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Calibration of local volatility using the local

and implied instantaneous variance

Abstract

We document the calibration of the local volatility through a func-

tional to be optimized; our calibration variables are the local and im-

plied instantaneous variances whose theoretical properties are fully

explored within a particular class of volatilities. We confirm the the-

oretical results through a numerical procedure where we separate the

parametric optimization (performed with any suitable optimization

algorithm) from the computation of the functional by the use of an

adjoint to obtain an approximation. The procedure performs well on

benchmarks from the literature and on FOREX data.

Keywords: calibration, local volatility, implied volatility, Dupire

formula, adjoint, instantaneous local variance, instantaneous implied

variance, implied variance.

1 Motivation: the local volatility surface

Let us consider a security St (e.g. a stock, a FOREX rate, etc.) whose price,

under the risk-neutral [Musiela and Rutkowski, 2005, Hull, 2006] measure,



follows the stochastic differential equation

dSt/St = (r(t) − q(t))dt + σdWt (1)

with r(t) being the time dependent risk-free rate, q(t) the continuous dividend

rate, σ the volatility (we will make explicit its dependence latter) and Wt a

Brownian motion.

Let us consider (for now) plain vanilla call options contingent on St and

recall that when the volatility (and the discount rate r) are known the Black-

Scholes model [Black and Scholes, 1973] gives a formula for the price C(S, t) of

such claims. It is standard to note that the reverse is also true, i.e., provided

r is known, from the observed market prices denoted Cmarket
Kl,Tl

(with strikes Kl

and maturities Tl, l = 1, ..., L) one can find (i.e. calibrate) the unique implied

volatilities σI
Kl,Tl

that, when introduced in the Black-Scholes formulae, match

the observed market prices Cmarket
Kl,Tl

. However the implied volatilities σI
Kl,Tl

thus obtained are not the same for all Kl and Tl (the smile effect) which is in-

consistent with the initial model. To address this issue it was independently

proposed by Rubinstein [Rubinstein, 1994], Dupire [Dupire, 1994] and Der-

man and Kani [Derman and Kani, 1994] to take the volatility σ as depending

on the time and the security price S : σ = σ(S, t); the model is named local

volatility. Historically the proposals in [Rubinstein, 1994, Derman and Kani,

1994] build on the Cox-Ross-Rubinstein binomial tree [Cox et al., 1979] and
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are described as implied trees.

Let us make clear that we do not discuss here the local volatility model

itself nor its dynamics. We only see the local volatility as a way to express

the non-arbitrage relationships between the set of derivatives contracts con-

tingent on the same (set of) underlying instruments (much similar to the way

one uses the risk neutral probability measure as a tool to compute prices but

does not necessarily want to assign it to any real world probabilities).

Although efficient computation of the map σ → C can, e.g. be performed

with the Dupire formula [Dupire, 1994, Hull, 2006, Achdou and Pironneau,

2005] the inverse map i.e. matching observed prices is often unstable and

the problem becomes now an inverse problem [Bouchouev and Isakov, 1997,

1999].

When the number of quoted market prices Cmarket
Kl,Tl

is large/dense enough

(i.e. Kl, Tl cover well the range of S and t) the local volatility can be expressed

using the Dupire formula [Dupire, 1994, Hull, 2006, Achdou and Pironneau,

2005]. However, when only a few prices are known, the Dupire formula

is less effective and other methods have to be used [Avellaneda et al., 1997,

Bodurtha and Jermakyan, 1999]. Among those, Coleman, Li & Verma [Cole-

man et al., 2001] introduced a parametric procedure which we refine in this

contribution. Further, L. Jiang, and co-authors established a mathematical

grounding for formulating this problem as a control problem [Jiang et al.,
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2003]; we will retain in this paper the adjoint state technique that we adapt

to take into account the constraints (see [Lagnado and Osher, 1997, 1998]

for related endeavors). Our procedure combines the approaches above and

is accelerated by the use of an approximation of the functional through the

use of the adjoint (11).

Motivated by considerations concerning the convexity of the quality func-

tional, the specificity of our approach is to work directly with the local and

implied instantaneous variances as primal variables; we show that in some

particular cases our choice of variables render the optimization strictly con-

vex, that it converges to the correct local volatility when the number of

observations is dense enough and that Tychonoff regularization provides a

stable way to converge to the expected solution; moreover the convexity does

not only speed the convergence but also eliminates local minima and operates

a coherent selection of the adequate local surface, as confirmed in numerical

experiments.

This approach (rather natural since option traders often only quote the

implied volatility and not the price) is especially useful in markets that heav-

ily rely on Greeks: e.g. in the FOREX market one quotes risk reversals which

involve Deltas and the implied volatility.
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1.1 Mathematical preliminaries

From a given local volatility σ the Dupire formula [Dupire, 1994, Hull, 2006,

Achdou and Pironneau, 2005] allows to recover a continuum of option prices

for all strikes K and time to maturities t < T , denoted C(K, t, σ);

Let us denote by P the map from the local volatility σ to prices i.e.

P(σ)(K, t) = C(K, t, σ). We also introduce the map V from the square

v = σ2 of the local volatility, named hereafter instantaneous local variance to

the square of the implied volatility, named hereafter instantaneous implied

variance (both as functions of K and t) i.e., with our notations V(v)(K, t) is

the square w = (σI(K, t))2 of the implied volatility of the option with price

C(K, t, σ).

Calibration can be recast as an inverse problem of the form T (u) = f

with T being one of the operators P , V and possibly any similar mappings

(see [Berestycki et al., 2002] that use B(ξ) = 1√
V(σ2)

where ξ = 1
σ
) ; in

practice this problem is solved by optimization of some quality functional

J(u) = ‖Tu − f‖2 (to which one may add some Tychonoff regularization

terms, see [Achdou and Pironneau, 2005, Bonnans et al., 2006] and latter in

this paper); most often used are the mappings σ → P and σ =
√

v → σI =

√

V(v).

To make our notations easier we will suppose from now on that the prob-
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lem has a solution σ0; we denote v0 = σ2
0.

Among the properties of the optimization functional J(u) a distinguished

property is the convexity. If the convexity is not complete, we would like

to have it at least on some distinguished classes of local volatilities. To the

best of our knowledge, no systematic studies exist to motivate the choice

of minimization variables. In particular none of the mappings σ → P or

σ →
√

V(σ2) has been shown to be convex on any particular classed of

functions. On the contrary, for σ2 = v → V(v) we give below a result for

the situation when the local surface is strike independent but has (arbitrary)

time dependence.

Our primary variable is from now on the local instantaneous variance

v = σ2 and the quantity to fit the implied instantaneous variance w = V(σ2).

2 Mathematical properties : strike indepen-

dent local volatility

The dependence v → w (see previous section for notations) is not straight-

forward to analyze, we refer to [Berestycki et al., 2002, Gatheral, 2006] for

equations relating the two. However when the local volatility depends only

on time σ = σ(t) we can understand much of its basic properties. Accord-
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ingly we will suppose throughout this section that the volatility is strike

independent.

Lemma 1 The mapping v ∈ L2(0, T ) → ‖V(v) − V(v0)‖2 is strictly convex.

In particular equation V(v) = V(v0) has an unique solution (v0).

Proof When σ(S, t) = σ(t) we know (see [Gatheral, 2006]) that the implied

instantaneous variance w is the average of the local instantaneous variance

v: V(v)(t) = 1
t

∫ t

0
v(s)ds and V(v)(0) = v(0). Thus V is a linear mapping in

these variables. All that remains to be proved is that V is non degenerate.

We will prove more, namely that V is a strictly positive operator. From the

above formula we have v = (tw)′; then < V(v), v >L2(0,T )=
∫ T

0
(tw)′wdt =

T
2
w2(T )+

∫ T

0
w2dt which is strictly positive except when w is identically null.

As a consequence we have that V is a continuous map from L2(0, T ) to itself.

The existence and uniqueness of the solution is a direct consequence of the

positivity of the map. ¤

We know now, by the lemma above, that the solution to the calibration

problem V(v) = V(v0) is unique; however the inverse mapping is not stable

i.e. if we modify slightly v0 the solution can change dramatically. In order

to lift the ill-possedness of the problem it is classical to add a regularization

term [Achdou and Pironneau, 2005] which in this variable reads ‖v′‖2
L2 . We

will prove latter (Thm. 2) that adding this term gives indeed a stable way to

9



invert the mapping.

However stability with respect to small variations in the overall volatility

surface is not enough; in practice data does not cover all possible maturities

but only a discrete set of times Ti, i = 1, ..., N ; a desirable property of

the calibration process is the stability also respect to the amount of data

available. The following result suggests a procedure that converges in a

stable way:

Theorem 1 1/ For any division T = T0 = 0 ≤ T1 ≤ ... ≤ Ti ≤ ... ≤ Tn = T

the minimum

min
v∈H1;V(v)(Ti)=V(v0)(Ti)

‖v′‖2
L2(0,T ) (2)

is attained in an unique point vT .

2/ Let d(T ) = maxi(Ti+1 − Ti) be the size of the division T ; then if

v0 ∈ Hs with s > 1 the sequence vT converges to v0 : ‖vT − v0‖H1 → 0 as

d(T ) → 0.

Proof 1/ The problem can also be written as

min
v∈H1;v(0)=v0(0);

∫ Ti+1

Ti
v(t)dt=

∫ Ti+1

Ti
v0(t)dt, ∀i≤n−1

‖v′‖2
L2(0,T ) (3)

Obviously, the space of H1 functions {v ∈ H1;V(v)(Ti) = V(v0)(Ti)} that

fits the data at the points Ti is convex and closed L2 and H1. By taking

a minimizing sequence vn we obtain by classical arguments that v′
n is L2
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bounded which, together with the weak lower semi-continuity of the norm

gives the existence of a minimizer. The uniqueness follows from the strict

convexity of the norm on the convex space of constraints. Let us note that the

minimizer satisfies the following Euler equation −v′′ = cst on any [Ti, Ti+1];

in addition it is also continuous (as element of H1([0, T ])) and satisfies the

other constraints v(0) = v0(0),
∫ Ti+1

Ti
v(t)dt =

∫ Ti+1

Ti
v0(t)dt, ∀i ≤ n − 1.

2/ For the second part we need a more detailed description of the solution.

Let us denote W T (t) = tV(vT )(t), W0(t) = tV(v0)(t) and recall that vT (t) =

(W T )′(t). The minimization problem of which vT is solution can be rephrased

in terms of W T :

W T = arg min
W (Ti)=W0(Ti),i=0,...,n

‖W ′′‖2
L2(0,T ) (4)

We know that the solution W T is the cubic spline interpolant of W0 at points

Ti. The conclusion follows from the approximation properties of the cubic

splines, more precisely the convergence of the derivatives of H2 functions, cf.

de Boor [2001]. ¤

At this point we have a stable procedure involving, at each moment, only

a finite number of information on option prices. But we still do not know

how to compute in a stable manner the solutions vT . The answer is given in

the next result; for simplicity we will omit to mark explicitly the dependence

in T .
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Theorem 2 Let us consider

J ǫ(v) = ǫ‖v′‖2
L2 +

∑

i

(V(v)(Ti) − (V(v0)(Ti))
2. (5)

The problem minv∈H1 J ǫ(v) has an unique solution vǫ. Moreover vǫ converges

in H1 to vT as ǫ → 0.

Proof The existence of vǫ follows from arguments of convexity; we refer the

reader to the proof of Thm.3 in [Berestycki et al., 2002] where they use a very

similar functional V (albeit over whole R and with other variables). They also

prove that vǫ converges to some limit vl with V(vl)(Ti) = V(v0)(Ti), ∀ i ≤ n.

We will now identify this limit vl. Let v be such that V(v)(Ti) = V(v0)(Ti)

∀ i ≤ n; from J ǫ(vǫ) ≤ J ǫ(v) one obtains in particular ‖(vǫ)′‖ ≤ ‖v′‖.

Thus lim supǫ→0 ‖(vǫ)′‖ ≤ ‖v′‖. Recalling the weak lower semi-continuity of

the norm and passing to infimum over all v with V(vl)(Ti) = V(v0)(Ti) one

obtains

‖(vl)
′‖ ≤ lim inf

ǫ→0
‖(vǫ)′‖ ≤ lim sup

ǫ→0
‖(vǫ)′‖ ≤ ‖(vT )′‖. (6)

which, together with definition of vT gives vl = vT and the convergence will

be in H1. ¤

The reader interested in having the corresponding results for the situation

of a parametric optimization is referred to the Appendix A.
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3 Numerical implementation : adjoint and

the cost functional

We consider now the full generality of the S and t dependence of σ :σ =

σ(S, t) and use the functional

J ǫ(v) = ǫ‖v′‖2
L2 +

L
∑

i=1

(V(v)(Ki, Ti) − (V(v0)(Ki, Ti))
2. (7)

where now v0 is the unknown market instantaneous local variance. In order

to minimize the functional J ǫ one needs to compute the gradient ∂V(v)(Ki,Ti)
∂v

.

Recall that the price C(S, t) of a European call on St and maturity t = T

satisfies the (Black-Scholes) equation [Hull, 2006] for all S ≥ 0 and t ∈ [0, T ]:

∂tC + (r − q)S∂SC +
σ2S2

2
∂SSC − rC = 0 (8)

C(S, t = T ) = (S − K)+ (9)

Remark 1 For a stock q(t) is the (known) dividend rate while for a FOREX

spot q(t) is the foreign interest rate (with r(t) being the domestic rate).

The price at t = 0 of the contract is C(St=0, t = 0); note the retrograde

nature of the equation (8)-(9). We will use the technique of the adjoint

state [Achdou and Pironneau, 2005, Jiang et al., 2003] and view the price

as a implicit functional of σ (here δ is the Dirac operator): C(t = 0; S =

S0) =< δt=0,S=S0
, C(S, t) >. Then the variation δC

δ(σ2)
of C with respect to σ2
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will be

δC

δ(σ2)
=

S2

2
(∂SSC)χ. (10)

Here the adjoint state χ is the solution of:

∂tχ + ∂S((r − q)Sχ) − ∂SS(
σ2S2

2
χ) + rχ = 0 (11)

χ(S, t = 0) = δS=S0
. (12)

Remark 2 Both problems (8) and (11) can be solved e.g. through a Crank-

Nicholson finite-difference scheme (in time and space) [Hull, 2006, Andersen

and Brotherton-Ratcliffe, 1998] that we explain in Appendix B.

Remark 3 In the numerical resolution of the adjoint state we replace δS=S0

by a regularized version δa
S=S0

= 1
a
√

π
e−(S−S0)2/a2

with a of the order of one

percent of S0; this choice (and in fact many other) was seen to give consis-

tently good numerical results.

To illustrate the nature of this gradient we display an example in Figure 1

where we note two singularities appearing in (t = 0, S = S0) (from eqn (12))

and (t = 1, S = K) (from ∂SS(S − K)+) (see also [Avellaneda et al., 1997]

for similar conclusions).

Same technique works for any other quantity dependent on the price,

e.g. the instantaneous implied variance V(v)(Ki, Ti). Recall that an explicit

formula links the price to the implied volatility C = C(σI) and as such
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∂V(v)(Ki,Ti)
∂v

= ∂(σI)2

∂σ2 = 2σI ∂σI

∂C
∂C
∂σ2 . We recognize in the term ∂C

∂σI the Black-

Scholes vega, that we will denote νI
BS. We obtain

∂V(v)(Ki, Ti)

∂v
= 2

√

V(v)(Ki, Ti)
1

νI
BS

∂C

∂σ2
. (13)

Repeated application of the formula (13) allows to compute the gradient

of the second part of J ǫ in Eqn (7) with respect to v. Note that for each

term V(v)(Ki, Ti) one needs to solve a PDE for the price and a corresponding

PDE for the adjoint and use them as in (10) (i.e. 2L PDEs).

Remark 4 An alternative solution could be to fit directly the whole surface

V(v) instead of an ensemble of fitting points Ki, Ti. The computation of the

full surface P(σ) of option prices (then of V(v)) can be performed directly

from the Dupire equation at the price of one PDE (or from the equation

relating local and implied volatilities cf [Berestycki et al., 2002, Gatheral,

2006]). But then we need a different adjoint PDE each time we want to

compute the gradient for a new descent direction. The computational speed-

up (or not) will depend on the relative number of gradient computations (for

Dupire) and 2L times the number of macro iterations (cf. Section 4.1) for

the procedure we propose. As it will be seen in Section 5 for our target

applications (FOREX) we need between 5 and 10 macro iterations to converge

and the data is not so abundant (less than 30 known implied volatilities to

fit). We plan to document in a future work a comparison between the two
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methods.

An additional argument (but there are ways to circumvent this) is that

we want to specifically emphasize the points Ki, Ti where we have market

information and not fit the entire (necessarily interpolated) implied surface.

4 Surface space and the optimization proce-

dure

A traditional choice to avoid singularities and address the possible non-

uniqueness of the solution (for ǫ = 0 J ǫ has an infinity of minima) is to

parametrize the surface σ(S, t) [Achdou and Pironneau, 2005, Coleman et al.,

2001]; the result will be the optimal surface in the class.

We give here a possible choice to describe the space of available surface

shapes. We consider continuous affine functions with degrees of freedom

being the values on some grid (Si = S0 + i∆S, tj = t0 + j∆t, ), i ≤ I, j ≤ J .

We denote by fij(S, t) the unique piecewise linear and continuous function

that has value of 1 at (ti, Sj), and is zero everywhere else. The surfaces are

linear combinations of the shapes fij(S, t):

v(S, t) = σ2(S, t) =
∑

αijfij(S, t). (14)

The advantage of linear interpolation is that the shape functions have
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nice localization properties: the scalar product of two such functions (or

their gradient) is zero except if they are neighbors i.e. matrices (18)-(19)

are sparse. Also setting constraints e.g. v(S, t) ∈ [vmin, vmax] for all S, t is

equivalent to asking that all αij are in [vmin, vmax].

Remark 5 We also tested cubic splines interpolation and it performed equally

satisfactory. Imposing the constraints v(S, t) ∈ [vmin, vmax] in this case is

done pointwise: we ask that the local volatility v(Sj, ti) be between [vmin, vmax]

in any interpolation node (Sj, ti); this reduces to a set of linear constraints

in the coefficients α:
∑

kl αklfkl(Sj, ti) ∈ [vmin, vmax].

Remark 6 A possible procedure would be to optimize the cost functional (7)

expressed as a function of the coefficients αij of v in (14). But, depending

on the interpolation function, this dependence is highly nonlinear and the

resulting optimization can have many unwanted local extrema.

Chain rule gives the gradient of any V(v)(Ki, Ti) with respect to variations

of the instantaneous local variance v = σ2 inside the admissible surface space.

This is in fact just a matter of projecting the exact gradient (10) onto each

shape fij. We obtain a first order approximation formula around the current

local instantaneous variance v:

V
(

v +
∑

ij

αijfij(S, t)

)

(Ki, Ti) = V(v)(Ki, Ti)+
∑

ij

<
∂V(v)

∂v
, fij >L2

S,t
αij+o(α).

(15)
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In discrete formulation the second part of the cost functional J ǫ will

employ the matrix

Mab;rs =
L

∑

i=1

<
∂V(v)

∂v
(Ki, Ti), fab >L2

S,t
<

∂V(v)

∂v
(Ki, Ti), frs >L2

S,t
. (16)

Note that (15) already provides (some) second order information; also

note that around v =
∑

ij βijfij(S, t) the Tychonoff regularization term

ǫ‖∇v‖2 [Achdou and Pironneau, 2005, Bonnans et al., 2006] can be written

ǫ < β + α, QS(β + α) > +ǫ < β + α, Qt(β + α) > (17)

where

(QS)ij;kl =

∫ ∫

∂fij(S, t)

∂S

∂fkl(S, t)

∂S
dSdt (18)

and

(Qt)ij;kl =

∫ ∫

∂fij(S, t)

∂t

∂fkl(S, t)

∂t
dSdt. (19)

A last ingredient involves bounds on v(S, t); indeed, v(S, t) cannot be

negative. Even when this is the case, local volatilities with very low values

(e.g. 3% !) are obviously not realistic. Enforcing constraints on the local

volatilities is a very important step towards selecting meaningful candidates.

A choice that is consistent with other observations in the literature [Rubin-
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stein, 1994, Derman and Kani, 1994] is to ask

v(t, S) = σ(t, S)2 ∈ [vmin, vmax] with

vmin =
(1

2
min{σI;market

Kl,Tl
; l = 1, ..., L}

)2

,

vmax =
(

2 max{σI;market
Kl,Tl

; l = 1, ..., L}
)2

. (20)

4.1 Optimization procedure

The algorithm operates as follows: first we choose as initial guess v0 to be

the (projection on the space V ect{fij}) of the known implied instantaneous

variance surface V(v0), eventually corrected to be between bounds σmin and

σmax.

The iterative procedure operates in macro-iteration cycles by using the

approximation formula (15) and solving a quadratic minimization problem

around each point:

1/ Around vk =
∑

ij βijfij(S, t) compute the gradient in formula (15) and

obtains the functional Jk(α) that approximates J ǫ(vk +
∑

ij αijfij(S, t)):

Jk(α) =
1

2
< αT , (M + ǫQS + ǫQt)α > +wtα + J ǫ(v). (21)

2/ solve the (quadratic) optimization problem

min

vmin ≤ β + α ≤ vmax

Jk(α) (22)
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3/ update the local instantaneous variance vk+1 = vk+α; if the replication

error is small then exit, otherwise set k = k + 1 and return in 1/ for a new

macro-iteration.

In practice very few macro-iteration cycles 1/-3/ are necessary. We tested

on several indices and in the FOREX market and the numbers varied between

5 and 10 macro-iterations.

Remark 7 In order to remain in a region where the approximation (15)

holds we have also imposed constraints on the maximum change in α in step

2/. The bounds that proved satisfactory were of the order vmax−vmin

10
although

we did not try to optimize this bounds.

Remark 8 The quadratic problem (22) can be solved by any suitable algo-

rithm. The advantage of the approach is precisely to separate the optimization

itself from the formulation of the problem. For instance Matlab uses by de-

fault a subspace trust-region method based on the interior-reflective Newton

method described in [Coleman and Li, 1996].

We also tested a simple projected gradient: at each step we advanced a

fixed step size in the direction of the gradient; then, points that do not satisfy

the constraints [vmin, vmax] are projected to either vmin or vmax. We were

surprised to see that in all cases we tested the projected gradient performs

as well as a general quadratic optimization algorithm. We expect that the
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reason lies with the advantageous choice of variables in which the problem was

expressed i.e. variables v = σ2 and w = V(v). This numerical observation

may indicate further convexity of the functional J ǫ(v) than what we were able

to prove in Section 2.

5 Results and conclusions

A specificity of the approach is that instead of a unique optimization in the

parametric space we perform one optimization around each current point;

this reduces the number of computations of the PDE (8). But, equally im-

portantly, the separation between the optimization and the approximation of

the functional provides flexibility in the information that can be fitted, e.g.

we can ignore some prices should them not be available or if one wants to

arbitrage against them (in contrast with the pioneering approaches [Rubin-

stein, 1994, Dupire, 1994, Derman and Kani, 1994] that need a uniform set

of data to perform the inversion); in particular no interpolation is required

to fill this information when missing.

The use of the gradient not in an optimization procedure but to obtain

an approximation of the functional around the current point is a acknowl-

edgement of the fact that the main difficulty is not finding a solution but

choosing one among all compatible surfaces (i.e. ill-posedness).
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Numerical results (not shown here) show a clear improvement when using

the formulation involving volatilities instead of prices.

We used throughout a grid with I = 24 values of S and J = 13 values

of t i.e. 312 shapes fij, cf. eqn. (14). The regularization parameter ǫ was in

the range [1.e−3, 1.e−2]. The finite differences used 100 time steps and 200

spacial steps.

Let us now iterate through several benchmarks from the literature; we

begin with the European call data on the S& P index from [Andersen and

Brotherton-Ratcliffe, 1998, Coleman et al., 2001]. Similar to [Andersen and

Brotherton-Ratcliffe, 1998, Coleman et al., 2001], we use in our computation

only the options with maturities of less than two years. The initial index,

interest rate and dividend rate are the same (see Figure 3). We first checked

(not shown) that for L = 1 the problem recovers the implied volatility; it did

so with only one cycle. When we took all the L = 70 data the resulting local

volatility surface is given Figure 3.

We next moved to a FOREX example (from [Avellaneda et al., 1997])

where synchronous option prices (based on bid- ask volatilities and risk-

reversals) are provided for the USD/DEM 20,25 and 50 delta risk-reversals

quoted on August 23rd 1995. The results in Figure 4 show a very good fit

quality with only five cycles 1/-3/.

We remain in the FOREX market and take as the next example 10,25 and
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50-Delta risk-reversal and strangles for EUR/USD dated March 18th 2008

(courtesy of Reuters Financial Software). We recall that e.g. a 25 Delta risk

reversal contract consists in a long position in a call option with delta=0.25

and a short position in a put option with delta = −0.25; the contract is

quoted in terms of the difference of the implied volatilities of these two op-

tions. Note that the price of the options never appears in the quotes. In

order to set the implied surface we used 10 and 25 Delta strangles which are

quoted as the arithmetic mean of the implied volatilities of the two options

above. Of course, from this data one can next recover the implied volatilities

of each option, then all other characteristics. We give in Tables 1,2 and 3

the resulting data which is to be fitted; the data is to be understood in the

following way: for a given Delta and maturity, e.g. Delta=0.25 and Ti = 31

days to expiry one finds its strike Ki = 1.6165 in Table 1, the implied volatil-

ity σI(Ki, Ti) = 12.95% from Table 2 and the premium (consistency check)

C(Ki, Ti) = 0.0088% from Table 3, all this with spot price S0 = 1.5755,

r = rUSD = 0.2485 and ’dividend’ rate q = 0.0455. We present in Figure 5

the implied and the calibrated local volatility. The procedure was also tested

(not shown here) on other currencies pairs (GBP, CHF, JPY, KRW, THB,

ZAR all with respect to USD as domestic currency) and performed well.
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Appendix A: parametric space versions of the-

oretical results of Section 2

In this section we would also like to know what happens when we look for

the solution in a parametric space K. A standard example of such a set

is a bounded part of some finite dimensional linear (parametric) space of

surfaces. The requirement that at least one element exists that fits the data

is a requirement on the diversity of elements of the set K.

Theorem 3 Let T = T0 = 0 ≤ T1 ≤ ... ≤ Ti ≤ ... ≤ Tn = T be any division

of [0, T ] and KT be a compact closed subset of H1 such that there exists at

least one v0,K ∈ K with V(v0,K)(Ti) = V(v0)(Ti) for all i ≤ N . Then the

optimization problem min{‖v′‖2
L2(0,T )|v ∈ K;V(v)(Ti) = V(v0)(Ti)} has an

unique solution vT
K which attains thus the minimum.
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Proof The existence is straightforward due to the compactness of K. The

uniqueness uses the convexity of K and of the norm. ¤

Theorem 4 Let K be a compact convex set and suppose that at least one ele-

ment v∗
K ∈ K exists that will fit the observed implied volatilities: V(v∗

K)(Ti) =

w0(Ti) ∀i ≤ N . Then the problem minv∈K J ǫ(v) has an unique solution

vǫ,K ∈ K; in addition the sequence (vǫ,K)ǫ>0 converges to v0,K uniformly over

[0, T ].

Proof Same arguments as the proof in the whole space apply (plus the

compactness of K). ¤

Appendix B: the numerical discretization scheme

We briefly explain in this section the resolution of equations (8) and (11). We

use a standard finite differences scheme [Hull, 2006, Andersen and Brotherton-

Ratcliffe, 1998]: denote by Cn
k the approximation of the value C(Sk, tn) where

Sk = Smin + k × dS is the k-th spatial point and tn = n × dt the n-th time

step; the equation for C is backward, i.e. we know Cn+1
k and want to compute

Cn
k ; the numerical scheme is then (we use θ = 1/2):

25



Cn
k − Cn+1

k+1
+Cn+1

k−1

2

−dt
+ (r − q)Sk

Cn
k+1 − Cn

k−1

2dS
− rCn

k

+θ
S2

kv(Sk, t
n)

2

{Cn
k+1 + Cn

k−1 − 2Cn
k

dS2

}

+(1 − θ)
S2

kv(Sk, t
n+1)

2

{Cn+1
k+1 + Cn+1

k−1 − 2Cn+1
k

dS2

}

= 0. (23)

It is best to use for (11) the numerical adjoint of (8) (cf. also [Achdou and

Pironneau, 2005] Section 8.3 for an example of numerical adjoint, albeit for

the Dupire equation). This means that if the vector Cn = (Cn
k )k≥1 solves the

equation AnCn = DnCn+1 then the vector χn that approximates χ(·, n× dt)

solves
(

An
)T

χn =
(

Dn−1
)T

χn−1.
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Figure 1: Gradient δC
δ(σ2)

(see eqn. (10)) of the price C of a plain vanilla

call with respect to the local instantaneous variance v = σ2. Note the two

singularities at the initial time (around the spot price) and at the expiration

around the strike. These singularities prevent the direct use of a gradient

method in these variables otherwise the resulting surface will be singular.
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Figure 2: The local instantaneous variance v = σ2(S, t) is sought after as a

linear combination of basic shapes fij(S, t): v(S, t) =
∑

ij αijfij. A possible

choice is to take fij(S, t) as the (unique) linear interpolation which is zero

except in some point (Si, tj) (part of a grid in S and t). We display here such

a shape.
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Figure 3: Local volatility surface of the S&P 500 index as recovered from the

published European call options data [Andersen and Brotherton-Ratcliffe,

1998, Coleman et al., 2001]; spot price is $590; discount rate r = 6%, dividend

rate 2.62%. The blue marks on the surface indicate the option prices that

were used to invert i.e. the Kl and Tl (L = 70). After 10 iterations the prices

are recovered up to 0.04% (relative to spot) and the implied volatility up to

0.28%. Setting regularization parameter ǫ to smaller values gives better fit

but less smooth surfaces.
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Figure 4: Top: implied volatility surface of the USD/DEM rate from [Avel-

laneda et al., 1997]; blue marks on the surface represent the available prices

(to be matched). Bottom: local volatility surface as recovered from quoted

20,25 and 50-delta risk-reversals [Avellaneda et al., 1997]; (mid) spot price

is 1.48875; USD discount rate r = 5.91%, and DEM rate 4.27%. The blue

marks on the surface indicate the option prices that were used to invert i.e.

the Kl and Tl (L = 30). After 5 iterations the prices are recovered up to

0.005% (relative to spot), below the PDE resolution, and the implied volatil-

ity up to 0.03% (below the bid/ask spread).



Delta 0,1 0,25 0,5 0,75 0,9

Days to Expiry

7 1,6177 1,5965 1,5753 1,5544 1,5341

31 1,6564 1,6150 1,5740 1,5335 1,4935

59 1,6804 1,6253 1,5720 1,5191 1,4653

92 1,7013 1,6333 1,5686 1,5042 1,4368

184 1,7449 1,6474 1,5592 1,4711 1,3728

365 1,8030 1,6611 1,5391 1,4164 1,2665

Table 1: Strikes of the EUR/USD data derived from March 18th 2008 10,25

and 50 Delta risk-reversals and straddles corresponding to results in Figure 5.
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Delta 0,1 0,25 0,5 0,75 0,9

Days to Expiry

7 14,8250% 14,1750% 13,9250% 14,1750% 14,8250%

31 13,5250% 12,9500% 12,7750% 13,1000% 13,8250%

59 12,7750% 12,1500% 12,0250% 12,4000% 13,2750%

92 12,4250% 11,7500% 11,6250% 12,1000% 13,1250%

184 12,0875% 11,2125% 11,0500% 11,6375% 12,9625%

365 11,9125% 10,8625% 10,7000% 11,3375% 12,8875%

Table 2: Implied volatilities of the EUR/USD data derived from March 18th

2008 10,25 and 50 Delta risk-reversals and straddles corresponding to results

in Figure 5.
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Delta 0,1 0,25 0,5 0,75 0,9

Days to Expiry

7 0,0015 0,0046 0,0121 0,0253 0,0425

31 0,0029 0,0088 0,0231 0,0486 0,0824

59 0,0038 0,0113 0,0298 0,0632 0,1088

92 0,0046 0,0136 0,0358 0,0767 0,1341

184 0,0063 0,0182 0,0479 0,1039 0,1883

365 0,0086 0,0247 0,0650 0,1430 0,2724

Table 3: Premiums of the EUR/USD data derived from March 18th 2008

10,25 and 50 Delta risk-reversals and straddles corresponding to results in

Figure 5.
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Figure 5: Top: implied volatility surface of the EUR/USD rate from Ta-

bles 1,2 and 3); marks on the surface represent the available prices (to be

matched). Bottom: local volatility surface as recovered from quoted 10,25

and 50-delta risk-reversals and straddles; (mid) spot price is 1.5755; USD

discount rate was set to rUSD = 2.485%, and rEUR = 4.550%. The blue

marks on the surface indicate the option prices that were used to invert i.e.

the Kl and Tl (L = 30). After 5 iterations the prices are recovered up to

0.001% (relative to spot) and the implied volatility up to 0.02% (below the

bid/ask spread).
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