The \infty eigenvalue problem and a problem of optimal transportation
Résumé
The so-called eigenvalues and eigenfunctions of the infinite Laplacian $\Delta_\infty$ are defined through an asymptotic study of that of the usual $p$-Laplacian $\Delta_p$, this brings to a characterization via a non-linear eigenvalue problem for a PDE satisfied in the viscosity sense. In this paper, we obtain an other characterization of the first eigenvalue via a problem of optimal transportation, and recover properties of the first eigenvalue and corresponding positive eigenfunctions.
Domaines
Optimisation et contrôle [math.OC]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...