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Finiteness of m; and geometric inequalities in
almost positive Ricci curvature

Erwann AUBRY*

Abstract

We show that complete n-manifolds whose part of Ricci curva-
ture less than a positive number is small in LP norm (for p > n/2)
have bounded diameter and finite fundamental group. On the con-
trary, complete metrics with small L™/2-norm of the same part of
the Ricci curvature are dense in the set of metrics of any compact
differentiable manifold.

KrywoRDs: Ricci curvature, comparison theorems, fundamental
group

1 Introduction

A classical problem in Riemannian geometry is to find topolog-
ical, geometrical or analytical necessary conditions for the exis-
tence on a manifold of a Riemannian metric satisfying a given
set of curvature bounds. For instance, S. Myers showed that a
complete n-manifold with Ric >k(n—1) (where £>0) is compact
(the diameter is bounded by %) and has finite 71, whereas, on
the contrary, J. Lohkamp showed in [11] that on every n-manifold
with n>3 there exists a metric with negative Ricci curvature. This
paper is devoted to the study of the Riemannian manifolds satis-
fying only an LP-pinching on the negative lower part of their Ricci
curvature tensors. Let Ric(z) = Xeir%fMRicw(X,X)/g(X,X) de-

note the lowest eigenvalue of the Ricci tensor at x € M, and
f_(z)=max(—f(z),0), for an arbitrary function f.

Our first result is the following Bishop’s type theorem,

*Partially supported by FNRS Swiss Grant n°20-101469.



Theorem 1.1 Let (M™,g) be a complete manifold and p>%.
If ppz/ (m—(n—l))é is finite then g is of finite volume and
M

Vol g< Vol §™(1 + p*)(1 + C(p, n)p;").

The classical version of the Bishop theorem assumes Ric >
n—1 and so applies only for compact manifolds with finite 71 which
form a precompact family for the Gromov-Hausdorff distance on
the length spaces. On the contrary, Theorem 1.1 applies for ev-
ery compact Riemannian manifold and some non-compact ones
(for instance hyperbolic manifolds with finite volume) which form
a set of metric spaces that is Gromov-Hausdorff dense amongs
the length spaces (see proposition 9.1). While the form of our
majorant implies the classical Bishop theorem, it is certainly not
optimal. However, the condition p > n/2 is optimal since we
show that for any V' > 0 and any € > 0, there exists a large (ac-
tually dense amongs the length spaces for the Gromov-Hausdorff
distance) familly of Riemannian manifolds of volume V' and with
pz < € (see proposition 9.2).

Our second result is the following myers’s type theorem.

Theorem 1.2 Let (M™,g) be a complete manifold and p > n/2.
If V‘fﬁ < m, then M is compact with finite w1 and

1

Diam(M,g) <7 x (1 + C(p,n)(VOplpM) 10).
A few comments are in order:
1) Such a diameter bound was obtained in [14] under stronger cur-
vature assumptions but the finiteness of the m; was a conjecture
(see also [18]). As noticed in [14], if L* bounds on the curvature
tranfer readily to the universal cover (even if it is non-compact),
that is not the same for integral pinchings. That is the reason why
there is, up to now, no property of the fundamental cover implied
by purely integral pinching on the Ricci curvature, and it is the
main point of this article to prove that if a manifold has p,/ Vol M
small then its universal cover satisfies the same pinching.
2) For any k > 0, a renormalization argument readily shows that
we can replace p, by pf= [}, (Ric—k(n—1))" in Theorems 1.2 and
1.1 provided we replace C(p,n) by C(p,n, k), and also Vol S™ by
Vzlgsn and 7w by ﬁ The n-Euclidean space makes obvious that it
does not, generalize to k < 0.
3) The cartesian product of a small S! with a finite volume hyper-
bolic manifold show that the compactness and the m-finiteness
cannot be obtained if we only assume that p, is small (or that




ﬁ is finite). We can also slightly modify the example A.2 of

[8] to get a manifold with infinite topology, finite volume and finite
pp- By cartesian product with a small S! we get a manifold with
infinite topology, finite volume and p,, as small as we want.

4) In the case p = 1 and n = 2 the theorem is still valid (-
finiteness obviously follows from the Gauss-Bonnet theorem), but
in case p = n/2 and n > 3 no generalization of the classical results
valid under pointwise lower bound on the Ricci curvature can be
expected, as shows the following theorem,

Theorem 1.3 Let (M™, g) be any compact Riemannian n-manifold
(n > 3). There exists a sequence of complete Riemannian metrics
(gm) on M that converges to g in the Gromov-Hausdorff distance
and such that

Pn/2 (gm) -
Vol g,

Since 1941 several generalizations of Myers’s theorem appeared,
under roughly three different kinds of hypothesis:

a) some integrals of the Ricci curvature along minimizing geodesics
are controlled ([1], [5], [3], [10], [12]),

b) the Ricci curvature is almost bounded below by n—1 but not al-
lowed to take values under a given negative number ([7], [19],[16],
18)),

c¢) the L* lower Ricci curvature bound of case b) is replaced by
bounds on other Riemannian invariants (for example the volume
bounded below or the diameter bounded above or the sectional
curvature bounded).

Since we do not assume an L* lower bound on Ricci curva-
ture, we cannot use the second variation formula for the length of
geodesics, which is the classical tool in the proof of Myers theo-
rems of type a) and b). Techniques, which need a priori bounds
on some Sobolev constants, have been developed to get generaliza-
tions of the Myers theorem when the second variation formula fails
(see [4], [14], [7], [16]). Until this present paper (see our propo-
sition 8.1), only two bounds on Sobolev constants were known
under an integral control of the Ricci curvature: one by S. Gallot
requiring a bound on the diameter [8], one by D. Yang requiring
a lower bound on the volume of the small balls [20]. Such extra
hypotheses are natural (and necessary) for manifolds with almost
nonnegative Ricci curvature, but are not pertinent in our context:
for instance the lower bound on volume would bound the cardi-
nality of m; whereas the set of n-manifolds with Ricci curvature
bounded below by n—1 has finite but not bounded cardinalities of
-



To avoid these unnatural extra hypothesis and to be able to
control the Ricci curvature of the universal cover, we first develope
a technique based on measure concentration estimates (and which
make no use of bounds on Sobolev constant) to prove the following
local version of our diameter bound,

Lemma 1.4 Let (M™, g) be a manifold (not necessarily complete)
which contains a subset T satisfying the following conditions:

1. T is is star-shaped at a point x (see definition 2).
2. B(z,Rr) DT D B(xz,Ry) for some Rpr > Ry > .

3. e:R%[VollT/(Rlc (n—l))’i}% gB(p,n)(l_Rlo)loo

Then Diam(M™, g) < W(1+C(p,n)e%) (and M C T).

REMARK. The connected sum of an n-sphere of diameter
2Ry — m with a Euclidean n-space by a sufficiently small cylinder
shows that in order to get the compactness of M, it is important
that 7" contain a ball of radius Ry > 7 and also that the pinching
required on vX= [ (Ric—(n—1))" tend to 0 when Ry tends to m.

To prove lemma 1.4, we show that VolB(x,w)/VolB(m,Ro)
goes to 1 when the LP-norm of (Ric—(n—1))_ tends to 0 and that
for any B(y,r) C B(z, Ro) the quotient Vol B(y,r)/ Vol B(z, Ry)
is uniformly bounded below by a positive increasing function of r.
These two opposite behaviours of the concentration of the measure
in B(z, Ro) prevent the manifold from having points too far away
from z.

To prove theorem 1.1, we construct a good decomposition of M
into star-shaped subsets and show that either M has small volume
or lemma 1.4 apply to at least one of these subsets. The bound on
the volume is then infered by the volume estimates developed for
the proof of lemma 1.4. To show the 71-finiteness, we construct a
star-shaped domain in the universal Riemannian cover of (M", g)
which satisfies the assumptions of lemma 1.4.

Under our curvature assumptions, we also get generalizations
of the Lichnerowicz and Bishop-Gromov theorems.

Proposition 1.5 Let us denote by Ay, A\l and 5\% respectively the
first nonzero eigenvalue of the Laplacian on functions, the first
eigenvalue on 1-forms and on co-closed 1-forms of (M™,g). Then:

)’ )

Vol
NI, g) 2 2n-1) x (1-Clp,m) (222)7).

M(M",g) = M(M", g) = n x (1=C(p,n)(



In the last section we show that this result becomes false with
n

p=1% when n > 3. By adapting the proofs of lemmas 5.1 and 4.1
(see [2] for details), we further obtain:

Proposition 1.6 If 'Y = fen < @ then, for all z € M

and all radii 0 <r < R, we have:

< P(R—r) 31,

(Voln,l S(z, R) ) T _(Voln,l S(x, r)) T
Liy(R) Ly ()
Vol B(x, ) Aq(r)
Vol B R) = A (my

where Li(t) (resp. Ag(t)) stands for the volume of a geodesic
sphere (resp. ball) of radius t in (S™, %g), hence also:

Vol,—1 S(z, R) < (149°) L1y (R)
Vol B(z, R) < (14n) A1(R).

In contrast to the case Ric > (n—1), our assumptions do not
yield an upper bound on the quotient Voln—1 8@@.) o1 511 possible
values of r because the diameter of our manifolds can be greater
than 7. This results are similar to the results obtained in [15] and
[14] under stronger curvature assumptions.

Theorem 1.2 and proposition 1.6 imply that the set of n-
manifolds satisfying v52; < C(p, n), for a p > n/2, is pre-compact
for the Gromov-Hausdorff distance. We show in the last section
that this property is false in the case n > 3 and p = n/2, even for
the pointed Gromov-Hausdorff distance.

This article is organised as follows. For our proof of theorem
1.2, we need to improve the estimates on volume established in [14]
(see also [8], [20] and [15] for other similar estimates and technics).
Section 2 is devoted to a brief survey on the properties of the
volume of star-shaped domains we need subsequently. In section
3, we establish a comparison lemma (see lemma 3.1), improving
the similar comparison lemma of [14], and which is fundamental
for our proof of theorem 1.2: it provides a bound from above by
a curvilinear integral of (Ric — (n—1))_ on the part less than
(n—1)Z=~ of the mean curvature of geodesic spheres of radius 7.
This lemma, is used in sections 4 and 5 to get some bounds from
above and below on the volume of geodesic balls. The proofs of
the diameter and volume bounds of theorems 1.1 and 1.2 are given
in section 6. Section 7 is devoted to the proof of the finiteness of
m1 (M), and section 8 to the proof of proposition 1.5. Finally, we
discuss in section 9 the case p = n/2.
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2 Volume and mean curvature of spheres

Notation. Let x € M. We denote by U, the injectivity domain
of the exponential map at x and we identify points of U,\{0,}
with their polar coordinates (r,v) € R%. xS?~! (where S~ is the
set of normal vectors at x). We wright vy for the Riemannian
measure and set w = expiv, = 0(r,v) dr dv, where dv and dr are
the canonical measures of S*~! and R?% . Henceforth, we extend 0
to (RLxS"1)\U, by 0.

For all (r,v) in U;\{0}, we denote by h(r,v) the mean curvature
at exp, (rv) (for the exterior normal %) of the sphere centered at
x and of radius r. This function h is defined on U, and satisfies
the formula %(t,v) = h(t,v)0(t,v) (cf[17], p.- 329).

55, (1)
sk (r)
function on the model space (S}, g) (n-dimensional, simply con-

nected, with sectional curvature k) where, as usual,

For all real k, we set hy = (n—1)

for the corresponding

inh(+/|k
Sk(T)Z% when k <0, sg(r) =r when k =0,
sin(vkr) if r < 2
sk(r) = \/E ~ vk when k > 0.
0 ifr> ﬁ,

On U, (resp. on U;NB(0, Z=) if k > 0), we set i = (hp—h)—.
Following [15], we will use:

Lemma 2.1 Let u be an element of S*~! and I, =]0,7r(u)
interval of values t such that (t,u)€U,. The function t—) (L,
continuous, right and left differentiable everywhere in I,N]0,

and it satisfies:

1) lim o (t,u) =0,
t—0+ 5
2) Qe y Vi oy ke <

or n—

(where this differential inequality is satisfied by the right and left
derivatives of 1V and where py = (M—k(n—l))_}.

PROOF. — Apply the well known Bochner formula g(VAf, V) =
AV fI2+|Ddf|? + Ric(V f, V f) to the distance to z function d,.



Since |Vd,| = 1 and the Hessian Dd(d,) is zero on RVd, and
equal to the second fondamental form of the geodesic sphere of
center z on Vdi, we infer that h satisfies the following Riccati
inequation,

This inequation becomes an equation on the model spaces
(SE, gx), which easily gives inequality 2) of lemma 2.1. Since
h ~ (n—1)/r 4 o(1) (see [17] for details), we also easily get 1).

q.e.d.

Volume of star-shaped domains:

Definition. — Let x€éM and T' C M. We say that T is star-
shaped at z if for all y € T there exists a minimizing geodesic
from x to y contained in 7. Equivalently, we may assume that
T = exp, (Tm), where T}, is an affine star-shaped subset of U, C
T.M.

Given T, a subset of M star-shaped at xz, let Ap(r) denote
the volume of B(z,r) NT. In the same way, Lp(r) stands for
the (n—1)-dimensional volume of (rSP—1)NU,NT, for the mea-
sure O(r,.) dv. Note that Ly(r) = fsg—l 17, 6(r,v)dv and Ar(r) =
for Ly(t)dt. Finally, the functions corresponding to 6, A and L
on the model manifold (S}, gi) will be denoted by 0y, A and Ly
respectively. The regularity properties of the functions Lp and
A7 used subsequently are summarized in the following lemma:

Lemma 2.2 Let T a star-shaped subset of (M, g).
(i) Lt is a right continuous, left lower semi-continuous function,
(i1) Ar is a continuous, right differentiable function of derivative

Lp.
(iii) Given o €]0,1], the function

10=(55) s [, L (5) g

is decreasing either on R (if k <0) or on |0, %[ (if k> 0).

Proor. — To prove (i), note that 6(r,v)ly, is the product
of "~z (r,v) by the Jacobian of exp,, hence r—@(r,v)lr, is
positive on an interval |0, r(v)[, vanishes on [r(v),+o00[, and so is
right continuous and left lower semi-continuous on R. We infer
also that 17,6 is bounded on every compact of T, M. This yields
the boundedness of Lt on every compact subset of [0, +o00[. We
infer (i) from the Lebesgue dominated convergence theorem and



the Fatou lemma. Property (ii) now follows (i) by the definition
of AT-

To complete the proof of lemma 2.2, we note that, by defini-
tion of Ly, and since Vol M\exp,(U;) = 0, we may assume that
T, C U,. For all integers m > 1 let Tr(m) = (1—%)Tw C T, be
the image of T, by the homothety of center 0 and factor (1—1)
in T,, M and set T™ = exp, (T{™). By the monotone conver-
gence theorem, we have Ay = mlgnC>o Apemy and L = n}gnoo Lpmy.
Hence, it only remains to show (iii) for 7). We will use the
following elementary lemma:

Lemma 2.3 A function f : [a,b]—R is decreasing if and only if
it satisfies the two conditions

(a) for all x€[a,b], limsup,_, o+ M <0,

(b) for all x€la,b], iminf, o- f(z+h) > f(z).

As for Lt and A7, the function r— fSn—l L om) Y e%(r,v) dv is
right continuous, left lower semi-continuous on I} =0, +-oo[if k <
0 (resp. on I =]0, %[ if k> 0), and r — [ Jon— 1 i % is
continuous, right differentiable on Ij; so the function f satisfies
the inequality (b) of lemma 2.3. We now prove (a):

For all > 0 let ST, = {veSp~!/ rvETT(m)}. We denote
by L(r-+t) the volume of (r+t).SL .y for the measure 0(r+t,.)dv.
Since T{™ is star-shaped at z, we have L(r+t) > Loy (r+t)
(with equality if ¢ = 0). Hence

L(m) _ L(m) T T
i LT (r+t) T (1) < lim L(r+t) — L(r)
t—0t t t—0+ t

Since L(r+t) = Jor  0(r+t,v)dv and % = h6, we obtain, by
T(m)

differentiating this integral expression of L (Note that k0 and 1,0

are integrable on the set ST, (which could be false for T' and

this is why we introduced the sets T0™): for any t€|0, ﬁr[,

the closure of (r+t).S.,, in T,M is compact and belongs to

U.\{0} because the cut-radius is continuous on si—1) (see [17])

and bounded below by —"=r > r+t on S7.,,,; But, the function

T(m)>
h = %% is smooth on U,\{0,}, and so uniformly bounded on

every set (r—l—t).Sg«m) (r))

lim w =/ hlgm 6 dv S/ (Yr+hi) Lpm 6 dv
sp—?t

t—0+ sn-t



Combining the last two inequalities, we get:

Lpimy (r+t) — Lpem) (1)
t

1imt*,0+

< hk(r)LT(m,) (7’)+/ ]1T<m)1/;k9.
g1

T

The case a = 1 of (a) easily follows, noting that L; has derivative
hkLk:

Lyen) (r4t)  Lp(m) (1)

lim sup LAGD) Li(r)
t—0t t

Lopm t)—Lpm
Jim sup 22 ) (r+t)—Lpom (1)
t—0+t th(?”)

. 1
+ tlirél+ |:LT(7n) (r+ t); (

1 1
Ly (r+t) B Lk(r))}

1 . LT(m) (7’+t) — LT(m) (T‘)
=—— 11 —hy () Lpgm }
Vol§™10,(r) [12 sup " k(1) Lopcny (1)
Let B = W ng—l ]IS‘T’“) Vg 9% dv. For all € > 0, there exists

(m) (m)
t. > 0 such that for all t€]0,t[, we have 220 < LE 0

t(B+e€). Moreover, by concavity, we get:

L™ (r) e\ (e
<LTW) +t(B—|—e)> —< LTW) <a LTk(r) n(B+e)

L(jfn)(r) a—1
Lk(’l")

for every € > 0 and we get inequality (b) for any a€]0, 1] by letting
€ tend to O.

It follows that limsup, o+ M < a(B+e)

q.e.d.

3 Comparison lemma on mean curvature

The following lemma improves lemma 2.2 in [15] and theorem
2.1 in [14]. We provide a pointwise bound on 1y, which, in case
k > 0 admits a sharp polynomial blow-up when ra%; these both
improvements are necessary for our proof of theorem 1.2 (see the
proof of lemma 4.1).

Lemma 3.1 Let k€R, and p > n/2 and r > 0; assume r < Q’T
if k> 0. We have:

S

p—1 r
Pt < o1y () [ et a

2p—n

9



Moreover if k > 0 and then

f <r< f
sin®? "L (VEr) 2P (r,v) 0(r, v)

<@ (5 ) | o a

2p—n 0

These two inequalities hold for all normal vector veS"~t, even if
we replace 0 everywhere by 1 (0 (for any s, > 0).

REMARK. — The bounds diverge when p tends to n/2 except in
the case n = 2 (which then yields a control of v by the Li-norm
of pr).

PROOF. — Let ¢ be a nonnegative, C! function on U,\{0},
bounded in the neighborhood of 0. By lemma 2.1, the function
r—ao(r,v) ,zp_l(r, v) O(r,v) is continuous and right differentiable
on I,, and its derivative satisfies:

2p—n

(W’“ L0) < (2p-1)pr oY 20—( )wi’”@

4p—n—l 18¢ 2p—1
H( T gy ov e

where we used 92 = h9 < hy0-+,0. Setting X = (fy 6 u70dt)
and integrating, we get:

0 < du o) < 2p-1)( /0 ' ¢>pzedt)” "xioh (if_‘f)x

[ (g o] Tt e

where we used 7yrr(l) o(t,v) ,zpil(t, v) 0(t,v) = 0. Dividing out by

X% , we obtain a quadratic polynomial that takes a non-negative
1
value at X2 and we infer:

Twi”edt v =D ¢ p@dt
(/0 ) 2p n
)

_ r 2 1/2p
L 1 (/ (h 2p—1+(2p—n 8¢/8r) P¢9d> .
2p—m \Jy n—1

¢

We prove the first inequality of lemma 3.1 by taking ¢(r,v) = 1.
Indeed then, the above inequality and the positivity of hy yield:

o 2p-D)(n=1)\" ["
/()1/Jkp9dt<(2pi_n> /Ongdt.

10



Plugging this into the above inequality (x), we obtain

() < (2p—1)p(27;—_2)”’1 (/0 o dt) |

For the second inequality, we set ¢ = sin®?~"~!(v/kr) and observe
that, in this case, the last term of inequality (%) vanishes. So we
get for all r < ﬁ:

. Ap—n— 2p—1 n—1\r=1 [Vr
st (0 < p-1r (=) [ o

q.e.d.

4 Hyper-concentration of the measure

In this section we prove the first volume estimate required in our
proof of theorem 1.2. It says that, if the Ricci curvature con-
centrates sufficiently above n—1 on a star-shaped subset T' of M
at x, then the Riemannian measure of T' is almost contained in
B(z,m)NT.

Lemma 4.1 There exists an explicit constant C(p,n) such that
if (M™, g) contains a subset T, star-shaped at a point x, on which:

= B[ [ @ie-tn-n)] < ()

where Ry is such that T C B(x, Rr), then, for all radius Ry >
r >

C(p,n) »n-1»

Lr(r) < € 2r=1 VolT.

r

REMARK. The same conclusion holds in case n =2 and p =1
by letting n = 2 and p—1 in the proof below.

_ i T = 1
PRrOOF. Lemma 2.2 (with 0 <t <7 < = @ = 5o and
k > 0 fixed) yields:

Lk(r) Lk(t)
1 " Lp.-1__1 1 0
<[ ()T —— —.
= 2p—l/t (Lk) Vol Sn—1 /T Yk g
As
2(1—p)
(LT/Lk) 2p—1 1 _1

ﬁ 2p—1 2p—1
Vol Sn—1 /Tz U 0y, = (Lk)z)p%l ( T, Yk 9) ’

11



we get:

1 " Lp(s)\ 5% /
VolSn—1 /t ( L ) d”“ [ dvds

T (V)21 sm4” n=1(\/ks) P19
S/t s(mf()\/Es) (/ VOES" zwk d) ds.

Lemma 3.1 implies:
Lr(r) = Lr(t) ==
(sin”*Tl(\/Er)) - (bln” (\/_t))

(n—1) £ N\ [T 1
= (W) (/TmB(x,r)pk) /t sin”(vks) ds

N2
Setting ¢ = €71, k = =) and assuming tG[' ste—y"s 7], and
since, by concavity of the sine function, ft o (\/—8 ds < 35, we
have:
Ly(r)m= Lp(t)z T

(sm(\/_rr))m (sm(\/_rt))zpﬂ

p—1
™ n—1 2p—1 1
< Vol(T) 77
T opT T ((2P—1)(2p—n)) oT)==
T

Multiplying this inequality by (sin(rv/k;)) T < (e');zv—_—ll., we infer
that for all t€[5r, 7],

L (¢)2p1,1 <L (t)Z[)%l 671 e
T = sin((m—€) L)
™ n—1 2[;;—11 1 n—1
=+ 1 ( ) Vol T#—1¢ 27T,
QR;F (2p—1)(2p—n)

Using the inequality (a+b)® < 271 (a®+b) (for all a,b > O) with
o = 2p—1, and the fact that sin[(m—¢')1] > sin(%) = 3, when
té[mr, % ], we get:

Ly(r) < 22740 =3¢ 51 Ly (t)

r2p—l p(n—1) ( n—1 )p_l
+ Vol(T)e' 1 [ —— =} |
2Ry @ (2p—1)(2p—n)

r<r, hence £ <1).

for all te[ﬁ 5 ﬁ ] (HOTP that ( )

12



By the mean value property, there exists te[ﬁr, %r]
such that Ly (t) is bounded above by 3=€) [SGD [0, (5) ds which
2(m—e’)

is less than %fORT L = 2Vol(T). In summary, we conclude:

=2 n—1 PN Vol(T) ste-n)

L < |3.22%p+n=3 T 2p—1
T(r)[ " \@nern) r

q.e.d.

5 Lower Bound on the volume of geodesic
balls

In this section, we bound from below the relative volume of the
geodesic balls. Tt is the second step of the proof of theorem 1.2.

Lemma 5.1 Let n > 2 be an integer and p > n/2 be a real.
There exist (computable) constants C(p,n) > 0 and B(p,n) such
that when (M™, g) contains a star-shaped subset T which satisfies

_ e[ 1 / \p ¥
G_RT{VOIT T(M)_} < B(p,n), then we have

Ar(R) =
(ii) if T = B(z, Ro), y€T and r > 0 satisfy d(x,y)+r < Ry then

(i) for all 0 < r < R< Rr, 3535 > (1-C(p,m)es’™ ) 4.

( Vol B(y, ) )—2,0,1,1 N
Vol B(x, Ry) -

T\ | (2 AT -
where p' = max(n,p).

PrOOF. — Lemma 2.2 (with k = 0 and o = 1) and the Holder
inequality yield, for all t <r < Rp:

1 1
" Lp(s)' " 2p—1 2t
-1 qn— S/t B — /s:—l 1r,v5" "0dv ds




2;)%1 T __1
Sl ([ )™ [ 1
t T ¢

n—ltn—l

Multiplying this inequality by nr , using the inequality
1

o o1
N LlT R (r—t)%%l(AT(r)—AT(t))l =1 and integrating

the result with respect to ¢t from 0 to r. We get

i (3) = (40 ™ e ([ )

(since A;ST) is right differentiable). Integrating once again yields

(A [A) cp([ ) R a5

Inequality (ET,R,RT) implies

[ Ar(R)

2p—1 —n p 1 —n
R S A > 2p—1 1— 1) > _ R2p-1
Tl 2 0O > o

as soon as B(p,n) is sufficiently small. This and (E;’R) imply (4).
To show (i7), we may assume, by the Holder inequality, that
pE€ln/2,n]. Let yeB(x, Ry) and (r,R) such that 0 < 7 < R <

a1
Ro—d(z,y). Multiplying (Ep(y,r).rr) by (ﬁ) *~" and not-
ing the inclusion B(y, R) C B(z, Ry), we get

(i)™ =com(7)™

o) ()

We will construct a sequence of decreasing balls B; = B(y;, R;)
such that By = B(y,r), By is almost concentric to B(z, Rp), and
B; contains a ball centered at y; 41 and of radius ;11 close to R;.

Let v : [0,d(z,y)] — M be a minimizing geodesic from x

to y and a = a(p,n) < 1 close enough to 1 such that we have
2p—n n
—Loga < 2Log(2—a) and (2—a)2r-Ta?-T < 1. For all integers

1<i<k= E[l—f— Toa=a) }, let
yi =y (d(z, mo)+r—(2—a) "), T = a(2—a) 2,
Ry = (2—a)"r

Then B(yi+1,7i+1) C B(yi, Ri) C B(x, Ro) and so, by the above
inequality (in which we replace y by y;y+1, R by R;+1 and r by
Tit1), we get

Ayi+1 (Ri 1) ﬁ
Cim)

14



hence also

Ay, (Ri)\ 7
(3w)

p
n(i—1)

—a\HE [ Ar) \w O ()@
(27) {(Ai(g%z)) +(<2—(;>:—QPR)2;1_J

For i = k, we have d(x, yr) < (1—«)Ry, so B(yk, Ri) D B(x,aRy).
Inequality (¢) thus yields

(8 5 (it (o)

<

> (1-C(p, n)e%%l)a%%@—a)nz(g—:ll) (L) et

Ry
: Ay (Ri) .
These two estimates on — DR and the fact that by assumption
—nLogo
n(k—1) (2p—T)Log(2—a) 2
a1 > (m) > (RLO)QP T imply that there

exist constants C(p,n) > 0 and B(p,n) > 0 such that when e <
B(p,n),

Ay(r T
()

T\t ,2 T\ g2 _p
> ()7 | GCtme) (1) P -clpmgent |

where we have assumed %1 > %
q.e.d.
In the case (n,p) = (2, 1), the following lemma holds

Lemma 5.2 There exists constants B > 0 and C > 0 such that
when a surface (S?,g) contains a star-shaped subset T on which

. . R? _
the sectional curvature K satisfies € = Vol fT K~ < B, then

Ar(r) (N R
vle > (&) (1_6Log(TT))’

for allr < Rp. If T = B(x, Ry), y€T and d(z,y)+r < Ry, then

(4)

» Vol B(y, ) o4 Ry, 2
(#) Vol B(z, Ry) = (%) (1_36(70) )

15



PRroOOF. An easy computation gives that the constant C(p,n)

involved in the differential inequality satisfied by 4Z in the above

g
p=1
proof satisfies C(p,n) = 2’;;1 ((QP—?)ZQP—W')) #7" Incase n = 2

we may let p tend to 1 in that differential inequality and get
d (ﬁ) < 1 [-K~ which, integrated, yields %—Am

dr \ 72 r2
< (LogR—Logr) [, K~, proving (i).

(i) is proved as in lemma 5.1 (note that, in this case, we may
let « tend to 1, which simplifies the final formula).

q.e.d.

6 Diameter bound

6.1 Proof of lemma 1.4

Note that if B(p,n) is sufficiently small then lemma 5.1 implies
Ar(R) R
VolT = 2Ry

Ry < 27 Fix § €]0, 87 If y € M is at a distance greater
than (740) from z, then we have B(y,d) C B(z, n+26)\B(x, 7).
Lemma 4.1 now yields the bounds

hence we may assume that T = B(x, Ry) and 7 <

T+26 p(n—1)

Vol B(y, 0)< / L < 20(p, n) A(Ro)se 511

(where A(Rg) = Vol B(z, Rp)). On the other hand, lemma 5.1 (i)
provides:

4]

Vol B(y, ) > (%)"E(

6 2n p’ 2p, —1

52) T O )T AR

by taking B(p,n) small enough (still setting p’ = max(p,n)).
At this stage, we can distinguish two cases:

. 52T 2np(n—1
cither ()2~ < 4C(p,n)e”, where 8 = (2p_1)(”21;(,711)()3n_1),
or the above inequality becomes (since 8 < 2;‘,7—;1)

5 n !
Vol B(y,0) = C(p,n)(5-) " A(Ro)e® =17

These two estimates on Vol B(y, §) imply a bound on ¢:

2p’ —1
2n

m+6 < m+C(p, n)e’ < 74+C(p,n)e™ < Ry

16



We infer that M C B(z, Ry). Let z be any point of M. We have

PPk, < (VerBeehy )" e. But B(w, Ry—n—C(p,n)e™)  B(z, Ro)

and so lemma 5.1 (i) implies:

B =

Vol B(z, Ryp) < (RO—W—C(p,n)e%)n - (Rop—m)™
Vol B(z, Ro) — 2(2m)m — 42

What has done above for x can be done for any z € M (just
replace € by %e, for pi’%o < %e), which completes

the proof.

6.2 Proof of the geometric inequalities of theo-
rem 1.2

Let (M", g) be a complete manifold such that [, (@—(n—l))i is
finite and let (B(a:i, 27T))iel be a maximal family of disjoint balls
in M. The Dirichlet domains T; = {y / d(x;,y) < d(z;,y), Vj#i}
satisfy the three following classical facts:

1) B(zi,4m) D T; D B(x;,2m),

2) T; is star-shaped at the z; and

3) except for a set of zero measure, M is the disjoint union of the
sets T;.

B =

Thus, setting o = inf;c; [VO% Iz (@—(n—l))ﬂ , we have

/i) =3 [ (ie-un))”

iel
> oszVolﬂ = aP Vol M
iel

P
If o > [ Blp.n) ] (where B(p,n) is the constant of lemma 1.4),

21011642
then Vol M < C(p,n)p®) (M) (where C(p,n) is a universal con-
stant). FElsewhere, there exists a star-shaped set T; satisfying

the assumptions of lemma 1.4. In the latter case (which is the

only possible one under the stronger assumption pg\l/)f) < C\J/‘(JII)AT{)

with C(p, n) sufficiently large) we bound the diameter of M with
Lemma 1.4 and the volume of M using lemma 5.1.

7 Fundamental group finiteness

To show the m;-finiteness of the manifolds that satisfy V(fﬁ <

m, we just have to show their the universal covers are com-

17



pact. We will apply lemma 1.4 to the universal Riemannian cov-
ering space (M, §), and so we have to construct a good star-subset

subset in M (i.e. a star-shaped subset on which the pinching on
the Ricci curvature is controlled by Vopl”M).

The fundamental group acts freely and isometrically on the
universal Riemannian cover. For all ZeM and any subset T of
M, we denote by mr(Z) the cardinality of TNmy.Z. Set ToeM
and € B(Zo, 27) that maximizes mp(z,,2x). Since we may assume
Diam M < 27, we have 1 < mB(i0727r)(y) < N and mpz,,6m) (y) >
N for all yeB(Zo,2m) (where N = mpz,,2x)(%)). For all y in
B(Zg,2m), we choose N distincts points yi,--+,yny in m1.y that
are closer to g than the other points of 7.y, and let T be the
union of these {y1, - - -, yn } for all y€ B(Zo, 27). Hence B(Zg, 67) D

T D B(Zg,2w) and mp=N on M. We infer

1 . P o 1 . - p
VolT/T(h_(n_l))*dvg = Vol M /M(M (n=1))_ dvg

It only remains to show that T is a star-shaped subset of (]Tj, J)-
Set y€T and let v be a minimizing geodesic from y to Zo. Assume
there exists z€y\T. Since mr(z) = N, there exist (o1, 0nN)
in m (M)\{id} such that o;.2€T for all 1 < i < N. But every
element of 7, (M)\{id} acts without fixed points on M, thus there
exists 1 <ig < N such that o;,.y¢T. Since o;, acts isometrically,
we have

d(Zo,y) < d(Zo,0i,-y), d(To,2) = d(Zo,0iy-2),
d(z,y) = d(0i,.2, 04y -Y)-

The relations above combined with d(Zg, y) = d(Zo, 2)+d(z, y) and
the triangle inequality provide

d(5307 y) = d(jOv Uioy) = d(jOa Uioz)+d(0iozv 0'7:02/)-

We infer that there exists a minimizing geodesic segment from
0i,-y t0 T which contains o;,.2. But d(oy,.2,04,.y) = d(z,y) <
d(Zo,y) < d(Zo,04,-y), so there is only one geodesic minimiz-
ing the distance between o0;,.2 and o;,.y, which implies that the
geodesic o;, (7y) contains Zg. Since d(z, Zo) = d(04,.2, To), we have
04y -To = To, contradicting the fact that o;, has no fixed point.

8 Spectral lower bounds

To prove proposition 1.5 we need bounds on some Sobolev con-
stants. In [8], S. Gallot provides such bounds under the pinch-

1
ing Diam(M)? (5157 [, Ric)”)? < e(p,n), where p > n/2 and

18



€(p,n) > 0 is a universal constant. Combined with theorem 1.2
this yields

Proposition 8.1 Let (M™, g) be a complete Riemannian mani-

fold. If Vlglsz < W (for p > n/2 and ¢ > n), then we have
(i) for all ue H'*(M), ||ul| 24 < Diam(M)C(p, g,n)||dulla+]ul>-

(ii) for all ue HV9(M), sup u— inf u < Diam(M)C(p, ¢, n)||dul|,-
We now prove proposition 1.5. Let a be a 1-form on M such

that ||af|3 = 1 and Aa = Aa. The Bochner formula (see [17])
yields

g(Lha, a) (Ric—(n—1)) (e, @)
/M Vol M :”DO‘”%JF/M Vol M +n—1)

Combined with Holder’s inequality, this implies:

2 Pp  Nwi2
32 [Dal3~(55) P ol +(n-1)

Since we may assume Diam M < 27, proposition 8.1:

lal?2 < Clp,n) | Dall3 + 2]al3

1

We infer  (A—(n—1)+2¢) > (1-C(p, n)(V(flpM)p)HDaHg (+).
Splitting orthogonally the 2-tensor D« into antisymmetric part
€2 traceless symmetric part and scalar part —%"g, we obtain
[Del3 > L{|6crl|344]|dev[|3. Combining the splitting with the in-
equality (*) above and distinguishing the case da = 0 (where
|6]|3 = M) and the case §a = 0 (where ||da||3 = )), we easily get
proposition 1.5.

9 Lz-pinching on the Ricci curvature

In the case n = 2 and p = 1, the m;-finiteness follows readily from
the Gauss-Bonnet theorem. The proofs of Theorems 1.1 and 1.2,
Lemma 1.4, and Propositions 1.5 and 1.6 may be easily adapted.
For instance, to prove Lemma 1.4 we just use Lemma 5.2 in place
of Lemma 5.1. To prove Proposition 1.5, we may assume A < 2n
and use the Sobolev inequality ||u||4 < C||dul|2+]||u||2 to show by
Moser’s iteration that ||a||e < C’; this implies that inequality (x)
still holds and then we finish the proof as in the case p > 1.

We now focus on counter-examples or density results announced
in the introduction. Let o (resp. g(z)) stand for the sectional cur-
vature (resp. the smallest sectional curvature of tangent planes at
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Proposition 9.1 Setn > 3. For any p,e > 0, the n-Riemannian
manifolds with [, |o|? < € and Vol(M) < € are dense in (pointed)
Gromov-Hausdorff distance amongs all the (non compact) length
spaces.

PRrOOF. The (n—1)-Riemannian manifolds are obviousely GH-
dense amongs all the finite graphs (by performing some connected
sums of spheres S"~! to get small slightely thickened graphs).
Then, just take Riemannian product of these manifolds with a
sufficiently small S*.

q.e.d.

The next density results are more interesting since we want to
keep a control on the volume of our family of manifolds.

Proposition 9.2 For any reals K and Vo > 0, any integer n > 3
and real any € > 0 the compact Riemannian n-manifolds (M™, g)
that satisfy

/(Q—K)?q and Vol M =V,
M

are dense in (pointed) Gromov-Hausdorff distance amongs all the
(non compact) length spaces.

We can also replace fM(g—K)% by [y lol2 orby [y, |o|P for
any p < n/2.

With the same kind of glueing techniques, it is not difficult
to construct complete, non compact n-manifolds with non finite
volume and which satisfy p,, /o < € (for any n > 3 and any € > 0).

Proposition 9.3 Let (M™, g) be any compact Riemannian n-ma-
nifold (n > 3). There exists a sequence of complete Riemannian
metrics (gm) that converge to g in the Gromov-Hausdorff distance
and such that

pn/Q(gm)

Vola,, —0 Vol(gm) — o0 vie N, N(gm) — 0

where \; denote the l-th eigenvalue of the Laplacian on functions.

Proor. We define the following five families of cylinders
IxS"=! with warped-product metric dt?+b(t)%ggn—1

e C;' = [0,V]xS" ! with b(t) = n(t>4+v>)*/2, where a =
I+—— and n = —2*2__
+\/ —Log(v) ancn a(l/+u2)aTl
o F, =[0—Z,0] x S"~! with b(t) =/ cost, § = tan’l(%(l—ky))

v a24v(14v)? _ 1

a cosf”

for any v > 0.

and ' =
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o F, = [0, 7] x $"~! with b(t) =’ cos L.

o C0 = [0, YL 5 §n=1 with b(t) = ¢ + YL,

at1

o — n—1 H — v 2
[} CV,L = [O, L] X S Wlth b(t) = W
If (X,Y) is an orthonormal family of tangent vectors to S";l.,

then the sectional curvatures o(X,Y) of the manifolds F,, F,,
C, ! and C? are equal to

—0
0
Oon CjorC,,

N\ 2 v2a®  _a? 1 (vtr2ye—l 1
l_ b_ — (t2+12)2 t2+02 1 1+u(t2+u2) on C 7,
b2 b _ sin®@
1—2% on F,,
1 i
UTQ on Fl,.

If X is a unit vector tangent to S"~!, then

—0
0
Oon GjorC,,

—Q 1/2 a(a— —
O'(X, 2) — _b_H — _O(lt(22+l/2))2 - t(2+ué) on Cyl,
or b lonF,,
L onF,
We now obtain readily the following upper bounds (Vv < C(ln))
T_9 . n
2 0
/ (c—1)2 < C(n)/2 M7 < C(n)sin" 6 < %,
F, 0 cost (_ n 1/) -
n'x
2 "z sin" 6 t
/ (c-1)2 < C(n)/ P Y et — dt
¥, o cos™d n
C
< C(n)sin" 0 < %,
(~lnv) *
[ @ <cmpt < _Cm
o (—lnv) *

Concerning C, !, first note that o(X,Y) is decreasing on [0, /7]
and so ¢(X,Y) > 0 for v small enough. Hence, using \/3+ b
Va+b < \/a+v/b, we have

| e
(n—=1) a(n—1)

vV N Vv
< 0t [ [Ty s [T )

IN
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2 \/; 2 2 a(n—=1) n
_’_(a_l)n/ / (t + v ) 3 T2 dt:|
0

< C(n)nn—l V(a—l)(n—l) +(V+\/;)(n—1)a+l

Ha—1E v+ Vi)Y < %

The metrics of these cylinders are normalized to yield a C'* metric
when the small (resp. the large) connected component of the
boundary of F, is identified with the large connected component
of the boundary of C? (resp. with the boundary of F,)). Similarly,
note that for any v > 0 small enough, there exists 3 < 1 such that
we get a C! metric by identifying a connected component of the
boundary of ng with the small connected component, of C%. We

set B, for the manifold CO#C #Cp) #CO#F, #F ,:

We then have [g (g—l)% < C@W_ also DiamB, < 27 and

. (=Inv) 1
VolB, > ﬁ for any v small enough. For all NeN, there exists
a small 2/ to have C? containing at least N disjoint balls of radius
\/7(1+u’)
a(v’)
glue the resulting manifold to N manifolds B, along the qphereq

of radius \ﬁ((pr)” ) of their boundaries. Taking N = (—Inv) =

Excise these balls from one of the CY part of B, and

and multiplying the metric by ————, we get a manifold B,

(—Inv) 8n

which is diffeomorphic to B™ and satisfies Diam B, <

(=1In 1/) 1671 '

Vol B, > M and [, (g—l)% < Cm 72

c(n) v — ) "E
To prove proposition 9.3, fix a point(xo in) the compact mani-
fold M. For any meN, there exists a r€]0,inj(M, g)[ and a metric
¢’ on M which is equal to g on M\B(zo,2r), is flat on B(zo,r)
and is at Gromov-Hausdorff distance from g bounded above by

55+ For any v > 0 such that @ < 7 we obtain a new

metric ¢/, on M by replacing the flat metric on B(xg ‘/_(H”))
by the metric of B,. We can find v, small enough to have a
Gromov-Hausdorff distance between g and g, less than —-, and

also Vol(g;, ) > mC(n) and Wf(Mg’ )(g—l)i < L. We
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then set g,, = g, . It only remains to show the collapsing of
the eigenvalues of the metrics g,,. In that purpose, first con-
sider on B, the continuous function f that is equal to 1 on the
part C?,#FV#FV, equal to 0 on the part CO#C; ! and equal to

ft) = \/"57 on the remaining part C/gl} For this functions f, we
have
L |VFI? n—1 VY9 F 2 a(n e
f? "||f|z! < c(n> m_l / UL ) < o=
B, n)n 0
n—2

(M™, gm) contains (— In I/m) ~®  manifolds El,;n whose metric has

been multiplied by # We extend to M by zero the
—Invy,) 8n
function f corresponding to each El,;n part of (M™, g,,). Thus, we
n—2
8

obtain (—Inwvy,) L?-orthogonal functions on (M", g,,), whose

n— n—2

Rayleigh quotients are bounded above by C(n)l/mT2 (ln i)v
As we can suppose that v, tends to 0, the min-max principle
implies the collapsing of all eigenvalues to 0 (this collapsing implies
that the g,, do not tend to g in the C° sense and that the Sobolev
constants are not bounded under L? pinching, otherwise the proof
of Proposition 1.5 would hold).

We now adapt the above construction to prove Proposition 9.2.

a2—a)r?  ala—1)

2 2
Note that on C;; ! we have — T~ P S o(t) < (GGEmris

a2y(‘4—1
A+v)Z=e(@+v?)e
C(n, p)vz~P. There exists 3 < 1 such that a connected component
of the boundary of ng glue metrically in a C'-way with the

and so we have, for any p < n/2, [4-1]oP <

small connected component of C). We set B ; the manifold
F,#F, #C0#C; #C), | #C; 4 CO#F 4T,

(=]

we set also B} | = CS#CEJ#EZM#C;#CS#FV#E:

and BY, , = CO#C5 #Cp, , #C5 1 #C0:

pesy
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It is now easy to see that for any L > 0, ¢ > 0 and K €

R we can choose two sequences (L;) and A; such that the se-
—0,L —1,L —2,L

quence B, = ()‘”B(l)/l,Ll) (resp. B, . = (AlB%/l,Ll) or B, =

()\le/l Lz)) are at Gromov-Hausdorff distance from the segment

[0, L] less than e and the integrals [5i.. (o — K)% tend to 0 (resp.
l,e

and the volume of E;f tends to any given real in |0, C(e, K, L)]).

Note also that if we take m large enough we can glue a num-
—1,L —o0,L

ber as large as needed of manifolds B,, . or B, . to one of the

CY part of B;:E . We deduce that, for any finite graph, we can

glue a family F;:ff (with the n, large enough) to get a manifold

which is at Gromov Hausdorff distance from the graph less than
¢/2 and which satisfies [(o — K)% < €/2 and with volume less
than V/2. To get a volume equal to V we glue enough copies
of Ell:f (for K = %): the small change on the distance to the
graph does not depend on the number of these copies and that
we can choose the volume of each copies of these Ellfj equal to
any number in ]0,C(e?, &, L)|. Since the finite graph are dense in
Gromov Hausdorff distance this ends the proof of theorem 9.2.
To prove the version of theorem 9.2 with the pinching on
[ lel® or [, loP (p < n/2) we just have to replace the parts

= . s =L
F,#F, in the above definition of the B;}e by some small flat n-
torus and remark that for the metrics contructed by this way we
have o < 0.

q.e.d.

Note that in the proof of Proposition 9.3 above we only need

that Vol M and fM (g—l)% are finite. It is classical that any
manifold supports a complete metric with finite volume but we do
not know if both finitenesses above are always fulfilled for at least
one complete metric on any (noncompact) manifold. Note also

that the finiteness of fM (g—l)? does not imply Vol M < oo since,
for any € > 0, we can start from Bil and then iteratively glue

.. =0 .
some B}, ; to the remaining free Cp,, | element with a sequence
v chosen so as to get a complete manifold with infinite volume

and fM(g—l)% <e.
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