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Abstract

This survey provides a unified discussion of multiple integrals, moments, cumulants and
diagram formulae associated with functionals of completely random measures. Our approach
is combinatorial, as it is based on the algebraic formalism of partition lattices and Möbius
functions. Gaussian and Poisson measures are treated in great detail. We also present several
combinatorial interpretations of some recent CLTs involving sequences of random variables
belonging to a fixed Wiener chaos.
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1 Introduction

1.1 Overview

The aim of this survey is to provide a unified treatment of moments and cumulants associ-
ated with non-linear functionals of completely random measures, such as Gaussian, Poisson or
Gamma measures. We will focus on multiple stochastic integrals, and we shall mainly adopt a
combinatorial point of view. In particular, our main inspiration is a truly remarkable paper by
Rota and Wallstrom [106], building (among many others) on earlier works by Itô [30], Meyer
[59, 60] and, most importantly, Engel [18] (see also Bitcheler [8], Kussmaul [42], Linde [47],
Masani [56], Neveu [62] and Tsilevich and Vershik [127] for related works). In particular, in
[106] the authors point out a crucial connection between the machinery of multiple stochastic
integration and the structure of the lattice of partitions of a finite set, with specific emphasis
on the role played by the associated Möbius function (see e.g. [2], as well as Section 2 below).
As we will see later on, the connection between multiple stochastic integration and partitions is
given by the natural isomorphism between the partitions of the set {1, ..., n} and the diagonal
sets associated with the Cartesian product of n measurable spaces (a diagonal set is just a subset
of the Cartesian product consisting of points that have two or more coordinates equal).

The best description of the approach to stochastic integration followed in the present survey
is still given by the following sentences, taken from [106]:

The basic difficulty of stochastic integration is the following. We are given a
measure ϕ on a set S, and we wish to extend such a measure to the product set
Sn. There is a well-known and established way of carrying out such an extension,
namely, taking the product measure. While the product measure is adequate in
most instances dealing with a scalar valued measure, it turns out to be woefully
inadequate when the measure is vector-valued, or, in the case dealt with presently,
random-valued. The product measure of a nonatomic scalar measure will vanish
on sets supported by lower-dimensional linear subspaces of Sn. This is not the
case, however, for random measures. The problem therefore arises of modifying the
definition of product measure of a random measure in such a way that the resulting
measure will vanish on lower-dimensional subsets of Sn, or diagonal sets, as we call
them.

As pointed out in [106], as well as in Section 5 below, the combinatorics of partition lattices
provide the correct framework in order to define a satisfactory stochastic product measure.

As apparent from the title, in the subsequent sections a prominent role will be played by
moments and cumulants. In particular, the principal aims of our work are the following:

– Put diagram formulae in a proper algebraic setting. Diagram formulae are mnemonic
devices, allowing to compute moments and cumulants associated with one or more random
variables. These tools have been developed and applied in a variety of frameworks: see e.g.
[113, 122] for diagram formulae associated with general random variables; see [9, 11, 24, 51]
for non-linear functionals of Gaussian fields; see [121] for non-linear functionals of Poisson
measures. They can be quite useful in the obtention of Central Limit Theorem (CLTs)
by means of the so-called method of moments and cumulants (see e.g. [49]). Inspired by
the works by McCullagh [57], Rota and Shen [105] and Speed [117], we shall show that all
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diagram formulae quoted above can be put in a unified framework, based on the use of
partitions of finite sets. Although somewhat implicit in the previously quoted references,
this clear algebraic interpretation of diagrams is new. In particular, in Section 4 we will
show that all diagrams encountered in the probabilistic literature (such as Gaussian, non-
flat and connected diagrams) admit a neat translation in the combinatorial language of
partition lattices.

– Illustrate the Engel-Rota-Wallstrom theory. We shall show that the theory developed
in [18] and [106] allows to recover several crucial results of stochastic analysis, such as
multiplication formulae for multiple Gaussian and Poisson integrals see [38, 75, 121]. This
extends the content of [106], which basically dealt with product measures. See also [19]
for other results in this direction.

– Enlight the combinatorial implications of new CLTs. In a recent series of papers (see
[52, 65, 69, 70, 71, 76, 79, 83, 86, 89, 90, 91]), a new set of tools has been developed,
allowing to deduce simple CLTs involving random variables having the form of multiple
stochastic integrals. All these results can be seen as simplifications of the method of
moments and cumulants. In Section 9, we will illustrate these results from a combinatorial
standpoint, by providing some neat interpretations in terms of diagrams and graphs. In
particular, we will prove that in these limit theorems a fundamental role is played by
the so-called circular diagrams, that is, connected Gaussian diagrams whose edges only
connect subsequent rows.

We will develop the necessary combinatorial tools related to partitions, diagram and graphs
from first principles in Section 2 and Section 4. Section 3 provides a self-contained treament of
moments and cumulants from a combinatorial point of view. Stochastic integration is introduced
in Section 5. Section 6 and Section 7 deal, respectively, with product formulae and diagram
formulae. In Section 8 one can find an introduction to the concept of isonormal Gaussian
process. Finally, Section 9 deals with CLTs on Wiener chaos.

1.2 Some related topics

In this survey, we choose to follow a very precise path, namely starting with the basic properties
of partition lattices and diagrams, and develop from there as many as possible of the formulae
associated with products, moments and cumulants in the theory of stochastic integration with
respect to completely random measures. In order to keep the length of the present work within
bounds, several crucial topics are not included (or are just mentioned) in the discussion to follow.
One remarkable omission is of course a complete discussion of the connections between multiple
stochastic integrals and orthogonal polynomials. This topic is partially treated in Section 8
below, in the particular case of Gaussian processes. For recent references on more general
stochastic processes (such as Lévy processes), see e.g. the monograph by Schoutens [111] and
the two papers by Solé and Utzet [115, 116]. Other related (and missing) topics are detailed in
the next list, whose entries are followed by a brief discussion.

– Wick products. Wick products are intimately related to chaotic expansions. A complete
treatment of this topic can be found e.g. in Janson’s book [36].
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– Malliavin calculus. See the two monographs by Nualart [74, 75] for Malliavin calculus in
a Gaussian setting. A good introduction to Malliavin calculus for Poisson measures is
contained in the classic papers by Nualart and Vives [81], Privault [98] and Privault and
Wu [101]. A fundamental connection between Malliavin operators and limit theorems has
been first pointed out in [77]. See [65, 67, 69, 86] for further developments.

– Hu-Meyer formulae. Hu-Meyer formulae connect Stratonovich multiple integrals and multiple
Wiener-Itô integrals. See [75] for a standard discussion of this topic in a Gaussian setting.
Hu-Meyer formulae for general Lévy processes can be naturally obtained by means of the
theory described in the present survey: see the excellent paper by Farria et al. [19] for a
complete treatment of this point.

– Stein’s method. Stein’s method for normal and non-normal approximation can be a very
powerful tool, in order to obtain central and non-central limit theorems for non-linear
functionals of random fields. See [119] for a classic reference on the subject. See [69, 70, 71]
for several limit theorems involving functionals of Gaussian fields, obtained by means of
Stein’s method and Malliavin calculus. See [86] for an application of Stein’s method to
functionals of Poisson measures.

– Free probability. The properties of the lattice of (non-crossing) partitions and the corre-
sponding Möbius function are crucial in free probability. See the monograph by Nica and
Speicher [63] for a valuable introduction to the combinatorial aspects of free probabil-
ity. See Anshelevich [3, 4] for some instances of a “free” theory of multiple stochastic
integration.

2 The lattice of partitions of a finite set

In this section we recall some combinatorial results concerning the lattice of partitions of a finite
set. These objects play an important role in the obtention of the diagram formulae presented
in Section 5. The reader is referred to Stanley [118, Chapter 3] and Aigner [2] for a detailed
presentation of (finite) partially ordered sets and Möbius inversion formulae.

2.1 Partitions of a positive integer

Given an integer n ≥ 1, we define the set Λ (n) of partitions of n as the collection of all vectors
of the type λ = (λ1, ..., λk) (k ≥ 1), where:

(i) λj is an integer for every j = 1, ..., k,
(ii) λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1,
(iii) λ1 + · · · + λk = n.

(2.1)

We call k the length of λ. It is sometimes convenient to write a partition λ = (λ1, ..., λk) ∈ Λ (n)
in the form λ = (1r12r2 · · · nrn). This representation (which encodes all information about λ)
simply indicates that, for every i = 1, ..., n, the vector λ contains exactly ri (≥ 0) components
equal to i. Clearly, if λ = (λ1, ..., λk) = (1r12r2 · · · nrn) ∈ Λ (n), then

1r1 + · · · + nrn = n (2.2)
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and r1 + · · · + rn = k. We will sometimes use the (more conventional) notation

λ ⊢ n instead of λ ∈ Λ (n) .

Examples. (i) If n = 5, one can e.g. have 5 = 4 + 1 or 5 = 1 + 1 + 1 + 1 + 1. In the first
case the length is k = 2, with λ1 = 4 and λ2 = 1, and the partition is λ =

(
1120304150

)
. In the

second case, the length is k = 5 with λ1 = ... = λ5 = 1, and the partition is λ =
(
1520304050

)
.

(ii) One can go easily from one representation to the other. Thus λ =
(
12233042

)
corresponds

to
n = (1 × 2) + (2 × 3) + (3 × 0) + (4 × 2) = 16,

that is, to the decomposition 16 = 4 + 4 + 2 + 2 + 2 + 1 + 1, and thus to

λ = (λ1, λ2, λ3, λ4, λ5, λ6, λ7) = (4, 4, 2, 2, 2, 1, 1) .

2.2 Partitions of a set

Let b denote a finite nonempty set and let

P (b) be the set of partitions of b.

By definition, an element π of P (b) is a collection of nonempty and disjoint subsets of b (called
blocks), such that their union equals b. The symbol |π| indicates the number of blocks (or the
size) of the partition π.

Remark on notation. For each pair i, j ∈ b and for each π ∈ P (b), we write i ∼π j
whenever i and j belong to the same block of π.

We now define a partial ordering on P (b). For every σ, π ∈ P (b), we write σ ≤ π if, and
only if, each block of σ is contained in a block of π. Borrowing from the terminology used in
topology one also says that π is coarser than σ. It is clear that ≤ is a partial ordering relation,
that is, ≤ is a binary, reflexive, antisymmetric and transitive relation on P (b) (see e.g. [118, p.
98]). Also, ≤ induces on P (b) a lattice structure. Recall that a lattice is a partially ordered set
such that each pair of elements has a least upper bound and a greatest lower bound (see [118,
p. 102]). In particular, the partition σ ∧ π, meet of σ, π ∈ P (b), is the partition of b such that
each block of σ ∧ π is a nonempty intersection between one block of σ and one block of π. On
the other hand, the partition σ ∨ π, join of σ, π ∈ P (b), is the element of P (b) whose blocks are
constructed by taking the non-disjoint unions of the blocks of σ and π, that is, by taking the
union of those blocks that have at least one element in common.

Remarks. (a) Whenever π1 ≤ π2, one has |π1| ≥ |π2|. In particular, |σ ∧ π| ≥ |σ ∨ π|.
(b) The partition σ ∧ π is the greatest lower bound associated with the pair (σ, π). As such,

σ∧π is completely characterized by the property of being the unique element of P (b) such that:
(i) σ ∧ π ≤ σ, (ii) σ ∧ π ≤ π, and (iii) ρ ≤ σ ∧ π for every ρ ∈ P (b) such that ρ ≤ σ, π.

(c) Analogously, the partition σ ∨π is the least upper bound associated with the pair (σ, π).
It follows that σ ∨ π is completely characterized by the property of being the unique element of
P (b) such that: (i) σ ≤ σ ∨ π, (ii) π ≤ σ ∨ π, and (iii) σ ∨ π ≤ ρ for every ρ ∈ P (b) such that
σ, π ≤ ρ.
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Examples. (i) Take b = {1, 2, 3, 4, 5}. If π = {{1, 2, 3} , {4, 5}} and σ = {{1, 2} , {3} , {4, 5}} .
Then, σ ≤ π (because each block of σ is contained in a block of π) and

σ ∧ π = σ and σ ∨ π = π.

A graphical representation of π, σ, σ ∧ π and σ ∨ π is:

π = 1 2 3 4 5

σ = 1 2 3 4 5

σ ∧ π = 1 2 3 4 5

σ ∨ π = 1 2 3 4 5

(ii) If π = {{1, 2, 3} , {4, 5}} and σ = {{1, 2} , {3, 4, 5}}, then π and σ are not ordered and

σ ∧ π = {{1, 2} , {3} , {4, 5}} and σ ∨ π = {b} = {{1, 2, 3, 4, 5}} .

A graphical representation of π, σ, σ ∧ π and σ ∨ π is:

π = 1 2 3 4 5

σ = 1 2 3 4 5

σ ∧ π = 1 2 3 4 5

σ ∨ π = 1 2 3 4 5

(iii) A convenient way to build σ ∨ π is to do it in successive steps. Take the union of two
blocks with a common element and let it be a new block of π. See if it shares an element
with another block of σ. If yes, repeat. For instance, suppose that π = {{1, 2}, {3}, {4}} and
σ = {{1, 3}, {2, 4}}. Then, π and σ are not ordered and

σ ∧ π = {{1} , {2} , {3} , {4}} and σ ∨ π = {{1, 2, 3, 4}} .

One now obtains σ ∨ π by noting that the element 2 is common to {1, 2} ∈ π and {2, 4} ∈ σ,
and the “merged” block {1, 2, 4} shares the element 1 with the block {1, 3} ∈ σ, thus implying
the conclusion. A graphical representation of π, σ, σ ∧ π and σ ∨ π is:

π = 1 2 3 4

σ = 1 3 2 4

σ ∧ π = 1 2 3 4

σ ∨ π = 1 2 3 4

Remark on notation. When displaying a partition π of {1, ..., n} (n ≥ 1), the blocks
b1, ..., bk ∈ π will always be listed in the following way: b1 will always contain the element 1,
and

min {i : i ∈ bj} < min {i : i ∈ bj+1} , j = 1, ..., k − 1.

Also, the elements within each block will be always listed in increasing order. For instance, if
n = 6 and the partition π involves the blocks {2} , {4} , {1, 6} and {3, 5}, we will write π =
{{1, 6} , {2} , {3, 5} , {4}}.
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The maximal element of P (b) is the trivial partition 1̂ = {b}. The minimal element of
P (b) is the partition 0̂, such that each block of 0̂ contains exactly one element of b. Observe
that

∣∣1̂
∣∣ = 1 and

∣∣0̂
∣∣ = |b|, and also 0̂ ≤ 1̂. If σ ≤ π, we write [σ, π] to indicate the segment

{ρ ∈ P (b) : σ ≤ ρ ≤ π}, which is a subset of partitions of b. Plainly, P (b) =
[
0̂, 1̂
]
.

2.3 Relations between partitions of a set and partitions of an integer

We now focus on the notion of class, which associates with a segment of partitions a partition
of an integer. In particular, the class of a segment [σ, π] (σ ≤ π), denoted λ (σ, π), is defined as
the partition of the integer |σ| given by

λ (σ, π) = (1r12r2 · · · |σ|r|σ|) , (2.3)

where ri indicates the number of blocks of π that contain exactly i blocks of σ. We stress that
necessarily |σ| ≥ |π|, and also

|σ| = 1r1 + 2r2 + · · · + |σ| r|σ| and |π| = r1 + · · · + r|σ|.

For instance, if π = {{1, 2, 3} , {4, 5}} and σ = {{1, 2} , {3} , {4, 5}}, then since {1, 2} and {3}
are contained in {1, 2, 3} and {4, 5} in {4, 5}, we have r1 = 1, r2 = 1, r3 = 0, that is, λ (σ, π) =(
112130

)
, corresponding to the partition of the integer 3 = 2 + 1. In view of (2.1), one may sup-

press the terms ri = 0 in (2.3), and write for instance λ (σ, π) =
(
112032

)
=
(
1132

)
for the class

of the segment [σ, π], associated with the two partitions σ = {{1} , {2} , {3} , {4} , {5} , {6} , {7}}
and π = {{1} , {2, 3, 4} , {5, 6, 7}}.

Now fix a set b such that |b| = n ≥ 1. Then, for a fixed λ = (1r12r2 · · · nrn) ⊢ n, the number
of partitions π ∈ P (b) such that λ

(
0̂, π
)

= λ is given by

[ n
λ

]
=
[ n
r1, ..., rn

]
=

n!

(1!)r1 r1! (2!)
r2 r2! · · · (n!)rn rn!

(2.4)

(see e.g. [118]). The requirement that λ
(
0̂, π
)

= λ = (1r12r2 · · · nrn) simply means that, for
each i = 1, ..., n, the partition π must have exactly ri blocks containing i elements of b. Recall
that r1, ..., rn must satisfy (2.2).

From now on, we let

[n] = {1, ..., n} , n ≥ 1. (2.5)

With this notation, the maximal and minimal element of the set P ([n]) are given, respectively,
by

1̂ = {[n]} = {{1, ..., n}} and 0̂ = {{1} , ..., {n}} . (2.6)

Examples. (i) For any finite set b, one has always that

λ
(
0̂, 1̂
)

=
(
1020 · · · |b|1

)
,

because 1̂ has only one block, namely b, and that block contains |b| blocks of 0̂.
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(ii) Fix k ≥ 1 and let b be such that |b| = n ≥ k + 1. Consider λ = (1r12r2 · · · nrn) ⊢ n be
such that rk = rn−k = 1 and rj = 0 for every j 6= k, n − k. For instance, if n = 5 and k = 2,
then λ =

(
1021314050

)
. Then, each partition π ∈ P (b) such that λ

(
0̂, π
)

= λ has only one block
of k elements and one block of n − k elements. To construct such a partition, it is sufficient to
specify the block of k elements. This implies that there exists a bijection between the set of
partitions π ∈ P (b) such that λ

(
0̂, π
)

= λ and the collection of the subsets of b having exactly
k elements. In particular, (2.4) gives

[ n
λ

]
=

(
n

k

)
= n!/ (k! (n− k)!) .

(iii) Let b = [7] = {1, ..., 7} and λ =
(
11233040506070

)
. Then, (2.4) implies that there are

exactly 7!
3!(2!)3

= 105 partitions π ∈ P (b), such that λ
(
0̂, π
)

= λ. One of these partitions is

{{1} , {2, 3} , {4, 5} , {6, 7}}. Another is {{1, 7} , {2} , {3, 4} , {5, 6}} .
(iv) Let b = [5] = {1, ..., 5}, σ = {{1} , {2} , {3} , {4, 5}} and π = {{1, 2, 3} , {4, 5}}. Then,

σ ≤ π and the set of partitions defined by the interval [σ, π] is {σ, π, ρ1, ρ2, ρ3}, where

ρ1 = {{1, 2} , {3} , {4, 5}}

ρ2 = {{1, 3} , {2} , {4, 5}}

ρ3 = {{1} , {2, 3} , {4, 5}} .

The partitions ρ1, ρ2 and ρ3 are not ordered (i.e., for every 1 ≤ i 6= j ≤ 3, one cannot write
ρi ≤ ρj), and are built by taking unions of blocks of σ in such a way that they are contained in
blocks of π. Moreover, λ (σ, π) =

(
1120314050

)
, since there is exactly one block of π containing

one block of σ, and one block of π containing three blocks of σ.
(v) This example is related to the techniques developed in Section 6.1. Fix n ≥ 2, as well

as a partition γ = (γ1, ..., γk) ∈ Λ (n) such that γk ≥ 2. Recall that, by definition, one has that
γ1 ≥ γ2 ≥ · · · ≥ γk and γ1 + · · · + γk = n. Now consider the segment

[
0̂, π
]
, where

0̂ = {{1} , {2} , ..., {n}} , and

π = {{1, ..., γ1} , {γ1 + 1, ..., γ1 + γ2} , ..., {γ1 + · · · + γk−1 + 1, ..., n}} .

Then, the jth block of π contains exactly γj blocks of 0̂, j = 1, ..., k, thus giving that the class
λ
(
0̂, π
)

is such that λ
(
0̂, π
)

=
(
γ1
1γ

1
2 · · · γ1

k

)
= γ, after suppressing the indicators of the type r0.

2.4 Möbius functions and Möbius inversion formulae

For σ, π ∈ P (b), we denote by µ (σ, π) the Möbius function associated with the lattice P (b). It
is defined as follows. If σ � π (that is, if the relation σ ≤ π does not hold), then µ (σ, π) = 0. If
σ ≤ π, then the quantity µ (σ, π) depends only on the class λ (σ, π) of the segment [σ, π], and is
given by (see [2])

µ (σ, π) = (−1)n−r (2!)r3 (3!)r4 · · · ((n− 1)!)rn (2.7)

= (−1)n−r
n−1∏

j=0

(j!)rj+1 , (2.8)

where n = |σ|, r = |π|, and λ (σ, π) = (1r12r2 · · · nrn) (that is, there are exactly ri blocks of π
containing exactly i blocks of σ). Since 0! = 1! = 1, expressions (2.7) and (2.8) do not depend
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on the specific values of r1 (the number of blocks of π containing exactly 1 block of σ) and r2
(the number of blocks of π containing exactly two blocks of σ).

Examples. (i) If |b| = n ≥ 1 and σ ∈ P (b) is such that |σ| = k ( ≤ n ), then

µ
(
σ, 1̂
)

= (−1)k−1 (k − 1)!. (2.9)

Indeed, in (2.7) rk = 1, since 1̂ has a single block which contains the k blocks of σ. In particular,
µ
(
0̂, {b}

)
= µ

(
0̂, 1̂
)

= (−1)n−1 (n− 1)!.
(ii) For every π ∈ P (b), one has µ (π, π) = 1. Indeed, since (trivially) each element of π

contains exactly one element of π, one has λ (π, π) =
(
1|π|2030 · · · n0

)
.

The next result is crucial for the obtention of the combinatorial formulae found in Section
3 and Section 5 below. For every pair of functions G,F , from P (b) into C and such that
∀σ ∈ P (b),

G (σ) =
∑

0̂≤π≤σ

F (π) (resp. G (σ) =
∑

σ≤π≤1̂

F (π) ) (2.10)

one has the following Möbius inversion formula: ∀π ∈ P (b),

F (π) =
∑

0̂≤σ≤π

µ (σ, π)G (σ) (resp. F (π) =
∑

π≤σ≤1̂

µ (π, σ)G (σ) ), (2.11)

where µ (·, ·) is the Möbius function given in (2.7). For a proof of (2.11), see e.g. [118, Section 3.7]
and [2]. To understand (2.11) as inversion formulae, one can interpret the sum

∑
0̂≤π≤σ F (π)

as an integral of the type
∫ σ
0̂ F (π) dπ (and analogously for the other sums appearing in (2.10)

and (2.11)).

In general (see [118, Section 3.7]), the Möbius function is defined by recursion on any finite
partially ordered set by the following relations:

µ (x, x) = 1 ∀x ∈ P,
µ (x, y) = −

∑
x�z≺y µ (x, z) , ∀ x, y ∈ P : x ≺ y,

µ (x, y) = 0 ∀ x, y ∈ P : x � y,

(2.12)

where P is a finite partially ordered set, with partial order �, and we write x ≺ y to indicate
that x � y and x 6= y. For instance, P could be a set of subsets, with � equal to the inclusion
relation ⊆. In our context P = P (b), the set of partitions of b, and � is the partial order ≤
considered above, so that (2.12) becomes

µ (σ, σ) = 1 ∀σ ∈ P (b) ,
µ (σ, π) = −

∑
σ≤ρ<π µ (σ, ρ) , ∀ σ, π ∈ P (b) : σ < π,

µ (σ, π) = 0 ∀ σ, π ∈ P (b) : σ � π,

(2.13)

where we write σ < π to indicate that σ ≤ π and σ 6= π (and similarly for ρ < π). The recursion
formula (2.12) has the following consequence: for each x � y,

∑

x�z�y

µ (z, y) =
∑

x�z�y

µ (x, z) =

{
0 if x 6= y,
µ (x, x) ( = 1) if x = y,

(2.14)
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which will be used in the sequel. The second equality in (2.14) is an immediate consequence
of (2.12). To prove the first equality in (2.14), fix x and write G (z) = 1x�z. Since, trivially,
G (z) =

∑
y�z 1y=x, one can let F (y) = 1y=x in (2.10) and use the inversion formula (2.11) to

deduce that
1y=x =

∑

z�y

µ (z, y)G (z) =
∑

x�z�y

µ (z, y) ,

which is equivalent to (2.14).

Now consider two finite partially ordered sets P,Q, whose order relations are noted, re-
specively, �P and �Q. The lattice product of P and Q is defined as the cartesian product
P × Q, endowed with the following partial order relation: (x, y) �P×Q (x′, y′) if, and only if,
x �P x′ and y �Q y′. Lattice products of more than two partially ordered sets are defined anal-
ogously. We say (see e.g. [118, p. 98]) that P and Q are isomorphic if there exists a bijection
ψ : P → Q which is order-preserving and such that the inverse of ψ is also order-preserving; this
requirement on the bijection ψ is equivalent to saying that, for every x, x′ ∈ P ,

x �P x′ if and only if ψ (x) �Q ψ
(
x′
)
. (2.15)

Of course, two isomorphic partially ordered sets have the same cardinality. The following result
is quite useful for explicitly computing Möbius functions. It states that the Möbius function is
invariant under isomorphisms, and that the Möbius function of a lattice product is the product
of the associated Möbius functions. Point 1 is an immediate consequence of (2.12), for a proof
of Point 2, see e.g. [118, Section 3.8].

Proposition 2.1 Let P,Q be two partially ordered sets, and let µP and µQ denote their Möbius
functions. Then,

1. If P and Q are isomorphic, then µP (x, y) = µQ (ψ (x) , ψ (y)) for every x, y ∈ P , where ψ
is the bijection appearing in (2.15).

2. The Möbius function associated with the partially ordered set P ×Q is given by:

µP×Q

[
(x, y) ,

(
x′, y′

)]
= µP

(
x, x′

)
× µQ

(
y, y′

)
.

The next result is used in the proof of Theorem 6.1.

Proposition 2.2 Let b be a finite set, and let π, σ ∈ P (b) be such that: (i) σ ≤ π, and (ii) the
segment [σ, π] has class (λ1, ..., λk) ⊢ |σ|. Then, [σ, π] is a partially ordered set isomorphic to
the lattice product of the k sets P ([λi]), i = 1, ..., k.

Proof. To prove the statement, we shall use the fact that each partition in [σ, π] is obtained
by taking unions of the blocks of σ that are contained in the same block of π. Start by observing
that (λ1, ..., λk) is the class of [σ, π] if and only if for every i = 1, ..., k, there is a block bi ∈ π
such that bi contains exactly λi blocks of σ. In particular, k = |π|. We now construct a bijection
ψ, between [σ, π] and the lattice products of the P ([λi])’s, as follows.
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i) For i = 1, ..., k, write bi,j, j = 1, ..., λi, to indicate the blocks of σ contained in bi.

ii) For every partition ρ ∈ [σ, π] and every i = 1, ..., k, construct a partition ζ (i, ρ) of [λi] =
{1, ..., λi} by the following rule: for every j, l ∈ {1, ..., λi}, j ∼ζ(i,ρ) l (that is, j and l belong
to the same block of ζ (i, ρ)) if and only if the union bi,j ∪ bi,l is contained in a block of ρ.

iii) Define the application ψ : [σ, π] → P ([λ1]) × · · · × P ([λk]) as

ρ 7→ ψ (ρ) := (ζ (1, ρ) , ..., ζ (k, ρ)) . (2.16)

It is easily seen that the application ψ in (2.16) is indeed an order-preserving bijection, verifying
(2.15) for P = [σ, π] and Q = P ([λ1]) × · · · × P ([λk]).

3 Combinatorial expressions of cumulants and moments

We recall here the definition of cumulant, and we present several of its properties. A detailed
discussion of cumulants is contained in the book by Shiryayev [113]; see also the papers by Rota
and Shen [105], Speed [117] and Surgailis [122]. An analysis of cumulants involving different
combinatorial structures can be found in [97, pp. 20-23] and the references therein.

3.1 Cumulants

For n ≥ 1, we consider a vector of real-valued random variables X[n] = (X1, ...,Xn) such that
E |Xj |

n <∞, ∀j = 1, ..., n. For every subset b = {j1, ..., jk} ⊆ [n] = {1, ..., n}, we write

Xb = (Xj1, ...,Xjk
) and Xb = Xj1 × · · · ×Xjk

, (3.1)

where × denotes the usual product. For instance, ∀m ≤ n,

X[m] = (X1, ..,Xm) and X[m] = X1 × · · · ×Xm.

For every b = {j1, ..., jk} ⊆ [n] and (z1, ..., zk) ∈ Rk, we let gXb
(z1, .., zk) = E

[
exp

(
i
∑k

ℓ=1 zℓXjℓ

)]
.

The joint cumulant of the components of the vector Xb is defined as

χ (Xb) = (−i)k
∂k

∂z1 · · · ∂zk
log gXb

(z1, .., zk) |z1=...=zk=0 , (3.2)

thus

χ (X1, ...,Xk) = (−i)k
∂k

∂z1 · · · ∂zk
log E

[
exp

(
i

k∑

ℓ=1

zlXl

)]∣∣∣∣∣
z1=...=zk=0

.

We recall the following facts.

(i) The application Xb 7→ χ (Xb) is homogeneous, that is, for every h = (h1, ..., hk) ∈ Rk,

χ (h1Xj1 , ..., hkXjk
) = (Πk

ℓ=1hℓ) × χ (Xb) ;

(ii) The application Xb 7→ χ (Xb) is invariant with respect to the permutations of b;
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(iii) χ (Xb) = 0, if the vector Xb has the form Xb = Xb′ ∪Xb′′ , with b′, b′′ 6= ∅, b′ ∩ b′′ = ∅ and
Xb′ and Xb′′ independent;

(iv) if Y = {Yj : j ∈ J} is a Gaussian family and if X[n] is a vector obtained by juxtaposing
n ≥ 3 elements of Y (with possible repetitions), then χ

(
X[n]

)
= 0.

Properties (i) and (ii) follow immediately from (3.2). To see how to deduce (iii) from (3.2),
just observe that, if Xb has the structure described in (iii), then

log gXb
(z1, .., zk) = log gXb′

(
zℓ : jℓ ∈ b

′
)

+ log gXb′′

(
zℓ : jℓ ∈ b′′

)

(by independence), so that

∂k

∂z1 · · · ∂zk
log gXb

(z1, .., zk)

=
∂k

∂z1 · · · ∂zk
log gXb′

(
zℓ : jℓ ∈ b′

)
+

∂k

∂z1 · · · ∂zk
log gXb′′

(
zℓ : jℓ ∈ b′′

)
= 0.

Finally, property (iv) is proved by using the fact that, if X[n] is obtained by juxtaposing n ≥ 3
elements of a Gaussian family (even with repetitions), then log gXb

(z1, .., zk) has necessarily the
form

∑
l a (l) zl +

∑
i,j b (i, j) zizj, where a (k) and b (i, j) are coefficients not depending on the

zl’s. All the derivatives of order higher than 2 are then zero.
When |b| = n, one says that the cumulant χ (Xb), given by (3.2), has order n. When

X[n] = (X1, ...,Xn) is such that Xj = X, ∀j = 1, ..., n, where X is a random variable in Ln (P),
we write

χ
(
X[n]

)
= χn (X) (3.3)

and we say that χn (X) is the nth cumulant (or the cumulant of order n) of X. Of course, in
this case one has that

χn (X) = (−i)n
∂n

∂zn
log gX (z)

∣∣∣∣
z=0

,

where gX (z) = E [exp (izX)]. Note that, if X,Y ∈ Ln (P) (n ≥ 1) are independent random
variables, then (3.2) implies that

χn (X + Y ) = χn (X) + χn (Y ) ,

since χn (X + Y ) involve the derivative of E
[
exp

(
i (X + Y )Σn

j=1zj

)]
with respect to z1, ..., zn.

3.2 Relations between moments and cumulants, and between cumulants

We want to relate expectations of products of random variables, such as E [X1X2X3], to cumu-
lants of vectors of random variables, such as χ (X1,X2,X3). Note the disymmetry: moments
involve products, while cumulants involve vectors. We will have, for example, χ (X1,X2) =
E [X1X2] − E [X1] E [X2], and hence χ (X1,X2) = Cov (X1,X2), the covariance of the vec-
tor (X1,X2). Conversely, we will have E [X1X2] = χ (X1)χ (X2) + χ (X1,X2). Thus, using
the notation introduced above, we will establish precise relations between objects of the type
χ (Xb) = χ (Xj : j ∈ b) and E

[
Xb
]

= E [Πj∈bXj]. We can do this also for random variables that
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are products of other random variables: for instance, to obtain χ (Y1Y2, Y3), we apply the pre-
vious formula with X1 = Y1Y2 and X2 = Y3, and get χ (Y1Y2, Y3) = E [Y1Y2Y3] − E [Y1Y2] E [Y3].
We shall also state a formula, due to Malyshev, which expresses χ (Y1Y2, Y3) in terms of other
cumulants, namely in this case

χ (Y1Y2, Y3) = χ (Y1, Y3)χ (Y2) + χ (Y1)χ (Y2, Y3) + χ (Y1, Y2, Y3) .

The next result, first proved in [45] (for Parts 1 and 2) and [50] (for Part 3), contains three
crucial relations, linking the cumulants and the moments associated with a random vector X[n].
We use the properties of the lattices of partitions, as introduced in the previous section.

Proposition 3.1 (Leonov and Shiryayev [45] and Malyshev [50]) For every b ⊆ [n],

1.
E
[
Xb
]

=
∑

π={b1,...,bk}∈P(b)

χ (Xb1) · · · χ (Xbk
) ; (3.4)

2.
χ (Xb) =

∑

σ={a1,...,ar}∈P(b)

(−1)r−1 (r − 1)!E (Xa1) · · · E (Xar) ; (3.5)

3. ∀σ = {b1, ..., bk} ∈ P (b),

χ
(
Xb1 , ...,Xbk

)
=

∑

τ={t1,...,ts}∈P(b)

τ∨σ=1̂

χ (Xt1) · · · χ (Xts) . (3.6)

Remark. To the best of our knowledge, our forthcoming proof of equation (3.6) (which
is known as Malyshev’s formula) is new. As an illustration of (3.6), consider the cumulant
χ (X1X2,X3), in which case one has σ = {b1, b2}, with b1 = {1, 2} and b2 = {3}. There are
three partitions τ ∈ P ([3]) such that τ ∨σ = 1̂ = {1, 2, 3}, namely τ1 = 1̂, τ2 = {{1, 3} , {2}} and
τ3 = {{1} , {2, 3}}, from which it follows that χ (X1X2,X3) = χ (X1,X2,X3)+χ (X1X3)χ (X2)+
χ (X1)χ (X2X3).

Proof of Proposition 3.1. The proof of (3.4) is obtained by differentiating the character-
istic function and its logarithm, and by identifying corresponding terms (see [113], [105, Section
6] or [117]). We now show how to obtain (3.5) and (3.6) from (3.4). Relation (3.4) implies that,
∀σ = {a1, ..., ar} ∈ P (b),

r∏

j=1

E [Xaj ] =
∑

π={b1,...,bk}≤σ
π∈P(b)

χ (Xb1) · · · χ (Xbk
) . (3.7)

We can therefore set G (σ) =
∏r

j=1 E [Xaj ] and F (π) = χ (Xb1) · · · χ (Xbk
) in (2.10) and (2.11),

so as to deduce that, for every π = {b1, ..., bk} ∈ P (b),

χ (Xb1) · · · χ (Xbk
) =

∑

σ={a1,...,ar}≤π

µ (σ, π)
r∏

j=1

E [Xaj ] . (3.8)
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Relation (3.5) is therefore a particular case of (3.8), obtained by setting π = 1̂ and by using the

equality µ
(
σ, 1̂
)

= (−1)|σ|−1 (|σ| − 1)!, which is a consequence of (2.7).
To deduce Malyshev’s formula (3.6) from (3.5) and (3.7), write Xbj = Yj, j = 1, ..., k (recall

that the Xbj are random variables defined in (3.1)), and apply (3.5) to the vector Y = (Y1, ..., Yk)
to obtain that

χ
(
Xb1 , ...,Xbk

)
= χ (Y1, ..., Yk) = χ (Y)

=
∑

β={p1,...,pr}∈P([k])

(−1)r−1 (r − 1)!E (Yp1) · · · E (Ypr) . (3.9)

Now write σ = {b1, ..., bk}, and observe that σ is a partition of the set b, while the partitions β
in (3.9) are partitions of the first k integers. Now fix β ∈ {p1, ..., pr} ∈ P ([k]). For i = 1, ...r,
take the union of the blocks bj ∈ σ having j ∈ pi, and call this union ui. One obtains therefore
a partition π = {u1, ..., ur} ∈ P (b) such that |π| = |β| = r. Thanks to (2.7) and (2.9),

(−1)r−1 (r − 1)! = µ
(
β, 1̂
)

= µ
(
π, 1̂
)

(3.10)

(note that the two Möbius functions appearing in (3.10) are associated with different lattices:
indeed, µ

(
β, 1̂
)

refers to P ([k]), whereas µ
(
π, 1̂
)

is associated with P (b)). With this notation,
one has also that E (Yp1) · · · E (Ypr) = E (Xu1) · · · E (Xur), so that, by (3.7),

E (Yp1) · · · E (Ypr) = E (Xu1) · · · E (Xur) =
∑

τ={t1,...,ts}≤π
τ∈P(b)

χ (Xt1) · · · χ (Xts) . (3.11)

By plugging (3.10) and (3.11) into (3.9) we obtain finally that

χ
(
Xb1 , ...,Xbk

)
=

∑

σ≤π≤1̂

µ
(
π, 1̂
) ∑

τ={t1,...,ts}:τ≤π

χ (Xt1) · · · χ (Xts)

=
∑

τ∈P(b)

χ (Xt1) · · · χ (Xts)
∑

π∈[τ∨σ,1̂]

µ
(
π, 1̂
)

=
∑

τ :τ∨σ=1̂

χ (Xt1) · · · χ (Xts) ,

where the last equality is a consequence of (2.14), since

∑

π∈[τ∨σ,1̂]

µ
(
π, 1̂
)

=

{
1 if τ ∨ σ = 1̂
0 otherwise.

(3.12)

For a single random variable X, one has (3.3): hence, Proposition 3.1 implies

Corollary 3.1 Let X be a random variable such that E |X|n <∞. Then,

E [Xn] =
∑

π={b1,...,bk}∈P([n])

χ|b1| (X) · · · χ|bk| (X) (3.13)

χn (X) =
∑

σ={a1,...,ar}∈P(b)

(−1)r−1 (r − 1)!E
(
X |a1|

)
· · · E

(
X |ar |

)
(3.14)
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Examples. (i) Formula (3.5), applied respectively to b = {1} and to b = {1, 2}, gives
immediately the well-known relations

χ (X) = E (X) and χ (X,Y ) = E (XY ) − E (X) E (Y ) = Cov (X,Y ) . (3.15)

(ii) One has that

χ (X1,X2,X3) = E (X1X2X3) − E (X1X2) E (X3)

−E (X1X3) E (X2) − E (X2X3) E (X1)

+2E (X1) E (X2) E (X3) ,

so that, in particular,

χ3 (X) = E
(
X3
)
− 3E

(
X2
)

E (X) + 2E (X)3 .

(iii) Let G[n] = (G1, ..., Gn), n ≥ 3, be a Gaussian vector such that E (Gi) = 0, i = 1, ..., n.
Then, for every b ⊆ [n] such that |b| ≥ 3, we know from Section 3.1 that

χ (Gb) = χ (Gi : i ∈ b) = 0.

By applying this relation and formulae (3.4) and (3.15) to G[n], one therefore obtains the well-
known relation

E [G1 ×G2 × · · · ×Gn] (3.16)

=

{ ∑
π={{i1,j1},...,{ik,jk}}∈P([n]) E (Gi1Gj1) · · · E (GikGjk

) , n even

0, n odd.

Observe that, on the RHS of (3.16), the sum is taken over all partitions π such that each block
of π contains exactly two elements.

4 Diagrams and graphs

In this section, we translate part of the notions presented in Section 2 into the language of
diagrams and graphs, which are often used in order to compute cumulants and moments of
non-linear functionals of random fields (see e.g. [9, 11, 24, 25, 51, 121, 122]).

4.1 Diagrams

Consider a finite set b. A diagram is a graphical representation of a pair of partitions (π, σ) ⊆
P (b), such that π = {b1, ..., bk} and σ = {t1, ..., tl}. It is obtained as follows.

1. Order the elements of each block bi, for i = 1, ..., k;

2. Associate with each block bi ∈ π a row of |bi| vertices (represented as dots), in such a way
that the jth vertex of the ith row corresponds to the jth element of the the block bi;

3. For every a = 1, ..., l, draw a closed curve around the vertices corresponding to the elements
of the block ta ∈ σ.

We will denote by Γ (π, σ) the diagram of a pair of partitions (π, σ).
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Examples. (i) If b = [3] and π = σ = {{1, 2} , {3}}, then Γ (π, σ) is represented in Fig. 1.

b b

b

Figure 1: A simple diagram

(ii) If b = [8], and π = {{1, 2, 3} , {4, 5} , {6, 7, 8}} and σ = {{1, 4, 6} , {2, 5} , {3, 7, 8}}, then
Γ (π, σ) is represented in Fig. 2.

b b

b

b

b

b b

b

Figure 2: A diagram built from two three-block partitions

Hence, the rows in Γ (π, σ) indicate the sets in π and the curves indicate the sets in σ.

Remarks. (a) We use the terms “element” and “vertex” interchangeably.
(b) Note that the diagram generated by the pair (π, σ) is different, in general, from the

diagram generated by (σ, π).
(c) Each diagram is a finite hypergraph. We recall that a finite hypergraph is an object

of the type (V,E), where V is a finite set of vertices, and E is a collection of (not necessarily
disjoint) nonempty subsets of V . The elements of E are usually called edges. In our setting,
these are the blocks of σ.

(d) Note that, once a partition π is specified, the diagram Γ (π, σ) encodes all the information
on σ.

Now fix a finite set b. In what follows, we will list and describe several type of diagrams. They
can be all characterized in terms of the lattice structure of P (b), namely the partial ordering ≤
and the join and meet operations ∨ and ∧, as described in Section 2. Recall that 1̂ = {b}, and
0̂ is the partition whose elements are the singletons of b.

Connected Diagrams. The diagram Γ (π, σ) associated with two partitions (π, σ) is said to
be connected if π ∨ σ = 1̂, that is, if the only partition ρ such that π ≤ ρ and σ ≤ ρ
is the maximal partition 1̂. The diagram appearing in Fig. 2 is connected, whereas the
one in Fig. 1 is not (indeed, in this case π ∨ σ = π ∨ π = π 6= 1̂). Another example of a
non-connected diagram (see Fig. 3) is obtained by taking b = [4], π = {{1, 2} , {3} , {4}}
and σ = {{1, 2} , {3, 4}}, so that π ≤ σ (each block of π is contained in a block of σ) and
π ∨ σ = σ 6= 1̂.
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b b

b

b

Figure 3: A non-connected diagram

In other words, Γ (π, σ) is connected if and only if the rows of the diagram (the blocks of
π) cannot be divided into two subsets, each defining a separate diagram. Fig. 4 shows
that the diagram in Fig. 3 can be so divided.

b b

b

b

Figure 4: Dividing a non-connected diagram

The diagram in Fig. 5, which has the same partition π, but σ = {{1, 3, 4} , {2}}, is
connected.

b b

b

b

Figure 5: A connected diagram

Note that we do not use the term ‘connected’ as one usually does in graph theory (indeed,
the diagrams we consider in this section are always non-connected hypergraphs, since their
edges are disjoint by construction).

Non-flat Diagrams. The diagram Γ (π, σ) is non-flat if

π ∧ σ = 0̂,

that is, if the only partition ρ such that ρ ≤ π and ρ ≤ σ is the minimal partition 0̂. It is
easily seen that π ∧ σ = 0̂ if and only if for any two blocks bj ∈ π, ta ∈ σ, the intersection
bj ∩ ta either is empty or contains exactly one element. Graphically, a non-flat graph is
such that the closed curves defining the blocks of σ cannot join two vertices in the same
row (thus having a ‘flat’ or ‘horizontal’ portion). The diagrams in Fig. 1-3 are all flat,
whereas the diagram in Fig. 5 is non-flat. Another non-flat diagram is given in Fig. 6,
and is obtained by taking b = [7], π = {{1, 2, 3} , {4} , {5, 6, 7}} and σ = {{1, 4, 5} , {2, 7} ,
{3, 6}}.
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b b

b

b

b

b b

Figure 6: A non-flat diagram

Gaussian Diagrams. We say that the diagram Γ (π, σ) is Gaussian, whenever every block of
σ contains exactly two elements. Plainly, Gaussian diagrams exists only if there is an
even number of vertices. When a diagram is Gaussian, one usually represents the blocks
of σ not by closed curves, but by segments connecting two vertices (which are viewed
as the edges of the resulting graph). For instance, a Gaussian (non-flat and connected)
diagram is obtained in Fig. 7, where we have taken b = [6], π = {{1, 2, 3} , {4} , {5, 6}}
and σ = {{1, 4} , {2, 5} , {3, 6}}.

b b

b

b

b

b

Figure 7: A Gaussian diagram

In the terminology of graph theory, a Gaussian diagram is a non-connected (non-directed)
graph. Since every vertex is connected with exactly another vertex, one usually says that
such a graph is a perfect matching.

Circular (Gaussian) Diagrams. Consider two partitions π = {b1, ..., bk} and σ = {t1, ..., tl}
such that the blocks of σ have size |ta| = 2 for every a = 1, ..., l. Then, the diagram
Γ (π, σ) (which is Gaussian) is said to be circular if each row of Γ (π, σ) is linked to both
the previous and the next row, with no other possible links except for the first and the last
row, which should also be linked together. This implies that the diagram is connected.
Formally, the diagram Γ (π, σ) is circular (Gaussian) whenever the following properties
hold (recall that i ∼σ j means that i and j belong to the same block of σ): (i) for every
p = 2, ..., k − 1 there exist j1 ∼σ i1 and j2 ∼σ i2 such that j1, j2 ∈ bp, i1 ∈ bp−1 and
i2 ∈ bp+1, (ii) for every p = 2, ..., k−1 and every j ∈ bp, j ∼σ i implies that i ∈ bp−1∪ bp+1,
(iii) there exist j1 ∼σ i1 and j2 ∼σ i2 such that j1, j2 ∈ bk, i1 ∈ bk−1 and i2 ∈ b1, (iv) for
every j ∈ bk, j ∼σ i implies that i ∈ b1 ∪ bk−1 (v) there exist j1 ∼σ i1 and j2 ∼σ i2 such
that j1, j2 ∈ b1, i1 ∈ b2 and i2 ∈ bk, (vi) for every j ∈ b1, j ∼σ i implies that i ∈ bk ∪ b2.
For instance, a circular diagram is obtained by taking b = [10] and

π = {{1, 2} , {3, 4} , {5, 6} {7, 8} , {9, 10}}

σ = {{1, 3} , {2, 9} , {4, 6} , {5, 7} , {8, 10}} ,

which implies that Γ (π, σ) is the diagram in Fig. 8.
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Figure 8: A circular diagram

Another example of a circular diagram is given in Fig. 9. It is obtained from b = [12] and

π = {{1, 2, 3} , {4, 5} , {6, 7} , {8, 9} , {10, 11, 12}}

σ = {{1, 4} , {2, 11} , {3, 10} , {5, 7} , {6, 8} , {9, 12}} .

b

b

b

b

b

b

b

b

b

b

b

b

Figure 9: A circular diagram with rows of different size

Examples. (i) Thanks to the previous discussion, one can immediately reformulate Maly-
shev’s formula (3.6) as follows. For every finite set b and every σ = {b1, ..., bk} ∈ P (b),

χ
(
Xb1 , ...,Xbk

)
=

∑

τ={t1,...,ts}∈P(b)
Γ(σ,τ) is connected

χ (Xt1) · · · χ (Xts) . (4.17)

(ii) Suppose that the random variables X1,X2,X3 are such that E |Xi|
3 < ∞, i = 1, 2, 3.

We have already applied formula (4.17) in order to compute the cumulant χ (X1X2,X3). Here,
we shall give a graphical demonstration. Recall that, in this case, b = [3] = {1, 2, 3}, and that
the relevant partition is σ = {{1, 2} , {3}}. There are only three partitions τ1, τ2, τ3 ∈ P ([3])
such that Γ (σ, τ1) , Γ (σ, τ2) and Γ (σ, τ3) are connected, namely τ1 = 1̂, τ2 = {{1, 3} , {2}} and
τ3 = {{1} , {2, 3}}. The diagrams Γ (σ, τ1) , Γ (σ, τ2) and Γ (σ, τ3) are represented in Fig. 10.
Relation (4.17) thus implies that

χ (X1X2,X3) = χ (X1,X2,X3) + χ (X1,X3)χ (X2) + χ (X1)χ (X2,X3)

= χ (X1,X2,X3) + Cov (X1,X3) E (X3) + E (X1)Cov (X2,X3) ,

where we have used (3.15).
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b b

b

b b b b

b b

b

Figure 10: Computing cumulants by connected diagrams

4.2 Solving the equation σ ∧ π = 0̂

Let π be a partition of [n] = {1, ..., n}. One is often asked, as will be the case in Section 6.1, to
find all partitions σ ∈ P ([n]) such that

σ ∧ π = 0̂, (4.18)

where, as usual, 0̂ = {{1} , ..., {n}}, that is, 0̂ is the partition made up of singletons. The use
of diagrams provides an easy way to solve (4.18), since (4.18) holds if and only if the diagram
Γ (π, σ) is non-flat. Hence, proceed as in Section 4.1, by (1) ordering the blocks of π, (2)
associating with each block of π a row of the diagram, the number of points in a row being
equal to the number of elements in the block, and (3) drawing non-flat closed curves around the
points of the diagram.

Examples. (i) Let n = 2 and π = {{1} , {2}} = 0̂. Then, σ1 = π = 0̂ and σ2 = 1̂ (as
represented in Fig. 11) solve equation (4.18). Note that P ([2]) = {σ1, σ2}.

b

b

b

bb

Figure 11: Solving σ ∧ π = 0̂ in the simplest case

(ii) Let n = 3 and π = {{1, 2} , {3}}. Then, σ1 = 0̂, σ2 = {{1, 3} , {2}} and σ3 = {{1} , {2, 3}}
(see Fig. 12) are the only elements of P ([3]) solving (4.18).

b b

b

b b b b

b b

bb b

b

Figure 12: Solving σ ∧ π = 0̂ in a three-vertex diagram
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(iii) Let n = 4 and π = {{1, 2} , {3, 4}}. Then, there are exactly seven σ ∈ P ([4]) solving
(4.18). They are all represented in Fig. 13.

b b

b b

b b

b b

b b

b b

b b

b b

b b
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b

b
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bbb

bbb bbb bbb

Figure 13: The seven solutions of σ ∧ π = 0̂ in a four-vertex diagram

(iv) Let n = 4 and π = {{1, 2} , {3} , {4}}. Then, there are ten σ ∈ P ([4]) that are solutions
of (4.18). They are all represented in Fig. 14.
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Figure 14: The ten solutions of σ ∧ π = 0̂ in a three-row diagram

In what follows (see e.g. Theorem 7.1 below), we will sometimes be called to solve jointly the
equations σ∧π = 0̂ and σ∨π = 1̂, that is, given π, to find all diagrams Γ (π, σ) that are non-flat
(σ ∧ π = 0̂) and connected (σ ∨ π = 1̂). Having found, as before, all those that are non-flat,
one just has to choose among them those that are connected, that is, the diagrams whose rows
cannot be divided into two subset, each defining a separate diagram. These are: the second
diagram in Fig. 11, the last two in Fig. 12, the last six in Fig. 13, the sixth to ninth of Fig. 14.
Again as an example, observe that the second diagram in Fig. 14 is not connected: indeed, in
this case, π = {{1, 2} , {3} , {4}}, σ = {{1} , {2} , {3, 4}}, and π ∨ σ = {{1, 2} , {3, 4}} 6= 1̂.

4.3 From Gaussian diagrams to multigraphs

A multigraph is a graph in which (a) two vertices can be connected by more than one edge,
and (b) loops (that is, edges connecting one vertex to itself) are allowed. Such objects are
sometimes called “pseudographs”, but we will avoid this terminology. In what follows, we show
how a multigraph can be derived from a Gaussian diagram. This representation of Gaussian
diagrams can be used in the computation of moments and cumulants (see [25] or [51]).

Fix a set b and consider partitions π, σ ∈ P (b) such that Γ (π, σ) is Gaussian and π =
{b1, ..., bk}. Then, the multigraph Γ̂ (π, σ), with k vertices and |b| /2 edges, is obtained from
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Γ (π, σ) as follows.

1. Identify each row of Γ (π, σ) with a vertex of Γ̂ (π, σ), in such a way that the ith row of
Γ (π, σ) corresponds to the ith vertex vi of Γ̂ (π, σ).

2. Draw an edge linking vi and vj for every pair (x, y) such that x ∈ bi, y ∈ bj and x ∼σ y.

Examples. (i) The multigraph obtained from the diagram in Fig. 7 is given in Fig. 15.

b

b

b

Figure 15: A multigraph with three vertices

(ii) The multigraph associated with Fig. 8 is given in Fig. 16 (note that this graph has been
obtained from a circular diagram).

b

b

b

b

b

Figure 16: A multigraph built from a circular diagram

The following result is easily verified: it shows how the nature of a Gaussian diagram can be
deduced from its graph representation.

Proposition 4.1 Fix a finite set b, as well as a pair of partitions (π, σ) ⊆ P (b) such that the
diagram Γ (π, σ) is Gaussian and |π| = k. Then,

1. Γ (π, σ) is connected if and only if Γ̂ (π, σ) is a connected multigraph.

2. Γ (π, σ) is non-flat if and only if Γ̂ (π, σ) has no loops.

3. Γ (π, σ) is circular if and only if the vertices v1, ..., vk of Γ̂ (π, σ) are such that: (i) there
is an edge linking vi and vi+1 for every i = 1, ..., k − 1, and (ii) there is an edge linking vk

and v1.
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As an illustration, in Fig. 17 we present the picture of a flat and non-connected diagram (on
the left), whose graph (on the right) is non-connected and displays three loops.

b b

b b b

b b b

b

b

b

Figure 17: A non-connected flat diagram and its multigraph

This situation corresponds to the case b = [8],

π = {{1, 2} , {3, 4, 5} , {6, 7, 8}} , and

σ = {{1, 2} , {3, 4} , {5, 8} , {6, 7}} .

5 Completely random measures and Wiener-Itô stochastic in-

tegrals

We will now introduce the notion of a completely random measure on a measurable space
(Z,Z), as well as those of a stochastic measure of order n ≥ 2, a diagonal measure and a
multiple (stochastic) Wiener-Itô integral. All these concepts can be unified by means of the for-
malism introduced in Sections 2–4. We stress by now that the domain of the multiple stochastic
integrals defined in this section can be extended to more general (and possibly random) classes
of integrands. We refer the interested reader to the paper by Kallenberg ans Szulga [39], as well
as to the monographs by Kussmaul [42], Kwapień and Woyczyński [44, Ch. 10] and Linde [47],
for several results in this direction.

5.1 Completely random measures

Diagonals and subdiagonals play an important role in the context of multiple integrals. The
following definitions provide a convenient way to specify them. In what follows, we will denote
by (Z,Z) a Polish space, where Z is the associated Borel σ-field.

Definition 1 For every n ≥ 1, we write (Zn,Zn) = (Z⊗n,Z⊗n), with Z1 = Z. For every
partition π ∈ P ([n]) and every B ∈ Zn, we set

Zn
π , {(z1, ..., zn) ∈ Zn : zi = zj if and only if i ∼π j} and Bπ , B ∩ Zn

π . (5.1)

Recall that i ∼π j means that the elements i and j belong to the same block of the partition
π. Relation (5.1) states that the variables zi and zj should be equated if and only if i and j
belong to the same block of π.
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Examples. (i) Since 0̂ = {{1} , ..., {n}}, no two elements can belong to the same block, and
therefore B0̂ coincides with the collection of all vectors (z1, ..., zn) ∈ B such that zi 6= zj , ∀i 6= j.

(ii) Since 1̂ = {{1, ..., n}}, all elements belong to the same block and therefore

B1̂ = {(z1, ..., zn) ∈ B : z1 = z2 = ... = zn}.

A set such as B1̂ is said to be purely diagonal.
(iii) Suppose n = 3 and π = {{1} , {2, 3}}. Then, Bπ = {(z1, z2, z3) ∈ B : z2 = z3, z1 6= z2}.

The following decomposition lemma (whose proof is immediate and left to the reader) will
be used a number of times.

Lemma 5.1 For every set B ∈ Zn,

B = ∪σ∈P([n])Bσ = ∪σ≥0̂Bσ.

Moreover Bπ ∩Bσ = ∅ if π 6= σ.

One has also that

(A1 × · · · ×An)1̂ = ((∩n
i=1Ai) × · · · × (∩n

i=1Ai)︸ ︷︷ ︸)1̂
n times

; (5.2)

indeed, since all coordinates are equal in the LHS of (5.2), their common value must be contained
in the intersection of the sets.

Example. As an illustration of (5.2), let A1 = [0, 1] and A2 = [0, 2] be intervals in R1,
and draw the rectangle A1 × A2 ∈ R2. The set (A1 ×A2)1̂ (that is, the subset of A1 × A2

composed of vectors whose coordinates are equal) is therefore identical to the diagonal of the
square (A1 ∩A2)×(A1 ∩A2) = [0, 1]2. The set (A1 ×A2)1̂ can be visualized as the thick diagonal
segment in Fig. 18.

0 1 2
0

1

2

Figure 18: A diagonal set

We shall now define a “completely random measure” ϕ, often called an “independently
scattered random measure”. It has two characteristics: it is a measure and it takes values in
a space of random variables. It will be denoted with its arguments as ϕ (B,ω), where B is a
Borel set and ω is a point in the underlying sample space Ω. The “size” of ϕ will be controlled
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by a non-random, σ-finite and non-atomic measure ν, where ν (B) = Eϕ (B)2. The fact that ν
is non-atomic means that ν ({z}) = 0 for every z ∈ Z. The measure ϕ will be used to define
multiple integrals, where one integrates either over a whole subset of Zp, p ≥ 1, or over a subset
“without diagonals”. In the first case we will need to suppose E |ϕ (B)|p < ∞; in the second
case, one may suppose as little as Eϕ (B)2 < ∞. Since p ≥ 1 will be arbitrary, in order to deal
with the first case we shall suppose that E |ϕ (B)|p < ∞, ∀p ≥ 1, that is, ϕ ∈ ∩p≥1L

p (P). We
now present the formal definition of ϕ.

Definition 2 (1) Let ν be a positive, σ-finite and non-atomic measure on (Z,Z), and let

Zν = {B ∈ Z : ν (B) <∞}. (5.3)

A centered completely random measure (in ∩p≥1L
p (P)) on (Z,Z) with control measure

ν, is a function ϕ (·, ·), from Zν × Ω to R, such that

(i) For every fixed B ∈ Zν, the application ω 7→ ϕ (B,ω) is a random variable;

(ii) For every fixed B ∈ Zν, ϕ (B) ∈ ∩p≥1L
p (P);

(iii) For every fixed B ∈ Zν, E [ϕ (B)] = 0;

(iv) ϕ (∅) = 0;

(v) For every collection of disjoint elements of Zν , B1, ..., Bn, the variables ϕ (B1) ,..., ϕ (Bn)
are independent;

(vi) For every B,C ∈ Zν, E [ϕ (B)ϕ (C)] = ν (B ∩ C) .

(2) When ϕ (·) verifies the properties (i) and (iii)–(vi) above and ϕ (B) ∈ L2 (P), ∀B ∈ Zν

(so that it is not necessarily true that ϕ (B) ∈ Lp (P), p ≥ 3), we say that ϕ is a completely

random measure in L2 (P).

Two crucial remarks. (On additivity) (a) Let B1, ..., Bn, ... be a sequence of disjoint
elements of Zν , and let ϕ be a completely random measure on (Z,Z) with control ν. Then, for
every finite N ≥ 2, one has that ∪N

n=1Bn ∈ Zν , and, by using Properties (iii), (v) and (vi) in
Definition 2, one has that

E



(
ϕ
(
∪N

n=1Bi

)
−

N∑

n=1

ϕ (Bn)

)2

 = ν

(
∪N

n=1Bn

)
−

N∑

n=1

ν (Bn) = 0, (5.4)

because ν is a measure, and therefore it is finitely additive. Relation (5.4) implies in particular
that

ϕ
(
∪N

n=1Bn

)
=

N∑

n=1

ϕ (Bn) , a.s.-P. (5.5)
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Now suppose that ∪∞
n=1Bn ∈ Zν . Then, by (5.5) and again by virtue of Properties (iii), (v) and

(vi) in Definition 2,

E



(
ϕ (∪∞

n=1Bn) −
N∑

n=1

ϕ (Bn)

)2

 = E

[(
ϕ (∪∞

n=1Bn) − ϕ
(
∪N

n=1Bi

))2]

= ν
(
∪∞

n=N+1Bn

)
→

N→∞
0,

because ν is σ-additive. This entails in turn that

ϕ (∪∞
n=1Bn) =

∑∞
n=1 ϕ (Bn), a.s.-P, (5.6)

where the series on the RHS converges in L2 (P). Relation (5.6) simply means that the applica-
tion

Zν → L2 (P) : B 7→ ϕ (B) ,

is σ-additive, and therefore that every completely random measure is a σ-additive measure with
values in the Hilbert space L2 (P). See e.g. Engel [18], Kussmaul [42] or Linde [47] for further
discussions on vector-valued measures.

(b) In general, it is not true that, for a completely random measure ϕ and for a fixed ω ∈ Ω,
the application

Zν → R : B 7→ ϕ (B,ω)

is a σ-additive real-valued (signed) measure. The most remarkable example of this phenomenon
is given by Gaussian completely random measures. See the discussion below for more details on
this point.

Remark on notation. We consider the spaces (Z,Z) and (Zn,Zn) = (Z⊗n,Z⊗n). Do not
confuse the subset Zn

π in (5.1), where π denotes a partition, with the σ-field Zn
ν in (5.3), where

ν denotes a control measure.

Now fix a completely random measure ϕ. For every n ≥ 2 and every rectangle C = C1 × · ·
·×Cn, Cj ∈ Zν , we define ϕ[n] (C) , ϕ (C1)×· · ·×ϕ (Cn), so that the application C 7→ ϕ[n] (C)
defines a finitely additive application on the ring of rectangular sets contained in Zn, with
values in the set of σ (ϕ)-measurable random variables. In the next definition we focus on those
completely random measures such that the application ϕ[n] admits a unique infinitely additive
(and square-integrable) extension on Zn. Here, the infinite additivity is in the sense of the
L1 (P) convergence. Note that we write ϕ[n] to emphasize the dependence of ϕ[n] not only on n,
but also on the set [n] = {1, ..., n}, whose lattice of partitions will be considered later.

Definition 3 For n ≥ 2, we write Zn
ν = {C ∈ Zn : νn (C) < ∞}. A completely random

measure ϕ, verifying points (i)–(vi) of Definition 2, is said to be good if, for every fixed n ≥ 2,
there exists a (unique) collection of random variables ϕ[n] =

{
ϕ[n] (C) : C ∈ Zn

}
such that

(i)
{
ϕ[n] (C) : C ∈ Zn

ν

}
⊆ L2 (P) ;

(ii) For every rectangle C = C1 × · · · × Cn, Cj ∈ Zν,

ϕ[n] (C) = ϕ (C1) · · · ϕ (Cn) ; (5.7)
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(iii) ϕ[n] is a σ-additive random measure in the following sense: if C ∈ Zn
ν is such that C =

∪∞
j=1Cj, with the {Cj} disjoints, then

ϕ[n] (C) =

∞∑

j=1

ϕ[n] (Cj) , with convergence (at least) in L1 (P) . (5.8)

Note that, in the case n = 1, the σ-additivity of ϕ follows from point (vi) of Definition 2
and the σ-additivity of ν (through L2 convergence). In the case n ≥ 2, the assumption that the
measure ϕ is good implies σ-additivity in the sense of (5.8).

Remark. The notion of a “completely random measure” can be traced back to Kingman’s
seminal paper [40]. For further references on completely random measures, see also the two sur-
veys by Surgailis [122] and [123] (note that, in such references, completely random measures are
called “independently scattered measures”). The use of the term “good”, to indicate completely
random measures satisfying the requirements of Definition 3, is taken from Rota and Wallstrom
[106]. Existence of good measures is discussed in Engel [18] and Kwapień and Woyczyński [44,
Ch. 10]. For further generalizations of Engel’s results the reader is referred e.g. to [39] and
[107].

Examples. The following two examples of good completely random measures will play a
crucial role in the subsequent sections.

(i) A centered Gaussian random measure with control ν is a collection G = {G (B) : B ∈ Zν}
of jointly Gaussian random variables, centered and such that, for every B,C ∈ Zν , E [G (C)G (B)]
= ν (C ∩B). The family G is clearly a completely random measure. The fact that G is also
good is classic, and can be seen as a special case of the main results in [18].

(ii) A compensated Poisson measure with control ν is a completely random measure N̂ =

{N̂ (B) : B ∈ Zν}, as in Definition 2, such that, ∀B ∈ Zν , N̂ (B)
law
= N (B) − ν (B), where

N (B) is a Poisson random variable with parameter ν (B) = EN (B) = EN (B)2. The fact that
N̂ is also good derives once again from the main findings of [18]. A more direct proof of this last
fact can be obtained by observing that, for almost every ω, N̂ [n] (·, ω) must necessarily coincide
with the canonical product (signed) measure (on (Zn,Zn)) associated with the signed measure
on (Z,Z) given by N̂ (·, ω) = N (·, ω)− ν (·) (indeed, such a canonical product measure satisfies
necessarily (5.7)). Note that a direct proof of this type cannot be obtained in the Gaussian case.
Indeed, if G is a Gaussian measure as in Point (i), one has that, for almost every ω, the mapping
B 7→ G (B,ω) does not define a signed measure (see e.g. [36, Ch. 1]).

5.2 Single integrals and infinite divisibility

Let ϕ be a completely random measure in the sense of Definition 2, with control measure ν.
Our aim in this section is twofolds: (i) we shall define (single) Wiener-Itô integrals with respect
to ϕ, and (ii) we shall give a characterization of these integrals as infinitely divisible random
variables.

The fact that single Wiener-Itô integrals are infinitely divisible should not come as a surprise.
Indeed, observe that, since (Z,Z) is a Polish space and ν is non-atomic, the law of any random
variable of the type ϕ (B), B ∈ Zν , is infinitely divisible. Infinitely divisible laws are introduced
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in many textbooks, see e.g. Billingsley [7]. In particular, for every B ∈ Zν there exists a unique
pair

(
c2 (B) , αB

)
such that c2 (B) ∈ [0,∞) and αB is a measure on R satisfying

αB ({0}) = 0 and

∫

R

u2αB (du) <∞, (5.9)

and, for every λ ∈ R,

E [exp (iλϕ (B))] = exp

[
−
c2 (B)λ2

2
+

∫

R

(exp (iλu) − 1 − iλu)αB (du)

]
. (5.10)

The measure αB is called a Lévy measure, and the components of the pair (c2(B), αB) are called
the Lévy-Khintchine exponent characteristics associated with ϕ (B). Also, the exponent

−
c2 (B)λ2

2
+

∫

R

(exp (iλu) − 1 − iλu)αB (du)

is known as the Lévy-Khintchine exponent associated with ϕ (B). Plainly, if ϕ is Gaussian, then
αB = 0 for every B ∈ Zν (the reader is referred e.g. to [110] for an exhaustive discussion of
infinitely divisible laws).

We now establish the existence of single Wiener-Itô integrals with respect to a completely
random measure ϕ.

Proposition 5.1 Let ϕ be a completely random measure in L2 (P), with σ-finite control measure
ν. Then, there exists a unique continuous linear operator h 7→ ϕ (h), from L2 (ν) into L2 (P),
such that

ϕ (h) =

m∑

j=1

cjϕ (Bj) (5.11)

for every elementary function of the type

h (z) =
m∑

j=1

cj1Bj (z) , (5.12)

where cj ∈ R and the sets Bj are in Zν and disjoint.

Proof. In what follows, we call simple kernel a kernel h as in (5.12). For every simple kernel
h, set ϕ (h) to be equal to (5.11). Then, by using Properties (iii), (v) and (vi) in Definition 2,
one has that, for every pair of simple kernels h, h′,

E
[
ϕ (h)ϕ

(
h′
)]

=

∫

Z
h (z)h′ (z) ν (dz) . (5.13)

Since simple kernels are dense in L2 (ν), the proof is completed by the following (standard)
approximation argument. If h ∈ L2(ν) and {hn} is a sequence of simple kernels converging to
h, then (5.13) implies that {ϕ(hn)} is a Cauchy sequence in L2(P), and one defines ϕ(h) to be
the L2(P) limit of ϕ(hn). One easily verifies that the definition of ϕ(h) does not depend on the
chosen approximating sequence {hn}. The application h 7→ ϕ(h) is therefore well-defined, and
(by virtue of (5.13)) it is an isomorphism from L2 (ν) into L2 (P).
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The random variable ϕ (h) is usually written as
∫

Z
h (z)ϕ (dz) ,

∫

Z
hdϕ or Iϕ

1 (h) , (5.14)

and it is called the Wiener-Itô stochastic integral of h with respect to ϕ. By inspection of the
previous proof, one sees that Wiener-Itô integrals verify the isometric relation

E [ϕ (h)ϕ (g)] =
∫
Z h (z) g (z) ν (dz) = (g, h)L2(ν) , ∀g, h ∈ L2 (ν) . (5.15)

Observe also that Eϕ (h) = 0. If B ∈ Zν , we write interchangeably ϕ (B) or ϕ (1B) (the two

objects coincide, thanks to (5.11)). For every h ∈ L2 (ν), the law of the random variable ϕ (h)
is also infinitely divisible. The following result provides a description of the Lévy-Khintchine
exponent of ϕ (h). The proof is taken from [88] and uses arguments and techniques developed
in [103] (see also [43, Section 5]). Following the proof, we present an interpretation of the result.

Proposition 5.2 For every B ∈ Zν, let
(
c2 (B) , αB

)
denote the pair such that c2 (B) ∈ [0,∞),

αB verifies (5.9) and

E [exp (iλϕ (B))] = exp

[
−
c2 (B)λ2

2
+

∫

R

(exp (iλx) − 1 − iλx)αB (dx)

]
. (5.16)

Then, the following holds

1. The application B 7→ c2 (B), from Zν to [0,∞), extends to a unique σ-finite measure
c2 (dz) on (Z,Z), such that c2 (dz) ≪ ν (dz) .

2. There exists a unique measure α on (Z × R,Z × B (R)) such that α (B × C) = αB (C),
for every B ∈ Zν and C ∈ B (R).

3. There exists a function ρν : Z × B (R) 7→ [0,∞] such that (i) for every z ∈ Z, ρν (z, ·) is
a Lévy measure1 on (R,B (R)) satisfying

∫
Z x

2ρν (z, dx) < ∞, (ii) for every C ∈ B (R),
ρν (·, C) is a Borel measurable function, (iii) for every positive function g (z, x) ∈ Z⊗B (R),

∫

Z

∫

R

g (z, x) ρν (z, dx) ν (dz) =

∫

Z

∫

R

g (z, x)α (dz, dx) . (5.17)

4. For every (λ, z) ∈ R × Z, define

Kν (λ, z) = −
λ2

2
σ2

ν (z) +

∫

R

(
eiλx − 1 − iλx

)
ρν (z, dx) , (5.18)

where σ2
ν (z) = dc2

dν (z); then, for every h ∈ L2 (ν),
∫
Z |Kν (λh (z) , z)| ν (dz) <∞ and

E [exp (iλϕ (h))] (5.19)

= exp

[∫

Z
Kν (λh (z) , z) ν (dz)

]

= exp

[
−
λ2

2

∫

Z
h2 (z) σ2

ν (z) ν (dz) +

∫

Z

∫

R

(
eiλh(z)x − 1 − iλh (z) x

)
ρν (z, dx) ν (dz)

]
.

1That is, ρν (z, {0}) = 0 and
∫

R
min

(
1, x2

)
ρν (z, dx) < ∞.
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Proof. The proof follows from results contained in [103, Section II]. Point 1 is indeed a
direct consequence of [103, Proposition 2.1 (a)]. In particular, whenever B ∈ Z is such that
ν (B) = 0, then E[ϕ (B)2] = 0 (due to Point (vi) of Definition 2) and therefore c2 (B) = 0, thus
implying c2 ≪ ν. Point 2 follows from the first part of the statement of [103, Lemma 2.3]. To
establish Point 3 define, as in [103, p. 456],

γ (B) = c2 (B) +

∫

R

min
(
1, x2

)
αB (dx) = c2 (B) +

∫

R

min
(
1, x2

)
α (B, dx) ,

whenever B ∈ Zν , and observe (see [103, Definition 2.2]) that γ (·) can be canonically extended
to a σ-finite and positive measure on (Z,Z). Moreover, since ν (B) = 0 implies ϕ (B) = 0
a.s.-P, the uniqueness of the Lévy-Khinchine characteristics implies as before γ (B) = 0, and
therefore γ (dz) ≪ ν (dz). Observe also that, by standard arguments, one can select a version of
the density (dγ/dν) (z) such that (dγ/dν) (z) < ∞ for every z ∈ Z. According to [103, Lemma
2.3], there exists a function ρ : Z × B (R) 7→ [0,∞], such that: (a) ρ (z, ·) is a Lévy measure on
B (R) for every z ∈ Z, (b) ρ (·, C) is a Borel measurable function for every C ∈ B (R), (c) for
every positive function g (z, x) ∈ Z ⊗ B (R),

∫

Z

∫

R

g (z, x) ρ (z, dx) γ (dz) =

∫

Z

∫

R

g (z, x)α (dz, dx) . (5.20)

In particular, by using (5.20) in the case g (z, x) = 1A (z)x2 for A ∈ Zµ,
∫

A

∫

R

x2ρ (z, dx) γ (dz) =

∫

R

x2αA (dx) <∞,

since ϕ (A) ∈ L2 (P), and we deduce that ρ can be chosen in such a way that, for every z ∈ Z,∫
R
x2ρ (z, dx) <∞. Now define, for every z ∈ Z and C ∈ B (R),

ρν (z,C) =
dγ

dν
(z) ρ (z,C) ,

and observe that, due to the previous discussion, the application ρν : Z×B (R) 7→ [0,∞] trivially
satisfies properties (i)-(iii) in the statement of Point 3, which is therefore proved. To prove Point
4, first define (as before) a function h ∈ L2 (ν) to be simple if h (z) =

∑n
i=1 ai1Ai (z), where

ai ∈ R, and (A1, ..., An) is a finite collection of disjoint elements of Zν . Of course, the class
of simple functions (which is a linear space) is dense in L2 (ν), and therefore for every L2 (ν)
there exists a sequence hn, n ≥ 1, of simple functions such that

∫
Z (hn (z) − h (z))2 ν (dz) → 0.

As a consequence, since ν is σ-finite there exists a subsequence nk such that hnk
(z) → h (z)

for ν-a.e. z ∈ Z (and therefore for γ-a.e. z ∈ Z) and moreover, for every A ∈ Z, the random
sequence ϕ (1Ahn) is a Cauchy sequence in L2 (P), and hence it converges in probability. In the
terminology of [103, p. 460], this implies that every h ∈ L2 (ν) is ϕ-integrable, and that, for
every A ∈ Z, the random variable ϕ (h1A), defined according to Proposition 5.1, coincides with∫
A h (z)ϕ (dz), i.e. the integral of h with respect to the restriction of ϕ (·) to A, as defined in

[103, p. 460]. As a consequence, by using a slight modification of [103, Proposition 2.6]2, the
function K0 on R × Z given by

K0 (λ, z) = −
λ2

2
σ2

0 (z) +

∫

R

(
eiλx − 1 − iλx

)
ρ (z, dx) ,

2The difference lies in the choice of the truncation.
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where σ2
0 (z) =

(
dc2/dγ

)
(z), is such that

∫
Z |K0 (λh (z) , z)| γ (dz) < ∞ for every h ∈ L2 (ν),

and also

E [exp (iλϕ (h))] =

∫

Z
K0 (λh (z) , z) γ (dz) .

The fact that, by definition, Kν in (5.18) verifies

Kν (λh (z) , z) = K0 (λh (z) , z)
dγ

dν
(z) , ∀z ∈ Z, ∀h ∈ L2 (ν) , ∀λ ∈ R,

yields (5.19).

Interpretation of Proposition 5.2. Let B be a given set in Zν . The characteristic
function of the random variable ϕ(B) or ϕ(1B) involves the Lévy characteristic (c2(B), αB),
where c2(B) is a non-negative constant and αB(dx) is a Lévy measure on R. We want now
to view B ∈ Zν as a “variable” and thus to extend c2(B) to a measure c2(dz) on (Z,Z), and
αB(dx) to a measure α(dz, dx) on Z ⊗ B(R). Consider first αB. According to Proposition 5.2,
it is possible to extend it to a measure α(dz, dx) on Z ⊗ B(R), which can be expressed as

α(dz, dx) = ρν(z, dx)ν(dz), (5.21)

where ρν is a function on Z×R, with the property that ρν(z, ·) is a Lévy measure for every z ∈ Z.
In view of (5.21), the measure α(dz, dx) is thus obtained as a “mixture” of the Lévy measures
ρν(z, ·) over the variable z, using the control measure ν as a mixing measure. A similar approach
is applied to the Gaussian part of the exponent in (5.16), involving c2(B). The coefficient c2(B)
can be extended to a measure c2(dz), and this measure can be moreover expressed as

c2(dz) = σ2
ν(z)ν(dz), (5.22)

where σ2
ν is the density of c2 with respect to ν. This allows the to represent the character-

istic function of the Wiener-Itô integral ϕ(h) as in (5.19). In that expression, the function
h(z) appears explicitly in the Lévy-Khinchine exponent as a factor to the argument λ of the
characteristic function.

Examples. (i) If ϕ = G is a centered Gaussian measure with control measure ν, then α = 0
and c2 = ν (therefore σ2

ν = 1) and, for h ∈ L2 (ν),

E [exp (iλG (h))] = exp

[
−
λ2

2

∫

Z
h2 (z) ν (dz)

]
.

(ii) If ϕ = N̂ is a compensated Poisson measure with control measure ν, then c2 (·) = 0
and ρν (z, dx) = δ1 (dx) for all z ∈ Z, where δ1 is the Dirac mass at x = 1. It follows that, for
h ∈ L2 (ν),

E
[
exp

(
iλN̂ (h)

)]
=

∫

Z

(
eiλh(z) − 1 − iλh (z)

)
ν (dz) .

(iii) Let (Z,Z) be a measurable space, and let N̂ be a centered Poisson random measure on
R×Z (endowed with the usual product σ-field) with σ-finite control measure ν (du, dz). Define
the measure µ on (Z,Z) by

µ (B) =

∫

R

∫

Z
u21B (z) ν (du, dz) .
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Then, by setting kB (u, z) = u1B (z), the mapping

B 7→ ϕ (B) =

∫

R

∫

Z
kB (u, z) N̂ (du, dz) =

∫

R

∫

Z
u1B (z) N̂ (du, dz) , (5.23)

where B ∈ Zµ = {B ∈ Z : µ (B) <∞}, is a completely random measure on (Z,Z), with control
measure µ. In particular, by setting kB (u, z) = u1B (z), one has that

E [exp (iλϕ (B))] = E
[
exp

(
iλN̂ (kB)

)]

= exp

[∫

R

∫

Z

(
eiλkB(u,z) − 1 − iλkB (u, z)

)
ν (du, dz)

]

= exp

[∫

R

∫

Z

(
eiλu1B(z) − 1 − iλu1B (z)

)
ν (du, dz)

]

= exp

[∫

R

∫

Z

(
eiλu − 1 − iλu

)
1B (z) ν (du, dz)

]

= exp

[∫

R

(
eiλu − 1 − iλu

)
αB (du)

]
, (5.24)

where αB (du) =
∫
Z 1B (z) ν (du, dz) (compare with (5.10)).

(iv) Keep the framework of Point (iii). When the measure ν is a product measure of the type
ν (du, dx) = ρ (du) β (dx), where β is σ-finite and ρ (du) verifies ρ ({0}) = 0 and

∫
R
u2ρ (du) <∞

(and therefore αB (du) = β (B) ρ (du)), one says that the completely random measure ϕ in (5.23)
is homogeneous (see e.g. [85]). In particular, for a homogeneous measure ϕ, relation (5.24) gives

E [exp (iλϕ (B))] = exp

[
β (B)

∫

R

(
eiλu − 1 − iλu

)
ρ (du)

]
. (5.25)

(v) From (5.25) and the classic results on infinitely divisible random variables (see e.g. [110]),
one deduces that a centered and square-integrable random variable Y is infinitely divisible if
and only if the following holds: there exists a homogeneous completely random measure ϕ on
some space (Z,Z), as well as an independent centered standard Gaussian random variable G,
such that

Y
law
= aG+ ϕ (B) , for some a ≥ 0 and B ∈ Z.

(vi) Let the framework and notation of the previous Point (iii) prevail, and assume moreover
that: (1) (Z,Z) = ([0,∞),B ([0,∞))), and (2) ν (du, dx) = ρ (du) dx, where dx stands for the
restriction of the Lebesgue measure on [0,∞), and ρ verifies ρ ({0}) = 0 and

∫
R
u2ρ (du) < ∞.

Then, the process

t 7→ ϕ ([0, t]) =

∫

R

∫

[0,t]
uN̂ (du, dz) , t ≥ 0, (5.26)

is a centered and square-integrable Lévy process (with no Gaussian component) started from
zero: in particular, the stochastic process t 7→ ϕ ([0, t]) has independent and stationary incre-
ments.

(vii) Conversely, every centered and square-integrable Lévy process Zt with no Gaussian

component is such that Zt
law
= ϕ ([0, t]) (in the sense of stochastic processes) for some ϕ ([0, t])

defined as in (5.26). To see this, just use the fact that, for every t,

E [exp (iλZt)] = exp

[
t

∫

R

(
eiλu − 1 − iλu

)
ρ (du)

]
,
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where the Lévy measure verifies ρ ({0}) = 0 and
∫

R
u2ρ (du) < ∞, and observe that this last

relation implies that ϕ([0, t]) and Zt have the same finite-dimensional distributions. This fact
is the starting point of the paper by Farras et al. [19], concerning Hu-Meyer formulae for Lévy
processes.

Remark. Let (Z,Z) be a measurable space. Point 4 in Proposition 5.2 implies that every
centered completely random measure ϕ on (Z,Z) has the same law as a random mapping of the
type

B 7→ G (B) +

∫

R

∫

Z
u1B (z) N̂ (du, dz) ,

where G and N̂ are, respectively, a Gaussian measure on Z and an independent compensated
Poisson measure on R × Z.

Examples. (i) (Gamma random measures) Let (Z,Z) be a measurable space, and let N̂ be
a centered Poisson random measure on R×Z with σ-finite control measure

ν (du, dz) =
exp (−u)

u
1u>0duβ (dz) ,

where β (dz) is a σ-finite measure on (Z,Z). Now define the completely random measure ϕ
according to (5.23). By using (5.24) and the fact that

αB (du) = β (B)
exp (−u)

u
1u>0du,

one infers that, for every B ∈ Z such that β (B) <∞ and every real λ,

E [exp (iλϕ (B))] = exp

[
β (B)

∫ ∞

0

(
eiλu − 1 − iλu

) exp (−u)

u
du

]

= exp

[
β (B)

∫ ∞

0

(
eiλu − 1

) exp (−u)

u
du

]
exp (−iλβ (B))

=
1

(1 − iλ)β(B)
exp (−iλβ (B)) ,

thus yielding that ϕ (B) is a centered Gamma random variable, with unitary scale parameter
and shape parameter β (B). The completely random measure ϕ (B) has control measure β, and
it is called a (centered) Gamma random measure. Note that ϕ (B)+β (B) > 0, a.s.-P, whenever
0 < β (B) < ∞. See e.g. [27, 28, 35, 125], and the references therein, for recent results on
(non-centered) Gamma random measures.

(ii) (Dirichlet processes) Let the notation and assumptions of the previous example prevail,
and assume that 0 < β (Z) <∞ (that is, β is non-zero and finite). Then, ϕ (Z)+β (Z) > 0 and
the mapping

B 7−→
ϕ (B) + β (B)

ϕ (Z) + β (Z)
(5.27)

defines a random probability measure on (Z,Z), known as Dirichlet process with parameter β.
Since the groundbreaking paper by Ferguson [21], Dirichlet processes play a fundamental role
in Bayesian non-parametric statistics: see e.g. [34, 58] and the references therein. Note that
(5.27) does not define a completely random measure (the independence over disjoint sets fails):
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however, as shown in [84], one can develop a theory of (multiple) stochastic integration with
respect to general Dirichlet processes, by using some appropriate approximations in terms of
orthogonal U -statistics. See [97] for a state of the art overview of Dirichlet processes in modern
probability.

5.3 Multiple stochastic integrals of elementary functions

We now fix a good completely random measure ϕ, in the sense of Definition 3 of Section 5.1,

and consider what happens when ϕ[n] is applied not to C ∈ Zn
ν but to its restriction Cπ, where

π is a partition of [n] = {1, ..., n}. The set Cπ is defined according to (5.1). We shall also apply
ϕ[n] to the union ∪σ≥πCσ.3 It will be convenient to express the result in terms of C, and thus to
view ϕ[n] (Cπ), for example, not as the map ϕ[n] applied to Cπ, but as a suitably restricted map

applied to C. This restricted map will be denoted St
ϕ,[n]
π , where “St” stands for “Stochastic”.

In this way, the restriction is embodied in the map, that is, the measure, rather than in the set.
Thus, fix a good completely random measure ϕ, as well as an integer n ≥ 2.

Definition 4 For every π ∈ P ([n]), we define the two random measures:4

St
ϕ,[n]
π (C) , ϕ[n] (Cπ) , C ∈ Zn

ν , (5.28)

and

St
ϕ,[n]
≥π (C) , ϕ[n] (∪σ≥πCσ) =

∑
σ≥π St

ϕ,[n]
σ (C) , C ∈ Zn

ν , (5.29)

that are the restrictions of ϕ[n], respectively to the sets Zn
π and ∪σ≥πZ

n
σ .

In particular, one has the following relations:

• St
ϕ,[n]

≥0̂
= ϕ[n], because the subscript “ ≥ 0̂ ” involves no restriction. Hence, St

ϕ,[n]

≥0̂
charges

the whole space, and therefore coincides with ϕ[n] (see also Lemma 5.1);

• St
ϕ,[n]

0̂
does not charge diagonals;

• St
ϕ,[n]

1̂
charges only the full diagonal set Zn

1̂
;

• for every σ ∈ P ([n]) and every C ∈ Zn
ν , St

ϕ,[n]
≥σ (C) = St

ϕ,[n]

≥0̂
(C ∩ Zn

σ ).

We also set
St

ϕ,[1]

1̂
(C) = St

ϕ,[1]

0̂
(C) = ϕ (C) , C ∈ Zν . (5.30)

Observe that (5.30) is consistent with the trivial fact that the class P ([1]) contains uniquely the
trivial partition {{1}}, so that, in this case, 1̂ = 0̂ = {{1}}.

3From here, and for the rest of the paper (for instance, in formula (5.29)), the expressions “σ ≥ π” and “π ≤ σ”
are used interchangeably.

4Here, we use a slight variation of the notation introduced by Rota and Wallstrom in [106]. In particular, Rota

and Wallstrom write St
[n]
π and ϕ

[n]
π , respectively, instead of St

ϕ,[n]
π and St

ϕ,[n]
≥π .
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We now define the class E (νn) of elementary functions on Zn. This is the collection of all
functions of the type

f (zn) =

m∑

j=1

kj1Cj (zn) , (5.31)

where kj ∈ R and every Cj ∈ Zn
ν has the form Cj = C1

j × · · · × Cn
j , Cℓ

j ∈ Zν (ℓ = 1, ..., n). For
every f ∈ E (νn) as above, we set

Stϕ,[n]
π (f) =

∫

Zn

fdStϕ,[n]
π =

m∑

j=1

kjStϕ,[n]
π (Cj) (5.32)

St
ϕ,[n]
≥π (f) =

∫

Zn

fdSt
ϕ,[n]
≥π =

m∑

j=1

kjSt
ϕ,[n]
≥π (Cj) , (5.33)

and we say that St
ϕ,[n]
π (f) (resp. St

ϕ,[n]
≥π (f)) is the stochastic integral of f with respect to St

ϕ,[n]
π

(resp. St
ϕ,[n]
≥π (f)). For C ∈ Zn

ν , we write interchangeably St
ϕ,[n]
π (C) and St

ϕ,[n]
π (1C) (resp.

St
ϕ,[n]
≥π (C) and St

ϕ,[n]
≥π (1C)). Note that (5.29) yields the relation

St
ϕ,[n]
≥π (f) =

∑

σ≥π

Stϕ,[n]
σ (f) .

We can therefore apply the Möbius formula (2.11) in order to deduce the inverse relation

Stϕ,[n]
π (f) =

∑

σ≥π

µ (π, σ) St
ϕ,[n]
≥σ (f) , (5.34)

(see also [106, Proposition 1]).

Remarks. (i) The random variables St
ϕ,[n]
π (f) and St

ϕ,[n]
≥π (f) are elements of L2 (P) for

every f ∈ E (νn). While here f is an elementary function, it is neither supposed that f is
symmetric nor that it vanishes on the diagonals.

(ii) Because f is elementary, the moments and cumulants of the integrals (5.32) and (5.33)
are always defined. They will be computed later via diagram formulae.

5.4 Wiener-Itô stochastic integrals

We consider the extension of the integrals St
ϕ,[n]
π (f) to non-elementary functions f in the case

π = 0̂ = {{1} , ..., {n}} . In view of (5.1) and (5.28), the random measure St
ϕ,[n]

0̂
does not charge

diagonals (see Definition 1, as well as the subsequent examples).
We start with a heuristic presentation. While relation (5.14) involves a simple integral over

Z, our goal here is to define integrals over Zn with respect to St
ϕ,[n]

0̂
, that is, multiple integrals

of functions f : Zn 7→ R, of the form

Iϕ
n (f) =

∫

Zn
0̂

f (z1, ..., zn)ϕ (dz1) · · · ϕ (dzn) .

Since the integration is over Zn
0̂

we are excluding diagonals, that is, we are asking that the
support of the integrator is restricted to the set of those (z1, ..., zn) such that zi 6= zj for every
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i 6= j, 1 ≤ i, j ≤ n. To define the multiple integral, we approximate the restriction of f to
Z0̂ by special elementary functions, namely by finite linear combinations of indicator functions
1C1×···×Cn , where the Cj ’s are disjoint sets in Zν . This will allow us to define the extension by
using isometry, that is, relations of the type

E
[
Iϕ
n (f)2

]
= n!

∫

Zn

f (z1, ..., zn)2 ν (dx1) · · · ν (dxn)

= n!

∫

Zn
0̂

f (z1, ..., zn)2 ν (dx1) · · · ν (dxn) . (5.35)

Note that the equality (5.35) is due to the fact that the control measure ν is non-atomic, and
therefore the associated product measure never charges diagonals. It is enough, moreover, to
suppose that f is symmetric, because if

f̃ (z1, ..., zn) =
1

n!

∑

w∈Sn

f
(
zw(1), ..., zw(n)

)
(5.36)

is the canonical symmetrization of f (Sn is the group of permutations of [n]), then

Iϕ
n (f) = Iϕ

n (f̃). (5.37)

This last equality is just a “stochastic equivalent” of the well known fact that integrals with
respect to deterministic symmetric measures are invariant with respect to symmetrizations of
the integrands. Indeed, an intuitive explanation of (5.37) can be obtained by writing

Iϕ
n (f) =

∫

Zn

f
[
1Z0̂

dϕ[n]
]

and by observing that the set Z0̂ is symmetric5, so that Iϕ
n (f) appears as an integral with respect

to the symmetric stochastic measure 1Z0̂
dϕ[n].

From now on, we will denote by Zn
s,ν = Zn

s (the dependence on ν is dropped, whenever there
is no risk of confusion) the symmetric σ-field generated by the elements of Zn

ν of the type

C̃ =
⋃

w∈Sn

Cw(1) × Cw(2) × · · · ×Cw(n), (5.38)

where {Cj : j = 1, ..., n} ⊂ Zν are pairwise disjoint and Sn is the group of the permutations of
[n].

Remark. One can easily show that Zn
s is the σ-field generated by the symmetric functions

on Zn that are square-integrable with respect to νn, vanishing on every set Zn
π such that π 6= 0̂,

that is, on all diagonals of Zn of the type zi1 = · · · = zij , 1 ≤ i1 ≤ · · · ≤ ij ≤ n.

By specializing (5.28)-(5.33) to the case π = 0̂, we obtain an intrinsic characterization of
Wiener-Itô multiple stochastic integrals, as well as of the concept of stochastic measure of order
n ≥ 2. The key is the following result, proved in [106, p. 1268].

5That is: (z1, ..., zn) ∈ Zn
0̂

implies that (zw(1), ..., zw(n)) ∈ Zn
0̂

for every w ∈ Sn
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Proposition 5.3 Let ϕ be a good completely random measure.
(A) For every f ∈ E (νn),

St
ϕ,[n]

0̂
(f) = St

ϕ,[n]

0̂

(
f̃
)
,

where f̃ is given in (5.36). In other words, the measure St
ϕ,[n]

0̂
is symmetric.

(B) The collection
{

St
ϕ,[n]

0̂
(C) : C ∈ Zn

ν

}
is the unique symmetric random measure on Zn

ν

verifying the two properties: (i) St
ϕ,[n]

0̂
(C) = 0 for every C ∈ Zn

ν such that C ⊂ Zn
π for some

π 6= 0̂, and (ii)

St
ϕ,[n]

0̂

(
C̃
)

= St
ϕ,[n]

0̂

(
1C̃

)
= n!ϕ (C1) × ϕ (C2) × · · · × ϕ (Cn) , (5.39)

for every set C̃ as in (5.38).

Remark. Note that St
ϕ,[n]

0̂
is defined on the σ-field Zn

ν , which also contains non-symmetric

sets. The measure St
ϕ,[n]

0̂
is “symmetric” in the sense that, for every set C ∈ Zn

ν , the following

equality holds: St
ϕ,[n]

0̂
(C) = St

ϕ,[n]

0̂
(Cw), a.s.-P, where w is a permutation of the set [n] and

Cw =
{
(z1, ..., zn) ∈ Zn :

(
zw(1), ..., zw(n)

)
∈ C

}
.

We denote by L2
s (νn) the Hilbert space of symmetric and square integrable functions on

Zn (with respect to νn). We also write Es,0 (νn) to indicate the subset of L2
s (νn) composed of

elementary functions vanishing on diagonals, that is, the functions of the type f =
∑m

j=1 kj1C̃j
,

where kj ∈ R and every C̃j ⊂ Zn
0̂

has the form (5.38). The index 0 in Es,0 (νn) refers to the
fact that it is a set of functions which equals 0 on the diagonals. Since ν is non-atomic, and νn

does not charge diagonals, one easily deduces that Es,0 (νn) is dense in L2
s (νn). Moreover, the

relation (5.39) implies that, ∀n,m ≥ 2,

E
[
St

ϕ,[m]

0̂
(f) St

ϕ,[n]

0̂
(g)
]

= δn,m × n!

∫

Zn

f (zn) g (zn) νn (dzn) , (5.40)

∀f ∈ Es,0 (νm) and ∀g ∈ Es,0 (νn), where δn,m = 1 if n = m, and = 0 otherwise. This immediately

yields that, for every n ≥ 2, the linear operator f 7→ St
ϕ,[n]

0̂
(f), from Es,0 (νn) into L2 (P), can

be uniquely extendend to a continuous operator from L2
s (νn) into L2 (P). It is clear that these

extensions also enjoy the orthogonality and isometry properties given by (5.40).

Definition 5 For every f ∈ L2
s (νn), the random variable St

ϕ,[n]

0̂
(f) is the multiple stochastic

Wiener-Itô integral (of order n) of f with respect to ϕ. We also use the classic notation

St
ϕ,[n]

0̂
(f) = Iϕ

n (f) , f ∈ L2
s (νn). (5.41)

Note that

E [Iϕ
m (f) Iϕ

n (g)] = δn,m × n!

∫

Zn

f (zn) g (zn) νn (dzn) , (5.42)
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∀f ∈ L2
s (νm) and ∀g ∈ L2

s (νn). For n ≥ 2, the random measure
{
St

ϕ,[n]

0̂
(C) : C ∈ Zn

ν

}
is called

the stochastic measure of order n associated with ϕ. When f ∈ L2 (νn) (not necessarily
symmetric), we set

Iϕ
n (f) = Iϕ

n (f̃), (5.43)

where f̃ is the symmetrization of f given by (5.36).

We have supposed so far that ϕ (C) ∈ Lp (P), p ≥ 3, for every C ∈ Zν (see Definition 2).
We shall now suppose that ϕ (C) ∈ L2 (P), C ∈ Zν . In this case, the notion of “good measure”
introduced in Definition 3 and Proposition 5.3 do not apply since, in this case, ϕ[n] may not
exist. Indeed, consider (5.7) for example with C1 = ... = Cn ∈ Zν . Then, the quantity

E
∣∣∣ϕ[n] (C)

∣∣∣
2

= E |ϕ (C1)|
2n

may be infinite (see also [18]). It follows that, for n ≥ 2, the multiple Wiener-Itô integral cannot
be defined as a multiple integral with respect to the restriction to Zn

0̂
of the “full stochastic

measure” ϕ[n]. Nontheless, one can always do as follows.

Definition 6 Let ϕ be a completely random measure in L2 (P) (and not necessarily in Lp (P),
p ≥ 3), with non-atomic control measure ν. For n ≥ 2, let

Iϕ
n (f) = n!

m∑

k=1

γk ×
{
ϕ
(
C

(k)
1

)
ϕ
(
C

(k)
2

)
· · · ϕ

(
C(k)

n

)}
, (5.44)

for every simple function f ∈
∑p

k=1 γk1C̃(k) ∈ Es,0 (νn), where every C̃(k) is as in (5.38). It
is easily seen that the integrals Iϕ

n (f) defined in (5.44) still verify the L2 (P) isometry property
(5.42). Since the sets of the type C̃ generate Zn

s , and ν is non-atomic, the operator Iϕ
n (·) can be

extended to a continuous linear operator from L2
s (νn) into L2 (P), such that (5.42) is verified.

When f ∈ L2 (νn) (not necessarily symmetric), we set

Iϕ
n (f) = Iϕ

n (f̃),

where f̃ is given by (5.36).

Remark. Of course, if ϕ ∈ ∩p≥1L
p (P) (for example, when ϕ is a Gaussian measure or a

compensated Poisson measure), then the definition of Iϕ
n obtained from (5.44) coincides with

the one given in (5.41).

5.5 Integral notation

The following “integral notation” is somewhat cumbersome but quite suggestive: for every n ≥ 2,
every σ ∈ P ([n]) and every elementary function f ∈ E (νn),

St
ϕ,[n]
σ (f) =

∫
Zn

σ
f (z1, ..., zn)ϕ (dz1) · · · ϕ (dzn),
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and

St
ϕ,[n]
≥π (f) =

∫
∪σ≥πZn

σ
f (z1, ..., zn)ϕ (dz1) · · · ϕ (dzn) .

For instance:

• if n = 2, f (z1, z2) = f1 (z1) f2 (z2) and σ = 0̂ = {{1} , {2}}, then

I2 (f) = Stϕ,[2]
σ (f) =

∫

z1 6=z2

f1 (z1) f2 (z2)ϕ (dz1)ϕ (dz2) ;

• if n = 2, f (z1, z2) = f1 (z1) f2 (z2) and σ = 1̂ = {1, 2}, then

St
ϕ,[2]

1̂
(f) =

∫

z1=z2

f1 (z1) f2 (z2)ϕ (dz1)ϕ (dz2) ;

• if n = 2,

St
ϕ,[2]

≥0̂
(f) = St

ϕ,[2]
{{1},{2}} (f) + St

ϕ,[2]
{{1,2}} (f)

=

∫

z1 6=z2

f (z1, z2)ϕ (dz1)ϕ (dz2) +

∫

z1=z2

f (z1, z2)ϕ (dz1)ϕ (dz2)

=

∫

Z2

f (z1, z2)ϕ (dz1)ϕ (dz2) .

• if n = 3, f (z1, z2, z3) = f1 (z1, z2) f2 (z3) and σ = {{1, 2} , {3}}, then

Stϕ,[3]
σ (f) =

∫

z3 6=z1
z1=z2

f1 (z1, z2) f2 (z3)ϕ (dz1)ϕ (dz2)ϕ (dz3) ;

• if n = 3 and f (z1, z2, z3) = f1 (z1, z2) f2 (z3) and σ = 1̂ = {{1, 2, 3}}, then

∫

z1=z2=z3

f1 (z1, z2) f2 (z3)ϕ (dz1)ϕ (dz2)ϕ (dz3) .

5.6 Chaotic representation

When ϕ is a Gaussian measure or a compensated Poisson measure, multiple stochastic Wiener-
Itô integrals play a crucial role, due to the chaotic representation property enjoyed by ϕ. Indeed,
when ϕ is Gaussian or compensated Poisson, one can show that every functional F (ϕ) ∈ L2 (P)
of ϕ, admits a unique chaotic (Wiener-Itô) decomposition

F (ϕ) = E [F (ϕ)] +
∑

n≥1

Iϕ
n (fn) , fn ∈ L2

s (νn) , (5.45)

where the series converges in L2 (P) (see for instance [16], [36] or [49]), and the kernels {fn}
are uniquely determined. Formula (5.45) implies that random variables of the type Iϕ

n (fn) are
the basic “building blocks” of the space of square-integrable functionals of ϕ. In general, for a
completely random measure ϕ, the Hilbert space Cϕ

n =
{
Iϕ
n (f) : f ∈ L2

s (νn)
}
, n ≥ 1, is called

the nth Wiener chaos associated with ϕ. We set by definition Cϕ
0 = R (that is, Cϕ

0 is the
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collection of all non-random constants) so that, in (5.45), E [F ] ∈ Cϕ
0 . Observe that relation

(5.45) can be reformulated in terms of Hilbert spaces as follows:

L2 (P, σ (ϕ)) =

∞⊕

n=0

Cϕ
n ,

where ⊕ indicates an orthogonal sum in the Hilbert space L2 (P, σ (ϕ)).

Remarks. (i) If ϕ = G is a Gaussian measure with non-atomic control ν, for every p > 2
and every n ≥ 2, there exists a universal constant cp,n > 0, such that

E
[∣∣IG

n (f)
∣∣p
]1/p

≤ cn,pE
[
IG
n (f)2

]1/2
, (5.46)

∀ f ∈ L2
s (νn) (see [36, Ch. V]). Moreover, on every finite sum of Wiener chaoses ⊕m

j=0C
G
j and for

every p ≥ 1, the topology induced by Lp (P) convergence is equivalent to the L0-topology induced
by convergence in probability, that is, convergence in probability is equivalent to convergence
in Lp, for every p ≥ 1 (see e.g. [112]). We refer the reader to [16], [36] or [75, Ch. 1] for an
exhaustive analysis of the properties of multiple stochastic Wiener-Itô integrals with respect to
a Gaussian measure G.

(ii) The “chaotic representation property” is enjoyed by other processes. One of the most
well-known examples is given by the class of normal martingales, that is, real-valued martingales
on R+ having a predictable quadratic variation equal to t. See [16] and [48] for a complete
discussion of this point.

When ϕ is Gaussian or compensated Poisson, one can characterize the measures St
ϕ,[n]
π , when

π 6= 0̂, that is, the effect of these measures on diagonals. The key fact is the following elementary
identity (corresponding to Proposition 2 in [106]).

Proposition 5.4 Let ϕ be a good completely random measure. Then, for every n ≥ 2, every
C1, ..., Cn ⊂ Zν, and every partition π ∈ P ([n]),

St
ϕ,[n]
≥π (C1 × · · · ×Cn)

=
∏

b={i1,...,i|b|}∈π

St
ϕ,[|b|]

1̂

(
Ci1 × · · · × Ci|b|

)
(5.47)

=
∏

b={i1,...,i|b|}∈π

St
ϕ,[|b|]

1̂
((∩

|b|
k=1Cik) × · · · × (∩

|b|
k=1Cik)︸ ︷︷ ︸)

|b| times

. (5.48)

Proof. Recall that St
ϕ,[n]
≥π =

∑
σ≥π St

ϕ,[n]
σ , by (5.29). To prove the first equality, just observe

that both random measures on the LHS and the RHS of (5.47) are the restriction of the product

measure St
ϕ,[n]

≥0̂
to the union of the sets Zn

σ such that σ ≥ π. Equality (5.48) is an application of

(5.2).
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5.7 Computational rules

We are now going to apply our setup to the Gaussian case (ϕ = G) and to the Poisson case
(ϕ = N̂ = N−ν). We always suppose that the control measure ν of either G or N̂ is non-atomic.
Many of the subsequent formulae can be understood intuitively, by applying the following com-
putational rules:

Gaussian case:
G (dx)2 = ν (dx) and G (dx)n = 0, for every n ≥ 3. (5.49)

Poisson case:
(N̂ (dx))n = (N (dx))n = N (dx) , for every n ≥ 2. (5.50)

5.8 Multiple Gaussian stochastic integrals of elementary functions

Suppose ϕ is Gaussian. The next result (whose proof is sketched below) can be deduced from
[106, Example G, p. 1272, and Proposition 2, 6 and 12].

Theorem 5.1 Let ϕ = G be a centered Gaussian completely random measure with non-atomic
control measure ν. For every n ≥ 2 and every A ∈ Zν

St
G,[n]

1̂
(A× · · · ×A︸ ︷︷ ︸

n times

) , ∆G
n (A) =

{
0 n ≥ 3
ν (A) n = 2,

(5.51)

(the measure ∆G
n (·) is called the diagonal measure of order n associated with G). More

generally, for every n ≥ 2, σ ∈ P ([n]) and A1, ..., An ∈ Zν,

St
G,[n]
≥σ (A1 × · · · ×An)

=

{
0, if ∃b ∈ σ : |b| ≥ 3∏

b={i,j}∈σ ν (Ai ∩Aj)
∏k

ℓ=1G (Ajℓ
) , otherwise,

(5.52)

and

StG,[n]
σ (A1 × · · · ×An)

=

{
0, if ∃b ∈ σ : |b| ≥ 3∏

b={i,j}∈σ ν (Ai ∩Aj) St
G,[k]

0̂
(Aj1 × · · · ×Ajk

) , otherwise,
(5.53)

where j1, ..., jk are the singletons contained in σ\ {b ∈ σ : |b| = 2}.

Proof. Relation (5.51) is classic (for a proof, see e.g. [106, Proposition 6]). Formula (5.52)
is obtained by combining (5.51) and (5.47). To prove (5.53), suppose first that ∃b ∈ σ such that
|b| ≥ 3. Then, by using Möbius inversion (5.34),

StG,[n]
σ (A1 × · · · ×An) =

∑

σ≤ρ

µ (σ, ρ) St
G,[n]
≥ρ (A1 × · · · ×An) = 0,

where the last equality is due to (5.52) and to the fact that, if ρ ≥ σ and σ contains a block with
more than two elements, then ρ must also contain a block with more than two elements. This
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proves the first line of (5.53). Now suppose that all the blocks of σ have at most two elements,
and observe that, by Definition 4 and (5.7),

k∏

ℓ=1

G (Ajℓ
) = St

G,[k]

≥0̂
(Aj1 × · · · ×Ajk

).

The proof is concluded by using the following relations:

StG,[n]
σ (A1 × · · · ×An) =

∑

σ≤ρ

µ(σ, ρ)St
G,[n]
≥ρ (A1 × · · · ×An)

=
∏

b={i,j}∈σ

ν(Ai ∩Aj)
∑

σ≤ρ

µ(σ, ρ)
∏

b={r,l}∈ρ\σ

ν(Ar ∩Al) ×

×St
G,[m]

≥0̂
(Ai1 × · · · ×Aim)1{{i1},...,{im} are the singletons of ρ},

where we write b = {r, l} ∈ ρ\σ to indicate that the block b is in ρ and not in σ (equivalently, b
is obtained by merging two singletons of σ). Indeed, by the previous discussion, one has that the
partitions ρ involved in the previous sums have uniquely blocks of size one or two, and moreover,
by Möbius inversion,

∑

σ≤ρ

µ(σ, ρ)
∏

b={r,l}∈ρ\σ

ν(Ar ∩Al) × St
G,[m]

≥0̂
(Ai1 × · · · ×Aim)1{{i1},...,{im} are the singletons of ρ}

=
∑

σ∗≤ρ∗

µ(σ∗, ρ∗)
∏

b={r,l}∈ρ∗

ν(Ar ∩Al) × St
G,[m]

≥0̂
(Ai1 × · · · ×Aim)1{{i1},...,{im} are the singletons of ρ∗}

=
∑

0̂≤ρ∗

µ(0̂, ρ∗)St
G,[k]
≥ρ∗ (Aj1 × · · · ×Ajk

)

= St
G,[k]

0̂
(Aj1 × · · · ×Ajk

),

where σ∗ and ρ∗ indicate, respectively, the restriction of σ and ρ to {j1, ..., jk}, where {j1}, ..., {jk}
are the singletons of σ (in particular, σ∗ = 0̂). Note that the fact that µ(σ, ρ) = µ(σ∗, ρ∗) =
µ(0̂, ρ∗) is a consequence of (2.7) and of the fact that ρ has uniquely blocks of size one or two.6

Examples. (i) One has St
G,[n]

≥0̂
(A1 × · · · ×An) = G (A1) · · · G (An), which follows from

(5.52), since 0̂ = {{1} , ..., {n}}, but also directly since the symbol “ ≥ 0̂ ” entails no restriction
on the partition. In integral notation (f is always supposed to be elementary)

St
G,[n]

≥0̂
(f) =

∫

Zn

f (z1, ..., zn)G (dz1) · · ·G (dzn) .

On the other hand, there is no way to “simplify” an object such as St
G,[n]

0̂
(A1 × · · · ×An), wich

is expressed, in integral notation, as

St
G,[n]

0̂
(f) = IG

n (f) =

∫

z1 6=···6=zn

f (z1, ..., zn)G (dz1) · · ·G (dzn) .

6Thanks to F. Benaych-Georges for pointing out this argument.
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(ii) For n ≥ 3, one has

St
G,[n]

≥1̂
(A1 × · · · ×An) = St

G,[n]

1̂
(A1 × · · · ×An) = 0,

since the partition 1̂ contains a single block of size ≥ 2. In integral notation,

St
G,[n]

1̂
(f) =

∫

z1=···=zn

f (z1, ..., zn)G (dz1) · · ·G (dzn) = 0.

When n = 1, however, one has that

St
G,[1]

1̂
(f) =

∫

Z
f (z)G (dz) ∼ N

(
0,

∫

Z
f2dν

)
.

When n = 2,

St
G,[2]

1̂
(f) =

∫

Z
f (z, z) ν (dz) .

(iii) Let n = 3 and σ = {{1} , {2, 3}}, then St
G,[3]

1̂
(A1 ×A2 ×An) = 0, and therefore

St
G,[3]
≥σ (A1 ×A2 ×A3)

= StG,[3]
σ (A1 ×A2 ×A3) + St

G,[n]

1̂
(A1 ×A2 ×A3)

= StG,[3]
σ (A1 ×A2 ×A3) = G (A1) ν (A2 ×A3) .

In integral notation:

St
G,[3]
≥σ (f) = StG,[3]

σ (f) =

∫

Z

∫

Z
f (z, z, x) ν (dz)G (dx) .

(iv) Let n = 6, and σ = {{1, 2} , {3} , {4} , {5, 6}}. Then,

St
G,[6]
≥σ (A1 × ...×A6) = ν (A1 ∩A2) ν (A5 ∩A6)G (A3)G (A4) ,

whereas
StG,[6]

σ (A1 × ...×A6) = ν (A1 ∩A2) ν (A5 ∩A6) St
G,[2]

0̂
(A3 ×A4) .

These relations can be reformulated in integral notation as

St
G,[6]
≥σ (A1 × ...×A6)

=

∫

Z

∫

Z

{∫

Z

∫

Z
f (x, x, y, y, w, z) ν (dx) ν (dy)

}
G (dw)G (dz)

StG,[6]
σ (A1 × ...×A6)

=

∫

w 6=z

{∫

Z

∫

Z
f (x, x, y, y, w, z) ν (dx) ν (dy)

}
G (dw)G (dz) .

(v) Let n = 6, and σ = {{1, 2} , {3} , {4} , {5} , {6}}. Then,

St
G,[6]
≥σ (A1 × ...×A6) = ν (A1 ∩A2)G (A3)G (A4)G (A5)G(A6)

and also
StG,[6]

σ (A1 × ...×A6) = ν (A1 ∩A2) St
G,[4]

0̂
(A3 ×A4 ×A5 ×A6) .
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5.9 Multiple stochastic Poisson integrals of elementary functions.

A result analogous to Theorem 5.1 holds in the Poisson case. To state this result in a proper
way, we shall introduce the following notation. Given n ≥ 2 and σ ∈ P [n], we write

B1 (σ) = {b ∈ σ : |b| = 1} ,

to denote the collection of singleton blocks of σ, and

B2 (σ) = {b = {i1, ..., iℓ} ∈ σ : ℓ = |b| ≥ 2} (5.54)

to denote the collection of the blocks of σ containing two or more elements. We shall also denote
by PB2 (σ) the set of all 2-partitions of B2 (σ), that is, PB2 (σ) is the collection of all ordered
pairs (R1;R2) of non-empty subsets of B2 (σ) such that R1, R2 ⊂ B2 (σ), R1 ∩ R2 = ∅, and
R1 ∪ R2 = B2 (σ); whenever B2 (σ) = ∅, one sets PB2 (σ) = ∅. We stress that PB2 (σ) is a
partition of B2 (σ); the fact that B2 (σ) is also a subset of the partition σ should not create
confusion.

Examples. (i) Let n = 7, and σ = {{1, 2} , {3, 4} , {5, 6} , {7}}. Then,

B2 (σ) = {{1, 2} , {3, 4} , {5, 6}}

and PB2 (σ) contains the six ordered pairs:

({{1, 2} , {3, 4}} ; {{5, 6}}) ; ({{5, 6}} ; {{1, 2} , {3, 4}})

({{1, 2} , {5, 6}} ; {{3, 4}}) ; ({{3, 4}} ; {{1, 2} , {5, 6}})

({{3, 4} , {5, 6}} ; {{1, 2}}) ; ({{1, 2}} ; {{3, 4} , {5, 6}}).

For instance, the first ordered pair is made up of R1 = {{1, 2} , {3, 4}} and R2 = {{5, 6}}, whose
union is B2 (σ).

(ii) If n = 5 and σ = {{1, 2, 3} , {4} , {5}}, then B1 (σ) = {{4} , {5}}, B2 (σ) = {{1, 2, 3}}
and PB2 (σ) = ∅.

(iii) If n = 7 and σ = {{1, 2, 3} , {4, 5} , {6} , {7}}, then B1 (σ) = {{6} , {7}} and B2 (σ) =
{{1, 2, 3} , {4, 5}}. Also, the set PB2 (σ) contains the two ordered pairs

({1, 2, 3} ; {4, 5}) and ({4, 5} , {1, 2, 3}) .

We shall now suppose that ϕ is a compensated Poisson measure.

Theorem 5.2 Let ϕ = N̂ be a compensated Poisson measure with non-atomic control measure
ν, and let N (·) , N̂ (·) + ν (·). For every n ≥ 2 and every A ∈ Zν,

St
N̂,[n]

1̂
(A× · · · ×A︸ ︷︷ ︸

n times

) , ∆N̂
n (A) = N (A) (5.55)

(∆N̂
n (·) is called the diagonal measure of order n associated with N̂). Moreover, for every

A1, ..., An ∈ Zν ,

St
N̂,[n]

1̂
(A1 × · · · ×An) = N (A1 ∩ · · · ∩An) . (5.56)
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More generally, for every n ≥ 2, σ ∈ P ([n]) and A1, ..., An ∈ Zν,

St
N̂,[n]
≥σ (A1 × · · · ×An) (5.57)

=
∏

b={i1,...,iℓ}∈B2(σ)

N (Ai1 ∩ · · · ∩Aiℓ)

k∏

a=1

N̂ (Aja) ,

where {{j1} , ..., {jk}} = B1 (σ), and also

StN̂,[n]
σ (A1 × · · · ×An) (5.58)

=
∑

(R1;R2)∈PB2(σ)

∏

b={i1,...,iℓ}∈R1

ν (Ai1 ∩ · · · ∩Aiℓ) × (5.59)

× St
N̂,[|R2|+k]

0̂

(
X

b={e1,...,em}∈R2

(Ae1 ∩ · · · ∩Aem) ×Aj1 × · · · ×Ajk

)
(5.60)

+ St
N̂,[|B2(σ)|+k]

0̂

(
X

b={i1,...,iℓ}∈B2(σ)
(Ai1 ∩ · · · ∩Aiℓ) ×Aj1 × · · · ×Ajk

)
(5.61)

+
∏

b={i1,...,iℓ}∈B2(σ)

ν (Ai1 ∩ · · · ∩Aiℓ) St
N̂,[k]

0̂
(Aj1 × · · · ×Ajk

) , (5.62)

where {{j1} , ..., {jk}} = B1 (σ) and where (by convention) Σ∅ ≡ 0, Π∅ ≡ 0 and St
N̂,[0]

0̂
≡ 1.

Also, |R2| and |B2 (σ)| stand, respectively, for the cardinality of R2 and B2 (σ), and in formula
(5.60) we used the notation

X
b={e1,...,em}∈R2

(Ae1 ∩ · · · ∩Aem) = X
b∈R2

(∩e∈bAe) = (∩e∈b1Ae) × · · · × (∩e∈b|R2|
Ae),

where b1, ...., b|R2| is some enumeration of R2 (note that, due to the symmetry of St
N̂ ,[|R2|+k]

0̂
, the

choice of the enumeration is immaterial). The summand appearing in formula (5.61) is defined
via the same conventions.

Remarks. (a) When writing formula (5.61), we implicitly use the following convention: if
B2 (σ) = ∅, then the symbol X

b={i1,...,iℓ}∈B2(σ)
(Ai1 ∩ · · · ∩Aiℓ) is immaterial, and one should read

X
b={i1,...,iℓ}∈B2(σ)

(Ai1 ∩ · · · ∩Aiℓ) ×Aj1 × · · · ×Ajk
= Aj1 × · · · ×Ajk

= A1 × · · · ×An, (5.63)

where the last equality follows from the fact that, in this case, k = n and {j1, ..., jk} = {1, ..., n} =
[n]. To see how the convention (5.63) works, suppose that B2 (σ) = ∅. Then, PB2 (σ) = ∅ and
consequently, according to the conventions stated in Theorem 5.2, the lines (5.59)–(5.60) and
(5.62) are equal to zero (they correspond, respectively, to a sum and a product over the empty
set). The equality (5.58) reads therefore

StN̂,[n]
σ (A1 × · · · ×An) = St

N̂,[n]

0̂

(
X

b={i1,...,iℓ}∈B2(σ)
(Ai1 ∩ · · · ∩Aiℓ) ×Aj1 × · · · ×Ajk

)
. (5.64)
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By using (5.63) one obtains

St
N̂ ,[n]

0̂

(
X

b={i1,...,iℓ}∈B2(σ)
(Ai1 ∩ · · · ∩Aiℓ) ×Aj1 × · · · ×Ajk

)

= St
N̂ ,[n]

0̂
(Aj1 × · · · ×Ajk

) = StN̂,[n]
σ (A1 × · · · ×An) ,

entailing that, in this case, relation (5.58) is equivalent to the identity St
N̂ ,[n]

0̂
= St

N̂,[n]

0̂
.

(b) If k = 0 (that is, if B1 (σ) equals the empty set), then, according to the conventions

stated in Theorem 5.2, one has St
N̂,[k]

0̂
= St

N̂,[0]

0̂
= 1. This yields that, in this case, one should

read line (5.62) as follows:

∏

b={i1,...,iℓ} ∈B2(σ)

ν (Ai1 ∩ · · · ∩Aiℓ) St
N̂,[k]

0̂
(Aj1 × · · · ×Ajk

)

=
∏

b={i1,...,iℓ} ∈B2(σ)

ν (Ai1 ∩ · · · ∩Aiℓ) .

(c) If k = 0, one should also read line (5.60) as

St
N̂,[|R2|+k]

0̂

(
X

b={e1,...,em}∈R2

(Ae1 ∩ · · · ∩Aem) ×Aj1 × · · · ×Ajk

)

= St
N̂,[|R2|]

0̂

(
X

b={e1,...,em}∈R2

(Ae1 ∩ · · · ∩Aem)

)
,

and line (5.61) as

St
N̂,[|B2(σ)|+k]

0̂

(
X

b={i1,...,iℓ}∈B2(σ)
(Ai1 ∩ · · · ∩Aiℓ) ×Aj1 × · · · ×Ajk

)

= St
N̂,[|B2(σ)|]

0̂

(
X

b={i1,...,iℓ}∈B2(σ)
(Ai1 ∩ · · · ∩Aiℓ)

)
.

Proof of Theorem 5.2. To see that (5.56) must necessarily hold, use the fact that ν is
non-atomic by assumption. Therefore,

St
N̂,[n]

1̂
(A1 × · · · ×An) = St

N̂,[1]

0̂
(A1 ∩ · · · ∩An) + ν(A1 ∩ · · · ∩An)

= N̂(A1 ∩ · · · ∩An) + ν(A1 ∩ · · · ∩An) = N(A1 ∩ · · · ∩An).

Observe also that (5.56) implies (5.55). Equation (5.57) is an immediate consequence of (5.47),
(5.55) and (5.56). To prove (5.58), use (5.57) and the relation N = N̂ + ν, to write

St
N̂,[n]
≥σ (A1 × · · · ×An)

=

n∏

ℓ=2

∏

b={i1,...,iℓ}∈σ

[
N̂ (Ai1 ∩ · · · ∩Aiℓ) + ν (Ai1 ∩ · · · ∩Aiℓ)

] k∏

a=1

N̂ (Aja) ,
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and the last expression equals

∑

(R1;R2)∈PB2(σ)

∏

b={i1,...,iℓ} ∈R1

ν (Ai1 ∩ · · · ∩Aiℓ) ×

×St
N̂,[|R2|+k]

≥0̂

(
X

b={e1,...,em}∈R2

(Ae1 ∩ · · · ∩Aem) ×Aj1 × · · · ×Ajk

)

+St
N̂,[|B2(σ)|+k]

≥0̂

(
X

b={i1,...,iℓ}∈B2(σ)
(Ai1 ∩ · · · ∩Aiℓ) ×Aj1 × · · · ×Ajk

)

+
∏

b={i1,...,iℓ} ∈B2(σ)

ν (Ai1 ∩ · · · ∩Aiℓ) St
N̂,[k]

≥0̂
(Aj1 × · · · ×Ajk

) ,

since St
N̂,[n]

≥0̂
(A1 × · · · ×An) = N̂ (A1)···N̂ (An). The term before last in the displayed equation

corresponds to R1 = ∅, R2 = B2 (σ), and the last term to R1 = B2 (σ) and R2 = ∅. By
definition, these two cases are not involved in PB2 (σ). The last displayed equation yields

StN̂,[n]
σ (A1 × · · · ×An) = St

N̂ ,[n]
≥σ

(
(A1 × · · · ×An)1Zn

σ

)

=
∑

(R1;R2)∈PB2(σ)

∏

b={i1,...,iℓ} ∈R1

ν (Ai1 ∩ · · · ∩Aiℓ) ×

×St
N̂,[|R2|+k]

≥0̂

([
X

b={e1,...,em}∈R2

(Ae1 ∩ · · · ∩Aem) ×Aj1 × · · · ×Ajk

]
1

Z
|R2|+k

0̂

)

+St
N̂,[|B2(σ)|+k]

≥0̂

([
X

b={i1,...,iℓ}∈B2(σ)
(Ai1 ∩ · · · ∩Aiℓ) ×Aj1 × · · · ×Ajk

]
1

Z
|B2(σ)|+k

0̂

)

+
∏

b={i1,...,iℓ} ∈B2(σ)

ν (Ai1 ∩ · · · ∩Aiℓ) St
N̂ ,[k]

≥0̂

(
[Aj1 × · · · ×Ajk

]1Zk
0̂

)
.

Since, by definition,

St
N̂,[|R2|+k]

≥0̂

([
X

b={e1,...,em}∈R2

(Ae1 ∩ · · · ∩Aem) ×Aj1 × · · · ×Ajk

]
1

Z
|R2|+k

0̂

)

= St
N̂,[|R2|+k]

0̂

(
X

b={e1,...,em}∈R2

(Ae1 ∩ · · · ∩Aem) ×Aj1 × · · · ×Ajk

)
,

and

St
N̂,[|B2(σ)|+k]

≥0̂

([
X

b={i1,...,iℓ}∈B2(σ)
(Ai1 ∩ · · · ∩Aiℓ) ×Aj1 × · · · ×Ajk

]
1

Z
|B2(σ)|+k

0̂

)

= St
N̂,[|B2(σ)|+k]

0̂

(
X

b={i1,...,iℓ}∈B2(σ)
(Ai1 ∩ · · · ∩Aiℓ) ×Aj1 × · · · ×Ajk

)
,

and

St
N̂,[k]

≥0̂

(
[Aj1 × · · · ×Ajk

] 1Zk
0̂

)
= St

N̂ ,[k]

0̂
(Aj1 × · · · ×Ajk

) ,

one obtains immediately the desired conclusion.
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Remark on integral notation. It is instructive to express the results of Theorem 5.2 in
integral notation. With f (z1, ..., zn) = g (z1) · · · g (zn), formula (5.57) becomes

∫

∪π≥σZn
π

g (z1) · · · g (zn) N̂ (dz1) · · · N̂ (dzn)

=




∏

b∈σ,|b|≥2

∫

Z
g (z)|b|N (dz)


×

(∫

Z
g (z) N̂ (dz)

)k

,

where k = |B1 (σ)| . Again with f (z1, .., zn) = g (z1) · · · g (zn), (5.58)–(5.62) become
∫

Zn
σ

g (z1) · · · g (zn) N̂ (dz1) · · · N̂ (dzn)

=
∑

(R1;R2)∈PB2(σ)

∏

b∈R1

∫

Z
g (z)|b| ν (dz) × 1{R2={b1,...,b|R2|}}

×

×

∫

z1 6=···6=z|R2|+k

g (z1)
|b1| · · · g

(
z|R2|

)|b|R2|| g
(
z|R2|+1

)
· · · g

(
z|R2|+k

)

N̂ (dz1) · · · N̂
(
dz|R2|+k

)

+1{B2(σ)={b1,...,b|B2(σ)|}} ×

×

∫

z1 6=···6=z|B2(σ)|+k

g (z1)
|b1| · · · g

(
z|B2(σ)|

)|b|B2(σ)|| g
(
z|B2(σ)|+1

)
· · · g

(
z|B2(σ)|+k

)

N̂ (dz1) · · · N̂
(
dz|R2|+k

)

+
∏

b∈B2(σ)

∫

Z
g (z)|b| ν (dz) ×

∫

z1 6=···6=zk

g (z1) · · · g (zk) N̂ (dz1) · · · N̂ (dzk) ,

where k = |B1 (σ)|.

Examples. The examples below apply to a compensated Poisson measure N̂ , and should
be compared with those discussed after Theorem 5.1. We suppose throughout that n ≥ 2.

(i) When σ = 0̂ = {{1} , ..., {n}} one has, as in the Gaussian case,

St
N̂,[n]

≥0̂
(A1 × · · · ×An) = N̂ (A1) · · · N̂ (An)

because the symbol “ ≥ 0̂ ” entails no restriction on the considered partitions. In integral
notation, this becomes

St
N̂,[n]

≥0̂
(f) =

∫

Zn

f (z1, ..., zn) N̂ (dz1) · · · N̂ (dzn) .

The case of equality (5.58) has already been discussed: indeed, since σ = 0̂, and according to the
conventions stated therein, one has that B2 (σ) = PB2 (σ) = ∅ and therefore (5.58) becomes

an identity given by (5.62), namely St
N̂,[n]

0̂
(·) = St

N̂,[n]

0̂
(·). Observe that, in integral notation,

St
N̂,[n]

0̂
(·) is expressed as

St
N̂,[n]

0̂
(f) =

∫

z1 6=···6=zn

f (z1, ..., zn) N̂ (dz1) · · · N̂ (dzn) .
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(ii) Suppose now σ = 1̂ = {{1, ..., n}}. Then, (5.58) reduces to (5.56). To see this, note that
k = 0 and that B2

(
1̂
)

contains only the block {1, ..., n}, so that PB2 (σ) = ∅. Hence the sum
appearing in (5.59) vanishes and one has

St
N̂,[n]

1̂
(A1 × · · · ×An) = St

N̂,[1]

0̂
(A1 ∩ · · · ∩An) + ν (A1 ∩ · · · ∩An)

= N̂ (A1 ∩ · · · ∩An) + ν (A1 ∩ · · · ∩An) = N (A1 ∩ · · · ∩An) .

In integral notation,

St
N̂,[n]

1̂
(f) =

∫

z1=···=zn

f (z1, ..., zn) N̂ (dz1) · · · N̂ (dzn)

=

∫

Z
f (z, ..., z)N (dz) .

This last relation makes sense heuristically, in view of the computational rule

(
N̂ (dx)

)2
= (N (dx))2 − 2N (dx) ν (dx) + (ν (dx))2 = N (dx) ,

since (N (dx))2 = N (dx) and ν is non-atomic.
(iii) Let n = 3 and σ = {{1} , {2, 3}}, so that B2 (σ) = {{2, 3}} and PB2 (σ) = ∅. According

to (5.57),

St
N̂ ,[3]
≥σ (A1 ×A2 ×A3) = N̂ (A1)N (A2 ∩A3) . (5.65)

On the other hand, (5.58) yields

StN̂,[3]
σ (A1 ×A2 ×A3) = St

N̂,[2]

0̂
(A1 × (A2 ∩A3)) + N̂ (A1) ν (A2 ∩A3) . (5.66)

In integral form, relation (5.65) becomes

St
N̂,[3]
≥σ (f) =

∫

Z

∫

Z
f (z1, z2, z2) N̂ (dz1)N (dz2) ,

and (5.66) becomes

StN̂,[3]
σ (f) =

∫

z1 6=z2, z2=z3

f (z1, z2, z3) N̂ (dz1) N̂ (dz2) N̂ (dz3)

=

∫

z1 6=z2

f (z1, z2, z2) N̂ (dz1) N̂ (dz2)

+

∫

Z2

f (z1, z2, z2) N̂ (dz1) ν (dz2) .

This last relation makes sense heuristically, by noting that

N̂ (dz1) N̂ (dz2) N̂ (dz2) = N̂ (dz1)N (dz2)

= N̂ (dz1) N̂ (dz2) + N̂ (dz1) ν (dz2) .

We also stress that St
N̂,[3]
σ (f) can be also be expressed as

StN̂,[3]
σ (f) = IN̂

2 (g1) + IN̂
1 (g2) , (5.67)
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where g1 (x, y) = f (x, y, y) and g2 (x) =
∫
f (x, y, y) ν (dy). The form (5.67) will be needed

later. Since, by (5.56), St
N̂,[3]

1̂
(A1 ×A2 ×A3) = N (A1 ∩A2 ∩A3) and since, for our σ, one has

St
N̂,[3]
≥σ = St

N̂,[3]
σ + St

N̂,[3]

1̂
, one also deduces the relation

N̂ (A1)N (A2 ∩A3) = St
N̂,[2]

0̂
(A1 × (A2 ∩A3)) +N (A1 ∩A2 ∩A3) + N̂ (A1) ν (A2 ∩A3) ,

or, equivalently, since N̂ = N + ν,

N̂ (A1) N̂ (A2 ∩A3) = St
N̂,[2]

0̂
(A1 × (A2 ∩A3)) + ν (A1 ∩A2 ∩A3) + N̂ (A1 ∩A2 ∩A3) . (5.68)

We will see that (5.68) is consistent with the multiplication formulae of next section.
(iv) Let n = 6, and σ = {{1, 2} , {3} , {4} , {5, 6}}, so that

B2 (σ) = {{1, 2} , {5, 6}}

and the class PB2 (σ) contains the two pairs

({1, 2} ; {5, 6}) and ({5, 6} ; {1, 2}) .

First, (5.57) gives

St
N̂ ,[6]
≥σ (A1 × ...×A6) = N (A1 ∩A2)N (A5 ∩A6) N̂ (A3) N̂ (A4) .

Moreover, we deduce from (5.58) that

StN̂ ,[6]
σ (A1 × ...×A6) = ν (A1 ∩A2) St

N̂,[3]

0̂
((A5 ∩A6) ×A3 ×A4)

+ν (A5 ∩A6) St
N̂,[3]

0̂
((A1 ∩A2) ×A3 ×A4)

+St
N̂,[4]

0̂
((A1 ∩A2) × (A5 ∩A6) ×A3 ×A4)

+ν (A1 ∩A2) ν (A5 ∩A6) St
N̂,[2]

0̂
(A3 ×A4) .

The last displayed equation becomes in integral form

StN̂,[6]
σ (f)

=

∫
z1=z2, z5=z6, z3 6=z4

z3 6=z1, z4 6=z1
z3 6=z5, z4 6=z5

f (z1, ..., z6) N̂ (dz1) · · · N̂ (dz6)

=

∫

w,x 6=y 6=z
f (w,w, x, y, z, z) ν (dw) N̂ (dx) N̂ (dy) N̂ (dz)

+

∫

w 6=x 6=y,z
f (w,w, x, y, z, z) N̂ (dw) N̂ (dx) N̂ (dy) ν (dz)

+

∫

w 6=x 6=y 6=z
f (w,w, x, y, z, z) N̂ (dw) N̂ (dx) N̂ (dy) N̂ (dz)

+

∫

w,x 6=y,z
f (w,w, x, y, z, z) ν (dw) N̂ (dx) N̂ (dy) ν (dz) .
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Indeed, let us denote the RHS of the last expression as (I) + (II) + (III) + (IV ). For (I) and
(II), we use (5.59)–(5.60) with R1 = {{1, 2}} and R2 = {{5, 6}} and k = 2, which corresponds
to the number of singletons {3} , {4}. For (III), we use (5.61), with k + |B2 (σ)| = 2 + 2 = 4,
and B2 (σ) = {{1, 2} , {5, 6}} . For (5.62) we use k = 2 and our B2 (σ).

(v) Let n = 6, and σ = {{1, 2} , {3} , {4} , {5} , {6}}. Here, B2 (σ) = {{1, 2}} and the class
PB2 (σ) is empty. Then,

St
N̂,[6]
≥σ (A1 × ...×A6) = N (A1 ∩A2) N̂ (A3) N̂ (A4) N̂ (A5) N̂ (A6) ,

and also

StN̂,[6]
σ (A1 × ...×A6) = ν (A1 ∩A2) St

N̂,[4]

0̂
(A3 ×A4 ×A5 ×A6)

+St
N̂,[4]

0̂
((A1 ∩A2) ×A3 ×A4 ×A5 ×A6) .

In integral form,

StN̂,[6]
σ (f)

=

∫
z1=z2,

z1 6=zj , j=3,...,6
zi 6=zj , 3≤i6=j≤6

f (z1, z2, z3, z4, z5, z6)
6∏

j=1

N̂ (dzj)

=

∫

z1 6=zj , j=3,...,6
zi 6=zj , 3≤i6=j≤6

f (z1, z1, z3, z4, z5, z6) ν (dz1)

6∏

j=3

N̂ (dzj)

+

∫

z1 6=zj , j=3,...,6
zi 6=zj , 3≤i6=j≤6

f (z1, z1, z3, z4, z5, z6) N̂ (dz1)

6∏

j=3

N̂ (dzj) .

Corollary 5.1 Suppose that the Assumptions of Theorem 5.2 hold. Fix σ ∈ P ([n]) and assume
that |b| ≥ 2, for every b ∈ σ. Then,

E
[
StN̂ ,[n]

σ (A1 × · · · ×An)
]

=

n∏

m=2

∏

b∈{j1,...,jm}∈σ

ν (Aj1 ∩ · · · ∩Ajm) . (5.69)

Proof. Use (5.58)–(5.62) and note that, by assumption, k = 0 (the partition σ does not
contain any singleton {j}). It follows that the sum in (5.59) vanishes, and one is left with

E
[
StN̂,[n]

σ (A1 × · · · ×An)
]

= E
[
St

N̂ ,[k+|B2(σ)|]

0̂

(
X

b={i1,...,iℓ}∈B2(σ)
(Ai1 ∩ · · · ∩Aiℓ) ×Aj1 × · · · ×Ajk

)]

+
∏

b={i1,...,iℓ}∈B2(σ)

ν (Ai1 ∩ · · · ∩Aiℓ)

=
∏

b={i1,...,iℓ}∈B2(σ)

ν (Ai1 ∩ · · · ∩Aiℓ) ,

which is equal to the RHS of (5.69).
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6 Multiplication formulae

6.1 The general case

The forthcoming Theorem 6.1 applies to every good completely random measure ϕ. It gives a
universal combinatorial rule, according to which every product of multiple stochastic integrals
can be represented as a sum over diagonal measures that are indexed by non-flat diagrams (as
defined in Section 4.1). We will see that product formulae are crucial in order to deduce explicit
expressions for the cumulants and the moments of multiple integrals. As discussed later in this
section, Theorem 6.1 contains (as special cases) two celebrated product formulae for integrals
with respect to Gaussian and Poisson random measures. We provide two proofs of Theorem
6.1: the first one is new and it is based on a decomposition of partially diagonal sets; the second
consists in a slight variation of the combinatorial arguments displayed in the proofs of [106, Th.
3 and Th. 4], and is included for the sake of completeness. The theorem is formulated for simple

kernels to ensure that the integrals are always defined, in particular the quantity St
ϕ,[n]
σ , which

appears on the RHS of (6.2).

Theorem 6.1 (Rota et Wallstrom) Let ϕ be a good completely random measure with non-
atomic control ν. For n1, n2, ..., nk ≥ 1, we write n = n1 + · · · + nk, and we denote by π∗ the
partition of [n] given by

π∗ = {{1, ..., n1} , {n1 + 1, ..., n1 + n2} , ..., {n1 + ...+ nk−1 + 1, ..., n}} . (6.1)

Then, if the kernels f1, ..., fk are such that fj ∈ Es,0 (νnj) (j = 1, ..., k), one has that

∏k
j=1I

ϕ
nj (fj)=

∏k
j=1 St

ϕ,[nj ]

0̂
(fj)=

∑
σ∈P([n]):σ∧π∗=0̂ St

ϕ,[n]
σ (f1 ⊗0 f2 ⊗0 · · · ⊗0 fk), (6.2)

where, by definition, the function in n variables f1 ⊗0 f2 ⊗0 · · · ⊗0 fk ∈ E (νn) is defined as

f1 ⊗0 f2 ⊗0 · · · ⊗0 fk (x1, x2, ..., xn) =
k∏

j=1

fj

(
xn1+...+nj−1+1, ..., xn1+...+nj

)
, (n0 = 0). (6.3)

Proof. (First proof ) From the discussion of the previous section, one deduces that

k∏

j=1

St
ϕ,[nj ]

0̂
(fj) = St

ϕ,[n]

≥0̂
[(f1 ⊗0 · · · ⊗0 fk)1A∗ ] ,

where
A∗ = {(z1, ..., zn) ∈ Zn : zi 6= zj , ∀i 6= j such that i ∼π∗ j} ,

that is, A∗ is obtained by excluding all diagonals within each block of π∗. We shall prove that

A∗ =
⋃

σ∈P([n]):σ∧π∗=0̂

Zn
σ . (6.4)

Suppose first σ is such that σ ∧ π∗ = 0̂, that is, the meet of σ and π∗ is given by the singletons.
For every (z1, ..., zn) ∈ Zn

σ the following implication holds: if i 6= j and i ∼π∗ j, then i and j are
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in two different blocks of σ, and therefore zi 6= zj . This implies that Zn
σ ⊂ A∗. For the converse,

take (z1, ..., zn) ∈ A∗, and construct a partition σ ∈ P ([n]) by the following rule: i ∼σ j if and
only if zi = zj . For every pair i 6= j such that i ∼π∗ j, one has (by definition of A∗) zi 6= zj , so
that σ ∧ π∗ = 0̂, and hence (6.4). To conclude the proof of the theorem, just use the additivity

of St
ϕ,[n]

≥0̂
to write

St
ϕ,[n]

≥0̂
[(f1 ⊗0 · · · ⊗0 fk)1A∗ ] =

∑

σ∧π∗=0̂

St
ϕ,[n]

≥0̂

[
(f1 ⊗0 · · · ⊗0 fk)1Zn

σ

]

=
∑

σ∧π∗=0̂

Stϕ,[n]
σ (f1 ⊗0 · · · ⊗0 fk) ,

by using the relation St
ϕ,[n]

≥0̂

[
(·)1Zn

σ

]
= St

ϕ,[n]
σ [·].

(Second proof – see [106]) This proof uses Proposition 2.1 and Proposition 2.2. To simplify
the discussion (and without loss of generality) we can assume that n1 ≥ n2 ≥ · · · ≥ nk. For
j = 1, ..., k we have that

St
ϕ,[nj ]

0̂
(fj) =

∑

σ∈P([nj ])

µ
(
0̂, σ
)
St

ϕ,[nj ]
≥σ (fj) ,

where we have used (5.34) with π = 0̂. From this relation one obtains

k∏

j=1

St
ϕ,[nj ]

0̂
(fj) =

∑

σ1∈P([n1])

· · ·
∑

σk∈P([nk])

k∏

j=1

µ
(
0̂, σj

)
St

ϕ,[nj ]
≥σj

(fj)

=
∑

ρ∈P([n]):ρ≤π∗

µ
(
0̂, ρ
)
St

ϕ,[n]
≥ρ (f1 ⊗0 · · · ⊗0 fk) , (6.5)

where π∗ is defined in (6.1). To prove equality (6.5), recall the definition of “class” in Section
2.3, as well as the last example in that section. Observe that the segment

[
0̂, π∗

]
has class

(n1, ..., nk), thus yielding (thanks to Proposition 2.2) that
[
0̂, π∗

]
is isomorphic to the lattice

product of the P ([nj])’s. This implies that each vector

(σ1, ..., σk) ∈ P ([n1]) × · · · × P ([nk])

has indeed the form
(σ1, ..., σk) = ψ−1 (ρ)

for a unique ρ ∈
[
0̂, π∗

]
, where ψ is a bijection defined as in (2.16). Now use, in order, Part 2

and Part 1 of Proposition 2.1 to deduce that

k∏

j=1

µ
(
0̂, σj

)
= µ

(
0̂, (σ1, ..., σk)

)
= µ

(
0̂, ψ−1 (ρ)

)
= µ

(
0̂, ρ
)
. (6.6)

Observe that
0̂ = {{1} , ..., {nj}} in µ

(
0̂, σj

)
,

whereas
0̂ = {{1} , ..., {n}} in µ(0̂, ρ).
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Also, one has the relation

k∏

j=1

St
ϕ,[nj ]
≥σj

(fj) = St
ϕ,[n]
≥ρ (f1 ⊗0 · · · ⊗0 fk) , (6.7)

(by the definition of St
ϕ,[n]
≥ρ as the measure charging all the diagonals contained in the diagonals

associated with the blocks of the σj (j = 1, ..., k)). Then, (6.6) and (6.7) yield immediately
(6.5). To conclude the proof, write

∑

ρ∈P([n]):ρ≤π∗

µ
(
0̂, ρ
)
St

ϕ,[n]
≥ρ (f1 ⊗0 · · · ⊗0 fk)

=
∑

ρ∈P([n]):ρ≤π∗

µ
(
0̂, ρ
)∑

γ≥ρ

Stϕ,[n]
γ (f1 ⊗0 · · · ⊗0 fk)

=
∑

γ∈P([n])

Stϕ,[n]
γ (f1 ⊗0 · · · ⊗0 fk)

∑

0̂≤ρ≤π∗∧γ

µ
(
0̂, ρ
)
.

Since, by (2.14),
∑

0̂≤ρ≤π∗∧γ

µ
(
0̂, ρ
)

=

{
0 if π∗ ∧ γ 6= 0̂

1 if π∗ ∧ γ = 0̂.
,

relation (6.2) is obtained.

Remark. The RHS of (6.2) can also be reformulated in terms of diagrams and in terms of
graphs, as follows:

∑

σ∈P([n]):Γ(π∗,σ) is non-flat

Stϕ,[n]
σ (f1 ⊗0 f2 ⊗0 · · · ⊗0 fk) ,

where Γ (π∗, σ) is the diagram of (π∗, σ), as defined in Section 4.1, or, whenever every Γ (π∗, σ)
involved in the previous sum is Gaussian,

∑

σ∈P([n]):Γ̂(π∗,σ) has no loops

Stϕ,[n]
σ (f1 ⊗0 f2 ⊗0 · · · ⊗0 fk) .

where Γ̂ (π∗, σ) is the graph of (π∗, σ) defined in Section 4.3. This is because, thanks to Propo-
sition 4.1, the relation π∗ ∧ σ = 0̂ indicates that Γ (π∗, σ) is non-flat or, equivalently in the case
of Gaussian diagrams, that Γ̂ (π∗, σ) has no loops.

Examples. (i) Set k = 2 and n1 = n2 = 1 in Theorem 6.1. Then, n = 2, P ([2]) =
{
0̂, 1̂
}

and π∗ = {{1} , {2}} = 0̂. Since 0̂ ∧ 1̂ = 0̂, (6.2) gives immediately that, for every pair of
elementary functions f1, f2,

Iϕ
1 (f1) × Iϕ

1 (f2) = St
ϕ,[2]

0̂
(f1 ⊗0 f2) + St

ϕ,[2]

1̂
(f1 ⊗0 f2)

= Iϕ
2 (f1 ⊗0 f2) + St

ϕ,[2]

1̂
(f1 ⊗0 f2) , (6.8)

Note that, if ϕ = G is Gaussian, then relation (5.51) yields that

St
G,[2]

1̂
(f1 ⊗0 f2) =

∫

Z
f1 (z) f2 (z) ν (dz) ,
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so that, in integral notation,

IG
1 (f1) × IG

1 (f2) =

∫ ∫

z1 6=z2

f1 (z1) f2 (z2)G (dz1)G (dz2) +

∫

Z
f1 (z) f2 (z) ν (dz) .

On the other hand, if ϕ is compensated Poisson, then St
ϕ,[2]

1̂
(f1 ⊗0 f2) =

∫
Z f1 (z) f2 (z)N (dz),

so that, by using the relation N = N̂ + ν, (6.8) reads

IN̂
1 (f1) × IN̂

1 (f2) = IN̂
2 (f1 ⊗0 f2) +

∫

z
f1 (z) f2 (z) N̂ (dz) +

∫

z
f1 (z) f2 (z) ν (dz)

=

∫ ∫

z1 6=z2

f1 (z1) f2 (z2) N̂ (dz1) N̂ (dz2)

+

∫

z
f1 (z) f2 (z) N̂ (dz) +

∫

z
f1 (z) f2 (z) ν (dz)

= IN̂
2 (f1 ⊗0 f2) + IN̂

1 (f1f2) +

∫

z
f1 (z) f2 (z) ν (dz)

(ii) Consider the case k = 2, n1 = 2 and n2 = 1. Then, n = 3, and π∗ = {{1, 2} , {3}}. There
are three elements σ1, σ2, σ3 ∈ P ([3]) such that σi ∧ π

∗ = 0̂, namely σ1 = 0̂, σ2 = {{1, 3} , {2}}
and σ3 = {{1} , {2, 3}} . Then, (6.2) gives that, for every pair f1 ∈ Es,0

(
ν2
)
, f2 ∈ E (ν),

Iϕ
2 (f1) × Iϕ

1 (f2) = St
ϕ,[3]

0̂
(f1 ⊗0 f2) + Stϕ,[3]

σ2
(f1 ⊗0 f2) + Stϕ,[3]

σ3
(f1 ⊗0 f2) .

= St
ϕ,[3]

0̂
(f1 ⊗0 f2) + 2Stϕ,[3]

σ2
(f1 ⊗0 f2) ,

where we have used the fact that, by the symmetry of f1, St
ϕ,[3]
σ2 (f1 ⊗0 f2) = St

ϕ,[3]
σ3 (f1 ⊗0 f2).

When ϕ = G is a Gaussian measure, one can use (5.53) applied to σ2 to deduce that

StG,[3]
σ2

(f1 ⊗0 f2) = IG
1

[∫

Z
f1 (·, z) f2 (z) ν (dz)

]
,

or, more informally,

StG,[3]
σ2

(f1 ⊗0 f2) =

∫

Z

∫

Z
f1

(
z′, z

)
f2

(
z′
)
ν (dz)G

(
dz′
)
,

so that one gets

IG
2 (f1) × IG

1 (f2) = St
G,[3]

0̂
(f1 ⊗0 f2) + 2IG

1

[∫

Z
f1 (·, z) f2 (z) ν (dz)

]

=

∫ ∫ ∫

z1 6=z2 6=z3

f1 (z1, z2) f2 (z3)G (dz1)G (dz2)G (dz3)

+2

∫

Z

∫

Z
f1

(
z′, z

)
f2 (z) ν (dz)G

(
dz′
)
.

When ϕ = N̂ is compensated Poisson, as shown in (5.67), formula (5.58), applied to σ2,
yields

StN̂,[3]
σ2

(f1 ⊗0 f2) = IN̂
1

[∫

Z
f1 (·, z) f2 (z) ν (dz)

]
+ IN̂

2

[
f1 ⊗

0
1 f2

]
,
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where f1 ⊗
0
1 f2 (z′, z) = f1 (z′, z) f2 (z).

(iii) Consider the case k = 3, n1 = n2 = n3 = 1. Then, n = 3, and π∗ = {{1} , {2} , {3}} = 0̂.
For every σ ∈ P ([3]) one has that σ ∧ π∗ = 0̂. Note also that P ([3]) =

{
0̂, ρ1, ρ2, ρ3, 1̂

}
, where

ρ1 = {{1, 2} , {3}} , ρ2 = {{1, 3} , {2}} , ρ3 = {{1} , {2, 3}} ,

so that (6.2) gives that, for every f1, f2, f3 ∈ E (ν),

Iϕ
1 (f1) I

ϕ
1 (f2) I

ϕ
1 (f3) = St

ϕ,[3]

0̂
(f1 ⊗0 f2 ⊗0 f3) + Stϕ,[3]

ρ1
(f1 ⊗0 f2 ⊗0 f3)

+Stϕ,[3]
ρ2

(f1 ⊗0 f2 ⊗0 f3) + Stϕ,[3]
ρ3

(f1 ⊗0 f2 ⊗0 f3)

+St
ϕ,[3]

1̂
(f1 ⊗0 f2 ⊗0 f3) .

In particular, by taking f1 = f2 = f3 = f and by symmetry,

Iϕ
1 (f)3 = St

ϕ,[3]

0̂
(f ⊗0 f ⊗0 f) + St

ϕ,[3]

1̂
(f ⊗0 f ⊗0 f) + 3Stϕ,[3]

ρ1
(f ⊗0 f ⊗0 f) . (6.9)

When ϕ = G is Gaussian, then St
G,[3]

1̂
= 0 by (5.51) and St

ϕ,[3]
ρ1 (f ⊗0 f ⊗0 f) = ‖f‖2 IG

1 (f), so
that (6.9) becomes

IG
1 (f)3 = IG

3 (f ⊗0 f ⊗0 f) + 3 ‖f‖2 IG
1 (f)

=

∫ ∫ ∫

z1 6=z2 6=z3

f (z1) f (z2) f (z3)G (dz1)G (dz2)G (dz3)

+3

∫

Z
f (z)2 ν (dz) ×

∫

Z
f (z)G (dz) .

When ϕ = N̂ is compensated Poisson, from (5.55), then

St
N̂,[3]

1̂
(f ⊗0 f ⊗0 f) =

∫
f (z)3N (dz) = IN̂

1

(
f3
)

+

∫

Z
f3 (z) ν (dz)

by (5.67), and also

StN̂,[3]
ρ1

(f ⊗0 f ⊗0 f) = ‖f‖2 IN̂
1 (f) + IN̂

2

(
f2 ⊗0 f

)
,

where f2 ⊗0 f (z, z′) = f2 (z) f (z′), so that (6.9) becomes

IN̂
1 (f)3 = IN̂

3 (f ⊗0 f ⊗0 f) + IN̂
1

(
f3
)

+

∫

Z
f3 (z) ν (dz)

+3 ‖f‖2 IN̂
1 (f) + IN̂

2

(
f2 ⊗0 f

)

=

∫ ∫ ∫

z1 6=z2 6=z3

f (z1) f (z2) f (z3) N̂ (dz1) N̂ (dz2) N̂ (dz3)

+

∫

Z
f (z)3

(
N̂ + ν

)
(dz) + 3

∫

Z
f (z)2 ν (dz) ×

∫

Z
f (z) N̂ (dz)

+

∫ ∫

z1 6=z2

f2 (z1) f (z2) N̂ (dz1) N̂ (dz2) .

General applications to the Gaussian and Poisson cases are discussed, respectively, in Sub-
section 6.4 and Subsection 6.5.
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6.2 Contractions

As anticipated, the statement of Theorem 6.1 contains two well-known multiplication formulae,
associated with the Gaussian and Poisson cases. In order to state these results, we shall start
with a standard definition of the contraction kernels associated with two symmetric functions
f and g. Roughly speaking, given f ∈ L2

s (νp) and g ∈ L2
s (νq), the contraction of f and g on

Zp+q−r−l (r = 0, ..., q ∧ p and l = 1, ..., r), noted f ⋆l
r g, is obtained by reducing the number of

variables in the tensor product f (x1, ..., xp) g (xp+1, ..., xp+q) as follows: r variables are identified,
and of these, l are integrated out with respect to ν. The formal definition of f ⋆l

r g is given below.

Definition 7 Let ν be a σ-finite measure on (Z,Z). For every q, p ≥ 1, f ∈ L2 (νp), g ∈ L2 (νq)
(not necessarily symmetric), r = 0, ..., q ∧ p and l = 1, ..., r, the contraction (of index (r, l)) of f
and g on Zp+q−r−l, is the function f ⋆l

r g of p+ q − r − l variables defined as follows:

f ⋆l
r g(γ1, . . . , γr−l, t1, . . . , tp−r, s1, . . . , sq−r)

=

∫

Zl

f(z1, . . . , zl, γ1, . . . , γr−l, t1, . . . , tp−r) × (6.10)

× g(z1, . . . , zl, γ1, . . . , γr−l, s1, . . . , sq−r)ν
l (dz1...dzl) .

and, for l = 0,

f ⋆0
r g(γ1, . . . , γr, t1, . . . , tp−r, s1, . . . , sq−r) (6.11)

= f(γ1, . . . , γr, t1, . . . , tp−r)g(γ1, . . . , γr, s1, . . . , sq−r),

so that
f ⋆0

0 g(t1, . . . , tp, s1, . . . , sq) = f(t1, . . . , tp)g(s1, . . . , sq).

For instance, if p = q = 2, one gets

f ⋆0
1 g (γ, t, s) = f (γ, t) g (γ, s) , f ⋆1

1 g (t, s) =

∫

Z
f (z, t) g (z, s) ν (dz) (6.12)

f ⋆1
2 g (γ) =

∫

Z
f (z, γ) g (z, γ) ν (dz) , (6.13)

f ⋆2
2 g =

∫

Z

∫

Z
f (z1, z2) g (z1, z2) ν (dz1) ν (dz2) . (6.14)

One also has

f ⋆r
r g (x1, ..., xp+q−2r) (6.15)

=

∫

Zr

f (z1, ..., zr , x1, ..., xp−r) g (z1, ..., zr , xp−r+1, ..., xp+q−2r) ν (dz1) · · · ν (dzr) ,

but, in analogy with (6.3), we set ⋆r
r = ⊗r, and consequently write

f ⋆r
r g (x1, ..., xp+q−2r) = f ⊗r g (x1, ..., xp+q−2r) , (6.16)

so that, in particular,
f ⋆0

0 g = f ⊗0 g.
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The following elementary result is proved by using the Cauchy-Schwarz inequality. It ensures
that the contractions of the type (6.16) are still square-integrable kernels.

Lemma 6.1 Let f ∈ L2 (νp) and g ∈ L2 (νq). Then, for every r = 0, ..., p ∧ q, one has that
f ⊗r g ∈ L2

(
νp+q−2r

)
.

Proof. Just write
∫

Zp+q−2r

(f ⊗r g)
2 dνp+q−2r

=

∫

Zp+q−2r

(∫

Zr

f (a1, ..., ar, z1, ..., zp−r)

g (a1, ..., ar , zp−r+1, ..., zp+q−r) ν
r (da1, ...dar)

)2
νp+q−2r(dz1, ..., dzp+q−r)

≤ ‖f‖2
L2(νp) × ‖g‖2

L2(νq) .

6.3 Symmetrization of contractions

Suppose that f ∈ L2 (νp) and g ∈ L2 (νq), and let “ ˜ ” denote symmetrization. Then f = f̃
and g = g̃. However, in general, the fact that f and g are symmetric does not imply that the
contraction f ⊗r g is symmetric. For instance, if p = q = 1,

f̃ ⊗0 g (s, t) =
1

2
[f (s) g (t) + g (s) f (t)] ;

if p = q = 2

f̃ ⊗1 g (s, t) =
1

2

∫

Z
[f (x, s) g (x, t) + g (x, s) f (x, t)] ν (dx) .

In general, due to the symmetry of f and g, for every p, q ≥ 1 and every r = 0, ..., p ∧ q one has
the relation

f̃ ⊗r g (t1, ..., tp+q−2r) =
1(p+q−2r

p−r

) ×

×
∑

1≤i1<···<ip−r≤p+q−2r

∫

Zr

f
(
t(i1,...,ip−r),ar

)
g
(
t(i1,...,ip−r)

c ,ar

)
νr (dar) ,

where we used the shorthand notation

t(i1,...,ip−r) =
(
ti1, ..., tip−r

)

t(i1,...,ip−r)
c = (t1, ..., tp+q−2r) \

(
ti1 , ..., tip−r

)

ar = (a1, ..., ar)

νr (dar) = νr (da1, ..., dar) .

Using the definition (6.10), one has also that f̃ ⋆l
r g indicates the symmetrization of f ⋆l

r g,
where l < r. For instance, if p = 3, q = 2, r = 2 and l = 1, one has that

f ⋆l
r g (s, t) = f ⋆1

2 g (s, t) =

∫

Z
f (z, s, t) g (z, s) ν (dz) ,
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and consequently, since f is symmetric,

f̃ ⋆l
r g (s, t) = f̃ ⋆1

2 g (s, t) =
1

2

∫

Z
[f (z, s, t) g (z, s) + f (z, s, t) g (z, t)] ν (dz) .

6.4 The product of two integrals in the Gaussian case

The main result of this section is the following general formula for products of Gaussian multiple
integrals.

Proposition 6.1 Let ϕ = G be a centered Gaussian measure with σ-finite and non-atomic
control measure ν. Then, for every q, p ≥ 1, f ∈ L2

s (νp) and g ∈ L2
s (νq),

IG
p (f) IG

q (g) =

p∧q∑

r=0

r!

(
p

r

)(
q

r

)
IG
p+q−2r

(
f̃ ⊗r g

)
, (6.17)

where the symbol (˜ ) indicates a symmetrization, the contraction f ⊗r g is defined in (6.16),
and for p = q = r, we write

IG
0

(
f̃ ⊗p g

)

= f ⊗r g =

∫

Zp

f (z1, ..., zp) g (z1, ..., zp) ν (dz1) · · · ν (dzp)

= (f, g)L2(νp).

Remark. Since, in general, one has that IG
n (h̃) = IG

n (h) (see formula (5.43)), one could
dispense with the symmetrization “ ˜ ” in formula (6.17).

Proof of Proposition 6.1. We start by assuming that f ∈ Es,0 (νp) and g ∈ Es,0 (νq), and
we denote by π∗ the partition of the set [p+ q] = {1, ..., p + q} given by

π∗ = {{1, ..., p} , {p+ 1, ..., p + q}} .

According to formula (6.2)

IG
p (f) IG

q (g) =
∑

σ∈P([p+q]):σ∧π∗=0̂

StG,[n]
σ (f ⊗0 g) .

Every partition σ ∈ P ([p+ q]) such that σ∧π∗ = 0̂ is necessarily composed of r (0 ≤ r ≤ p∧ q)
two-elements blocks of the type {i, j} where i ∈ {1, ..., p} and j ∈ {p+ 1, ..., p + q}, and p+q−2r

singletons. Moreover, for every fixed r ∈ {0, ..., p ∧ q}, there are exactly r!

(
p

r

)(
q

r

)
partitions

of this type. To see this, observe that, to build such a partition, one should first select one

of the

(
p

r

)
subsets of size r of {1, ..., p}, say Ar, and a one of the

(
q

r

)
subset of size r of

{p+ 1, ..., p + q}, say Br, and then choose one of the r! bijections between Ar and Br. When
r = 0, and therefore σ = 0̂, one obtains immediately

StG,[p+q]
σ (f ⊗0 g) = St

G,[p+q]

0̂

(
f̃ ⊗0 g

)
= IG

p+q

(
f̃ ⊗0 g

)
,
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where the first equality is a consequence of the symmetry of St
G,[n]

0̂
(see Proposition 5.3). On the

other hand, we claim that every partition σ ∈ P ([p+ q]) such that σ ∧ π∗ = 0̂ and σ contains
r ≥ 1 two-elements blocks of the type b = {i, j} (with i ∈ {1, ..., p} and j ∈ {p + 1, ..., p + q})
and p+ q − 2r singletons, satisfies also

StG,[p+q]
σ (f ⊗0 g) = St

G,[p+q−2r]

0̂
(f ⊗r g) = IG

p+q−2r

(
f̃ ⊗r g

)
. (6.18)

We give a proof of (6.18). Consider first the (not necessarily symmetric) functions

f◦ = 1A1×···×Ap and g◦ = 1Ap+1×···×Ap+q,

where Al ∈ Zν , l = 1, ..., p + q. Then, one may use (5.53), in order to obtain

StG,[p+q]
σ (f◦ ⊗0 g

◦) =
∏

b={i,j}∈σ

ν (Ai ∩Aj) St
G,[p+q−2r]

0̂

(
Aj1 × · · · ×Ajp+q−2r

)

= St
G,[p+q−2r]

0̂




∏

b={i,j}∈σ

ν (Ai ∩Aj)1Aj1
×···×Ajp+q−2r


 ,

where {{j1} , ..., {jp+q−2r}} are the singletons of σ (by the symmetry of St
G,[p+q−2r]

0̂
we can

always suppose, here and in the following, that the singletons {j1} , ..., {jp−r} are contained in
{1, ..., p} and that the singletons {jp−r+1} , ..., {jp+q−2r} are in {p+ 1, ..., p + q}). For every pair
of permutations w ∈ S[p] and w′ ∈ S[p+1,p+q] (the group of permutations of the set [p+1, p+q] =

{p+ 1, ..., p + q}), we define f◦,w = 1Aw
1 ×···×Aw

p
and g◦,w′

= 1Aw′
p+1×···×Aw′

p+q
, where Aw

j = Aw(j),

j = 1, ..., p (and analogously for w′). In this way,

StG,[p+q]
σ

(
f◦,w ⊗0 g

◦,w′
)

(6.19)

= St
G,[p+q−2r]

0̂




∏

b={i,j}∈σ

ν
(
Aw

i ∩Aw′

j

)
1

Aw
j1
×···×Aw

jp−r
×Aw′

jp−r+1
×···×Aw′

jp+q−2r




= St
G,[p+q−2r]

0̂




∏

b={i,j}∈σ

ν
(
Aw

i ∩Aw′

j

)
˜1

Aw
j1
×···×Aw

jp−r
×Aw′

jp−r+1
×···×Aw′

jp+q−2r


 .

Now write
f =

∑

w∈G[p]

f◦,w and g =
∑

w∈G[p+1,p+q]

g◦,w,

and observe that (by using (6.16))

∑

w∈G[p]

∑

w′∈G[p+1,p+q]

∏

b={i,j}∈σ

ν
(
Aw

i ∩Aw′

j

)
˜1

Aw
j1
×···×Aw

jp−r
×Aw′

jp−r+1
×···×Aw′

jp+q−2r

= f̃ ⊗r g.

Since (6.19) gives

StG,[p+q]
σ (f ⊗0 g)

= St
G,[p+q−2r]

0̂



∑

w∈S[p]

∑

w′∈S[p+1,p+q]

∏

b={i,j}∈σ

ν
(
Aw

i ∩Aw′

j

)
˜1

Aw
j1
×···×Aw

jp−r
×Aw′

jp−r+1
×···×Aw′

jp+q−2r


 ,
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we obtain (6.18), so that, in particular, (6.17) is proved for symmetric simple functions vanishing
on diagonals. The general result is obtained by using the fact that the linear spaces Es,0 (νp)
and Es,0 (νq) are dense, respectively, in L2

s (νp) and L2
s (νq). Indeed, to conclude the proof it is

sufficient to observe that, if {fk} ⊂ Es,0 (νp) and {gk} ⊂ Es,0 (νq) are such that fk → f in L2
s (νp)

and gk → g in L2
s (νq), then, for instance by Cauchy-Schwarz, IG

p (fk) I
G
q (gk) → IG

p (f) IG
q (g) in

any norm Ls (P), s ≥ 1 (use e.g. (5.46)), and also

˜fk ⊗r gk → f̃ ⊗r g

in L2
s

(
νp+q−2r

)
, so that IG

p+q−2r

(
˜fk ⊗r gk

)
→ IG

p+q−2r

(
f̃ ⊗r g

)
in L2 (P).

Other proofs of Proposition 6.1 can be found e.g. in [49], [16] or [75, Proposition 1.1.3].

Examples. (i) When p = q = 1, one obtains

IG
1 (f) IG

1 (g) = IG
2

(
f̃ ⊗0 g

)
+ IG

0

(
f̃ ⊗1 g

)
= IG

2

(
f̃ ⊗0 g

)
+ 〈f, g〉L2(ν) ,

which is consistent with (6.8).
(ii) When p = q = 2, one obtains

IG
2 (f) IG

2 (g) = IG
4

(
f̃ ⊗0 g

)
+ 4IG

2

(
f̃ ⊗1 g

)
+ 〈f, g〉L2(ν) .

(iii) When p = 3 and q = 2, one obtains

IG
3 (f) IG

2 (g) = IG
5

(
f̃ ⊗0 g

)
+ 6IG

3

(
f̃ ⊗1 g

)
+ 6IG

1 (f ⊗2 g) ,

where f ⊗2 g (z) =
∫
Z2 f (z, x, y) g (x, y) ν (dx) ν (dy).

6.5 The product of two integrals in the Poisson case

We now focus on the product of two Poisson integrals.

Proposition 6.2 Let ϕ = N̂ be a compensated Poisson measure, with σ-finite and non-atomic
control measure ν. Then, for every q, p ≥ 1, f ∈ Es,0 (νp) and g ∈ Es,0 (νq),

IN̂
p (f)IN̂

q (g) =

p∧q∑

r=0

r!

(
p

r

)(
q

r

) r∑

l=0

(
r

l

)
IN̂
p+q−r−l(f̃ ⋆

l
r g). (6.20)

Formula (6.20) continues to hold for functions f ∈ L2
s (νp) and g ∈ L2

s (νq) such that f ⋆l
r g ∈

L2
(
νq+p−r−l

)
, ∀r = 0, ..., p ∧ q, ∀l = 0, ..., r.

Sketch of the proof. We shall only prove formula (6.20) in the simple case where p = q = 2.
The generalization to general indices p, q ≥ 1 (left to the reader) does not present any particular
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additional difficulty, except for the need of a rather heavy notation. We shall therefore prove
that

IN̂
2 (f)IN̂

2 (g) =

2∑

r=0

r!

(
2

r

)(
2

r

) r∑

l=0

(
r

l

)
IN̂
4−r−l(f̃ ⋆

l
r g) (6.21)

= IN̂
4 (f̃ ⋆0

0 g) (6.22)

+4

[
IN̂
3 (f̃ ⋆0

1 g) + IN̂
2 (f̃ ⋆1

1 g)

]
(6.23)

+2

[
IN̂
2 (f̃ ⋆0

2 g) + 2IN̂
1 (f̃ ⋆1

2 g) + 〈f, g〉L2(ν2)

]
. (6.24)

Moreover, by linearity, we can also assume that

f = 1A1×A2 + 1A2×A1 and g = 1B1×B2 + 1B2×B1 ,

where A1 ∩A2 = B1 ∩B2 = ∅. Denote by π∗ the partition of [4] = {1, ..., 4} given by

π∗ = {{1, 2} , {3, 4}} ,

and apply the general result (6.2) to deduce that

IN̂
2 (f)IN̂

2 (g) =
∑

σ∈P([4]):σ∧π∗=0̂

StN̂,[n]
σ (f ⊗0 g) .

We shall prove that

∑

σ∈P([4]):σ∧π∗=0̂

StN̂,[n]
σ (f ⊗0 g) = (6.22) + (6.23) + (6.24).

To see this, observe that the class

{
σ ∈ P ([4]) : σ ∧ π∗ = 0̂

}

contains exactly 7 elements, that is:

(I) the trivial partition 0̂, containing only singletons;

(II) four partitions σ1, ..., σ4 containing one block of two elements and two singletons, namely

σ1 = {{1, 3} , {2} , {4}} , σ2 = {{1, 4} , {2} , {3}}

σ3 = {{1} , {2, 3} , {4}} and σ4 = {{1} , {2, 4} , {3}} ;

(III) two partitions σ5, σ6 composed of two blocks of two elements, namely

σ5 = {{1, 3} , {2, 4}} and σ6 = {{1, 4} , {2, 3}} .
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By definition, one has that

St
N̂,[n]

0̂
(f ⊗0 g) = IN̂

4 (f̃ ⋆0
0 g),

giving (6.22). Now consider the partition σ1, as defined in Point (II) above. By using the
notation (5.54), one has that B2 (σ1) = {{1, 3}}, |B2 (σ1)| = 1 and PB2 (σ1) = ∅. It follows
from formula (5.58) that

StN̂,[4]
σ1

(f ⊗0 g) = StN̂,[4]
σ1

((1A1×A2 + 1A2×A1) ⊗0 (1B1×B2 + 1B2×B1))

= St
N̂,[3]

0̂

(
1(A1∩B1)×A2×B2

+ 1(A1∩B2)×A2×B1
+ 1(A2∩B1)×A1×B2

+ 1(A2∩B2)×A1×B1

)

+ν (A1 ∩B1) St
N̂,[2]

0̂
(1A2×B2) + ν (A1 ∩B2) St

N̂,[2]

0̂
(1A2×B1)

+ν (A2 ∩B1) St
N̂,[2]

0̂
(1A1×B2) + ν (A2 ∩B2) St

N̂,[2]

0̂
(1A1×B1) .

Observe that

St
N̂,[3]

0̂

(
1(A1∩B1)×A2×B2

+ 1(A1∩B2)×A2×B1
+ 1(A2∩B1)×A1×B2

+ 1(A2∩B2)×A1×B1

)

= IN̂
3 (f̃ ⋆0

1 g),

and moreover,

ν (A1 ∩B1) St
N̂,[2]

0̂
(1A2×B2) + ν (A1 ∩B2) St

N̂,[2]

0̂
(1A2×B1) +

ν (A2 ∩B1) St
N̂,[2]

0̂
(1A1×B2) + ν (A2 ∩B2) St

N̂,[2]

0̂
(1A1×B1)

= IN̂
2 (f ⋆1

1 g) = IN̂
2 (f̃ ⋆1

1 g).

By repeating exactly same argument, one sees immediately that

StN̂,[4]
σ1

(f ⊗0 g) = StN̂,[4]
σi

(f ⊗0 g) ,

for every for i = 2, 3, 4 (the partitions σi being defined as in Point (II) above) so that the
quantity ∑

i=1,...,4

StN̂,[n]
σi

(f ⊗0 g)

equals necessarily the expression appearing in (6.23). Now we focus on the partition σ5 appear-
ing in Point (III). Plainly (by using once again the notation introduced in (5.54)), B2 (σ5) =
{{1, 3} , {2, 4}}, |B2 (σ5)| = 2, and the set PB2 (σ5) contains two elements, namely

({{1, 3}} ; {{2, 4}}) and ({{2, 4}} ; {{1, 3}})

(note that we write {{1, 3}} (with two accolades), since the elements of PB2 (σ5) are pairs of
collections of blocks of σ2, so that {{1, 3}} is indeed the singleton whose only element is {1, 3}).
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We can now apply formula (5.58) to deduce that

StN̂,[4]
σ5

(f ⊗0 g) = StN̂,[4]
σ5

((1A1×A2 + 1A2×A1) ⊗0 (1B1×B2 + 1B2×B1)) (6.25)

= 2
[
ν (A1 ∩B1) St

N̂,[1]

0̂
(1A2∩B2) + ν (A1 ∩B2) St

N̂,[1]

0̂
(1A2∩B1)

+ν (A2 ∩B1) St
N̂,[1]

0̂
(1A1∩B2) + ν (A2 ∩B2) St

N̂,[1]

0̂
(1A1∩B1)

]

+St
N̂ ,[2]

0̂

(
1(A1∩B1)×(A2∩B2) + 1(A1∩B2)×(A2∩B1) + 1(A2∩B1)×(A1∩B2) + 1(A2∩B2)×(A1∩B1)

)

+ν (A1 ∩B1) ν (A2 ∩B2) + ν (A1 ∩B2) ν (A2 ∩B1)

+ν (A2 ∩B1) ν (A1 ∩B2) + ν (A2 ∩B2) ν (A1 ∩B1) .

One easily verifies that

2
[
ν (A1 ∩B1) St

N̂,[1]

0̂
(1A2∩B2) + ν (A1 ∩B2) St

N̂,[1]

0̂
(1A2∩B1)

+ν (A2 ∩B1) St
N̂,[1]

0̂
(1A1∩B2) + ν (A2 ∩B2) St

N̂,[1]

0̂
(1A1∩B1)

]

= 2IN̂
1 (f ⋆1

2 g) = 2IN̂
1 (f̃ ⋆1

2 g), (6.26)

and moreover

1(A1∩B1)×(A2∩B2) + 1(A1∩B2)×(A2∩B1) + 1(A2∩B1)×(A1∩B2) + 1(A2∩B2)×(A1∩B1)

= f̃ ⋆0
2 g (6.27)

and

〈f, g〉L2(ν2) = ν (A1 ∩B1) ν (A2 ∩B2) + ν (A1 ∩B2) ν (A2 ∩B1) (6.28)

+ν (A2 ∩B1) ν (A1 ∩B2) + ν (A2 ∩B2) ν (A1 ∩B1) .

Since, trivially, St
N̂,[4]
σ5 (f ⊗0 g) = St

N̂,[4]
σ6 (f ⊗0 g), we deduce immediately from (6.25)–(6.28)

that the sum St
N̂,[4]
σ5 (f ⊗0 g) + St

N̂ ,[4]
σ6 (f ⊗0 g) equals the expression appearing in (6.24). This

proves the first part of the Proposition. The last assertion in the statement can be proved by a
density argument, similar to the one used in order to conclude the proof of Proposition 6.1.

Other proofs of Proposition 6.2 can be found for instance in [38, 121, 126].

Examples. (i) When p = q = 1, one obtains

IN̂
1 (f) IN̂

1 (g) = IN̂
2

(
f̃ ⊗0 g

)
+ IN̂

1

(
f̃ ⋆0

1 g

)
+ 〈f, g〉L2(ν) .

(ii) When p = 2, and q = 1, one has

IN̂
2 (f) IN̂

1 (g) = IN̂
3

(
f̃ ⊗0 g

)
+ 2IN̂

2

(
f̃ ⋆0

1 g

)
+ 2IN̂

1

(
f̃ ⋆1

1 g

)

=

∫ ∫ ∫

z1 6=z2 6=z3

f (z1, z2) g (z3) N̂ (dz1) N̂ (dz2) N̂ (dz3)

+2

∫ ∫

z1 6=z2

f (z1, z2) g (z1) N̂ (dz1) N̂ (dz2)

+2

∫ (∫
f (z1, x) g (z1) ν (dx)

)
N̂ (dz1) .
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7 Diagram formulae

We now want a general formula for computing cumulants and expectations of products of mul-
tiple integrals, that is, formulae for objects of the type

E
[
Iϕ
n1

(f1) × · · · × Iϕ
nk

(fk)
]

and χ
(
Iϕ
n1

(f1) , ..., I
ϕ
nk

(fk)
)
.

7.1 Formulae for moments and cumulants

As in the previous sections, we shall focus on completely random measures ϕ that are also good
(in the sense of Definition 3), so that moments and cumulants are well-defined. As usual, we
shall assume that the control measure ν is non-atomic. This last assumption is not enough,
however, because while the measure ν (A) = Eϕ (A)2 may be non-atomic, for some n ≥ 2 the
mean measure (concentrated on the “full diagonal”)

〈∆ϕ
n (A)〉 , E

[
St

ϕ,[n]

1̂
(A)
]

= E
[
ϕ⊗n {(z1, ..., zn) ∈ A : z1 = · · · = zn}

]

may be atomic. We shall therefore assume that ϕ is “multiplicative”, that is, that this phe-
nomenon does not take place for any n ≥ 2.

Proceeding formally, let ϕ be a good random measure on Z, and fix n ≥ 2. Recall that Zn
ν

denotes the collection of all sets B in Z⊗n such that ν⊗n (B) = νn (B) < ∞ (see (5.3)). As
before, for every partition π ∈ P ([n]), the class Zn

π is the collection of all π-diagonal elements

of Zn (see (5.1)). Recall also that St
ϕ,[n]
π is the restriction of the measure ϕ⊗n = ϕ[n] on Zn

π (see
(5.28)). Now let

〈
Stϕ,[n]

π

〉
(C) = E

[
Stϕ,[n]

π (C)
]
, C ∈ Zn

ν , (7.1)

∆ϕ
1 (A) = ϕ (A) , (7.2)

∆ϕ
n (A) = St

ϕ,[n]

1̂
(A× · · · ×A︸ ︷︷ ︸)

n times

, A ∈ Zν , (7.3)

〈∆ϕ
n〉 (A) = E [∆ϕ

n (A)] , A ∈ Zν . (7.4)

Thus, ∆ϕ
n (A) denotes the random measure concentrated on the full diagonal z1 = ... = zn

of the ntuple product A× · · · ×A, and 〈·〉 denotes expectation.

Definition 8 We say that the good completely random measure ϕ is multiplicative if the
deterministic measure A 7→ 〈∆ϕ

n〉 (A) is non-atomic for every n ≥ 2. We show in the examples
below that a Gaussian or compensated Poisson measure, with non-atomic control measure ν, is
always multiplicative.

The term “multiplicative” (which we take from [106]) originates from the fact that ϕ is
multiplicative (in the sense of the previous definition) if and only if for every partition π the non-

random measure
〈
St

ϕ,[n]
π

〉
(·) can be written as a product measure. In particular (see Proposition

8 in [106]), the completely random measure ϕ is multiplicative if and only if for every π ∈ P ([n])
and every A1, ..., An ∈ Zν ,

〈
Stϕ,[n]

π

〉
(A1 × · · · ×An) =

∏

b∈π

〈
St

ϕ,[|b|]

1̂

〉(
X
j∈b
Aj

)
, (7.5)
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where, for every b = {j1, ..., jk} ∈ π, we used once again the notation X
j∈b
Aj , Aj1 × · · · × Ajk

.

Note that the RHS of (7.5) involves products over blocks of the partition π, in which there is
concentration over the diagonals associated with the blocks. Thus, in view of (5.2) and (7.3),
one has that 〈

Stϕ,[n]
π

〉
(A1 × · · · ×An) =

∏

b∈π

〈
∆ϕ

|b|

〉
(∩j∈bAj) , (7.6)

that is, we can express the LHS of (7.5) as a product of measures involving sets in Zν . Observe
that one can rewrite relation (7.5) in the following (compact) way:

〈
Stϕ,[n]

π

〉
=
⊗

b∈π

〈
St

ϕ,[|b|]

1̂

〉
. (7.7)

Examples. (i) When ϕ is Gaussian with non-atomic control measure ν, relation (7.5)

implies that
〈
St

ϕ,[n]
π

〉
is 0 if π contains at least one block b such that |b| 6= 2. If, on the other

hand, every block of π contains exactly two elements, we deduce from (5.51) and (5.53) that

〈
Stϕ,[n]

π

〉
(A1 × · · · ×An) =

∏

b={i,j}∈π

ν (Ai ∩Aj) , (7.8)

which is not atomic.
(ii) If ϕ is a compensated Poisson measure with non-atomic control measure ν, then

〈
St

ϕ,[n]
π

〉

is 0 whenever π contains at least one block b such that |b| = 1 (indeed, that block would have
measure 0, since ϕ is centered). If, on the other hand, every block of π has more than two
elements, then, by Corollary 5.1

〈
Stϕ,[n]

π

〉
(A1 × · · · ×An) =

n∏

k=2

∏

b={j1,...,jk}∈π

ν (Aj1 ∩ · · · ∩Ajk
) , (7.9)

which is non-atomic. See [106] for (quite pathological) examples of non-multiplicative measures.

Notation. In what follows, the notation

∫

Zn

f (z1, ..., zn)
⊗

b∈π

〈
St

ϕ,[|b|]

1̂

〉
(dz1, ..., dzn) ,

⊗

b∈π

〈
St

ϕ,[|b|]

1̂

〉
(f) (7.10)

will be used for every function f ∈ E (νn) . 7

The next result gives a new universal combinatorial formula for the computation of the
cumulants and the moments associated with the multiple Wiener-Itô integrals with respect to a
completely random multiplicative measure.

7The integral
∫

Zn
f{d

⊗
b∈π

〈
St

ϕ,[|b|]

1̂

〉
} in (7.10) is well defined, since the set function

⊗
b∈π

〈
St

ϕ,[|b|]

1̂

〉
(·) is a σ-

additive signed measure (thanks to (5.8)) on the algebra generated by the products of the type A1 × · · · × An,
where each Aj is in Zν .
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Theorem 7.1 (Diagram formulae) Let ϕ be a good completely random measure, with non-
atomic control measure ν, and suppose that ϕ is also multiplicative in the sense of Definition
8. For every n1, ..., nk ≥ 1, we write n = n1 + · · · + nk, and we denote by π∗ the partition
of [n] = {1, ..., n} given by (6.1). Then, for every collection of kernels f1, ..., fk such that
fj ∈ Es,0 (νnj), one has that

E
[
Iϕ
n1

(f1) · · · I
ϕ
nk

(fk)
]

=
∑

{σ∈P([n]):σ∧π∗=0̂}

⊗

b∈σ

〈
St

ϕ,[|b|]

1̂

〉
(f1 ⊗0 f2 ⊗0 · · · ⊗0 fk) , (7.11)

and
χ
(
Iϕ
n1

(f1) , · · ·, I
ϕ
nk

(fk)
)

=
∑

σ∧π∗=0̂
σ∨π∗=1̂

⊗

b∈σ

〈
St

ϕ,[|b|]

1̂

〉
(f1 ⊗0 f2 ⊗0 · · · ⊗0 fk) , (7.12)

Proof. Formula (7.11) is a consequence of Theorem 6.1 and (7.5). In order to prove (7.12),
we shall first show that the following two equalities hold

χ
(
Iϕ
n1

(f1) , · · ·, I
ϕ
nk

(fk)
)

=
∑

π∗≤ρ=(r1,...,rl)∈P([n])

µ
(
ρ, 1̂
) l∏

j=1

E




∏

a:{n1+···+na−1+1,...,n1+···+na}⊆rj

Iϕ
na

(fa)


 (7.13)

=
∑

π∗≤ρ=(r1,...,rl)∈P([n])

µ
(
ρ, 1̂
) ∑

γ≤ρ
γ∧π∗=0̂

⊗

b∈γ

〈
St

ϕ,[|b|]

1̂

〉
(f1 ⊗0 · · · ⊗0 fk) , (7.14)

where n1 + n0 = 0 by convention.
The proof of (7.13) uses arguments analogous to those in the proof of Malyshev’s formula

(4.17). Indeed, one can use relation (3.5) to deduce that

χ
(
Iϕ
n1

(f1) , · · ·, I
ϕ
nk

(fk)
)

=
∑

σ={x1,...,xl}∈P([k])

(−1)l−1 (l − 1)!
l∏

j=1

E



∏

a∈xj

Iϕ
na

(fa)


 . (7.15)

Now observe that there exists a bijection

P ([k]) →
[
π∗, 1̂

]
: σ 7→ ρ(σ),

between P ([k]) and the segment
[
π∗, 1̂

]
, which is defined as the set of those ρ ∈ P ([n]) such

that π∗ ≤ ρ, where π∗ is given by (6.1). Such a bijection is realized as follows: for every
σ = {x1, ..., xl} ∈ P ([k]), define ρ(σ) ∈

[
π∗, 1̂

]
by merging two blocks

{n1 + · · · + na−1 + 1, ..., n1 + · · · + na} and {n1 + · · · + nb−1 + 1, ..., n1 + · · · + nb}

of π∗ (1 ≤ a 6= b ≤ k) if and only if a ∼σ b. Note that this construction implies that |σ| =∣∣ρ(σ)
∣∣ = l, so that (2.9) yields

(−1)l−1 (l − 1)! = µ
(
σ, 1̂
)

= µ
(
ρ(σ), 1̂

)
(7.16)
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(observe that the two Möbius functions appearing in (7.16) refer to two different lattices of

partitions). Now use the notation ρ(σ) =
{
r
(σ)
1 , ..., r

(σ)
l

}
to indicate the blocks of ρ(σ): since, by

construction,

l∏

j=1

E



∏

a∈xj

Iϕ
na

(fa)


 =

l∏

j=1

E




∏

a:{n1+···+na−1+1,...,n1+···+na}⊆r
(σ)
j

Iϕ
na

(fa)


 , (7.17)

we immediately obtain (7.13) by plugging (7.16) and (7.17) into (7.15).
To prove (7.14), fix ρ = {r1, ..., rl} such that π∗ ≤ ρ. For j = 1, ..., l, we write π∗ (j) to indicate

the partition of the block rj whose blocks are the sets {n1 + · · · + na−1 + 1, ..., n1 + · · · + na}
such that

{n1 + · · · + na−1 + 1, ..., n1 + · · · + na} ⊆ rj. (7.18)

According to (7.11),

E




∏

a:{n1+···+na−1+1,...,n1+···+na}⊆rj

Iϕ
na

(fa)


 =

∑

{σ∈P(rj):σ∧π∗(j)=0̂}

⊗

b∈σ

〈
St

ϕ,[|b|]

1̂

〉 ({
⊗rj ,0f

})
,

where the function
{
⊗rj ,0f

}
is obtained by juxtaposing the |π∗ (j)| functions fa such that the

index a verifies (7.18). Now observe that γ ∈ P ([n]) satisfies

γ ≤ ρ and γ ∧ π∗ = 0̂,

if and only if γ admits a (unique) representation as a union of the type

γ =

l⋃

j=1

σ (j) ,

where each σ (j) is an element of P (rj) such that σ (j) ∧ π∗ (j) = 0̂. This yields

l∏

j=1

∑

{σ∈P(rj):σ∧π∗(j)=0̂}

⊗

b∈σ

〈
St

ϕ,[|b|]

1̂

〉({
⊗rj ,0f

})

=
∑

γ≤ρ
γ∧π∗=0̂

⊗

b∈γ

〈
St

ϕ,[|b|]

1̂

〉
(f1 ⊗0 · · · ⊗0 fk) .

This relation, together with (7.16) and (7.17), shows that (7.13) implies (7.14). To conclude the
proof, just observe that, by inverting the order of summation in (7.14), one obtains that

χ
(
Iϕ
n1

(f1) , · · ·, I
ϕ
nk

(fk)
)

=
∑

γ∧π∗=0̂

⊗

b∈γ

〈
St

ϕ,[|b|]

1̂

〉
(f1 ⊗0 · · · ⊗0 fk)

∑

π∗∨γ≤ρ≤1̂

µ
(
ρ, 1̂
)

=
∑

γ∧π∗=0̂
π∗∨γ=1̂

⊗

b∈γ

〈
St

ϕ,[|b|]

1̂

〉
(f1 ⊗0 · · · ⊗0 fk) ,
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where the last equality is a consequence of the relation

∑

π∗∨γ≤ρ≤1̂

µ
(
ρ, 1̂
)

=

{
1 if π∗ ∨ γ = 1̂
0 otherwise,

which is in turn a special case of (2.14).

Remark. Observe that the only difference between the moment formula (7.11) and the
cumulant formula (7.12) is that in the first case the sum is over all σ such that σ ∧ π∗ = 0̂ =
{{1} , ..., {n}}, and that in the second case σ must satisfy in addition that σ ∨ π∗ = 1̂ = {[n]}.
Moreover, the relations (7.11) and (7.12) can be restated in terms of diagrams by rewriting the
sums as

∑

{σ∈P([n]):σ∧π∗=0̂}

=
∑

σ∈P([n]):Γ(π∗,σ) is non-flat

;
∑

σ∧π∗=0̂
σ∨π∗=1̂

=
∑

σ∈P([n]):Γ(π∗,σ) is non-flat
and connected

,

where Γ (π∗, σ) is the diagram of (π∗, σ), as defined in Section 4.1.

7.2 The Gaussian case

We shall now provide a version of Theorem 7.1 in the case where ϕ is, respectively, Gaussian
and Poisson. For convenience, using the same notation as that in Theorem 7.1, let

M ([n] , π∗) ,
{
σ ∈ P ([n]) : σ ∨ π∗ = 1̂ and σ ∧ π∗ = 0̂

}
(7.19)

M0 ([n] , π∗) ,
{
σ ∈ P ([n]) : σ ∧ π∗ = 0̂

}
(7.20)

and

M2 ([n] , π∗) , {σ ∈ M ([n] , π∗) : |b| = 2, ∀b ∈ σ} (7.21)

M0
2 ([n] , π∗) ,

{
σ ∈ M0 ([n] , π∗) : |b| = 2, ∀b ∈ σ

}
(7.22)

M≥2 ([n] , π∗) , {σ ∈ M ([n] , π∗) : |b| ≥ 2, ∀b ∈ σ} (7.23)

M0
≥2 ([n] , π∗) ,

{
σ ∈ M0 ([n] , π∗) : |b| ≥ 2, ∀b ∈ σ

}
(7.24)

where the partition π∗ ∈ P ([n]) is defined in (6.1). The sets M2 ([n] , π∗) and M0
2 ([n] , π∗)

appear in the case where ϕ is Gaussian. Note that, by using the formalism of diagrams Γ and
multigraphs Γ̂ introduced in Section 4, one has that

M ([n] , π∗) = {σ ∈ P ([n]) : Γ (π∗, σ) is non-flat and connected} (7.25)

M0 ([n] , π∗) = {σ ∈ P ([n]) : Γ (π∗, σ) is connected} (7.26)

M2 ([n] , π∗) = {σ ∈ P ([n]) : Γ (π∗, σ) is Gaussian, non-flat and connected} (7.27)

=
{
σ ∈ P ([n]) : Γ̂ (π∗, σ) has no loops and is connected

}

M0
2 ([n] , π∗) = {σ ∈ P ([n]) : Γ (π∗, σ) is Gaussian and non-flat} (7.28)

=
{
σ ∈ P ([n]) : Γ̂ (π∗, σ) has no loops

}
.

Clearly, M2 ([n] , π∗) ⊂ M0
2 ([n] , π∗), M2 ([n] , π∗) ⊂ M≥2 ([n] , π∗) and

M0
2 ([n] , π∗) ⊂ M0

≥2 ([n] , π∗) .
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The sets M≥2 ([n] , π∗) and M0
≥2 ([n] , π∗) appear when ϕ is a compensated Poisson measure,

namely ϕ = N̂ .

Corollary 7.1 (Gaussian measures) Suppose ϕ = G is a centered Gaussian measure with
non-atomic control measure ν, fix integers n1, ..., nk ≥ 1 and let n = n1 + · · ·+nk. Write π∗ for
the partition of [n] appearing in (6.1). Then, for any vector of functions (f1, ..., fk) such that
fj ∈ L2

s (νnj), j = 1, ..., k, the following relations hold:

1. If M2 ([n] , π∗) = ∅ (in particular, if n is odd), then χ
(
IG
n1

(f1) , · · ·, I
G
nk

(fk)
)

= 0;

2. If M2 ([n] , π∗) 6= ∅, then

χ
(
IG
n1

(f1) , · · ·, I
G
nk

(fk)
)

=
∑

σ∈M2([n],π∗)

∫

Zn/2

fσ,kdν
n/2, (7.29)

where, for every σ ∈ M2 ([n] , π∗), the function fσ,k, of n/2 variables, is obtained by
identifying the variables xi and xj in the argument of f1 ⊗0 · · · ⊗0 fnk

(as given in (6.3))
if and only if i ∼σ j;

3. If M0
2 ([n] , π∗) = ∅ (in particular, if n is odd), then E

(
IG
n1

(f1) · · · I
G
nk

(fk)
)

= 0;

4. If M0
2 ([n] , π∗) 6= ∅,

E
(
IG
n1

(f1) · · · I
G
nk

(fk)
)

=
∑

σ∈M0
2([n],π∗)

∫

Zn/2

fσ,kdν
n/2 (7.30)

Proof. First observe that, since ϕ = G is Gaussian, then
〈
St

G,[|b|]

1̂

〉
≡ 0 whenever |b| 6= 2.

Assume for the moment that fj ∈ Es,0 (νnj), j = 1, ..., k. In this case, we can apply formula
(7.12) and obtain that

χ
(
IG
n1

(f1) , · · ·, I
G
nk

(fk)
)

=
∑

{σ:σ∧π∗=0̂ ;

σ∨π∗=1̂ ; |b|=2 ∀b∈σ}

⊗

b∈σ

〈
St

G,[|b|]

1̂

〉
(f1 ⊗0 f2 ⊗0 · · · ⊗0 fk)

=
∑

σ∈M2([n],π∗)

⊗

b∈σ

〈
St

G,[|b|]

1̂

〉
(f1 ⊗0 f2 ⊗0 · · · ⊗0 fk) ,

where we have used (7.21). The last relation trivially implies Point 1 in the statement. Moreover,
since, for every B,C ∈ Zν ,

〈
St

G,[2]

1̂

〉
(B × C) =

〈
St

G,[2]

1̂

〉
((B ∩ C) × (B ∩ C)) =

〈
∆G

2

〉
(B ∩ C) , (7.31)

one deduces immediately that the support of the deterministic measure
⊗
b∈σ

〈
St

G,[|b|]

1̂

〉
is con-

tained in the set

Zn
≥σ = {(z1, ..., zn) : zi = zj for every i, j such that i ∼σ j} .
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Since, by (5.51) and (7.31),

〈
St

G,[|b|]

1̂

〉
(B × C) = ν (B ∩C) , (7.32)

for every B,C ∈ Zν , we infer that

⊗

b∈σ

〈
St

G,[|b|]

1̂

〉
(f1 ⊗0 f2 ⊗0 · · · ⊗0 fk) =

⊗

b∈σ

〈
St

G,[|b|]

1̂

〉
(fσ) =

∫

Zn/2
fσ,kdν

n/2. (7.33)

where the function fσ,k is defined in the statement. To obtain the last equality in (7.33),
one should start with functions fj of type fj

(
z1, ..., znj

)
= 1

C
(j)
1 ×···×C

(j)
nj

(
z1, ..., znj

)
, where the

C
(j)
ℓ ∈ Zν are disjoint, and then apply formula (7.8), so that the extension to general functions

fj ∈ Es,0 (νnj) is obtained by the multilinearity of the application

(f1, ..., fk) 7→

∫

Zn/2

fσ,kdν
n/2.

To obtain (7.29) for general functions f1, ..., fk such that fj ∈ L2
s (νnj), start by observing that

Es,0 (νnj) is dense in L2
s (νnj ), and then use the fact that, if a sequence f

(r)
1 , ..., f

(r)
k , r ≥ 1, is

such that f
(r)
j ∈ Es,0 (νnj ) and f

(r)
j → fj in L2

s (νnj) (j = 1, ..., k), then

χ
(
IG
n1

(
f

(r)
1

)
, · · ·, IG

nk

(
f

(r)
k

))
→ χ

(
IG
n1

(f1) , · · ·, I
G
nk

(fk)
)
,

by (5.46), and moreover ∫

Zn/2

f
(r)
σ,kdν

n/2 →

∫

Zn/2

fσ,kdν
n/2,

where f
(r)
σ,k is constructed from f

(r)
1 , ..., f

(r)
k , as specified in the statement (a similar argument

was needed in the proof of Proposition 6.1). Points 3 and 4 in the statement are obtained
analogously, by using the relations

E
(
IG
n1

(f1) , · · ·, I
G
nk

(fk)
)

=
∑

{σ:σ∧π∗=0̂ ;
|b|=2 ∀b∈σ}

⊗

b∈σ

〈
St

G,[|b|]

1̂

〉
(f1 ⊗0 f2 ⊗0 · · · ⊗0 fk)

=
∑

σ∈M0
2([n],π∗)

⊗

b∈σ

〈
St

G,[|b|]

1̂

〉
(f1 ⊗0 f2 ⊗0 · · · ⊗0 fk) ,

and then by applying the same line of reasoning as above.

Examples. (i) We want to use Corollary 7.1 to compute the cumulant of the two integrals

IG
n1

(f1) =

∫

Z
n1
0̂

f1 (z1, ..., zn1)G (dz1) · · ·G (dzn1)

IG
n2

(f2) =

∫

Z
n2
0̂

f2 (z1, ..., zn2)G (dz1) · · ·G (dzn2) ,
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that is, the quantity
χ
(
IG
n1

(f1) , I
G
n2

(f2)
)

= E
(
IG
n1

(f1) I
G
n2

(f2)
)
.

Here, π∗ ∈ P ([n1 + n2]) is given by π∗ = {{1, ..., n1} , {n1 + 1, ..., n1 + n2}}. It is easily seen
that M2 ([n1 + n2] , π

∗) 6= ∅ if and only if n1 = n2. Indeed, each partition M2 ([n1 + n2] , π
∗) is

of the form
σ = {{i1, i2} : i1 ∈ {1, ..., n1} , i2 ∈ {n1 + 1, ..., n1 + n2}} (7.34)

(this is the case because σ must have blocks of size |b| = 2 only, and no blocks can be constructed
using only the indices {1, ..., n1} or {n1 + 1, ..., n1 + n2}, since the corresponding diagram must
be non-flat). In the case where n1 = n2, there are exactly n1! partitions as in (7.34), since to
each element in {1, ..., n1} one attaches one element of {n1 + 1, ..., n1 + n2}. Moreover, for any
such σ one has that ∫

Zn/2

fσ,2dν
n/2 =

∫

Zn1

f1f2dν
n1 , (7.35)

where n = n1 + n2 and we have used the symmetry of f1 and f2 to obtain that

fσ,2

(
z1, ..., zn

2

)
= fσ,2 (z1, ..., zn1) = f1 (z1, ..., zn1) f2 (z1, ..., zn1) .

From (7.30) and (7.35), we deduce that

E
(
IG
n1

(f1) I
G
n2

(f2)
)

= 1n1=n2 × n1!

∫

Zn1

f1f2dν
n1,

as expected (see (5.42)). Note also that, since every diagram associated with π∗ has two rows,
one also has

M2 ([n1 + n2] , π
∗) = M0

2 ([n1 + n2] , π
∗) ,

that is, every non-flat diagram is also connected, thus yielding (thanks to (7.29) and (7.30))

χ
(
IG
n1

(f1) , I
G
n2

(f2)
)

= E
(
IG
n1

(f1) I
G
n2

(f2)
)
.

(ii) We fix an integer k ≥ 3 and set n1 = ... = nk = 1, that is, we focus on functions
fj, j = 1, ..., k, of one variable, so that the integral IG

1 (fj) is Gaussian for every j, and we
consider χ

(
IG
1 (f1) , ..., I

G
1 (fk)

)
and E

[
IG
1 (f1) , ..., I

G
1 (fk)

]
. In this case, n1 + · · ·+ nk = k, and

π∗ = {{1} , ..., {k}} = 0̂. For instance, for k = 6, π∗ is represented in Fig. 19.

b

b

b

b

b

b

Figure 19: A representation of the partition 0̂
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In that case M2 ([k] , π∗) = ∅, because all diagrams will be disconnected. One of such diagrams
is represented in Fig. 20.

b

b

b

b

b

b

Figure 20: A disconnected Gaussian diagram

(Exercise: give an algebraic proof of the fact that M2 ([k] , π∗) = ∅). It follows from Point 1
of Corollary 7.1 that

χ
(
IG
1 (f1) , ..., I

G
1 (fk)

)
= 0

(this is consistent with the properties of cumulants of Gaussian vectors noted in Section 3). Now
focus on M0

2 ([k] , π∗). If k is odd the class M0
2 ([k] , π∗) is empty, and, for k even, M0

2 ([k] , π∗)
coincides with the collection of all partitions

σ =
{
{i1, j1} , ...,

{
ik

2
, jk

2

}}
∈ P ([k]) (7.36)

whose blocks have size two (that is, M0
2 ([k] , π∗) is the class of all perfect matchings of the first

k integers). For σ as in (7.36), we have

fσ,k

(
z1, ..., zk

2

)
=

∏

{il,jl}∈σ
l=1,...,k/2

fil (zl) fjl
(zl) .

Points 3 and 4 of Corollary 7.1 yield therefore

E
(
IG
1 (f1) · · · I

G
1 (fk)

)

=

{ ∑
σ={{i1,j1},...,{ik/2,jk/2}}∈P([k])

∫
Z fi1fj1dν · · ·

∫
Z fik/2

fjk/2
dν, k even

0, k odd.
,

which is just a special case of (3.16), since E
(
IG
1 (fi) I

G
1 (fj)

)
=
∫
Z fi1fj1dν. For instance, if

k = 4, one has that

E
(
IG
1 (f1) · · · I

G
1 (f4)

)
=

∫

Z
f1f2dν ×

∫

Z
f3f4dν +

∫

Z
f1f3dν ×

∫

Z
f2f4dν

∫

Z
f1f4dν ×

∫

Z
f2f3dν.

(iii) Consider the case k = 3, n1 = 2, n2 = n3 = 1. Here, n = n1 + n2 + n3 = 4, and
π∗ = {{1, 2} , {3} , {4}}. The partition π∗ is represented in Fig. 21.
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b b

b

b

Figure 21: A three-block partition

The class M2 ([4] , π∗) contains only two elements, namely

σ1 = {{1, 3} , {2, 4}} and σ2 = {{1, 4} , {2, 3}} ,

whose diagrams are given in Fig. 22.

b b

b

b

b b

b

b

Figure 22: The two elements of M2([4], π
∗)

Since the rows of these diagrams cannot be divided into two subsets (see Section 4.1), they are
connected, and one has M2 ([4] , π∗) = M0

2 ([4] , π∗), that is, cumulants equal moments by (7.29)
and (7.30). Moreover,

fσ1,3 (z1, z2) = f1 (z1, z2) f2 (z1) f3 (z2)

fσ2,3 (z1, z2) = f1 (z1, z2) f2 (z2) f3 (z1) .

It follows that

χ
(
IG
2 (f1) , I

G
1 (f2) , I

G
1 (f3)

)
= E

(
IG
2 (f1) I

G
1 (f2) I

G
1 (f3)

)

=

∫

Z2

{fσ1,3 (z1, z2) + fσ2,3 (z1, z2)}ν
2 (dz1, dz2)

= 2

∫

Z2

f1 (z1, z2) f2 (z1) f3 (z2) ν
2 (dz1, dz2) ,

where in the last equality we have used the symmetry of f1.
(iv) We want to use Point 1 and 2 of Corollary 7.1 to compute the kth cumulant

χk

(
IG
2 (f)

)
= χ(IG

2 (f) , ..., IG
2 (f)︸ ︷︷ ︸)

k times.

,

for every k ≥ 3. This can be done by specializing formula (7.29) to the case: k ≥ 3 and
n1 = n2 = ... = nk = 2. Here, n = 2k and π∗ = {{1, 2} , {3, 4} , ..., {2k − 1, 2k}}; for instance,
for k = 4 the partition π∗ can be represented as in Fig. 23.
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b

b

b

b

b

b

b

b

Figure 23: A four-block partition

One element of the set M2 ([2k] , π∗) is given by the partition

σ∗ = {{1, 2k} , {2, 3} , {4, 5} , ..., {2k − 2, 2k}} ∈ P ([2k]) ,

whose diagram (for k = 4) appears in Fig. 24.

b

b

b

b

b

b

b

b

Figure 24: A circular diagram with four rows

Note that such a diagram is circular, and that the corresponding multigraph looks like the one
in Fig. 16. Therefore,

fσ∗,k (z1, ..., zk) = f (z1, z2) f (z2, z3) · · · f (zk−1, zk) f (zk, z1) . (7.37)

It is not difficult to see that M2 ([2k] , π∗) contains exactly 2k−1 (k − 1)! elements and that the
diagram Γ (π∗, σ) associated to each σ ∈ M2 ([2k] , π∗) is equivalent (up to a permutation, or
equivalently to a renumbering, of the rows) to a circular diagram (see Section 4.1). It follows
that, for every σ ∈ M2 ([2k] , π∗), one has that

fσ,k (z1, ..., zk) = fσ∗,k (z1, ..., zk) ,

where fσ∗,2k is given in (7.37). This yields the classic formula (see e.g. [22])

χk

(
IG
2 (f)

)
(7.38)

= 2k−1 (k − 1)!

∫

Zk

f (z1, z2) f (z2, z3) · · · f (zk−1, zk) f (zk, z1) ν (dz1) · · · ν (dzk) .

For a non-combinatorial proof of (7.38) see e.g. [67, Section 2.2].
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7.3 The Poisson case

The following result provides diagram formulae for Wiener-Itô integrals with respect to com-
pensated Poisson measures. It is stated only for elementary functions, so as not to have to deal
with convergence issues. The proof is similar to the one of Corollary 7.1, and it is only sketched.
We let M≥2 ([n] , π∗) and M0

≥2 ([n] , π∗) be defined as in Section 7.2.

Corollary 7.2 (Poisson measures) Suppose ϕ = N̂ is a centered Poisson measure with non-
atomic control measure ν, fix integers n1, ..., nk ≥ 1 and let n = n1 + · · · + nk. Write π∗ for
the partition of [n] appearing in (6.1). Then, for any vector of functions (f1, ..., fk) such that
fj ∈ Es,0 (νnj), j = 1, ..., k, the following relations hold:

1. If M≥2 ([n] , π∗) = ∅, then χ
(
IN̂
n1

(f1) , · · ·, I
N̂
nk

(fk)
)

= 0;

2. If M≥2 ([n] , π∗) 6= ∅, then

χ
(
IN̂
n1

(f1) , · · ·, I
N̂
nk

(fk)
)

=
∑

σ∈M≥2([n],π∗)

∫

Z|σ|
fσ,kdν

|σ|, (7.39)

where, for every σ ∈ M≥2 ([n] , π∗), the function fσ,k, in |σ| variables, is obtained by
identifying the variables xi and xj in the argument of f1 ⊗0 · · ·⊗0 fnk

(as defined in (6.3))
if and only if i ∼σ j;

3. If M0
≥2 ([n] , π∗) = ∅, then E

(
IN̂
n1

(f1) · · · I
N̂
nk

(fk)
)

= 0;

4. If M0
≥2 ([n] , π∗) 6= ∅,

E
(
IN̂
n1

(f1) , · · ·, I
N̂
nk

(fk)
)

=
∑

σ∈M0
≥2([n],π∗)

∫

Z|σ|

fσ,kdν
|σ|. (7.40)

Sketch of the Proof. The proof follows closely that of Corollary 7.1. The only difference
is in evaluating (7.6). Instead of having (7.8) which requires considering M2 and M0

2, one has
(7.9), which implies that one must use M≥2 and M0

≥2.

Remark. Corollaries 7.1 and 7.2 are quite similar. In the Poisson case, however, fσ,k

depends on |σ| variables, whereas in the Gaussian case it depends on n/2 variables.

Examples. All kernels appearing in the following examples are symmetric, elementary and
vanishing on diagonals (this ensures that multiple integrals have moments of all orders).

(i) We apply Corollary 7.2 in order to compute the cumulant

χ
(
IN̂
n1

(f1) , I
N̂
n2

(f2)
)

= E
(
IN̂
n1

(f1) I
N̂
n2

(f2)
)

,

where n1, n2 ≥ 1 are arbitrary. In this case, π∗ ∈ P ([n1 + n2]) is given by

π∗ = {{1, ..., n1} , {n1 + 1, ..., n1 + n2}} .
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Moreover,

M0
2 ([n1 + n2] , π

∗) = M2 ([n1 + n2] , π
∗)

= M≥2 ([n1 + n2] , π
∗) = M0

≥2 ([n1 + n2] , π
∗)

(indeed, since any diagram of π∗ is composed of two rows, every non-flat diagram must be
necessarily connected and Gaussian). This gives, in particular, M≥2 ([n1 + n2] , π

∗) 6= ∅ if and
only if n1 = n2. The computations performed in the Gaussian case thus apply and therefore
yield

χ
(
IN̂
n1

(f1) , I
N̂
n2

(f2)
)

= E
(
IN̂
n1

(f1) I
N̂
n2

(f2)
)

= 1n1=n2 × n1!

∫

Zn1

f1f2dν
n1,

which is once again consistent with (5.42).
(ii) Consider the case k = 3, n1 = n2 = 2, n3 = 1. Here, n = n1 + n2 + n3 = 5, and

π∗ = {{1, 2} , {3, 4} , {5}}. The partition π∗ can be represented as in Fig. 25.

b

b

b

b

b

Figure 25: A three-row partition

The class M0
≥2 ([5] , π∗), of σ’s such that σ ∧ π∗ = 0̂, contains four elements, that is,

σ1 = {{1, 3, 5} , {2, 4}} , σ2 = {{1, 4} , {2, 3, 5}}

σ3 = {{1, 3} , {2, 4, 5}} and σ4 = {{1, 4, 5} , {2, 3}} ,

whose diagrams are given in Fig. 26.
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b

b
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b

Figure 26: The four elements of M≥2([5], π
∗)

Since all these diagrams are connected, the class M≥2 ([5] , π∗) coincides with M0
≥2 ([5] , π∗).

Note also that, since the above diagrams have an odd number of vertices, M≥2 ([5] , π∗) does
not contain partitions σ whose diagram is Gaussian. Thus,

fσ1,3 (z1, z2) = f1 (z1, z2) f2 (z1, z2) f3 (z1)

fσ2,3 (z1, z2) = f1 (z1, z2) f2 (z2, z1) f3 (z2)

fσ3,3 (z1, z2) = f1 (z1, z2) f2 (z1, z2) f3 (z2)

fσ4,3 (z1, z2) = f1 (z1, z2) f2 (z2, z1) f3 (z1) .
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For instance, fσ1,3 (z1, z2) has been obtained by identifying the variables of f1 (x1, x2) f2 (x3, x4) f3 (x5)
as x1 = x3 = x5 = z1 and x2 = x4 = z2. By exploiting the symmetry of f1 and f2, one deduces
that the four quantities

∫

Z2

fσi,3 (z1, z2) ν
2 (dz1, dz2) , i = 1, ..., 4,

are equal. It follows from (7.39) and (7.40) that

χ
(
IN̂
2 (f1) , I

N̂
2 (f2) , I

N̂
1 (f3)

)
= E

(
IN̂
2 (f1) I

N̂
2 (f2) I

N̂
1 (f3)

)

= 4

∫

Z2

{f1 (z1, z2) f2 (z1, z2) f3 (z1)} ν
2 (dz1, dz2) .

(iii) Consider the case k = 4 and ni = 1, i = 1, ..., 4. Here, π∗ = 0̂ = {{1} , {2} , {3} , {4}}, and
consequently π∗ can be represented as a single column of four vertices. The class M≥2 ([4] , π∗)
contains only the maximal partition 1̂ = {{1, 2, 3, 4}}, whereas M0

≥2 ([5] , π∗) contains 1̂ and the
three elements

σ1 = {{1, 2} , {3, 4}} , σ2 = {{1, 3} , {2, 4}} , and

σ3 = {{1, 4} , {2, 3}} .

The diagrams associated with the class M0
≥2 ([5] , π∗) =

{
1̂, σ1, σ2, σ3

}
are represented in Fig.

27.
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Figure 27: The elements of M0
≥2([5], π

∗)

Now take fi = f for i = 1, ..., 4, where f is an elementary kernel. One has that

f1̂,4 (z) = f (z)4

fσj ,4 (z1, z2) = f (z1)
2 f (z2)

2 , j = 1, 2, 3.

It follows from (7.39) and (7.40) that

χ
(
IN̂
1 (f) , IN̂

1 (f) , IN̂
1 (f) , IN̂

1 (f)
)

= χ4

(
IN̂
1 (f)

)
=

∫

Z
f (z)4 ν (dz)

E
(
IN̂
1 (f)4

)
=

∫

Z
f (z)4 ν (dz)

+3

∫

Z2

f (z1)
2 f (z2)

2 ν2 (dz1, dz2) .

(iv) Let Y be a centered random variable with finite moments of all orders, and suppose that
Y is infinitely divisible and such that

E [exp (iλY )] = exp

[∫

R

(
eiλu − 1 − iλu

)
ρ (du)

]
, (7.41)
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where the measure ρ is such that ρ ({0}) = 0 and
∫

R
|u|kρ (du) < ∞ for every k ≥ 1. Then,

combining (7.41) and (3.2), one deduces that

χk (Y ) =

∫

R

ukρ (du) , k ≥ 2, (7.42)

(note that χ1 (Y ) = E (Y ) = 0). We shall prove that (7.42) is consistent with (7.39). Indeed,
according to the discussion contained in Section 5.2, one has that

Y
law
=

∫

R

∫ 1

0
uN̂ (du, dx) = IN̂

1 (f) ,

where f (u, x) = u1[0,1] (x), and N̂ is a centered Poisson measure on [0, 1] × R, with control
ρ (du) dx. It follows that

χk (Y ) = χk(I
N̂
1 (f)) = χ(IN̂

1 (f) , ..., IN̂
1 (f)︸ ︷︷ ︸

k times

). (7.43)

The RHS of (7.43) can be computed by means of Corollary 7.2 in the special case where nj = 1
(∀j = 1, ..., k), n = Σjnj = k, and π∗ = 0̂ = {{1} , ..., {k}}. One has clearly that 1̂ is the only
partition such that the diagram Γ

(
0̂, 1̂
)

is connected, so that

M≥2 ([k] , π∗) =
{
1̂
}

= {{1, ..., k}} .

Since
f1̂,k (u, x) = uk1[0,1] (x) ,

we can now use (7.39) to deduce that

χk(I
N̂
1 (f)) =

∫

R

∫ 1

0
f1̂,k (u, x) ρ (du) dx =

∫ 1

0
dx

∫

R

ukρ (du) =

∫

R

ukρ (du) .

(v) As an explicit example of (7.42), consider the case where Y is a centered Gamma random
variable with shape parameter a > 0 and unitary scale parameter, that is,

E [exp (iλY )] =
e−iλa

(1 − iλ)a = exp

[
a

∫ ∞

0

(
eiλu − 1 − iλu

)
e−udu

u

]
.

Thus, ρ(du) = a1{u>0}u
−1e−udu. It follows that, χ1 (Y ) = E (Y ) = 0 and, for k ≥ 2,

χk (Y ) = a

∫

R

uke−u du

u
= aΓ (k) = a (k − 1)!.

8 From Gaussian measures to isonormal Gaussian processes

For the sake of completeness, in this section we show how to generalize part of the previous
results to the case of an isonormal Gaussian process. These objects have been introduced by
R.M. Dudley in [17], and are a natural generalization of the Gaussian measures introduced in
Section 5.1. In particular, the concept of isonormal Gaussian process can be very useful in
the study of fractional fields. See e.g. Pipiras and Taqqu [94, 95, 96], or the second edition
of Nualart’s book [75]. For a general approach to Gaussian analysis by means of Hilbert space
techniques, and for further details on the subjects discussed in this section, the reader is referred
to Janson [36].
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8.1 General definitions and examples

Let H be a real separable Hilbert space with inner product (·, ·)H. In what follows, we will denote
by

X = X (H) = {X (h) : h ∈ H}

an isonormal Gaussian process over H. This means that X is a centered real-valued Gaussian
family, indexed by the elements of H and such that

E
[
X (h)X

(
h′
)]

=
(
h, h′

)
H

, ∀h, h′ ∈ H. (8.1)

In other words, relation (8.1) means that X is a centered Gaussian Hilbert space (with respect
to the inner product canonically induced by the covariance) isomorphic to H.

Example (Euclidean spaces). Fix an integer d ≥ 1, set H = Rd and let (e1, ..., ed) be an
orthonormal basis of Rd (with respect to the usual Euclidean inner product). Let (Z1, ..., Zd) be
a Gaussian vector whose components are i.i.d. N (0, 1). For every h =

∑d
j=1 cjej (where the cj

are real and uniquely defined), set X (h) =
∑d

j=1 cjZj and define X =
{
X (h) : h ∈ Rd

}
. Then,

X is an isonormal Gaussian process over Rd.

Example (Gaussian measures). Let (Z,Z, ν) be a measure space, where ν is positive, σ-
finite and non atomic. Consider a completely random Gaussian measure G = {G (A) : A ∈ Zν}
(as defined in Section 5.1), where the class Zν is given by (5.3). Set H = L2 (Z,Z, ν) (thus,
for every h, h′ ∈ H, (h, h′)H =

∫
Z h(z)h

′(z)ν(dz)) and, for every h ∈ H, define X (h) = IG
1 (h)

to be the Wiener-Itô integral of h with respect to G, as defined in (5.14). Recall that X (h)
is a centered Gaussian random variable with variance given by ‖h‖2

H. Then, relation (5.15)
implies that the collection X =

{
X (h) : h ∈ L2 (Z,Z, ν)

}
is an isonormal Gaussian process over

L2 (Z,Z, ν).

Example (Isonormal spaces built from covariances). Let Y = {Yt : t ≥ 0} be a real-valued
centered Gaussian process indexed by the positive axis, and set R (s, t) = E [YsYt] to be the
covariance function of Y . Then, one can embed Y into some isonormal Gaussian process as
follows: (i) define E as the collection of all finite linear combinations of indicator functions of
the type 1[0,t], t ≥ 0; (ii) define H = HR to be the Hilbert space given by the closure of E with
respect to the inner product

(f, h)R :=
∑

i,j

aicjR (si, tj) ,

where f =
∑

i ai1[0,si] and h =
∑

j cj1[0,tj ] are two generic elements of E ; (iii) for h =∑
j cj1[0,tj ] ∈ E , set X (h) =

∑
j cjYtj ; (iv) for h ∈ HR, set X (h) to be the L2 (P) limit of

any sequence of the type X (hn), where {hn} ⊂ E converges to h in HR. Note that such a
sequence {hn} necessarily exists and may not be unique (however, the definition of X (h) does
not depend on the choice of the sequence {hn}). Then, by construction, the Gaussian space
{X (h) : h ∈ H} is an isonormal Gaussian process over HR. See Janson [36, Ch. 1] or Nualart
[75] for more details on this construction.

Example (Even functions and symmetric measures). Other classic examples of isonor-
mal Gaussian processes (see e.g., [11, 24, 49, 122]) are given by objects of the type Xβ =
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{Xβ (ψ) : ψ ∈ HE,β}, where β is a real non-atomic symmetric measure on (−π, π] (that is,
β (dx) = β (−dx)), and

HE,β = L2
E ((−π, π] , dβ) (8.2)

stands for the collection of real linear combinations of complex-valued even functions that are
square-integrable with respect to β (recall that a function ψ is even if ψ (x) = ψ (−x)). The
class HE,β is indeed a real Hilbert space, endowed with the inner product

(ψ1, ψ2)β =

∫ π

−π
ψ1 (x)ψ2 (−x)β (dx) ∈ R. (8.3)

This type of construction is used in the spectral theory of time series.

8.2 Hermite polynomials and Wiener chaos

We shall now show how to extend the notion of Wiener chaos (as defined in Section 5.6) to
the case of an isonormal Gaussian process. The reader is referred to [75, Ch. 1] for a complete
discussion of this subject. We need some further (standard) definitions.

Definition 9 The sequence of Hermite polynomials {Hq : q ≥ 0} on R, is defined via the
following relations: H0 ≡ 1 and, for q ≥ 1,

Hq (x) = (−1)q e
x2

2
dq

dxq
e−

x2

2 , x ∈ R.

For instance, H1 (x) = 1, H2 (x) = x2 − 1 and H3 (x) = x3 − 3x.

Recall that the sequence {(q!)−1/2 Hq : q ≥ 0} is an orthonormal basis of L2(R, (2π)−1/2

e−x2/2dx).

Definition 10 From now on, the symbol A∞ will denote the class of those sequences α =
{αi : i ≥ 1} such that: (i) each αi is a nonnegative integer, (ii) αi is different from zero only for
a finite number of indices i. A sequence of this type is called a multiindex. For α ∈ A∞, we
use the notation |α| =

∑
i αi. For q ≥ 1, we also write

A∞,q = {α ∈ A∞ : |α| = q} .

Remark on notation. Fix q ≥ 2. Given a real separable Hilbert space H, we denote by
H⊗q and H⊙q, respectively, the qth tensor power of H and the qth symmetric tensor power of H

(see e.g. [36]). We conventionally set H⊗1 = H⊙1 = H.

We recall four classic facts concerning tensors powers of Hilbert spaces (see e.g. [36]).

(I) The spaces H⊗q and H⊙q are real separable Hilbert spaces, such that H⊙q ⊂ H⊗q.
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(II) Let {ej : j ≥ 1} be an orthonormal basis of H; then, an orthonormal basis of H⊗q is given
by the collection of all tensors of the type

ej1 ⊗ · · · ⊗ ejq , j1, ..., jd ≥ 1.

(III) Let {ej : j ≥ 1} be an orthonormal basis of H and endow H⊙q with the inner product
(·, ·)H⊗q ; then, an orthogonal (and, in general, not orthonormal) basis of H⊙q is given by
all elements of the type

e (j1, ..., jq) = sym
{
ej1 ⊗ · · · ⊗ ejq

}
, 1 ≤ j1 ≤ ... ≤ jq <∞, (8.4)

where sym {·} stands for a canonical symmetrization. Exercise: find an orthonormal
basis of H⊙q.

(IV) If H = L2 (Z,Z, ν), where ν is σ-finite and non-atomic, then H⊗q can be identified with
L2 (Zq,Zq, νq) and H⊙q can be identified with L2

s (Zq,Zq, νq), where L2
s (Zq,Zq, νq) is the

subspace of L2 (Zq,Zq, νq) composed of symmetric functions.

Now observe that, once an orthonormal basis of H is fixed and due to the symmetrization,
each element e (j1, ..., jq) in (8.4) can be completely described in terms of a unique multiindex
α ∈ A∞,q, as follows: (i) set αi = 0 if i 6= jr for every r = 1, ..., q, (ii) set αj = k for every
j ∈ {j1, ..., jq} such that j is repeated exactly k times in the vector (j1, ..., jq) (k ≥ 1).

Examples. (i) The multiindex (1, 0, 0, ....) is associated with the element of H given by e1.
(ii) Consider the element e (1, 7, 7). In (1, 7, 7) the number 1 is not repeated and 7 is repeated

twice, hence e (1, 7, 7) is associated with the multiindex α ∈ A∞,3 such that α1 = 1, α7 = 2 and
αj = 0 for every j 6= 1, 7, that is, α = (1, 0, 0, 0, 0, 0, 2, 0, 0, ...).

(iii) The multindex α = (1, 2, 2, 0, 5, 0, 0, 0, ...) is associated with the element of H⊙10 given
by e (1, 2, 2, 3, 3, 5, 5, 5, 5, 5).

In what follows, given α ∈ A∞,q (q ≥ 1), we shall write e (α) in order to indicate the element
of H⊙q uniquely associated with α.

Definition 11 For every h ∈ H, we set IX
1 (h) = X (h). Now fix an orthonormal basis

{ej : j ≥ 1} of H: for every q ≥ 2 and every h ∈ H⊙q such that

h =
∑

α∈A∞,q

cαe (α)

(with convergence in H⊙q, endowed with the inner product (·, ·)H⊗q), we set

IX
q (h) =

∑

α∈A∞,q

cα
∏

j

Hαj (X (ej)) , (8.5)

where the products only involve the non-zero terms of each multiindex α, and Hm indicates the
mth Hermite polynomial . For q ≥ 1, the collection of all random variables of the type IX

q (h),
h ∈ H⊙q, is called the qth Wiener chaos associated with X and is denoted by Cq (X). One
sets conventionally C0 (X) = R.
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Examples. (i) If h = e (α), where α = (1, 1, 0, 0, 0, ...) ∈ A∞,2, then

IX
2 (h) = H1 (X (e1))H1 (X (e2)) = X (e1)X (e2) .

(ii) If α = (1, 0, 1, 2, 0, ...) ∈ A∞,4, then

IX
4 (h) = H1 (X (e1))H1 (X (e3))H2 (X (e4))

= X (e1)X (e3)
(
X (e4)

2 − 1
)

= X (e1)X (e3)X (e4)
2 −X (e1)X (e3) .

(iii) If α = (3, 1, 1, 0, 0, ...) ∈ A∞,5, then

IX
5 (h) = H3 (X (e1))H1 (X (e2))H1 (X (e3))

=
(
X (e1)

3 − 3X (e1)
)
X (e2)X (e3)

= X (e1)
3X (e2)X (e3) − 3X (e1)X (e2)X (e3) .

The following result collects some well-known facts concerning Wiener chaos and isonormal
Gaussian processes. In particular: the first point characterizes the operators IX

q as isomorphisms;
the second point is an equivalent of the chaotic representation property for Gaussian measures, as
stated in formula (5.45); the third point establishes a formal relation between random variables
of the type IX

q (h) and the multiple Wiener-Itô integrals introduced in Section 5.4 (see [75, Ch.
1] for proofs and further discussions of all these facts).

Proposition 8.1 1. For every q ≥ 1, the qth Wiener chaos Cq (X) is a Hilbert subspace of
L2 (P), and the application

h 7→ IX
q (h) , h ∈ H

⊙q,

defines a Hilbert space isomorphism between H⊙q, endowed with the inner product q!(·, ·)H⊗q ,
and Cq (X).

2. For every q, q′ ≥ 0 such that q 6= q′, the spaces Cq (X) and Cq′ (X) are orthogonal in
L2 (P) .

3. Let F be a functional of the isonormal Gaussian process X satisfying E[F (X)2] < ∞:
then, there exists a unique sequence {fq : q ≥ 1} such that fq ∈ H⊙q, and

F = E (F ) +
∞∑

q=1

IX
q (fq) ,

where the series converges in L2 (P).

4. Suppose that H = L2 (Z,Z, ν), where ν is σ-finite and non-atomic. Then, for q ≥ 2, the
symmetric power H⊙q can be identified with L2

s (Zq,Zq, νq) and, for every f ∈ H⊙q, the
random variable IX

q (f) coincides with the Wiener-Itô integral (see Definition 5) of f with
respect to the Gaussian measure given by A→ X (1A), A ∈ Zν.

Remark. The combination of Point 1. anf Point 2. in the statement of Proposition 8.1
implies that, for every q, q′ ≥ 1,

E
[
IX
q (f) IX

q′
(
f ′
)]

= 1q=q′q!
(
f, f ′

)
H⊗q

(compare with (5.42)).
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8.3 Contractions, products and some explicit formulae

We start by introducing the notion of contraction in the context of powers of Hilbert spaces.

Definition 12 Consider a real separable Hilbert space H, and let {ei : i ≥ 1} be an orthonormal
basis of H. For every n,m ≥ 1, every r = 0, ..., n ∧ m and every f ∈ H⊙n and g ∈ H⊙m, we
define the contraction of order r, of f and g, as the element of H⊗n+m−2r given by

f ⊗r g =

∞∑

i1,...,ir=1

(f, ei1 ⊗ · · · ⊗ eir)H⊗r ⊗ (g, ei1 ⊗ · · · ⊗ eir )H⊗r , (8.6)

and we denote by f̃ ⊗r g its symmetrization.

Remark. One can prove (Exercise!) the following result: if H = L2 (Z,Z, ν), f ∈ H⊙n =
L2

s (Zn,Zn, νn) and g ∈ H⊙m = L2
s (Zm,Zm, νm), then the definition of the contraction f ⊗r g

given in (8.6) and the one given in (6.16) coincide.

The following result extends the product formula (6.17) to the case of isonormal Gaussian
processes. The proof (which is left to the reader) can be obtained from Proposition 6.1, by using
the fact that every real separable Hilbert space is isomorphic to a space of the type L2 (Z,Z, ν),
where ν is σ-finite and non-atomic. An alternative proof (by induction) can be found in [75, Ch.
1].

Proposition 8.2 Let X be an isonormal Gaussian process over some real separable Hilbert
space H. Then, for every n,m ≥ 1, f ∈ H⊙n and g ∈ H⊙m,

IX
n (f) IX

m (g) =

m∧n∑

r=0

r!

(
m

r

)(
n

r

)
IX
n+m−2r

(
f̃ ⊗r g

)
, (8.7)

where the symbol (˜) indicates a symmetrization, the contraction f ⊗r g is defined in (8.6), and
for m = n = r, we write

IX
0

(
f̃ ⊗n g

)
= (f, g)H⊗n .

We stress that one can obtain a generalization of the cumulant formulae (7.29) in the frame-
work of isonormal Gaussian processes. To do this, one should represent each integral of the
type

∫
Zn/2 fσdν

n/2, appearing in (7.29), as the inner product between two iterated contractions
of the kernels

{
fnj

}
, and then use the canonical isomorphism between H and a space of the

form L2 (Z,Z, ν). However, the formalism associated with this extension is rather heavy (and
not really useful for the discussion to follow), and is left to the reader. Here, we will only state
the following formula (proved in [79]) giving an explicit expression for the fourth cumulant of a
random variable of the type IX

d (f), f ∈ H⊙d, d ≥ 2:

χ4

(
IX
d (f)

)
= E

[
IX
d (f)4

]
− 3 (d!)2 ‖f‖4

H⊗d (8.8)

=

d−1∑

p=1

(d!)4

(p! (d− p)!)2

{
‖f ⊗p f‖

2
H⊗2(d−p) +

(
2d− 2p

d− p

)∥∥∥f̃ ⊗p f
∥∥∥

2

H⊗2(d−p)

}
.(8.9)
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As pointed out in [79, Corollary 2], formula (8.9) can be used in order to prove that, for
every isonormal Gaussian process X, every d ≥ 2 and every f ∈ H⊙d, the random variable
IX
d (f) cannot be Gaussian (see also [36, Ch. 6]).

Example. We focus once again on isonormal Gaussian processes of the type Xβ = {Xβ (ψ) :
ψ ∈ HE,β}, where the Hilbert space HE,β is given in (8.2). In this case, for d ≥ 2, the sym-
metric power H

⊙d
E,β can be identified with the real Hilbert space of those functions ψd that

are symmetric on (−π, π]d, square integrable with respect to βd, and such that ψd (x1, ..., xd) =
ψd (−x1, ...,−xd) . For every n1, ..., nk ≥ 1, one can write explicitly a diagram formula as follows:

χ
(
I

Xβ
n1 (ψ1) , · · ·, I

Xβ
nk (ψk)

)
=

∑

σ∈M2([n],π∗)

∫

Zn/2

ψσdβ
n/2,

where M2 ([n] , π∗) is defined in (7.21) and ψσ is the function in (n1 + · · · + nk) /2 variables
obtained by setting xi = −xj in ψ1 ⊗0 · · · ⊗0 ψd if and only if i ∼σ j. The field Xβ is often
defined in terms of a complex Gaussian measure (see [11, 24, 49]).

9 Simplified CLTs, contractions and circular diagrams

In a recent series of papers (see [52, 65, 69, 70, 71, 76, 79, 83, 90, 91] for the Gaussian case, and
[86, 87, 88, 89] for the Poisson case) a set of new results has been established, allowing to obtain
neat Central Limit Theorems (CLTs) for sequences of random variables belonging to a fixed
Wiener chaos of some Gaussian or Poisson field. The techniques adopted in the above references
are quite varied, as they involve stochastic calculus ([79, 83, 91]), Malliavin calculus ([65, 76, 90]),
Stein’s method ([69, 70, 71, 86]) and decoupling ([88, 87, 89]). However, all these contributions
may be described as “drastic simplifications” of the method of moments and cumulants (see e.g.
[11, 49], as well as the discussion below) which is a common tool for proving weak convergence
results for non linear functionals of random fields.

The aim of this section is to draw the connection between the above quoted CLTs and the
method of moments and cumulants into further light, by providing a detailed discussion of the
combinatorial implications of the former. This discussion will involve the algebraic formalism
introduced in Section 2–4, as well as the diagram formulae proved in Section 7.

9.1 A general problem

In what follows, we will be interested in several variations of the following problem.

Problem A . Let ϕ be a completely random Gaussian or Poisson measure over some space

(Z,Z, ν), where ν is σ-finite and non-atomic. For m ≥ 1 and d1, ..., dm ≥ 1, let {f
(k)
j :

j = 1, ...,m, k ≥ 1} be a collection of kernels such that f
(k)
j ∈ L2

s

(
Zdj ,Zdj , νdj

)
(the vector

(d1, ..., dm) does not depend on k), and

lim
k→∞

E
[
Iϕ
di

(
f

(k)
i

)
Iϕ
dj

(
f

(k)
j

)]
= C (i, j) , 1 ≤ i, j ≤ m, (9.1)

where the integrals Iϕ
di

(
f

(k)
i

)
are defined via (5.41) and C = {C (i, j)} is a m × m positive

definite matrix. We denote by Nm (0,C) a m-dimensional centered Gaussian vector with co-

variance matrix C. Find conditions on the sequence
(
f

(k)
1 , ..., f

(k)
m

)
, k ≥ 1, in order to have the
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CLT
Fk ,

(
Iϕ
d1

(
f

(k)
1

)
, ..., Iϕ

dm

(
f (k)

m

))
law
−→ Nm (0,C) , k → ∞. (9.2)

We observe that, if di 6= dj in (9.1), then necessarily C (i, j) = 0 by Point 2 in Proposition
8.1. The relevance of Problem A comes from the chaotic representation (5.45), implying that a
result such as (9.2) may be a key tool in order to establish CLTs for more general functionals of
the random measure ϕ. We recall (see e.g. [36, Ch. 6]) that, if ϕ is Gaussian and d ≥ 2, then a
random variable of the type Iϕ

d (f) cannot be Gaussian.

Plainly, when ϕ is Gaussian, a solution of Problem A can be immediately deduced from the
results discussed in Section 7.2. Indeed, if the normalization condition (9.1) is satisfied, then the
moments of the sequence {Fk} are uniformly bounded (to see this, one can use (5.46)), and the
CLT (9.2) takes place if and only if every cumulant of order ≥ 3 associated with Fk converges
to zero when k → ∞. Moreover, an explicit expression for the cumulants can be deduced from
(7.29). This method of proving the CLT (9.2) (which is known as the method of cumulants)
has been used e.g. in the references [9, 11, 24, 51, 54, 55], where the authors proved CLTs for
non-linear functionals of Gaussian fields with a non trivial covariance structure (for instance,
sequences with long memory or isotropic spherical fields). However, such an approach (e.g. in
the study of fractional Gaussian processes) may be technically quite demanding, since it involves
an infinity of asymptotic relations (one for every cumulant of order ≥ 3). If one uses the diagram
formulae (7.29), the method of cumulants requires that one explicitly computes and controls an
infinity of expressions of the type

∫
Zn/2 fσ,kdν

n/2, where the partition σ is associated with a
non-flat, Gaussian and connected diagram (see Section 4.1).

Remarks. (i) We recall that (except for trivial cases), when ϕ is Gaussian the explicit
expression of the characteristic function of a random variable of the type Iϕ

d (f), d ≥ 3, is
unknown (for d = 2 see e.g. [79, p. 185]).

(ii) Thanks to the results discussed in Section 7.3 (in particular, formula (7.39)), the method
of cumulants and diagrams can be also used when ϕ is a completely random Poisson measure.
Clearly, since (7.39) also involves non-Gaussian diagrams, the use of this approach in the Poisson
case is even more technically demanding.

In the forthcoming sections we will show how one can successfully bypass the method of
moments and cumulants when dealing with CLTs on a fixed Wiener chaos.

9.2 One-dimensional CLTs in the Gaussian case

We now consider an isonormal Gaussian process X = {X (h) : h ∈ H} over some real separa-
ble Hilbert space H. Recall (see Section 8) that the notion of isonormal Gaussian process is
more general than the one of Gaussian measure. The following result involves one-dimensional
sequences of multiple stochastic integrals, and collects the main findings of [79] and [69]. We
recall that the total variation distance, between the law of two general real-valued random
variables Y and Z, is given by

dTV (Y,Z) = sup |P (Y ∈ B) − P (Z ∈ B)| ,

where the supremum is taken over all Borel sets B ∈ B (R). Observe that the topology induced
by dTV , on the class of probability measures on R, is strictly stronger than the topology of
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weak convergence and thus limn→∞ dTV (Bn, B) = 0 is a stronger result than Bn
law
→ B (see e.g.

Dudley [17, Ch. 11] for a discussion of other relevant properties of dTV ).

Theorem 9.1 (See [79] and [69]) Fix an integer d ≥ 2, and define the operator IX
d according

to (8.5). Then,for every sequence
{
f (k) : k ≥ 1

}
such that f (k) ∈ H⊙d for every k, and

lim
k→∞

d!
∥∥∥f (k)

∥∥∥
2

H⊗d
= lim

k→∞
E
[
IX
d

(
f (k)

)2
]

= 1, (9.3)

the following three conditions are equivalent

1. limk→∞ χ4

(
IX
d

(
f (k)

))
= 0 ;

2. for every r = 1, ..., d − 1,

lim
k→∞

∥∥∥f (k) ⊗r f
(k)
∥∥∥

2

H⊗2(d−r)
= 0 , (9.4)

where the contraction f (k) ⊗r f
(k) is defined according to (8.6);

3. as k → ∞, the sequence
{
IX
d

(
f (k)

)
: k ≥ 1

}
converges towards a centered standard Gaus-

sian random variable Z ∼ N (0, 1).

Moreover, the following bound holds for every fixed k:

dTV

(
IX
d

(
f (k)

)
, Z
)2

≤

(
1 − d!

∥∥∥f (k)
∥∥∥

2

H⊗d

)2

(9.5)

+d2
d−1∑

r=1

(2q − 2r)! (r − 1)!2
(
q − 1

r − 1

)2 ∥∥∥f (k) ⊗r f
(k)
∥∥∥

2

H⊗2(d−r)

Observe that condition (1.) in the previous statement holds if and only if

lim
k→∞

E
[
IX
d

(
f (k)

)4
]

= 3.

The equivalence of (1.), (2.) and (3.) has been first proved in [79] by means of stochastic
calculus techniques. The paper [76] contains an alternate proof with additional necessary and
sufficient conditions, as well as several crucial connections with Malliavin calculus operators (see
e.g. [75]). The upper bound (9.5) is proved in [69], by means of Malliavin calculus and the
so-called Stein’s method for normal approximation (see e.g. [119]).

Remark. Theorem 9.1, as well as its multidimensional generalizations (see Section 9.4
below), has been applied to a variery of frameworks, such as: quadratic functionals of bivari-
ate Gaussian processes (see [15]), quadratic functionals of fractional processes (see [79]), high-
frequency limit theorems on homogeneous spaces (see [52, 53]), self-intersection local times of
fractional Brownian motion (see [29, 76]), Berry-Esséen bounds in CLTs for Gaussian subordi-
nated sequences (see [69, 70, 71]), needleets analysis on the sphere (see [5]), power variations
of iterated processes (see [68]), weighted variations of fractional processes (see [66, 72]) and of
related random functions (see [6, 13]).
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9.3 Combinatorial implications of Theorem 9.1

The implication (1.) =⇒ (3.) in Theorem 9.1 provides the announced “drastic simplification”
of the methods of moments and cumulants. However, as demonstrated by the applications of
Theorem 9.1 listed above, condition (9.4) is often much easier to verify. Indeed, it turns out
that the implication (2.) =⇒ (3.) has an interesting combinatorial interpretation.

To see this, we shall fix d ≥ 2 and suppose that H = L2 (Z,Z, ν), with ν a σ-finite and
non-atomic measure. According to Proposition 8.1, in this case the random variable IX

d (f),
where f ∈ L2

s

(
Zd,Zd, νd

)
= L2

s

(
νd
)
, is the multiple Wiener-Itô integral of f with respect to

the Gaussian measure A→ X (1A), as defined in Definition 5. We shall also use some notation
from Sections 2–7, in particular:

• For every n ≥ 2, the symbol π∗ ([nd]) ∈ P ([nd]) stands for the partition of [nd] =
{1, 2, ...., nd} obtained by taking n consecutive blocks of size d, that is:

π∗ ([nd]) = {{1, ..., d} , {d+ 1, ...., 2d} , ..., {(n− 1) d+ 1, ..., nd}} .

• The class of partitions M2 ([nd] , π∗ ([nd])) is defined according to formula (7.21). Recall
that, according to (7.27), a partition σ ∈ P ([nd]) is an element of M2 ([nd] , π∗ ([nd])) if
and only if the diagram Γ (π∗ ([nd]) , σ) (see Section 4.1) is Gaussian, non-flat and con-
nected, which is equivalent to saying that the graph Γ̂ (π∗ ([nd]) , σ) (see Section 4.3) is
connected and has no loops.

• As in formula (7.29), for every f ∈ L2
s

(
νd
)
, every n such that nd is even, and every

σ ∈ M2([nd] , π
∗ ([nd])), we denote by fσ,n the function in dn/2 variables, obtained by

identifying two variables xi and xj in the argument of

f⊗0 · · · ⊗0︸ ︷︷ ︸
n times

f (9.6)

if and only if i ∼σ j.

We will also denote by
Mc

2 ([nd] , π∗ ([nd]))

the subset of M2 ([nd] , π∗ ([nd])) composed of those partitions σ such that the diagram

Γ(π∗ ([nd]) , σ)

is circular (see Section 4.1). We also say that a partition σ ∈ Mc
2 ([nd] , π∗ ([nd])) has rank r

(r = 1, ..., d − 1) if the diagram Γ (π∗ ([nd]) , σ) has exactly r edges linking the first and the
second row.

Examples. (i) The partition whose diagram is given in Fig. 24 (Section 7.2) is an element
of

Mc
2 ([8] , π∗ ([9]))

and has rank r = 1.
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(ii) Consider the case d = 3 and n = 4, as well as the partition σ ∈ M2 ([12] , π∗ ([12])) given
by

σ = {{1, 4} , {2, 5} , {3, 12} , {6, 9} , {7, 10} , {8, 11}} .

Then, the diagram Γ (π∗ ([12]) , σ) is the one in Fig. 28, and therefore σ ∈ Mc
2 ([12] , π∗ ([12]))

and σ has rank r = 2.

b bb

b bb

b bb

b bb

Figure 28: A circular diagram

The following technical result links the notions of circular diagram, rank and contraction.
For d ≥ 2 and σ ∈ Mc

2 ([4d] , π∗ ([4d])), let fσ,4 be the function in 2d variables obtained by
identifying xi and xj in the argument of the tensor product (9.6) (with n = 4) if and only if
i ∼σ j. For instance, if d = 3 and σ ∈ Mc

2 ([12] , π∗ ([12])) is associated with the diagram in Fig.
28, then

fσ,4(x1, x2, x3, x4, x5, x6) = f(x1, x2, x3)f(x1, x2, x4)f(x5, x6, x4)f(x5, x6, x3).

Lemma 9.1 Fix f ∈ L2
s

(
νd
)
, d ≥ 2, and, for r = 1, ..., d − 1, define the contraction f ⊗r f

according to (6.16). Then, for every σ ∈ Mc
2 ([4d] , π∗ ([4d])) with rank r ∈ {1, ..., d − 1},

∫

Z2d

fσ,4dν
2d = ‖f ⊗r f‖

2
L2(ν2(d−r)) = ‖f ⊗d−r f‖

2
L2(ν2r) (9.7)

Proof. It is sufficient to observe that f is symmetric by definition, and then to use the
relation

‖f ⊗r f‖
2
L2(ν2(d−r))

=

∫

Zd−r

∫

Zd−r

∫

Zr

∫

Zr

f (ad−r,br) f
(
br,a

′
d−r

)
×

× f
(
a′

d−r,b
′
r

)
f
(
b′

r,ad−r

)
νd−r (dad−r) ν

d−r
(
da′

d−r

)
νr (dbr) ν

r
(
db′

r

)
.

Remark. Formula (9.7) implies that, for a fixed f and for every σ ∈ Mc
2 ([4d] , π∗ ([4d])),

the value of the integral
∫
Z2d fσdν

2d depends on σ uniquely through r (or d− r), where r is the
rank of σ.

By using Lemma 9.1, one obtains immediately the following result, which provides a combi-
natorial description of the implication (2.) =⇒ (3.) in Theorem 9.1.

Proposition 9.1 For every d ≥ 2 and every sequence
{
f (k) : k ≥ 1

}
⊂ L2

s

(
νd
)

such that

d!
∥∥f (k)

∥∥2

L2(νd) → 1 (k → ∞), the following relations are equivalent:
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1. as k → ∞ ∑

σ∈M2([nd],π∗([nd]))

∫

Znd/2

f (k)
σ dνnd/2 → 0, ∀n ≥ 3; (9.8)

2. for every partition σ ∈ Mc
2 ([4d] , π∗ ([4d])), as k → ∞,

∫

Z2d

f (k)
σ dν2d → 0. (9.9)

Proof. Thanks to formula 7.29, one deduces that

∑

σ∈M2([nd],π∗([nd]))

∫

Znd/2

f (k)
σ dνnd/2 = χn

(
IX
d

(
f (k)

))
,

where IX
d

(
f (k)

)
is the multiple Wiener-Itô integral of f (k) with respect to the Gaussian measure

induced by X, and χn indicates the nth cumulant. It follows that, since d!
∥∥f (k)

∥∥2

L2(νd) =

E
[
IX
d

(
f (k)

)]
→ 1, relation (9.8) is equivalent to IX

d

(
f (k)

) law
→ Z ∼ N (0, 1). On the other hand,

one deduces from Lemma 9.1 that (9.9) takes place if and only if (9.4) holds. Since, according

to Theorem 9.1, condition (9.4) is necessary and sufficient in order to have IX
d

(
f (k)

) law
→ Z, we

immediately obtain the desired conclusion.

Corollary 9.1 Fix d ≥ 2 and suppose that the sequence
{
f (k) : k ≥ 1

}
⊂ L2

s

(
νd
)

is such that

d!
∥∥f (k)

∥∥2

L2(νd) → 1 (k → ∞). Then, (9.9) takes places if and only if IX
d (f (k))

law
→ Z ∼ N(0, 1).

Proof. As pointed out in the proof of Proposition 9.1, since the normalization condition

d!
∥∥f (k)

∥∥2

L2(νd) → 1 is in order, relation (9.8) is equivalent to the fact that the sequence IX
d

(
f (k)

)
,

k ≥ 1, converges in law to a standard Gaussian random variables. The implication (2.) =⇒ (1.)
in the statement of Proposition 9.1 yields the desired result.

Remarks. (1) Corollary 9.1 implies that, in order to prove a CLT on a fixed Wiener chaos,

it is sufficient to compute and control a finite number of expressions of the type
∫
Z2d f

(k)
σ dν2d,

where σ is associated with a connected Gaussian circular diagram with four rows. Moreover,
these expressions determine the speed of convergence in total variation, via the upper bound
given in (9.5).

(2) Relation (9.7) also implies that: (i) for d even, (9.9) takes place for every

σ ∈ Mc
2 ([4d] , π∗d ([4d]))

if and only if for every r = 1, ..., d/2, there exists a partition σ ∈ Mc
2 ([4d] , π∗d ([4d])) with rank

r and such that (9.9) holds; (ii) for d odd, (9.9) takes place for every σ ∈ Mc
2 ([4d] , π∗d ([4d])) if

and only if for every r = 1, ..., (d + 1)/2, there exists a partition σ ∈ Mc
2 ([4d] , π∗d ([4d])) with

rank r and such that (9.9) holds.
(3) When d = 2, the implication (9.9) ⇒ (9.8) is a consequence of the fact that, for ev-

ery n ≥ 3 and up to a permutation of the rows, the diagram associated with any element of
M2 ([2n] , π∗2 ([2n])) is equivalent to a circular diagram (this fact has been already pointed out
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at the end of Section 7.2). For instance, it is always possible to permute the blocks of π∗2 ([10])
in such a way that the diagram Γ(π∗2 ([10]) , σ), associated with some σ ∈ M2 ([10] , π∗2 ([10])),
has the form of the diagram in Fig. 29. By using this fact, one can prove that (9.9) ⇒ (9.8)
by means of the Cauchy-Schwarz inequality and of a recurrence argument (for another proof of
Theorem 9.1 in the case d = 2, by means of an explicit expression of the Fourier transform of
IX
2

(
f (k)

)
, see [79, p. 185]).

b b

b b

b b

b b

b b

Figure 29: A circular diagram with five rows

9.4 A multidimensional CLT

The paper [91] (but see also [71, 77, 83]) contains a complete solution of Problem A in the
Gaussian case, for every m ≥ 2. For such an index m, we denote by Vm the set of all vectors
(i1, i2, i3, i4) ∈ (1, ...,m)4 such that at least one of the following three properties is verified: (a)
i1 6= i2 = i3 = i4, (b) i1 6= i2 = i3 6= i4 and i4 6= i1, (c) the elements of (i1, ..., i4) are all
different. In what follows, X = {X (h) : h ∈ H} indicates an isonormal Gaussian process over a
real separable Hilbert space H.

Theorem 9.2 Let m ≥ 2 and d1, ..., dm ≥ 1 be fixed and let

{
f

(k)
j : j = 1, ...,m, k ≥ 1

}

be a collection of kernels such that f
(k)
j ∈ H⊙dj and the normalization condition (9.1) is verified.

Then, the following conditions are equivalent:

1. as k → ∞, the vector Fk =
(
IX
d1

(
f

(k)
1

)
, ..., IX

dm

(
f

(k)
m

))
converges in law towards a m-

dimensionnel Gaussian vector Nm (0,C) = (N1, ..., Nm) with covariance matrix C =
{C (i, j)};

2.

lim
k→∞

E






∑

i=1,...,m

IX
di

(
f

(k)
i

)



4


= 3




m∑

i=1

C (i, i) + 2
∑

1≤i<j≤m

C (i, j)




2

= E



(

m∑

i=1

Ni

)4

 ,
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and

lim
k→∞

E

[
4∏

l=1

IX
dil

(
f

(k)
il

)]
= E

[
4∏

l=1

Nil

]

∀ (i1, i2, i3, i4) ∈ Vm;

3. for every j = 1, ...,m, the sequence IX
dj

(
f

(k)
j

)
k ≥ 1, converges in law towards Nj, that is,

towards a centered Gaussian variable with variance C (j, j) ;

4. ∀j = 1, ...,m, limk→∞ χ4

(
IX
dj

(
f

(k)
j

))
= 0;

5. ∀j = 1, ...,m

lim
k→∞

∥∥∥f (k)
j ⊗r f

(k)
j

∥∥∥
H

⊗2(dj−r) = 0, (9.10)

∀r = 1, ..., dj − 1.

The original proof of Theorem 9.2 uses arguments from stochastic calculus. See [71] and [77],
respectively, for alternate proofs based on Malliavin calculus and Stein’s method. In particular,
in [71] one can find bounds analogous to (9.5), concerning the multidimensional Gaussian ap-
proximation of Fk in the Wasserstein distance. The crucial element in the statement of Theorem
9.2 is the implication (3.) ⇒ (1.), which yields the following result.

Corollary 9.2 Let the vectors Fk, k ≥ 1, be as in the statement of Theorem 9.2, and suppose
that (9.1) is satisfied. Then, the convergence in law of each component of the vectors Fk, towards
a Gaussian random variable, always implies the joint convergence of Fk towards a Gaussian
vector with covariance C.

Thanks to Theorem 9.1, it follows that a CLT such as (9.2) can be uniquely deduced from

(9.1) and from the relations (9.10), involving the contractions of the kernels f
(k)
j .

When H = L2 (Z,Z, ν) (with ν non atomic), the combinatorial implications of Theorem 9.2
are similar to those of Theorem 9.1. Indeed, thanks to the implication (5.) ⇒ (1.), one deduces

that, for a sequence
(
f

(k)
1 , ..., f

(k)
m

)
, k ≥ 1, as in (9.1), if

∫

Z2d

(
f

(k)
j

)
σ
dν2d → 0, ∀σ ∈ Mc

2 ([4d] , π∗ ([4d])) ,

then ∑

σ∈M2([n],π∗)

∫

Zn/2

f
(k)
σ,ℓ dν

n/2 → 0,

for every integer n which is the sum of ℓ ≥ 3 components (di1 , di2 , ..., diℓ) of the vector (d1, ..., dm)
(with possible repetitions of the indices i1, ..., iℓ), with

π∗ =
{
{1, ..., di1} , ...,

{
d1 + ...+ diℓ−1

+ 1, ..., n
}}

∈ P ([n]) ,

and every function f
(k)
σ,ℓ , in n/2 variables, is obtained by identifying two variables xk and xj in

the argument of fi1 ⊗0 · · · ⊗0 fiℓ if and only if k ∼σ j.
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As already pointed out, the chaotic representation property (5.45) allows to use Theorem 9.2
in order to obtain CLTs for general functionals of an isonormal Gaussian process X. We now
present a result in this direction, obtained in [29], whose proof can be deduced from Theorem
9.2.

Theorem 9.3 (See [29]) We consider a sequence {Fk : k ≥ 1} of centered and square-integrable
functionals of an isonormal Gaussian process X, admitting the chaotic decomposition

Fk =
∞∑

d=1

IX
d

(
f

(k)
d

)
, k ≥ 1.

Assume that

• limN→∞ lim supk→∞

∑
d≥N+1 d!

∥∥∥f (k)
d

∥∥∥
2

H⊗d
→ 0,

• for every d ≥ 1, limk→∞ d!
∥∥∥f (k)

d

∥∥∥
2

H⊗d
= σ2

d,

•
∑∞

d=1 σ
2
d , σ2 <∞,

• for every d ≥ 1, limk→∞

∥∥∥f (k)
d ⊗r f

(k)
d

∥∥∥
H⊗2(d−r)

= 0, ∀r = 1, ..., d − 1.

Then, as k → ∞, Fk
law
→ N

(
0, σ2

)
, where N

(
0, σ2

)
is a centered Gaussian random variable

with variance σ2.

9.5 Simplified CLTs in the Poisson case: the case of double integrals

We conclude this survey by discussing a simplified CLT for sequences of double integrals with
respect to a Poisson random measure. Note that this result (originally obtained in [89]) has
been generalized in [86], where one can find CLTs for sequences of multiple integrals of arbitrary
orders – with explicit Berry-Esséen bounds in the Wasserstein distance obtained once again via
Stein’s method.

In this section, (Z,Z, ν) is a measure space, with ν σ-finite and non-atomic. Also, N̂ =
{N̂ (B) : B ∈ Zν} is a compensated Poisson measure with control measure given by ν. In [89],
we have used some decoupling techniques developed in [87] in order to prove CLTs for sequences
of random variables of the type:

Fk = IN̂
2

(
f (k)

)
, k ≥ 1, (9.11)

where f (k) ∈ L2
s

(
ν2
)
. In particular, we focus on sequences {Fk} satisfying the following assump-

tion

Assumption N. The sequence f (k), k ≥ 1, in (9.11) verifies :

N.i (integrability) ∀k ≥ 1,

∫

Z
f (k) (z, ·)2 ν (dz) ∈ L2 (ν) and

{∫

Z
f (k) (z, ·)4 ν (dz)

} 1
2

∈ L1 (ν) ; (9.12)
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N.ii (normalization) As k → ∞,

2

∫

Z

∫

Z
f (k)

(
z, z′

)2
ν (dz) ν

(
dz′
)
→ 1; (9.13)

N.iii (fourth power) As k → ∞,

∫

Z

∫

Z
f (k)

(
z, z′

)4
ν (dz) ν

(
dz′
)
→ 0 (9.14)

(in particular, this implies that f (k) ∈ L4
(
ν2
)
).

Remarks. (1) The conditions in (9.12) are technical : the first ensures the existence of the
stochastic integral of

∫
Z f

(k) (z, ·)2 ν (dz) with respect to N̂ ; the second allows to use some Fubini
arguments in the proof of the results to follow.

(2) Suppose that there exists a set B, independent of n, such that ν (B) < ∞ and f (k) =
f (k)1B , a.e.–dν2, ∀k ≥ 1 (this holds, in particular, when ν is finite). Then, by the Cauchy-
Schwarz inequality, if (9.14) is true, then

(
f (k)

)
converges necessarily to zero. Therefore, in

order to study more general sequences
(
f (k)

)
, we must assume that ν (Z) = +∞.

The next theorem is the main result of [89].

Theorem 9.4 Let Fk = IN̂
2 (f (k)) with f (k) ∈ L2

s(ν
2), k ≥ 1, and suppose that Assumption N is

verified. Then, f (k) ⋆0
1 f

(k) ∈ L2(ν3) and f (k) ⋆1
1 f

(k) ∈ L2
s(ν

2), ∀k ≥ 1, and also :

1. if ∥∥∥ f (k) ⋆1
2 f

(k)
∥∥∥

L2(ν)
→ 0 and

∥∥∥f (k) ⋆1
1 f

(k)
∥∥∥

L2(ν2)
→ 0 , (9.15)

then
Fk

law
→ N (0, 1) , (9.16)

where N (0, 1) is a centered Gaussian random variable with unitary variance.

2. if Fk ∈ L4 (P), ∀k, a sufficient condition in order to have (9.15) is

χ4 (Fn) → 0; (9.17)

3. if the sequence
{
F 4

k : k ≥ 1
}

is uniformly integrable, then the three conditions (9.15), (9.16)
and (9.17) are equivalent.

Remark. See [14] and [85] for several applications of Theorem 9.4 to Bayesian non-
parametric survival analysis.

We now give a combinatorial interpretation (in terms of diagrams) of the three asymptotic
conditions appearing in formulae (9.14) and (9.15). To do this, consider the set [8] = {1, ..., 8},
as well as the partition π∗ = {{1, 2} , {3, 4} , {5, 6} , {7, 8}} ∈ P ([8]). We define the set of
partitions M≥2 ([8] , π∗) ⊂ P ([8]) according to (7.23). Given an element σ ∈ M≥2 ([8] , π∗) and
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given f ∈ L2
s

(
ν2
)
, the function fσ,4, in |σ| variables, is obtained by identifying the variables xi

and xj in the argument of f ⊗0 f ⊗0 f ⊗0 f (as defined in (6.3)) if and only if i ∼σ j. We define
three partitions σ1, σ2, σ3 ∈ M≥2 ([8] , π∗) as follows:

σ1 = {{1, 3, 5, 7} , {2, 4, 6, 8}}

σ2 = {{1, 3, 5, 7} , {2, 4} , {6, 8}}

σ3 = {{1, 3} , {4, 6} , {5, 7} , {2, 8}} .

The diagrams Γ (π∗, σ1), Γ (π∗, σ2) and Γ (π∗, σ3) are represented (in order) in Fig. 30.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Figure 30: Three diagrams associated with contractions

One has therefore the following combinatorial representation of the three norms appearing
in formulae (9.14) and (9.15) (the proof is elementary, and left to the reader).

Proposition 9.2 For every f ∈ L2
s

(
ν2
)
, one has that

∫

Z

∫

Z
f
(
z, z′

)4
ν (dz) ν

(
dz′
)

= ‖f‖4
L4(ν2) =

∫

Z2

fσ1,4

(
z, z′

)
ν (dz) ν

(
dz′
)

∫

Z

[∫

Z
f
(
z, z′

)2
ν (dz)

]2

ν
(
dz′
)

=
∥∥ f ⋆1

2 f
∥∥2

L2(ν)
=

∫

Z
fσ2,4 (z) ν (dz)

∫

Z2

[∫

Z
f
(
z, z′

)
f
(
z, z′′

)
ν (dz)

]2

ν
(
dz′
)
ν
(
dz′′
)

=
∥∥ f ⋆1

1 f
∥∥2

L2(ν)
=

∫

Z
fσ3,4 (z) ν (dz) .

In particular, Proposition 9.2 implies that, on the second Wiener chaos of a Poisson measure,
one can establish CLTs by focusing uniquely on expressions related to three connected diagrams
with four rows. Similar characterizations for sequences belonging to chaoses of higher orders
can be deduced from the main findings of [86].
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[72] I. Nourdin and A. Réveillac (2008). Asymptotic behavior of weighted quadratic variations
of fractional Brownian motion: the critical case H = 1/4. Preprint.

[73] D. Nualart (1983), On the distribution of a double stochastic integral. Z. Wahrschein-
lichkeit verw. Gebiete 65, 49-60

[74] D. Nualart (1998). Analysis on Wiener space and anticipating stochastic calculus. Lectures
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integrals. Séminaire de Probabilités XXXVIII, LNM 1857. Springer-Verlag, Berlin Heidel-
berg New York, pp. 247-262.

[92] G. Peccati and M. Yor (2004). Hardy’s inequality in L2 ([0, 1]) and principal values of
Brownian local times. Asymptotic Methods in Stochastics, AMS, Fields Institute Commu-
nications Series, 49-74.

[93] G. Peccati and M. Yor (2004). Four limit theorems for quadratic functionals of Brownian
motion and Brownian bridge. Asymptotic Methods in Stochastics, AMS, Fields Institute
Communication Series, 75-87.

[94] V. Pipiras and M.S. Taqqu (2000). Integration questions related to fractional Brownian
motion. Probability Theory and Related Fields 118(2), 251-291.

[95] V. Pipiras and M.S. Taqqu (2001). Are classes of deterministic integrands for fractional
Brownian motion complete? Bernoulli 7(6), 873-897

[96] V. Pipiras and M.S. Taqqu (2003). Fractional calculus and its connection to fractional
Brownian motion. In: Long Range Dependence, 166-201, Birkhäuser, Basel.
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[115] J.-L. Solé and F. Utzet (2008). Time-space harmonic polynomials associated with a Lévy
process. Bernoulli 14(1), 1-13.
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spaces over general Lévy processes. Russian Math. Surveys 58(3), 427-472.

[125] N. Tsilevich, A.M. Vershik and M. Yor (2001). An infinite-dimensional analogue of the
Lebesgue measure and distinguished properties of the gamma process. J. Funct. Anal.
185(1), 274-296.

[126] C. Tudor (1997). Product formula for multiple Poisson-Itô integrals. Revue Roumaine de
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