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Finiteness of π1 and geometri
 inequalities inalmost positive Ri

i 
urvatureErwann AUBRY∗Abstra
tWe show that 
omplete n-manifolds whose part of Ri

i 
urva-ture less than a positive number is small in Lp norm (for p > n/2)have bounded diameter and �nite fundamental group. On the 
on-trary, 
omplete metri
s with small Ln/2-norm of the same part ofthe Ri

i 
urvature are dense in the set of metri
s of any 
ompa
tdi�erentiable manifold.Keywords: Ri

i 
urvature, 
omparison theorems, fundamentalgroup1 Introdu
tionA 
lassi
al problem in Riemannian geometry is to �nd topolog-i
al, geometri
al or analyti
al ne
essary 
onditions for the exis-ten
e on a manifold of a Riemannian metri
 satisfying a givenset of 
urvature bounds. For instan
e, S. Myers showed that a
omplete n-manifold with Ric≥k(n−1) (where k>0) is 
ompa
t(the diameter is bounded by π√
k
) and has �nite π1, whereas, onthe 
ontrary, J. Lohkamp showed in [11℄ that on every n-manifoldwith n≥3 there exists a metri
 with negative Ri

i 
urvature. Thispaper is devoted to the study of the Riemannian manifolds satis-fying only an Lp-pin
hing on the negative lower part of their Ri

i
urvature tensors. Let Ric(x) = inf
X∈TxM

Ricx(X,X)/g(X,X) de-note the lowest eigenvalue of the Ri

i tensor at x ∈ M , and
f−(x)= max(−f(x), 0), for an arbitrary fun
tion f .Our �rst result is the following Bishop's type theorem,

∗Partially supported by FNRS Swiss Grant n◦20-101469.1



Theorem 1.1 Let (Mn, g) be a 
omplete manifold and p>n
2 .If ρp=∫

M

(
Ric−(n−1)

)p
− is �nite then g is of �nite volume and

Vol g≤Vol Sn(1 + ρ
9
10
p )(1 + C(p, n)ρ

1
10
p ).The 
lassi
al version of the Bishop theorem assumes Ric ≥

n−1 and so applies only for 
ompa
t manifolds with �nite π1 whi
hform a pre
ompa
t family for the Gromov-Hausdor� distan
e onthe length spa
es. On the 
ontrary, Theorem 1.1 applies for ev-ery 
ompa
t Riemannian manifold and some non-
ompa
t ones(for instan
e hyperboli
 manifolds with �nite volume) whi
h forma set of metri
 spa
es that is Gromov-Hausdor� dense amongsthe length spa
es (see proposition 9.1). While the form of ourmajorant implies the 
lassi
al Bishop theorem, it is 
ertainly notoptimal. However, the 
ondition p > n/2 is optimal sin
e weshow that for any V > 0 and any ǫ > 0, there exists a large (a
-tually dense amongs the length spa
es for the Gromov-Hausdor�distan
e) familly of Riemannian manifolds of volume V and with
ρn

2
≤ ǫ (see proposition 9.2).Our se
ond result is the following myers's type theorem.Theorem 1.2 Let (Mn, g) be a 
omplete manifold and p > n/2.If ρp

VolM ≤ 1
C(p,n) , then M is 
ompa
t with �nite π1 and

Diam(M, g) ≤ π ×
(
1 + C(p, n)

( ρp
VolM

) 1
10

)
.A few 
omments are in order:1) Su
h a diameter bound was obtained in [14℄ under stronger 
ur-vature assumptions but the �niteness of the π1 was a 
onje
ture(see also [18℄). As noti
ed in [14℄, if L∞ bounds on the 
urvaturetranfer readily to the universal 
over (even if it is non-
ompa
t),that is not the same for integral pin
hings. That is the reason whythere is, up to now, no property of the fundamental 
over impliedby purely integral pin
hing on the Ri

i 
urvature, and it is themain point of this arti
le to prove that if a manifold has ρp/VolMsmall then its universal 
over satis�es the same pin
hing.2) For any k > 0, a renormalization argument readily shows thatwe 
an repla
e ρp by ρkp= ∫M(Ric−k(n−1)

)p
− in Theorems 1.2 and1.1 provided we repla
e C(p, n) by C(p, n, k), and also Vol Sn by

Vol S
n

k
n
2

and π by π√
k
. The n-Eu
lidean spa
e makes obvious that itdoes not generalize to k ≤ 0.3) The 
artesian produ
t of a small S1 with a �nite volume hyper-boli
 manifold show that the 
ompa
tness and the π1-�niteness
annot be obtained if we only assume that ρp is small (or that2



ρp

VolM is �nite). We 
an also slightly modify the example A.2 of[8℄ to get a manifold with in�nite topology, �nite volume and �nite
ρp. By 
artesian produ
t with a small S1 we get a manifold within�nite topology, �nite volume and ρp as small as we want.4) In the 
ase p = 1 and n = 2 the theorem is still valid (π1-�niteness obviously follows from the Gauss-Bonnet theorem), butin 
ase p = n/2 and n ≥ 3 no generalization of the 
lassi
al resultsvalid under pointwise lower bound on the Ri

i 
urvature 
an beexpe
ted, as shows the following theorem,Theorem 1.3 Let (Mn, g) be any 
ompa
t Riemannian n-manifold(n ≥ 3). There exists a sequen
e of 
omplete Riemannian metri
s
(gm) on M that 
onverges to g in the Gromov-Hausdor� distan
eand su
h that

ρn/2(gm)

Vol gm
→ 0Sin
e 1941 several generalizations of Myers's theorem appeared,under roughly three di�erent kinds of hypothesis:a) some integrals of the Ri

i 
urvature along minimizing geodesi
sare 
ontrolled ([1℄, [5℄, [3℄, [10℄, [12℄),b) the Ri

i 
urvature is almost bounded below by n−1 but not al-lowed to take values under a given negative number ([7℄, [19℄,[16℄,[18℄),
) the L∞ lower Ri

i 
urvature bound of 
ase b) is repla
ed bybounds on other Riemannian invariants (for example the volumebounded below or the diameter bounded above or the se
tional
urvature bounded).Sin
e we do not assume an L∞ lower bound on Ri

i 
urva-ture, we 
annot use the se
ond variation formula for the length ofgeodesi
s, whi
h is the 
lassi
al tool in the proof of Myers theo-rems of type a) and b). Te
hniques, whi
h need a priori boundson some Sobolev 
onstants, have been developed to get generaliza-tions of the Myers theorem when the se
ond variation formula fails(see [4℄, [14℄, [7℄, [16℄). Until this present paper (see our propo-sition 8.1), only two bounds on Sobolev 
onstants were knownunder an integral 
ontrol of the Ri

i 
urvature: one by S. Gallotrequiring a bound on the diameter [8℄, one by D. Yang requiringa lower bound on the volume of the small balls [20℄. Su
h extrahypotheses are natural (and ne
essary) for manifolds with almostnonnegative Ri

i 
urvature, but are not pertinent in our 
ontext:for instan
e the lower bound on volume would bound the 
ardi-nality of π1 whereas the set of n-manifolds with Ri

i 
urvaturebounded below by n−1 has �nite but not bounded 
ardinalities of

π1. 3



To avoid these unnatural extra hypothesis and to be able to
ontrol the Ri

i 
urvature of the universal 
over, we �rst developea te
hnique based on measure 
on
entration estimates (and whi
hmake no use of bounds on Sobolev 
onstant) to prove the followinglo
al version of our diameter bound,Lemma 1.4 Let (Mn, g) be a manifold (not ne
essarily 
omplete)whi
h 
ontains a subset T satisfying the following 
onditions:1. T is is star-shaped at a point x (see de�nition 2).2. B(x,RT ) ⊃ T ⊃ B(x,R0) for some RT ≥ R0 > π.3. ǫ = R2
T

[ 1

VolT

∫

T

(
Ric−(n−1)

)p
−

] 1
p ≤ B(p, n)

(
1− π

R0

)100Then Diam(Mn, g) ≤ π
(
1+C(p, n)ǫ

1
20

) (and M ⊂ T ).Remark. � The 
onne
ted sum of an n-sphere of diameter
2R0 − π with a Eu
lidean n-spa
e by a su�
iently small 
ylindershows that in order to get the 
ompa
tness of M , it is importantthat T 
ontain a ball of radius R0 > π and also that the pin
hingrequired on 1

VolT

∫
T

(
Ric−(n−1)

)p
− tend to 0 when R0 tends to π.To prove lemma 1.4, we show that VolB

(
x, π

)
/VolB(x,R0)goes to 1 when the Lp-norm of (Ric−(n−1)

)
− tends to 0 and thatfor any B(y, r) ⊂ B(x,R0) the quotient VolB(y, r)/VolB(x,R0)is uniformly bounded below by a positive in
reasing fun
tion of r.These two opposite behaviours of the 
on
entration of the measurein B(x,R0) prevent the manifold from having points too far awayfrom x.To prove theorem 1.1, we 
onstru
t a good de
omposition ofMinto star-shaped subsets and show that eitherM has small volumeor lemma 1.4 apply to at least one of these subsets. The bound onthe volume is then infered by the volume estimates developed forthe proof of lemma 1.4. To show the π1-�niteness, we 
onstru
t astar-shaped domain in the universal Riemannian 
over of (Mn, g)whi
h satis�es the assumptions of lemma 1.4.Under our 
urvature assumptions, we also get generalizationsof the Li
hnerowi
z and Bishop-Gromov theorems.Proposition 1.5 Let us denote by λ1, λ1

1 and λ̃1
1 respe
tively the�rst nonzero eigenvalue of the Lapla
ian on fun
tions, the �rsteigenvalue on 1-forms and on 
o-
losed 1-forms of (Mn, g). Then:

λ1(M
n, g) = λ1

1(M
n, g) ≥ n×

(
1−C(p, n)

( ρp
VolM

) 1
p

)
,

λ̃1
1(M

n, g) ≥ 2(n−1) ×
(
1−C(p, n)

( ρp
VolM

) 1
p

)
.4



In the last se
tion we show that this result be
omes false with
p=n

2 when n ≥ 3. By adapting the proofs of lemmas 5.1 and 4.1(see [2℄ for details), we further obtain:Proposition 1.6 If η10 =
ρp

VolM ≤ 1
C(p,n) then, for all x ∈ Mand all radii 0 ≤ r ≤ R, we have:

(Voln−1 S(x,R)

L1−η(R)

) 1
2p−1−

(Voln−1 S(x, r)

L1−η(r)

) 1
2p−1 ≤ η2(R−r)

2p−n
2p−1 ,

VolB(x, r)

VolB(x,R)
≥ (1−η) A1(r)

A1(R)
,where Lk(t) (resp. Ak(t)) stands for the volume of a geodesi
sphere (resp. ball) of radius t in (Sn, 1

kg), hen
e also:
Voln−1 S(x,R) ≤

(
1+η2

)
L1−η(R)

VolB(x,R) ≤
(
1+η

)
A1(R).In 
ontrast to the 
ase Ric ≥ (n−1), our assumptions do notyield an upper bound on the quotient Voln−1 S(x,.)

L1
for all possiblevalues of r be
ause the diameter of our manifolds 
an be greaterthan π. This results are similar to the results obtained in [15℄ and[14℄ under stronger 
urvature assumptions.Theorem 1.2 and proposition 1.6 imply that the set of n-manifolds satisfying ρp

VolM ≤ C(p, n), for a p > n/2, is pre-
ompa
tfor the Gromov-Hausdor� distan
e. We show in the last se
tionthat this property is false in the 
ase n ≥ 3 and p = n/2, even forthe pointed Gromov-Hausdor� distan
e.This arti
le is organised as follows. For our proof of theorem1.2, we need to improve the estimates on volume established in [14℄(see also [8℄, [20℄ and [15℄ for other similar estimates and te
hni
s).Se
tion 2 is devoted to a brief survey on the properties of thevolume of star-shaped domains we need subsequently. In se
tion3, we establish a 
omparison lemma (see lemma 3.1), improvingthe similar 
omparison lemma of [14℄, and whi
h is fundamentalfor our proof of theorem 1.2: it provides a bound from above bya 
urvilinear integral of (Ric − (n−1)
)
− on the part less than

(n−1) cos r
sin r of the mean 
urvature of geodesi
 spheres of radius r.This lemma is used in se
tions 4 and 5 to get some bounds fromabove and below on the volume of geodesi
 balls. The proofs ofthe diameter and volume bounds of theorems 1.1 and 1.2 are givenin se
tion 6. Se
tion 7 is devoted to the proof of the �niteness of

π1(M), and se
tion 8 to the proof of proposition 1.5. Finally, wedis
uss in se
tion 9 the 
ase p = n/2.5



I would like to thank S. Gallot for his friendly support duringmy PhD thesis [2℄ (from whi
h a part of this paper is extra
ted)and B. Colbois for his invitation to the UNINE during the year2003-2004.2 Volume and mean 
urvature of spheresNotation. Let x ∈ M . We denote by Ux the inje
tivity domainof the exponential map at x and we identify points of Ux\{0x}with their polar 
oordinates (r, v) ∈ R∗
+×Sn−1

x (where Sn−1
x is theset of normal ve
tors at x). We wright vg for the Riemannianmeasure and set ω = exp∗

xvg = θ(r, v) dr dv, where dv and dr arethe 
anoni
al measures of Sn−1
x and R∗

+. Hen
eforth, we extend θto (R∗
+×Sn−1

)
\Ux by 0.For all (r, v) in Ux\{0}, we denote by h(r, v) the mean 
urvatureat expx(rv) (for the exterior normal ∂

∂r ) of the sphere 
entered at
x and of radius r. This fun
tion h is de�ned on Ux and satis�esthe formula ∂θ

∂r (t, v) = h(t, v)θ(t, v) (
f [17℄, p. 329).For all real k, we set hk = (n−1)
s′k(r)
sk(r) for the 
orrespondingfun
tion on the model spa
e (Snk , gk) (n-dimensional, simply 
on-ne
ted, with se
tional 
urvature k) where, as usual,

sk(r) =
sinh(

√
|k|r)√

|k|
when k < 0, sk(r) = r when k = 0,

sk(r) =





sin(
√
kr)√
k

if r ≤ π√
k

0 if r > π√
k
,

when k > 0.On Ux (resp. on Ux∩B(0, π√
k
) if k > 0), we set ψk = (hk−h)−.Following [15℄, we will use:Lemma 2.1 Let u be an element of Sn−1

x and Iu =]0, r(u)[ theinterval of values t su
h that (t, u)∈Ux. The fun
tion t 7→ψk(t, u) is
ontinuous, right and left di�erentiable everywhere in Iu∩]0, π√
k
[and it satis�es:

{
1) lim

t→0+
ψk(t, u) = 0,

2) ∂ψk

∂r +
ψ2

k

n−1 + 2ψkhk

n−1 ≤ ρk,(where this di�erential inequality is satis�ed by the right and leftderivatives of ψk and where ρk =
(
Ric−k(n−1)

)
−).Proof. � Apply the well known Bo
hner formula g(∇△f,∇f) =

1
2△|∇f |2 + |Ddf |2 +Ric(∇f,∇f) to the distan
e to x fun
tion dx.6



Sin
e |∇dx| = 1 and the Hessian Dd(dx) is zero on R∇dx andequal to the se
ond fondamental form of the geodesi
 sphere of
enter x on ∇d⊥x , we infer that h satis�es the following Ri

atiinequation,
∂h

∂r
+

h2

n− 1
+ Ric

( ∂
∂r
,
∂

∂r

)
≤ 0This inequation be
omes an equation on the model spa
es

(Snk , gk), whi
h easily gives inequality 2) of lemma 2.1. Sin
e
h ∼ (n−1)/r + o(1) (see [17℄ for details), we also easily get 1).

q.e.d.Volume of star-shaped domains:De�nition. � Let x∈M and T ⊂ M . We say that T is star-shaped at x if for all y ∈ T there exists a minimizing geodesi
from x to y 
ontained in T . Equivalently, we may assume that
T = expx

(
Tx
), where Tx is an a�ne star-shaped subset of Ux ⊂

TxM .Given T , a subset of M star-shaped at x, let AT (r) denotethe volume of B(x, r) ∩ T . In the same way, LT (r) stands forthe (n−1)-dimensional volume of (r Sn−1
x )∩Ux∩Tx for the mea-sure θ(r, .) dv. Note that LT (r) =

∫
S

n−1
x

1lTxθ(r, v)dv and AT (r) =∫ r
0
LT (t) dt. Finally, the fun
tions 
orresponding to θ, A and Lon the model manifold (Snk , gk) will be denoted by θk, Ak and Lkrespe
tively. The regularity properties of the fun
tions LT and

AT used subsequently are summarized in the following lemma:Lemma 2.2 Let T a star-shaped subset of (M, g).(i) LT is a right 
ontinuous, left lower semi-
ontinuous fun
tion,(ii) AT is a 
ontinuous, right di�erentiable fun
tion of derivative
LT .(iii) Given α ∈]0, 1], the fun
tion
f(r) =

(
LT (r)

Lk(r)

)α
− α

Vol Sn−1

∫ r

0

∫

S
n−1
x

(LT (s)

Lk(s)

)α−1

1lTxψk
θ

θkis de
reasing either on R∗
+ (if k ≤ 0) or on ]0, π√

k
[ (if k > 0).Proof. � To prove (i), note that θ(r, v)1lTx is the produ
tof rn−11lTx(r, v) by the Ja
obian of expx, hen
e r 7→θ(r, v)1lTx ispositive on an interval ]0, r(v)[, vanishes on [r(v),+∞[, and so isright 
ontinuous and left lower semi-
ontinuous on R. We inferalso that 1lTxθ is bounded on every 
ompa
t of TxM . This yieldsthe boundedness of LT on every 
ompa
t subset of [0,+∞[. Weinfer (i) from the Lebesgue dominated 
onvergen
e theorem and7



the Fatou lemma. Property (ii) now follows (i) by the de�nitionof AT .To 
omplete the proof of lemma 2.2, we note that, by de�ni-tion of LT , and sin
e VolM\expx(Ux) = 0, we may assume that
Tx ⊂ Ux. For all integers m ≥ 1 let T (m)

x = (1− 1
m)Tx ⊂ Tx bethe image of Tx by the homothety of 
enter 0 and fa
tor (1− 1

m )in Tx0M and set T (m) = expx(T
(m)
x ). By the monotone 
onver-gen
e theorem, we have AT = lim

m→∞
AT (m) and LT = lim

m→∞
LT (m) .Hen
e, it only remains to show (iii) for T (m). We will use thefollowing elementary lemma:Lemma 2.3 A fun
tion f : [a, b]→R is de
reasing if and only ifit satis�es the two 
onditions(a) for all x∈[a, b[, lim suph→0+

f(x+h)−f(x)
h ≤ 0,(b) for all x∈]a, b], lim infh→0− f(x+ h) ≥ f(x).As for LT and AT , the fun
tion r 7→
∫

S
n−1
x

1l
T

(m)
x

ψk
θ
θk

(r, v) dv isright 
ontinuous, left lower semi-
ontinuous on Ik =]0,+∞[ if k ≤
0 (resp. on Ik =]0, π√

k
[ if k > 0), and r 7→ ∫ r

0

∫
S

n−1
x

1l
T

(m)
x

ψk
θ
θk

is
ontinuous, right di�erentiable on Ik; so the fun
tion f satis�esthe inequality (b) of lemma 2.3. We now prove (a):For all r > 0 let Sr
T (m) = {v∈Sn−1

x / rv∈T (m)
x }. We denoteby L̃(r+t) the volume of (r+t).Sr

T (m) for the measure θ(r+t, .)dv.Sin
e T (m)
x is star-shaped at x, we have L̃(r+t) ≥ LT (m)(r+t)(with equality if t = 0). Hen
e
lim
t→0+

L
(m)
T (r+t) − L

(m)
T (r)

t
≤ lim

t→0+

L̃(r+t) − L̃(r)

tSin
e L̃(r+t) =
∫

Sr

T (m)

θ(r+t, v)dv and ∂θ
∂r = h θ, we obtain, bydi�erentiating this integral expression of L̃ (Note that hθ and ψkθare integrable on the set Sr

T (m) (whi
h 
ould be false for T andthis is why we introdu
ed the sets T (m)): for any t∈[0, 1
m−1r[,the 
losure of (r+t).Sr

T (m) in TxM is 
ompa
t and belongs to
Ux\{0x} be
ause the 
ut-radius is 
ontinuous on S

(n−1)
x (see [17℄)and bounded below by m

m−1r > r+t on Sr
T (m) ; But, the fun
tion

h = 1
θ
∂θ
∂r is smooth on Ux\{0x}, and so uniformly bounded onevery set (r+t).S

(m)
T (r)),

lim
t→0+

L̃(r+t)−L̃(r)

t
=

∫

S
n−1
x

h1lT (m)θ dv ≤
∫

S
n−1
x

(ψk+hk)1lT (m)θ dv8



Combining the last two inequalities, we get:
limt→0+

LT (m)(r+t) − LT (m)(r)

t
≤ hk(r)LT (m)(r)+

∫

S
n−1
x

1lT (m)ψkθ.The 
ase α = 1 of (a) easily follows, noting that Lk has derivative
hkLk:
lim sup
t→0+

L
T (m) (r+t)

Lk(r+t) −L
T(m) (r)

Lk(r)

t
=

lim sup
t→0+

LT (m)(r+t)−LT (m)(r)

tLk(r)

+ lim
t→0+

[
LT (m)(r + t)

1

t

( 1

Lk(r+t)
− 1

Lk(r)

)]

=
1

Vol Sn−1θk(r)

[
lim sup
t→0+

LT (m)(r+t) − LT (m)(r)

t
−hk(r)LT (m) (r)

]Let B = 1
Vol Sn−1

∫
S

n−1
x

1l
S
(m)
T

ψk
θ
θk
dv. For all ǫ > 0, there exists

tǫ > 0 su
h that for all t∈]0, tǫ[, we have L
(m)
T (r+t)

Lk(r+t) ≤ L
(m)
T (r)

Lk(r) +

t(B+ǫ). Moreover, by 
on
avity, we get:
(
L

(m)
T (r)

Lk(r)
+ t(B+ǫ)

)α
−
(
L

(m)
T (r)

Lk(r)

)α
≤ α

(
L

(m)
T (r)

Lk(r)

)α−1

η(B+ǫ)It follows that lim supt→0+
F (r+t)−F (r)

t ≤ α(B+ǫ)

(
L

(m)
T (r)

Lk(r)

)α−1for every ǫ > 0 and we get inequality (b) for any α∈]0, 1] by letting
ǫ tend to 0.

q.e.d.3 Comparison lemma on mean 
urvatureThe following lemma improves lemma 2.2 in [15℄ and theorem2.1 in [14℄. We provide a pointwise bound on ψk whi
h, in 
ase
k > 0 admits a sharp polynomial blow-up when r→ π√

k
; these bothimprovements are ne
essary for our proof of theorem 1.2 (see theproof of lemma 4.1).Lemma 3.1 Let k∈R, and p > n/2 and r > 0; assume r ≤ π

2
√
kif k > 0. We have:

ψ2p−1
k (r, v) θ(r, v) ≤ (2p−1)p

(
n−1

2p−n

)p−1 ∫ r

0

ρpk(t, v)θ(t, v) dt.9



Moreover if k > 0 and π
2
√
k
< r < π√

k
, then

sin4p−n−1(
√
kr)ψ2p−1

k (r, v) θ(r, v)

≤ (2p−1)p
(
n−1

2p−n

)p−1 ∫ r

0

ρpk(t, v)θ(t, v) dtThese two inequalities hold for all normal ve
tor v∈Sn−1
x , even ifwe repla
e θ everywhere by 1l[0,sv[ θ (for any sv ≥ 0).Remark. � The bounds diverge when p tends to n/2 ex
ept inthe 
ase n = 2 (whi
h then yields a 
ontrol of ψk by the L1-normof ρk).Proof. � Let φ be a nonnegative, C1 fun
tion on Ux\{0},bounded in the neighborhood of 0. By lemma 2.1, the fun
tion

r 7→φ(r, v)ψ2p−1
k (r, v) θ(r, v) is 
ontinuous and right di�erentiableon Iv, and its derivative satis�es:

∂

∂r
(φψ2p−1

k θ) ≤ (2p−1)ρk φψ
2p−2
k θ −

(
2p−n
n−1

)
φψ2p

k θ

+
(4p−n−1

n−1
hk −

1

φ

∂φ

∂r

)
−
φψ2p−1

k θwhere we used ∂θ
∂r = hθ ≤ hkθ+ψkθ. Setting X =

(∫ r
0 φψ

2p
k θ dt

)and integrating, we get:
0 ≤ φψ2p−1

k θ(r) ≤ (2p−1)
(∫ r

0

φρpkθ dt
)1/p

X1− 1
p −

(2p−n
n−1

)
X

+
[∫ r

0

(4p−n−1

n−1
hk−

1

φ

∂φ

∂r

)2p

−
φ θ dt

]1/2p
X1− 1

2p (∗)where we used lim
t→0

φ(t, v)ψ2p−1
k (t, v) θ(t, v) = 0. Dividing out by

X1− 1
p , we obtain a quadrati
 polynomial that takes a non-negativevalue at X 1

2p and we infer:
(∫ r

0

φψ2p
k θ dt

) 1
2p ≤

√
(n−1)(2p−1)

2p−n
(∫ r

0

φρpk θ dt
)1/2p

+
n−1

2p−n

(∫ r

0

(
hk

2p−1+(2p−n)

n−1
− ∂φ/∂r

φ

)2p

−
φ θ dt

)1/2p

.We prove the �rst inequality of lemma 3.1 by taking φ(r, v) = 1.Indeed then, the above inequality and the positivity of hk yield:
∫ r

0

ψ2p
k θ dt ≤

(
(2p−1)(n−1)

2p−n

)p ∫ r

0

ρpkθ dt.10



Plugging this into the above inequality (∗), we obtain
ψ2p−1
k θ(r) ≤ (2p−1)p

( n−1

2p−n
)p−1

(∫ r

0

ρpkθ dt

)
.For the se
ond inequality, we set φ = sin4p−n−1(

√
kr) and observethat, in this 
ase, the last term of inequality (∗) vanishes. So weget for all r < π√

k
:

sin4p−n−1(
√
kr)ψ2p−1

k θ ≤ (2p−1)p
( n−1

2p−n
)p−1

∫ π√
k

0

ρpkθ dt.

q.e.d.4 Hyper-
on
entration of the measureIn this se
tion we prove the �rst volume estimate required in ourproof of theorem 1.2. It says that, if the Ri

i 
urvature 
on-
entrates su�
iently above n−1 on a star-shaped subset T of Mat x, then the Riemannian measure of T is almost 
ontained in
B(x, π)∩T .Lemma 4.1 There exists an expli
it 
onstant C(p, n) su
h thatif (Mn, g) 
ontains a subset T , star-shaped at a point x, on whi
h:

ǫ = R2
T

[ 1

VolT

∫

T

(
Ric−(n−1)

)p
−

] 1
p ≤

(π
6

)2− 1
p ,where RT is su
h that T ⊂ B(x,RT ), then, for all radius RT ≥

r ≥ π:
LT (r) ≤ C(p, n)

r
ǫ

p(n−1)
2p−1 VolT.Remark. � The same 
on
lusion holds in 
ase n = 2 and p = 1by letting n = 2 and p→1 in the proof below.Proof. � Lemma 2.2 (with 0 < t ≤ r < π√

k
, α = 1

2p−1 and
k > 0 �xed) yields:
(LT (r)

Lk(r)

) 1
2p−1 −

(LT (t)

Lk(t)

) 1
2p−1

≤ 1

2p−1

∫ r

t

(LT
Lk

) 1
2p−1−1 1

Vol Sn−1

∫

Tx

ψk
θ

θk
.As

(
LT/Lk

) 2(1−p)
2p−1

Vol Sn−1

∫

Tx

ψk
θ

θk
≤ 1
(
Lk
) 1

2p−1

(∫

Tx

ψ2p−1
k θ

) 1
2p−1

,11



we get:
1

VolSn−1

∫ r

t

(LT (s)

Lk

) 2−2p
2p−1

∫

Tx

ψk
θ

θk
dvds

≤
∫ r

t

(
√
k)

n−1
2p−1

sin2(
√
ks)

(∫

Tx

sin4p−n−1(
√
ks)ψ2p−1

k θ

Vol Sn−1
dv
) 1

2p−1

ds.Lemma 3.1 implies:
( LT (r)

sinn−1(
√
kr)

) 1
2p−1 −

( LT (t)

sinn−1(
√
kt)

) 1
2p−1

≤
( (n−1)

(2p−1)(2p−n)

) p−1
2p−1

(∫

T∩B(x,r)

ρpk

) 1
2p−1

∫ r

t

1

sin2(
√
ks)

dsSetting ǫ′ = ǫ
p

2p−1 , k = (π−ǫ′)2
r2 and assuming t∈[ π

2(π−ǫ′)r, r], andsin
e, by 
on
avity of the sine fun
tion, ∫ rt 1
sin2(

√
krs)

ds ≤ πr
2ǫ′ , wehave:

LT (r)
1

2p−1

(sin(
√
krr))

n−1
2p−1

− LT (t)
1

2p−1

(sin(
√
krt))

n−1
2p−1

≤ π

2R
1

2p−1

T

(
n−1

(2p−1)(2p−n)

) p−1
2p−1

Vol(T )
1

2p−1Multiplying this inequality by (sin(r
√
kr))

n−1
2p−1 ≤ (ǫ′)

n−1
2p−1 , we inferthat for all t∈[ π

2(π−ǫ′)r, r],
LT (r)

1
2p−1 ≤ LT (t)

1
2p−1

(
ǫ′

sin((π−ǫ′) tr )

) n−1
2p−1

+
π

2R
1

2p−1

T

(
n−1

(2p−1)(2p−n)

) p−1
2p−1

VolT
1

2p−1 ǫ′
n−1
2p−1 .Using the inequality (a+b)α ≤ 2α−1(aα+bα) (for all a, b ≥ 0), with

α = 2p−1, and the fa
t that sin[(π−ǫ′) tr ] ≥ sin(π6 ) = 1
2 , when

t∈[ π
2(π−ǫ′)r,

5π
6(π−ǫ′)r], we get:

LT (r) ≤ 22p+n−3ǫ
p(n−1)
2p−1 LT (t)

+
π2p−1

2RT
Vol(T )ǫ

p(n−1)
2p−1

(
n−1

(2p−1)(2p−n)

)p−1

,for all t∈[ π
2(π−ǫ′)r,

5π
6(π−ǫ′)r] (note that 5π

6(π−ǫ′)r ≤ r, hen
e t
r ≤ 1).12



By the mean value property, there exists t∈[ π
2(π−ǫ′)r,

5π
6(π−ǫ′)r]su
h that LT (t) is bounded above by 3(π−ǫ′)

πr

∫ 5πr
6(π−ǫ′)

πr
2(π−ǫ′)

LT (s) ds whi
his less than 3
r

∫ RT

0 L = 3
r Vol(T ). In summary, we 
on
lude:

LT (r) ≤
[
3.22p+n−3+

π2p−2

2

(
n−1

(2p−1)(2p−n)

)p−1
]

Vol(T )

r
ǫ

p(n−1)
2p−1 .

q.e.d.5 Lower Bound on the volume of geodesi
ballsIn this se
tion, we bound from below the relative volume of thegeodesi
 balls. It is the se
ond step of the proof of theorem 1.2.Lemma 5.1 Let n ≥ 2 be an integer and p > n/2 be a real.There exist (
omputable) 
onstants C(p, n) > 0 and B(p, n) su
hthat when (Mn, g) 
ontains a star-shaped subset T whi
h satis�es
ǫ = R2

T

[ 1

VolT

∫

T

(
Ric
)p
−

] 1
p ≤ B(p, n), then we have(i) for all 0 < r ≤ R ≤ RT , AT (r)

AT (R) ≥
(
1−C(p, n)ǫ

p
2p−1

)
rn

Rn .(ii) if T = B(x,R0), y∈T and r ≥ 0 satisfy d(x, y)+r ≤ R0 then
( VolB(y, r)

VolB(x,R0)

) 1
2p′−1 ≥

( r
R0

) n
2p′−1

[(2

3
−C(p, n)ǫ

p′

2p′−1

)( r
R0

) 2n
2p′−1−C(p, n)ǫ

p′

2p′−1

]
,where p′ = max(n, p).Proof. � Lemma 2.2 (with k = 0 and α = 1) and the Hölderinequality yield, for all t ≤ r ≤ RT :

LT (r)

rn−1
−LT (t)

tn−1
≤
∫ r

t

LT (s)1−
1

2p−1

sn−1

(∫

S
n−1
x

1lTxψ
2p−1
0 θ dv

) 1
2p−1

dsLemma 3.1 implies then
LT (r)

rn−1
−LT (t)

tn−1
≤ C(p, n)

∫ r

t

LT (s)1−
1

2p−1

sn−1

(∫

B(x,s)∩T
ρp0

) 1
2p−113



≤ C(p, n)

tn−1

(∫

T

ρp0

) 1
2p−1

∫ r

t

L
1− 1

2p−1

T .Multiplying this inequality by nrn−1tn−1, using the inequality
∫ r
t L

1− 1
2p−1

T ≤ (r−t) 1
2p−1

(
AT (r)−AT (t)

)1− 1
2p−1 , and integratingthe result with respe
t to t from 0 to r. We get

d

dr

(AT
rn

)
≤
(AT (r)

rn

)1− 1
2p−1

C(p, n)

(∫

T

ρp0

) 1
2p−1

nr
1−n
2p−1(sin
e AT (r)

rn is right di�erentiable). Integrating on
e again yields
[AT (R)

Rn

] 1
2p−1−

[AT (r)

rn

] 1
2p−1≤ C(p, n)

(∫

T

ρp0

) 1
2p−1

R
2p−n
2p−1 .

(
Er,RT

)Inequality (ET,R,RT

) implies
[

AT (R)

AT (RT )Rn

] 1
2p−1

≥ R
−n

2p−1

T

(
1−C(p, n)ǫ

p
2p−1

)
≥ 1

2
R

−n
2p−1

Tas soon as B(p, n) is su�
iently small. This and (Er,RT ) imply (i).To show (ii), we may assume, by the Hölder inequality, that
p∈]n/2, n]. Let y∈B(x,R0) and (r,R) su
h that 0 < r ≤ R ≤
R0−d(x, y). Multiplying (EB(y,R),r,R

) by ( 1
Ax(R0)

) 1
2p−1 and not-ing the in
lusion B(y,R) ⊂ B(x,R0), we get

( Ay(R)

Ax(R0)

) 1
2p−1 ≤ C(p, n)

(R2ǫ

R2
0

) p
2p−1

+
(R
r

) n
2p−1

( Ay(r)

Ax(R0)

) 1
2p−1

.We will 
onstru
t a sequen
e of de
reasing balls Bi = B(yi, Ri)su
h that B1 = B(y, r), Bk is almost 
on
entri
 to B(x,R0), and
Bi 
ontains a ball 
entered at yi+1 and of radius ri+1 
lose to Ri.Let γ : [0, d(x, y)] → M be a minimizing geodesi
 from xto y and α = α(p, n) < 1 
lose enough to 1 su
h that we have
−Logα ≤ 2Log(2−α) and (2−α)

2p−n
2p−1 α

n
2p−1 < 1. For all integers

1 ≤ i ≤ k = E
[
1+

Log
(

d(x,x0)+r
r

)
Log(2−α)

], let
yi = γ

(
d(x, x0)+r−(2−α)i−1r

)
, ri = α(2−α)i−2r,

Ri = (2−α)i−1rThen B(yi+1, ri+1) ⊂ B(yi, Ri) ⊂ B(x,R0) and so, by the aboveinequality (in whi
h we repla
e y by yi+1, R by Ri+1 and r by
ri+1), we get
(Ayi+1(Ri+1)

Ax(R0)

) 1
2p−1 14



≤ C(p, n)
(r2ǫ
R2

0

) p
2p−1

(2−α)
2pi

2p−1 +
((2−α)nAyi(Ri)

αnAx(R0)

) 1
2p−1

,hen
e also
(Ayi(Ri)

Ax(R0)

) 1
2p−1

≤
(2−α

α

)n(i−1)
2p−1

[( Ay(r)

Ax(R0)

) 1
2p−1

+
C(p, n)( r

2ǫ
R2

0
)

p
2p−1

( (2−α)n−2p

αn )
1

2p−1−1

]For i = k, we have d(x, yk) ≤ (1−α)Rk, soB(yk, Rk) ⊃ B(x, αRk).Inequality (i) thus yields
(Ayk

(Rk)

Ax(R0)

) 1
2p−1 ≥

(
1−C(p, n)ǫ

p
2p−1

)(
α
Rk
R0

) n
2p−1

≥
(
1−C(p, n)ǫ

p
2p−1

)
α

n
2p−1 (2−α)

n(k−1)
2p−1

( r
R0

) n
2p−1These two estimates on Ayk

(Rk)

Ax(R0) , and the fa
t that by assumption
α

n(k−1)
2p−1 ≥

(
r

r+d(x,y)

) −nLogα
(2p−1)Log(2−α) ≥

(
r
R0

) 2n
2p−1 , imply that thereexist 
onstants C(p, n) > 0 and B(p, n) > 0 su
h that when ǫ ≤

B(p, n),
( Ay(r)

Ax(R0)

) 1
2p−1

≥
( r
R0

) n
2p−1

[(2
3
−C(p, n)ǫ

p
2p−1

)( r
R0

) 2n
2p−1−C(p, n)ǫ

p
2p−1

]
,where we have assumed α n

2p−1 ≥ 2
3 .

q.e.d.In the 
ase (n, p) = (2, 1), the following lemma holdsLemma 5.2 There exists 
onstants B > 0 and C > 0 su
h thatwhen a surfa
e (S2, g) 
ontains a star-shaped subset T on whi
hthe se
tional 
urvature K satis�es ǫ =
R2

T

VolT

∫
T
K− ≤ B, then

(i)
AT (r)

VolT
≥
( r

RT

)2(
1−ǫLog

(RT

r

))
,for all r ≤ RT . If T = B(x,R0), y∈T and d(x, y)+r ≤ R0, then

(ii)
VolB(y, r)

VolB(x,R0)
≥
( r
R0

)4(
1−3ǫ

(R0

r

)2)15



Proof. � An easy 
omputation gives that the 
onstant C(p, n)involved in the di�erential inequality satis�ed by AT

rn in the aboveproof satis�es C(p, n) = 2p−1
2p

(
n−1

(2p−1)(2p−n)

) p−1
2p−1 . In 
ase n = 2we may let p tend to 1 in that di�erential inequality and get

d
dr

(
A
r2

)
≤ 1

r

∫
T
K− whi
h, integrated, yields A(R)

R2 −A(r)
r2

≤ (LogR−Logr)
∫
T

K−, proving (i).
(ii) is proved as in lemma 5.1 (note that, in this 
ase, we maylet α tend to 1, whi
h simpli�es the �nal formula).

q.e.d.6 Diameter bound6.1 Proof of lemma 1.4Note that if B(p, n) is su�
iently small then lemma 5.1 implies
AT (R)
VolT ≥ Rn

2Rn
T
hen
e we may assume that T = B(x,R0) and π <

R0 ≤ 2π. Fix δ ∈]0, R0−π
2 [. If y ∈ M is at a distan
e greaterthan (π+δ) from x, then we have B(y, δ) ⊂ B(x, π+2δ)\B(x, π).Lemma 4.1 now yields the bounds

VolB(y, δ)≤
∫ π+2δ

π

L ≤ 2C(p, n)A(R0)δǫ
p(n−1)
(2p−1)(where A(R0) = VolB(x,R0)). On the other hand, lemma 5.1 (ii)provides:

VolB(y, δ) ≥
( δ
2π

)n[1
2

( δ
2π

) 2n
2p′−1−C(p, n)ǫ

p′

2p′−1

]2p′−1

A(R0)by taking B(p, n) small enough (still setting p′ = max(p, n)).At this stage, we 
an distinguish two 
ases:either ( δ2π) 2n
2p′−1 ≤ 4C(p, n)ǫβ, where β = 2np(n−1)

(2p−1)(2p′−1)(3n−1) ,or the above inequality be
omes (sin
e β ≤ p′

2p′−1 )
VolB(y, δ) ≥ C(p, n)

( δ
2π

)n
A(R0)ǫ

(2p′−1)βThese two estimates on VolB(y, δ) imply a bound on δ:
π+δ ≤ π+C(p, n)ǫβ

2p′−1
2n ≤ π+C(p, n)ǫ

1
10 < R016



We infer that M ⊂ B(x,R0). Let z be any point of M . We have
ρ
(p)
z,R0

≤
(

VolB(x,R0)
VolB(z,R0)

) 1
p

ǫ. But B(x,R0−π−C(p, n)ǫ
1
10 ) ⊂ B(z,R0)and so lemma 5.1 (i) implies:

VolB(z,R0)

VolB(x,R0)
≥
(
R0−π−C(p, n)ǫ

1
10

)n

2(2π)n
≥ (R0−π)n

4(2π)nWhat has done above for x 
an be done for any z ∈ M (justrepla
e ǫ by 4(2π)n/p

(R0−π)n/p ǫ, for ρ(p)
z,R0

≤ 4(2π)n/p

(R0−π)n/p ǫ), whi
h 
ompletesthe proof.6.2 Proof of the geometri
 inequalities of theo-rem 1.2Let (Mn, g) be a 
omplete manifold su
h that ∫M(Ric−(n−1)
)p
− is�nite and let (B(xi, 2π)

)
i∈I be a maximal family of disjoint ballsin M . The Diri
hlet domains Ti =

{
y / d(xi, y) < d(xj , y), ∀j 6=i

}satisfy the three following 
lassi
al fa
ts:1) B(xi, 4π) ⊃ Ti ⊃ B(xi, 2π),2) Ti is star-shaped at the xi and3) ex
ept for a set of zero measure, M is the disjoint union of thesets Ti.Thus, setting α = infi∈I

[
1

VolTi

∫
Ti

(
Ric−(n−1)

)p
−

] 1
p , we have

∫

M

(
Ric−(n−1)

)p
− =

∑

i∈I

∫

Ti

(
Ric−(n−1)

)p
−

≥ αp
∑

i∈I
VolTi = αp VolMIf α >

[
B(p,n)

210116π2

]p (where B(p, n) is the 
onstant of lemma 1.4),then VolM ≤ C(p, n)ρ(p)(M) (where C(p, n) is a universal 
on-stant). Elsewhere, there exists a star-shaped set Ti satisfyingthe assumptions of lemma 1.4. In the latter 
ase (whi
h is theonly possible one under the stronger assumption ρ
(p)
M ≤ VolM

C(p,n) ,with C(p, n) su�
iently large) we bound the diameter of M withLemma 1.4 and the volume of M using lemma 5.1.7 Fundamental group �nitenessTo show the π1-�niteness of the manifolds that satisfy ρp

VolM ≤
1

C(p,n) , we just have to show their the universal 
overs are 
om-17



pa
t. We will apply lemma 1.4 to the universal Riemannian 
ov-ering spa
e (M̃, g̃), and so we have to 
onstru
t a good star-subsetsubset in M̃ (i.e. a star-shaped subset on whi
h the pin
hing onthe Ri

i 
urvature is 
ontrolled by ρp

VolM ).The fundamental group a
ts freely and isometri
ally on theuniversal Riemannian 
over. For all x̃∈M̃ and any subset T of
M̃ , we denote by mT (x̃) the 
ardinality of T∩π1.x̃. Set x̃0∈M̃and x̃∈B(x̃0, 2π) that maximizesmB(x̃0,2π). Sin
e we may assume
DiamM ≤ 2π, we have 1 ≤ mB(x̃0,2π)(y) ≤ N and mB(x̃0,6π)(y) ≥
N for all y∈B(x̃0, 2π) (where N = mB(x̃0,2π)(x̃)). For all y in
B(x̃0, 2π), we 
hoose N distin
ts points y1, · · ·, yN in π1.y thatare 
loser to x̃0 than the other points of π1.y, and let T be theunion of these {y1, · · ·, yN} for all y∈B(x̃0, 2π). Hen
e B(x̃0, 6π) ⊃
T ⊃ B(x̃0, 2π) and mT≡N on M̃ . We infer

1

VolT

∫

T

(
Ric−(n−1)

)p
− dvg̃ =

1

VolM

∫

M

(
Ric−(n−1)

)p
− dvgIt only remains to show that T is a star-shaped subset of (M̃, g̃).Set y∈T and let γ be a minimizing geodesi
 from y to x̃0. Assumethere exists z∈γ\T . Sin
e mT (z) = N , there exist (σ1, · · ·, σN )in π1(M)\{id} su
h that σi.z∈T for all 1 ≤ i ≤ N . But everyelement of π1(M)\{id} a
ts without �xed points on M̃ , thus thereexists 1 ≤ i0 ≤ N su
h that σi0 .y /∈T . Sin
e σi0 a
ts isometri
ally,we have

d(x̃0, y) ≤ d(x̃0, σi0 .y), d(x̃0, z) ≥ d(x̃0, σi0 .z),

d(z, y) = d(σi0 .z, σi0 .y).The relations above 
ombined with d(x̃0, y) = d(x̃0, z)+d(z, y) andthe triangle inequality provide
d(x̃0, y) = d(x̃0, σi0y) = d(x̃0, σi0z)+d(σi0z, σi0y).We infer that there exists a minimizing geodesi
 segment from

σi0 .y to x̃0 whi
h 
ontains σi0 .z. But d(σi0 .z, σi0 .y) = d(z, y) <
d(x̃0, y) ≤ d(x̃0, σi0 .y), so there is only one geodesi
 minimiz-ing the distan
e between σi0 .z and σi0 .y, whi
h implies that thegeodesi
 σi0(γ) 
ontains x̃0. Sin
e d(z, x̃0) = d(σi0 .z, x̃0), we have
σi0 .x0 = x0, 
ontradi
ting the fa
t that σi0 has no �xed point.8 Spe
tral lower boundsTo prove proposition 1.5 we need bounds on some Sobolev 
on-stants. In [8℄, S. Gallot provides su
h bounds under the pin
h-ing Diam(M)2

(
1

VolM

∫
M (Ric)p−

) 1
p ≤ ǫ(p, n), where p > n/2 and18



ǫ(p, n) > 0 is a universal 
onstant. Combined with theorem 1.2this yieldsProposition 8.1 Let (Mn, g) be a 
omplete Riemannian mani-fold. If ρ
(p)
M

VolM ≤ 1
C(p,q,n) (for p > n/2 and q > n), then we have(i) for all u∈H1,2(M), ‖u‖ 2q

q−2
≤ Diam(M)C(p, q, n)‖du‖2+‖u‖2.(ii) for all u∈H1,q(M), supu− inf u ≤ Diam(M)C(p, q, n)‖du‖q.We now prove proposition 1.5. Let α be a 1-form on M su
hthat ‖α‖2

2 = 1 and △α = λα. The Bo
hner formula (see [17℄)yields
∫

M

g(△α, α)

VolM
= ‖Dα‖2

2+

∫

M

(
Ric−(n−1)

)
(α, α)

VolM
+(n−1)Combined with Hölder's inequality, this implies:

λ ≥ ‖Dα‖2
2−
( ρp
VolM

) 1
p ‖α‖2

2p
p−1

+(n−1)Sin
e we may assume DiamM ≤ 2π, proposition 8.1:
‖α‖2

2p
p−1

≤ C(p, n)‖Dα‖2
2 + 2‖α‖2

2 .We infer (
λ−(n−1)+2ǫ

)
≥
(
1−C(p, n)

( ρp
VolM

) 1
p
)
‖Dα‖2

2 (∗).Splitting orthogonally the 2-tensor Dα into antisymmetri
 part
dα
2 , tra
eless symmetri
 part and s
alar part − δα

n g, we obtain
‖Dα‖2

2 ≥ 1
n‖δα‖2

2+
1
2‖dα‖2

2. Combining the splitting with the in-equality (∗) above and distinguishing the 
ase dα = 0 (where
‖δα‖2

2 = λ) and the 
ase δα = 0 (where ‖dα‖2
2 = λ), we easily getproposition 1.5.9 L

n
2 -pin
hing on the Ri

i 
urvatureIn the 
ase n = 2 and p = 1, the π1-�niteness follows readily fromthe Gauss-Bonnet theorem. The proofs of Theorems 1.1 and 1.2,Lemma 1.4, and Propositions 1.5 and 1.6 may be easily adapted.For instan
e, to prove Lemma 1.4 we just use Lemma 5.2 in pla
eof Lemma 5.1. To prove Proposition 1.5, we may assume λ ≤ 2nand use the Sobolev inequality ‖u‖4 ≤ C‖du‖2+‖u‖2 to show byMoser's iteration that ‖α‖∞ ≤ C′; this implies that inequality (∗)still holds and then we �nish the proof as in the 
ase p > 1.We now fo
us on 
ounter-examples or density results announ
edin the introdu
tion. Let σ (resp. σ(x)) stand for the se
tional 
ur-vature (resp. the smallest se
tional 
urvature of tangent planes at

x). 19



Proposition 9.1 Set n ≥ 3. For any p, ǫ > 0, the n-Riemannianmanifolds with ∫
M

|σ|p ≤ ǫ and Vol(M) ≤ ǫ are dense in (pointed)Gromov-Hausdor� distan
e amongs all the (non 
ompa
t) lengthspa
es.Proof. � The (n−1)-Riemannian manifolds are obviousely GH-dense amongs all the �nite graphs (by performing some 
onne
tedsums of spheres Sn−1 to get small slightely thi
kened graphs).Then, just take Riemannian produ
t of these manifolds with asu�
iently small S1.
q.e.d.The next density results are more interesting sin
e we want tokeep a 
ontrol on the volume of our family of manifolds.Proposition 9.2 For any reals K and V0 > 0, any integer n ≥ 3and real any ǫ > 0 the 
ompa
t Riemannian n-manifolds (Mn, g)that satisfy

∫

M

(
σ −K

)n
2

− < ǫ and VolM = V0are dense in (pointed) Gromov-Hausdor� distan
e amongs all the(non 
ompa
t) length spa
es.We 
an also repla
e ∫M(σ−K)n
2

− by ∫M |σ|n
2 or by ∫M |σ|p forany p < n/2.With the same kind of glueing te
hniques, it is not di�
ultto 
onstru
t 
omplete, non 
ompa
t n-manifolds with non �nitevolume and whi
h satisfy ρn/2 ≤ ǫ (for any n ≥ 3 and any ǫ > 0).Proposition 9.3 Let (Mn, g) be any 
ompa
t Riemannian n-ma-nifold (n ≥ 3). There exists a sequen
e of 
omplete Riemannianmetri
s (gm) that 
onverge to g in the Gromov-Hausdor� distan
eand su
h that

ρn/2(gm)

Vol gm
→ 0 Vol(gm) → ∞ ∀l ∈ N, λl(gm) → 0where λl denote the l-th eigenvalue of the Lapla
ian on fun
tions.Proof. � We de�ne the following �ve families of 
ylinders

I×Sn−1 with warped-produ
t metri
 dt2+b(t)2gSn−1

• C
−1
ν = [0,

√
ν]×Sn−1 with b(t) = η(t2+ν2)α/2, where α =

1+ 1√
−Log(ν)

and η =
√

1+ν

α(ν+ν2)
α−1

2

for any ν > 0.
• Fν = [θ−π

2 , 0] × S
n−1 with b(t) = η′ cos t, θ = tan−1(

√
ν
α (1+ν))and η′ =

√
α2+ν(1+ν)2

α = 1
cos θ . 20



• Fν = [0, η
′π
2 ] × Sn−1 with b(t) = η′ cos t

η′ .
• C

0
ν = [0,

√
ν(1+ν)
2α ] × S

n−1 with b(t) = t+
√
ν(1+ν)
2α .

• C
0

ν,L = [0, L] × Sn−1 with b(t) = ν
α+1

2

α(1+ν)
α
2

−1 .If (X,Y ) is an orthonormal family of tangent ve
tors to Sn−1,then the se
tional 
urvatures σ(X,Y ) of the manifolds Fν , Fν ,
C

−1
ν and C

0
ν are equal to

1

b2
−
(
b′

b

)2

=





0 on C
0
ν or C

0

ν,L,
ν2α2

(t2+ν2)2 − α2

t2+ν2

(
1 − 1

1+ν

(
ν+ν2

t2+ν2

)α−1
) on C

−1
ν ,

1 − sin2 θ
cos2 t on Fν ,

1
η′2 on Fν .If X is a unit ve
tor tangent to Sn−1, then

σ(X,
∂

∂r
) = −b

′′

b
=





0 on C
0
ν or C

0

ν,L,

−α(2−α)ν2

(t2+ν2)2 − α(α−1)
t2+ν2 on C

−1
ν ,

1 on Fν ,
1
η′2 on Fν .We now obtain readily the following upper bounds (∀ν ≤ 1

C(n) )
∫

Fν

(σ−1)
n
2
− ≤ C(n)

∫ π
2 −θ

0

sinn θ

cos t
dt ≤ C(n) sinn θ ≤ C(n)

(
− ln ν

)n−2
4

,

∫

Fν

(σ−1)
n
2
− ≤ C(n)

∫ η′π
2

0

sinn θ

cosn θ
cosn−1 t

η′
dt

≤ C(n) sinn θ ≤ C(n)
(
− ln ν

)n−2
4

,

∫

C0
ν

(σ−1)
n
2
− ≤ C(n)ν

n
2 ≤ C(n)

(
− ln ν

)n−2
4

.Con
erning C
−1
ν , �rst note that σ(X,Y ) is de
reasing on [0,

√
ν]and so σ(X,Y ) ≥ 0 for ν small enough. Hen
e, using √a

2+
√

b
2 ≤

√
a+b ≤ √

a+
√
b, we have

∫

C
−1
ν

(σ−1)
n
2
−

≤ C(n)ηn−1

[
νn
∫ √

ν

0

(t2 + ν2)
α(n−1)

2 −n dt+

∫ √
ν

0

(t2 + ν2)
α(n−1)

2 dt21



+(α− 1)n/2
∫ √

ν

0

(t2 + ν2)
α(n−1)

2 −n
2 dt

]

≤ C(n)ηn−1
[
ν(α−1)(n−1) + (ν +

√
ν)(n−1)α+1

+(α− 1)
n
2 −1(ν +

√
ν)(α−1)(n−1)

]
≤ C(n)

(− ln ν)
n−2

4

.The metri
s of these 
ylinders are normalized to yield a C1 metri
when the small (resp. the large) 
onne
ted 
omponent of theboundary of Fν is identi�ed with the large 
onne
ted 
omponentof the boundary of C0
ν (resp. with the boundary of Fν). Similarly,note that for any ν > 0 small enough, there exists β < 1 su
h thatwe get a C1 metri
 by identifying a 
onne
ted 
omponent of theboundary of C−1

βν with the small 
onne
ted 
omponent of C0
ν . Weset Bν for the manifold C

0
v#C

−1
βν#C

−1
βν#C

0
v#Fν#Fν :

We then have ∫
Bν

(σ−1)
n
2
− ≤ C(n)

(− ln ν)
n−2

4

, also DiamBν ≤ 2π and
VolBν ≥ 1

C(n) for any ν small enough. For all N∈N, there existsa small ν′ to have C
0
ν 
ontaining at least N disjoint balls of radius√

ν′(1+ν′)
α(ν′) . Ex
ise these balls from one of the C

0
ν part of Bν andglue the resulting manifold to N manifolds Bν′ along the spheresof radius √

ν′(1+ν′)
α(ν′) of their boundaries. Taking N =

(
− ln ν

)n−2
8and multiplying the metri
 by 1

(− ln ν)
n−2
8n

, we get a manifold Bνwhi
h is di�eomorphi
 to Bn and satis�es DiamBν ≤ 4π

(− ln ν)
n−2
16n

,
VolBν ≥ (− ln ν)

n−2
16

C(n) and ∫Bν
(σ−1)

n
2
− ≤ C(n)

(− ln ν)
n−2

8

.To prove proposition 9.3, �x a point x0 in the 
ompa
t mani-foldM . For any m∈N, there exists a r∈]0, inj(M, g)[ and a metri

g′ on M whi
h is equal to g on M\B(x0, 2r), is �at on B(x0, r)and is at Gromov-Hausdor� distan
e from g bounded above by
1

2m . For any ν > 0 su
h that √
ν(1+ν)
α < r we obtain a newmetri
 g′ν on M by repla
ing the �at metri
 on B(x0,

√
ν(1+ν)
α )by the metri
 of Bν . We 
an �nd νm small enough to have aGromov-Hausdor� distan
e between g and g′νm

less than 1
m , andalso Vol(g′νm

) ≥ mC(n) and 1
Vol g′νm

∫
(M,g′νm

)

(
σ−1

)n
2

− ≤ 1
m . We22



then set gm = g′νm
. It only remains to show the 
ollapsing ofthe eigenvalues of the metri
s gm. In that purpose, �rst 
on-sider on Bν the 
ontinuous fun
tion f that is equal to 1 on thepart C

0
ν#Fν#Fν , equal to 0 on the part C

0
ν#C

−1
ν and equal to

f(t) = t√
βν

on the remaining part C
−1
βν . For this fun
tions f , wehave

∫
Bν

|∇f |2∫
Bν

|f |2 ≤ ηn−1

C(n)η′n−1

∫ √
ν

0

∣∣∣∂f
∂t

∣∣∣
2

(t2+ν2)
α(n−1)

2 dt ≤ C(n)ν
n−2

2 .

(Mn, gm) 
ontains (− ln νm
)n−2

8 manifolds Bν′
m
whose metri
 hasbeen multiplied by 1

(− ln νm)
n−2
8n

. We extend to M by zero thefun
tion f 
orresponding to ea
h Bν′
m
part of (Mn, gm). Thus, weobtain (− ln νm

)n−2
8 L2-orthogonal fun
tions on (Mn, gm), whoseRayleigh quotients are bounded above by C(n)ν

n−2
2

m

(
ln 1

νm

)n−2
8n .As we 
an suppose that νm tends to 0, the min-max prin
ipleimplies the 
ollapsing of all eigenvalues to 0 (this 
ollapsing impliesthat the gm do not tend to g in the C0 sense and that the Sobolev
onstants are not bounded under Ln

2 pin
hing, otherwise the proofof Proposition 1.5 would hold).We now adapt the above 
onstru
tion to prove Proposition 9.2.Note that on C
−1
ν we have−α(2−α)ν2

(t2+ν2)2 − α(α−1)
t2+ν2 ≤ σ(t) ≤ ν2α2

(t2+ν2)2 +

α2να−1

(1+ν)2−α(t2+ν2)α , and so we have, for any p < n/2, ∫
C

−1
ν

|σ|p ≤
C(n, p)ν

n
2 −p. There exists β < 1 su
h that a 
onne
ted 
omponentof the boundary of C

−1
βν glue metri
ally in a C1-way with thesmall 
onne
ted 
omponent of C

0
ν . We set B

2
ν,L the manifold

Fν#Fν#C
0
v#C

−1
βν#C

0

βν,L#C
−1
βν#C

0
v#Fν#Fν :

we set also B
1
ν,L = C

0
v#C

−1
βν#C

0

βν,L#C
−1
βν#C

0
v#Fν#Fν :

and B
0
ν,L = C

0
v#C

−1
βν#C

0

βν,L#C
−1
βν#C

0
v:
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It is now easy to see that for any L > 0, ǫ > 0 and K ∈
R we 
an 
hoose two sequen
es (Ll) and λl su
h that the se-quen
e B0,L

l,ǫ =
(
λnB

0
1/l,Ll

) (resp. B1,L

n,ǫ =
(
λlB

1
1/l,Ll

) or B2,L

l,ǫ =(
λlB

2
1/l,Ll

)) are at Gromov-Hausdor� distan
e from the segment
[0, L] less than ǫ and the integrals ∫

B
i,L
l,ǫ

(
σ−K

)n
2

− tend to 0 (resp.and the volume of Bi,Ll,ǫ tends to any given real in ]0, C(ǫ,K, L)]).Note also that if we take m large enough we 
an glue a num-ber as large as needed of manifolds B1,L

m,ǫ or B0,L

m,ǫ to one of the
C

0 part of Bi,Ll,ǫ . We dedu
e that, for any �nite graph, we 
anglue a family Bik,Lk

lk,ǫ2
(with the np large enough) to get a manifoldwhi
h is at Gromov Hausdor� distan
e from the graph less than

ǫ/2 and whi
h satis�es ∫ (σ − K
)n

2

− ≤ ǫ/2 and with volume lessthan V0/2. To get a volume equal to V0 we glue enough 
opiesof B1,ǫ2

l,ǫ4 (for K = 1
ǫ8 ): the small 
hange on the distan
e to thegraph does not depend on the number of these 
opies and thatwe 
an 
hoose the volume of ea
h 
opies of these B1,ǫ2

l,ǫ4 equal toany number in ]0, C(ǫ2, 1
ǫ8 , L)[. Sin
e the �nite graph are dense inGromov Hausdor� distan
e this ends the proof of theorem 9.2.To prove the version of theorem 9.2 with the pin
hing on∫

M |σ|n
2 or ∫M |σ|p (p < n/2) we just have to repla
e the parts

Fν#Fν in the above de�nition of the Bi,Ll,ǫ by some small �at n-torus and remark that for the metri
s 
ontru
ted by this way wehave σ ≤ 0.
q.e.d.Note that in the proof of Proposition 9.3 above we only needthat VolM and ∫

M

(
σ−1

)n
2

− are �nite. It is 
lassi
al that anymanifold supports a 
omplete metri
 with �nite volume but we donot know if both �nitenesses above are always ful�lled for at leastone 
omplete metri
 on any (non
ompa
t) manifold. Note alsothat the �niteness of ∫
M

(
σ−1

)n
2

− does not imply VolM <∞ sin
e,for any ǫ > 0, we 
an start from B
2
ν,1 and then iteratively gluesome B

1
νk,1

to the remaining free C
0

βνk−1
element with a sequen
e

νk 
hosen so as to get a 
omplete manifold with in�nite volumeand ∫
M

(
σ−1

)n
2

− ≤ ǫ.Referen
es[1℄ W. Ambrose, A theorem of Myers, Duke Math. J. 24 (1957),p. 345�348. 24



[2℄ E. Aubry, Variétés de 
ourbure de Ri

i presque minorée: inégalités géométriques optimales et stabilité des variétésextrémales, Thèse, Institut Fourier, Grenoble (2003).[3℄ A. Avez, Riemannian manifolds with non-negative Ri

i 
ur-vature, Duke Math. J. 39 (1972), p. 55�64.[4℄ D. Bakry, M. Ledoux, Sobolev inequalities and Myers'diameter theorem for an abstra
t Markov generator, DukeMath. J. (1996), p. 253�270.[5℄ E. Calabi, On Ri

i 
urvature and geodesi
s, Duke Math.J. 34 (1967), p. 667�676.[6℄ J. Cheeger, Degeration of Riemannian metri
s under Ri

i
urvature bounds, Piza (2001).[7℄ K. Elworthy, S. Rosenberg, Manifolds with Wells of neg-ative Curvature, Invent. Math. 103 (1991), p. 471�495.[8℄ S. Gallot, Isoperimetri
 inequalities based on integralnorms of the Ri

i 
urvature, Colloque Paul Lévy sur lespro
essus sto
hastiques, Astérisque, 157-158 (1988), p. 191�216.[9℄ M. Gromov, Metri
 stru
tures for Riemannian andnon-Riemannian spa
es, Progress in Mathemati
s 152,Birkhäuser, Boston (1999).[10℄ G. Galloway, A generalization of Myers theorem andan appli
aton to relastivisti
 
osmology, J. Di�. Geom. 14(1979), p. 105�116.[11℄ J. Lohkamp, Curvature h-prin
iples, Ann. of Math. 142(1995), p. 457�498.[12℄ S. Markvorsen, A Ri

i 
urvature 
riterion for 
ompa
t-ness of Riemannian manifolds, Ar
h. Math. 39 (1982), p.85�91.[13℄ S. Myers, Riemannian manifolds with positive mean 
urva-ture, Duke Math. J. (1941), p. 401�404.[14℄ P. Petersen, C. Sprouse, Integral 
urvature bounds, dis-tan
e estimates and appli
ations, J. Di�. Geom. 50 (1998),p. 269�298.[15℄ P. Petersen, G. Wei, Relative volume 
omparison withintegral 
urvature bounds, Geom. And Fun
t. Anal. 7 (1997),p. 1031�1045.[16℄ S. Rosenberg, D. Yang, Bounds on the fundamental groupof a manifold with almost non-negative Ri

i 
urvature, J.Math. So
. Japan 46 (1994), p. 267�287.25



[17℄ T. Sakai, Riemannian Geometry, Ameri
an Math. So
.,Providen
e, Rhode Island (1996).[18℄ C. Sprouse, Integral 
urvature bounds and bounded diame-ter, Comm. Anal. Geom. 8 (2000), p. 531�543.[19℄ J. Wu, Complete manifolds with a little negative 
urvature,Am. J. Math. 113 (1991), p. 567�572.[20℄ D. Yang, Convergen
e of Riemannian manifolds with inte-gral bounds on 
urvature I, Ann. S
ient. É
. Norm. Sup. 25(1992), p. 77�105.Erwann AUBRYLaboratoire J.-A. Dieudonné,Université de Ni
e-Sophia Antipolis,Par
 ValroseF-06108 Ni
e Cedex 02FRANCEeaubry�math.uni
e.fr

26


