual problems converge that is:

min(P * p ) → min(P * ∞ ).
More precisely, one has the following:

Proposition 3.6. The function σ p defined in (3.2) is the unique minimizer of (P * p ). Moreover, its limit σ ∞ given by Theorem 3.2 is a solution of (P * ∞ ). In other words, setting λ

∞ := f ∞ + divσ ∞ , the couple (λ ∞ , σ ∞ ) ∈ P(∂Ω) × M b (R N ) N minimizes (P * ∞ ).
Proof. As u p is an eigenfunction of the p-Laplacian, recalling (3.2), σ p is admissible for (P * p ). Moreover by Lemma 3.1, we have:

min(P p ) = 1 pλ p Ω |∇u p | p dx-< f p , u p >= 1 p - Ω u p p (x) dx = - 1 p ′ , and 1 p ′ λ p ′ -1 p Ω |σ p | p ′ dx = 1 p ′ λ p Ω |∇u p | p dx = 1 p ′ .
Then by (3.7), σ p is a solution of (P * p ), the uniqueness follows from the strict convexity of the functional σ → |σ| p ′ dx. Passing to the limit in the constraint of (P * p ), we obtain that the measure

σ ∞ satisfies -div(σ ∞ ) = f ∞ in Ω. It then remains to prove that min(P * ∞ ) ≥ Λ ∞ Ω |σ ∞ |.
Following the proof of Theorem 4.2 in [START_REF] Bouchitté | A p-Laplacian approximation for some mass optimization problems[END_REF], we use the inequality s p ′ p ′ ≥ s -1 p for any s > 0, and get:

min(P * p ) = 1 p ′ λ p ′ -1 p |σ p | p ′ dx ≥ λ p ′ -1 p |σ p | dx - |Ω| p .
Then, passing to the limit, by Corollary 3.2, we obtain:

min(P * ∞ ) ≥ lim inf p→+∞ λ p ′ -1 p |σ p | dx = lim inf p→+∞ (λ 1/p p ) p ′ |σ p | dx ≥ Λ ∞ |σ ∞ |.
A second Γ-convergence approach.

An other way of obtaining the problem (P ∞ ) in a limit process, which we shall use is the following of the paper, is to define for any p ∈ ]N, +∞] the functional

G p : M(Ω) × C 0 (Ω) → R by G p (g, v) = -g, v if g ∈ L p ′ , g p ′ ≤ 1 and v ∈ W 1,p 0 (Ω), ∇v p ≤ λ 1/p p , +∞ otherwise. (3.8) and G ∞ (g, v) = -g, v if Ω d|g| ≤ 1 and v ∈ W 1,∞ 0 (Ω), ∇v ∞ ≤ Λ ∞ , +∞ otherwise. ( 3.9) 
For p ∈ ]N, +∞[ it happens that the couple (f p , u p ) is a minimizer of the functional G p . Indeed by the definitions above and (2.2) it comes

-G p (g, v) = g, v ≤ g p ′ v p ≤ 1 λ 1/p p ∇v p ≤ 1 = f p , u p = -G p (f p , u p ).
We now notice that this property does also hold in the limit p = +∞: Proposition 3.7. Let α > 0, then the generalized sequence (G p ) N +α<p is equicoercive and Γ-converges to G ∞ with respect to the (w * × uniform)-convergence. In particular the couple (f ∞ , u ∞ ) is a minimizer of the functional G ∞ .

Proof. We only prove the Γ-convergence, and first show the Γlim inf inequality, that is:

Γ -lim inf p→+∞ G p ≥ G ∞ . (3.10) Let (g p , v p ) ∈ L p ′ (Ω)×W 1,p 0 (Ω) and (g, v) ∈ M(Ω)×C 0 (Ω) such that (g p , v p ) converges to (g, v)
for the (w * × uniform)-topology. We easily have:

-g p , v p = -v p dg p → -v dg = -g, v ; Ω d|g| = lim p→+∞ g p ′ ≤ 1.
Moreover, for any ϕ ∈ C ∞ c (Ω), it holds:

v p (x)∇ϕ(x) dx ≤ ∇v p p ϕ p ′ ≤ λ 1/p p ϕ p ′ .
Passing to the limit as p tends to ∞ this yields:

v(x)∇ϕ(x) dx ≤ Λ ∞ ϕ 1 , that is v ∈ W 1,∞ 0
(Ω) and ∇v ∞ ≤ Λ ∞ . This ends the proof of (3.10). Let us now prove the Γlim sup inequality. Take (g, v) ∈ M(Ω) × W 1,∞ 0 (Ω) such that:

Ω d|g| ≤ 1, ∇v ∞ ≤ Λ ∞ .
By setting v p = λ 1/p p Λ∞ v, we get a sequence such that:

v p → v uniformly , v p ∈ W 1,p 0 (Ω), ∇v p p λ 1/p p = ∇v p Λ ∞ ≤ 1.
To build a sequence of measures g p ∈ L p ′ (Ω) satisfying g p ′ ≤ 1, we make a regularization by convolution:

∀x ∈ R N , g p (x) := ρ p (x -y) dg(y)
where ρ p := 1 p ρ(p × •) is a standard mollifier obtained as in the proof of Lemma 3.4. We thus get a family (g p ) p>N in C ∞ c (R N ) such that:

g p * ⇀ g in M(Ω) and g p p ′ ≤ d|g| ≤ 1.
Finally, from the properties of (v p ) p and (g p ) p , we have:

lim p→+∞ G p (g p , v p ) = G(g, v).

THE LINK WITH AN OPTIMAL TRANSPORT PROBLEM.

A reader familiar with the Monge-Kantorovich or optimal transportation problem already recognized in problems (P ∞ ) and (P * ∞ ) two of its dual formulations. Let us introduce this connection shortly. One of the advantages in exploiting this connection is that sometime it is possible to compute explicitly or numerically the value of the Wasserstein distance introduced below. For example, we will use this explicit computability in section §5 to prove that Λ ∞ = 1/R 1 .

Given two probability measures α and ν on Ω the Monge problem (with the Euclidean norm as cost) is the following minimization problem:

inf Ω |x -T (x)|dα : T ♯ α = ν (4.1)
where the symbol T ♯ µ denotes the push forward of α through T (i.e. T ♯ α(B) := α(T -1 (B)) for every Borel set B). A Borel map T such that T ♯ α = ν is called a transport of α to ν and it is called an optimal transport if it minimizes (4.1). It may happens that the set of transports of α to ν is empty (e.g. α = δ 0 and ν = 1 2 (δ 1 +δ -1 ) or that the minimum is not achieved (e.g.

α = H 1 {0}×[0,1] , ν = 1 2 (H 1 {-1}×[0,1] + H 1 {1}×[0,1]
). To deal with these situations in the '40 Kantorovich proposed the following relaxation of the problem above

min Ω×Ω |x -y|dγ : π 1 ♯ γ = α, π 2 ♯ γ = ν . (4.2) 
A measure γ such that π 1 ♯ γ = α, π 2 ♯ γ = ν is called a transport plan of α to ν. Notice that by the direct method of the Calculus of Variations the minimum in (4.2) is achieved. The minimal value is usually called Wasserstein distance of α and ν and it is denoted by W 1 (ν, α).

Let f ∞ ∈ P(Ω) be the measure defined in Lemma 3.2, and consider its Wasserstein distance from P(∂Ω), i.e. the following variational problem defined on P(∂Ω)

inf ν∈P(∂Ω) W 1 (f ∞ , ν). (4.3) 
By definition, solving problem (4.3) is equivalent to solve

inf Ω×Ω |x -y|dγ : π 1 ♯ γ = f ∞ , π 2 ♯ γ ∈ P(∂Ω) (4.4) 
The following proposition is a variant of the classical Kantorovich duality (see for example theorem 1.3 of [START_REF] Villani | Topics in optimal transportation[END_REF]) and it will help us to connect problems (4.4) with problems (P ∞ ) and (P * ∞ ).

Proposition 4.1. The following equalities hold

inf Ω×Ω |x -y|dγ : π 1 ♯ γ = f ∞ , π 2 ♯ γ ∈ P(∂Ω) = - 1 Λ ∞ min(P ∞ ) = 1 Λ ∞ min(P * ∞ ). (4.5)
An other way of expressing the link between the limit quantities obtained in Lemma 3.2 and the optimal transportation theory is via the following Theorem 4.2, which is the main result of this section and expresses in a useful way the primal-dual optimality conditions coming from Proposition 3.3.

Theorem 4.2. The limits (u ∞ , f ∞ , σ ∞ , ξ ∞ , µ ∞ ) obtained in Lemma 3.1 satisfy:            σ ∞ = ξ ∞ µ ∞ ξ ∞ = Λ -1 ∞ ∇ µ∞ u ∞ , µ ∞ -a.e. in Ω, -div(∇ µ∞ u ∞ . µ ∞ ) = Λ ∞ f ∞ , in the sense of distributions in Ω, |∇ µ∞ u ∞ | = Λ ∞ , µ ∞ -a.e. in Ω. (4.6)
In the above result ∇ µ∞ u ∞ denotes the tangential gradient of u ∞ to the measure µ ∞ (see Definition 4.6 for details)

The proof of Theorem 4.2 requires to perform an integration by parts with respect to a measure. In order to do that we introduce, shortly, the notion of tangent space to a measure and of tangential gradient to a measure. This notion has first been introduced by Bouchitté, Buttazzo and Seppecher in [START_REF] Bouchitté | Shape optimization solutions via Monge-Kantorovich equation[END_REF], the case of interest here is developed in [START_REF] Jimenez | Dynamic Formulation of Optimal Transport Problems[END_REF]: we now recall the main points tools in our setting.

Let us define the set

N := ξ ∈ L ∞ µ∞ (R N , R N ) : ∃(u n ) n , u n ∈ C 1 (R N ), u n → 0 uniformly on R N , ∇u n * ⇀ ξ in σ L ∞ µ∞ , L 1 µ∞ (4.7)
where σ L ∞ µ∞ , L 1 µ∞ denotes the weak star topology of L ∞ µ∞ (R N , R N ). We notice that when µ ∞ is not absolutely continuous with respect to the Lebesgue measure, this set is not necessarily reduced to zero.

The following results and notions may be found in [START_REF] Jimenez | Dynamic Formulation of Optimal Transport Problems[END_REF]: Proposition 4.3. There exists a multi-function T µ∞ from R N to R N such that:

η ∈ N ⊥ ⇔ η(x) ∈ T µ∞ (x) µ ∞ -a.e.x.
Definition 4.4. For µ ∞a.e. x, we call T µ∞ (x) the tangent space to µ ∞ at x and denote by P µ∞ (x, •) the orthogonal projection on T µ∞ (x). 

(R N , R N ) such that -div(θµ ∞ ) belongs to M b (R N ). Then θ(x) ∈ T µ∞ (x) µ ∞ -a.e., and -< div(θµ ∞ ), Ψ >= θ • ∇ µ∞ Ψ dµ ∞ .
In the previous results, we have defined the tangential gradient of functions in Lip(R N ). As we are dealing with functions on Lip(Ω), we will also need the following u ∈ Lip(R N ), u = 0 µ ∞ -a.e. in Ω ⇒ ∇ µ∞ u = 0 µ ∞ -a.e. in Ω so that the tangential gradient of any function u in Lip(Ω) is well defined via the restriction of the tangential gradient of any of its Lipschitz extension to R N .

Proof of Theorem 4.2. Using the duality relation between (P ∞ ) and (P * ∞ ) and the optimality of σ ∞ = ξ ∞ µ ∞ and u ∞ (see Theorem 3.2 and Proposition 3.6), we get:

Ω u ∞ (x) df ∞ (x) = Λ ∞ Ω |ξ ∞ (x)| dµ ∞ (x). (4.8)
By Proposition 4.7, as -div(σ ∞ ) ∈ M b (R N ) and u ∞ is zero outside Ω, we can make an integration by parts an get:

Ω u ∞ (x) df ∞ (x) = -div(ξ ∞ µ ∞ ), u ∞ M b (R N ),Cc(R N ) = Ω ∇ µ∞ u ∞ • ξ ∞ dµ ∞ .
Using (4.8), we get:

Ω (∇ µ∞ u ∞ • ξ ∞ ) -Λ ∞ |ξ ∞ | dµ ∞ = 0. (4.9)
The constraint |∇u ∞ | ≤ Λ ∞ a.e. in Ω is reformulated using the definitions of T µ∞ and ∇ µ∞ as a constraint on ∇ µ∞ u ∞ by saying (see [START_REF] Jimenez | Dynamic Formulation of Optimal Transport Problems[END_REF], Lemma 4.13 and proof of Theorem 5.1):

∃ζ ∈ L ∞ µ∞ (R N , R N ) such that ζ(x) ∈ T µ∞ (x) ⊥ , µ ∞ -a.e.x ∈ Ω |∇ µ∞ u ∞ (x) + ζ(x)| ≤ Λ ∞ , µ ∞ -a.e.x ∈ Ω.
As ξ ∞ (x) ∈ T µ∞ (x) µ ∞ -a.e, we have:

∇ µ∞ u ∞ (x) • ξ ∞ (x) = (∇ µ∞ u ∞ (x) + ζ(x)) • ξ ∞ (x) ≤ Λ ∞ |ξ ∞ (x)| µ ∞ -a.e.x ∈ Ω.
Combining this with (4.9), we obtain

∇ µ∞ u ∞ (x) • ξ ∞ (x) = Λ ∞ |ξ ∞ (x)| µ ∞ -almost
everywhere and consequently:

|∇ µ∞ u ∞ | = Λ ∞ , ξ ∞ = ∇ µ∞ u ∞ Λ ∞ µ ∞ -a.e. in Ω.
The second equality in (4.6) then follows from σ ∞ = Λ -1 ∞ ∇ µ∞ u ∞ . µ ∞ .

SOME PROPERTIES OF THE LIMITS

In this section we will use the optimal transport problem to investigate more properties of u ∞ and f ∞ and to give an alternative way of identifying Λ ∞ which we hope will be useful in the future.

We shall denote by d Ω (x) the distance of a point x of Ω from ∂Ω and we recall the notation

R 1 = sup{r| ∃ x 0 s.t. B(x 0 , r) ⊂ Ω}.
The main theorem is the following:

Theorem 5.1. The limits u ∞ , f ∞ and Λ ∞ satisfies the following:

1. f ∞ maximizes W 1 (•, P(∂Ω)) in P(Ω), 2. Λ ∞ = 1 R 1 , 3. spt(f ∞ ) ⊂ argmax u ∞ ⊂ argmax d Ω .
Proof of Theorem 5.1. By propositions 2.2 and 3.

7 the couple (f ∞ , u ∞ ) minimizes G ∞ or, which is equivalent, maximizes max{ g, v | Ω d|g| ≤ 1, v ∈ W 1,∞ 0 (Ω), ∇v ∞ ≤ Λ ∞ } = max g∈P(Ω) max{ g, v | v ∈ W 1,∞ 0 (Ω), ∇v ∞ ≤ Λ ∞ } = max g∈P(Ω)
Λ ∞ W 1 (g, P(∂Ω)).

We now remark that max g∈P(Ω) W 1 (g, P(∂Ω)) = R 1 and that the maximal value is achieved exactly by the probability measures concentrated on the set {x ∈

Ω | d Ω (x) = R 1 } = argmax d Ω . Then W 1 (f ∞ , P(∂Ω)) = R 1 and f ∞ is concentrated on the set argmax d Ω . Then from 1 = Λ ∞ W 1 (f ∞ , P(∂Ω)) = Λ ∞ R 1 it follows Λ ∞ = 1 R 1 . Let us now prove argmax u ∞ ⊂ argmax d Ω .
For x ∈ Ω, let y ∈ ∂Ω be a projection of x on ∂Ω, we have:

u ∞ (x) = u ∞ (x) -u ∞ (y) ≤ ||∇u ∞ || ∞ |x -y| = 1 R 1 d Ω (x).
Now, if x is in argmax u ∞ , u ∞ (x) = 1 and using the inequality above we get 1

≤ 1 R 1 d Ω (x) which implies d Ω (x) = R 1 .
Finally, let us show that spt f ∞ ⊂ argmax u ∞ . Assume x is a point out of argmax u ∞ . Then it exists a ball B(x, r) centered at x of radius r on which u ∞ < 1α with α > 0. As u p → u ∞ uniformly, for p big enough we have u p < 1 -α 2 on B(x, r). This statement implies: Remark 5.2. Examples are given in [START_REF] Juutinen | The ∞-eigenvalue problem[END_REF] to illustrate that u ∞ may differ from d Ω , but it is still an open question whether one has argmaxu ∞ = argmax d Ω . In this respect, a close understanding on the transport problem (P ∞ ) may yield that spt(f ∞ ) = argmax d Ω and thus answer this question.

B(x,
Next step would be to investigate some PDE properties of u ∞ with the aim of understanding in which region is satisfied each part of the equation (1.1). We can give some partial results on that. The transport set T is given by T = {[x, y] | x ∈ spt(f ∞ ) and y ∈ p Ω (x)}.

(5.1)

The transport set plays a crucial role in the theory of optimal transportation because it is the set on which the transport takes actually place. It should also play a role in dividing the open set Ω in regions in which u ∞ satisfies different equations. The next proposition below goes in this direction. The differentiability of u ∞ at x 0 together with (5.2) implies that for every ϕ as above

min{ |∇ϕ(x 0 )| |ϕ(x 0 )| -Λ ∞ , -∆ ∞ ϕ(x 0 )} = min{ |∇u ∞ (x 0 )| |u ∞ (x 0 )| -Λ ∞ , -∆ ∞ ϕ(x 0 )} ≤ 0,
and then -∆ ∞ ϕ(x 0 ) ≤ 0 which is, by definition, -∆ ∞ u ∞ (x 0 ) ≤ 0 in the viscosity sense.

Proposition 4 . 5 .Definition 4 . 6 .

 4546 Let u ∈ Lip(R N ), there exists a unique function ξ in L ∞ µ∞ such that(u n ) ∈ Lip(R N ), equiLipschitz u n → u, uniformly on R N ⇒ P µ∞ (•, ∇u n (•)) * ⇀ ξ.The function ξ appearing in the last proposition is called tangential gradient of u to µ ∞ and is denoted by ∇ µ∞ u. Proposition 4.7 (Integration by parts formula). Let Ψ ∈ Lip(R N ) and θ ∈ L 1 µ∞

  r) df ∞ (y) ≤ lim inf p→+∞ B(x,r) f p (y) dy = lim inf p→+∞ B(x,r) u p (y) p-1 dy ≤ lim inf p→+∞ (1α/2) p-1 ω N r N = 0. Consequently x ∈ spt f ∞ .

Definition 5 . 3 .

 53 For each x ∈ Ω we define its projection on ∂Ω asp ∂Ω (x) = {z ∈ ∂Ω | |x -z| = d Ω (x)}.

Proposition 5 . 4 .

 54 The function u ∞ is differentiable in T \ (spt(f ∞ ) ∪ ∂Ω) moreover it satisfies -∆ ∞ u ∞ ≤ 0 in the viscosity sense on T \ (spt(f ∞ ) ∪ ∂Ω). Proof. Let x 0 ∈ T \spt(f ∞ ). There exists (y 1 , y 2 ) ∈ spt(f ∞ )×∂Ω ⊂ argmax (u ∞ )×∂Ω such that x 0 ∈]y 1 , y 2 [. The closure of the segment ]y 1 , y 2 [ is called a transport ray and for each z ∈]y 1 , y 2 [, u ∞ satisfies u ∞ (z) = Λ ∞ |zy 2 | = u ∞ (y 1 ) -Λ ∞ |zy 1 |.It follows by a classical argument (see for example Proposition 4.2 of[START_REF] Ambrosio | Lecture Notes on Optimal Transportation Problems[END_REF]) that u ∞ is differentiable on this segment and that |∇u∞ (z)| = Λ ∞ for all z ∈]y 1 , y 2 [. As x 0 ∈ argmax u ∞ one get Λ ∞ u(x 0 ) < |∇u(x 0 )| = Λ ∞ .(5.2)By[START_REF] Juutinen | The ∞-eigenvalue problem[END_REF], u ∞ is a viscosity sub-solution of min{ |∇u(x)| |u(x)| -Λ ∞ , -∆ ∞ u} = 0, i.e. ∀x ∈ Ω and for all smooth ϕ such that ϕ ≥ u ∞ in Ω and ϕ(x) = u ∞ (x) one has min{ |∇ϕ(x)| |ϕ(x)| -Λ ∞ , -∆ ∞ ϕ(x)} ≤ 0.
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