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When designing a new product family, designers and manufacturers have to define simultaneously the product structure and its supply chain. This leads to a complex optimization problem to solve in order to satisfy diversified customers' requirements with various options and variants. The paper focuses on the first step of this design problem. It consists in selecting a set of modules that will be manufactured in distant facilities and shipped in a nearby location plant for a final assembly operation under time limits. The objective is to determine the set of modules able to define the bill of materials of each finished product in order to minimize assembly costs. We propose in this paper two heuristic strategies to solve the problem. We provide experiments on small instances which we compare with optimal solutions and we provide also experiments on big instances to compare performance of each heuristic.

INTRODUCTION

Nowadays, the growing demand for customized products involves an increasing number of product variants and options. It follows a complex product diversity to manage. This variety must be controlled in term of product, process and supply chain costs, as well as customer lead-time. Consequently, when designing a new product family, a consistent approach is necessary to quickly define a set of variants and the relevant supply chain, in order to guarantee the customers' satisfaction and to minimize the total investment and operating cost of the global supply chain [START_REF] Lamothe | An optimization model for selecting a product family and designing its supply chain[END_REF].

A product family is composed by similar products that differ by some characteristics such as options. For example, the basic car model may contain few options in order to minimize the sale price. Then, some options can be added to this basic model like air-conditioning, automatic gear box or diesel engines and so on.

There are two extreme production strategies that a company can use. The first one consists to make to stock the different products. This leads to select a minimum set of standardized products [START_REF] Briant | The optimal diversity management problem[END_REF], that could include supplementary options to meet diversified customer requirements. However, storage costs may be too high because of the large product portfolio. The second strategy consists to produce only when an order is received. In this case, the lead time may be higher leading to the non satisfaction of the customer. An intermediate strategy consists to manufacture pre-assembly components, called modules, for stock and to assemble them when an order is planed. The advantage of such strategy is to reduce the lead time and to avoid great storage costs.

In this paper, we explore this production policy where modules are manufactured in distant location facilities for cost minimization. Those modules are shipped and assembled in a nearby location facility in order to ensure a short lead-time for the customers.

We present two heuristic strategies to define the bill of materials of each finished products: (1) the first one consists on exploring the finished product set and determining the most suitable bill of materials for each one and (2) the second strategy consists on exploring the module set, selecting the most interesting one and inserting it in the bill of materials of compatible finished products.

This work is of a great utility for us afterwards, because we need to dtermine quickly the product bills of materials in order to affect the resulting modules on the distant location facilities.

Literature proposes various approaches for the design of product families. Some product design methodologies focus on the product architecture [START_REF] Dahmus | Modular product architecture[END_REF], [START_REF] Jiao | A methodology of developing product family architecture for mass customization[END_REF], this is advantageously supported with modular design [START_REF] Hung | Modularity in design of products and systems[END_REF], component / product / process standardization [START_REF] Kota | A metric for evaluating design commonality in product families[END_REF], [START_REF] Lee | Modelling the costs and benefits of delayed product differentiation[END_REF], [START_REF] Thonemann | Optimal commonality in component design[END_REF]. Different methodologies concentrate on process standardization [START_REF] Lee | Modelling the costs and benefits of delayed product differentiation[END_REF], process resequencing [START_REF] Lee | Effective inventory and service management through product and process redesign[END_REF] or generic assembly routing [START_REF] Gupta | Table 4 Gap rate between MSH results and linear relaxation results[END_REF], [START_REF] He | Design of assembly systems for modular products[END_REF]. From another point of view, authors concentrate on supply chain design methodologies, by integrating customers and suppliers in uncertain environment [START_REF] Davis | Global outsourcing: have U.S. managers thrown the baby out with the bath water?[END_REF], centred on stocks management [START_REF] Lee | Managing supply chain inventory: Pitfalls and opportunities[END_REF] and for distant facility location [START_REF] Van Roy | Cross decomposition algorithm for capacity facility location[END_REF].

In all these works, design of product, process and supply chain are integrated two by two. However, there is some recent works dealing with a global design modeling. [START_REF] Agard | Selection of a module stock composition using genetic algorithm[END_REF] propose a genetic algorithm to minimize the mean of finished product assembly times for a given demand. [START_REF] Agard | A simulated annealing method based on a clustering approach to determine bills of materials for a large product family[END_REF] propose a model for minimizing module production costs and a solving approach based simulated annealing. [START_REF] Lamothe | An optimization model for selecting a product family and designing its supply chain[END_REF] use a generic bill of material representation in order to identify simultaneously the best bill of material for each product and the optimal structure of the associated supply chain

In section 2 we give a more detailed description of the problem and we propose an Integer Linear Program model. Section 3 is devoted then to the description of the two heuristic strategies. Some computational experiments are given and analyzed in section 4. Finally concluding remarks and perspectives are proposed in section 5.

PROBLEM PRESENTATION

Consider the following industrial context: a producer receives customers' orders for finished products containing options and variants. Each individual product is then manufactured from a set of modules that come from various suppliers [START_REF] El Hadj Khalaf | Product and supply chain design using a two-phases optimization approach[END_REF].

Consider now that the producer has only a short delay (T) to respond to customer demands. This delay is less than the necessary time to assemble products from elementary components. In addition to this, the producer has to provide the product exactly like the customer demand (without extra options). This constraint comes from technical considerations or simply to avoid supplementary costs.

To satisfy customers, the producer brings preassembled components, called modules, from many suppliers which are located in distant facilities around the world. The suppliers' facilities are characterized by a very weak production costs. Then, the modules are assembled in the producer facility which we assume to be very close to the customers and thus characterized by its great reactivity and a reduced lead-time. Our problem consists then on defining the bill of materials of each finished product in order to minimize the total assembly costs.

Specifying the problem assumptions: a product or a module is considered as the set of functions that it must fill, then:  a function F k is a requirement that must be ensured by the finished product.

 a module M j is an assembly of functions that could be added with other modules to make a finished product.

 a finished product P i is an assembly of modules that corresponds exactly to at least one customer demand.

Let introduce the following notations:

 F = {F 1 ,...,F q }: set of q functions that can appeared in both finished products and modules.

 P = {P 1 ,...,P n }: set of n possible finished products that may be demanded by at least one customer. We note D i the estimated demand of the product P i during the life cycle of the product family.

 M = {M 1 ,...,M m }: set of m possible modules.

 CF j : the management fixed cost of module M j in the nearby facility.

 CV j : the assembly variable cost of module M j in the nearby facility.

 w j : the necessary time to assemble the module M j in a finished product (which is fixed to 1 for all modules).

 T: the available time to assemble a finished product from modules.

 WhP i , WhM j : the weights of respectively product P i and module M j (which represent the number of existing functions in a product or a module).

Under these assumptions, we can represent a product (or a module) by a binary vector of size q. Each element shows whether the corresponding function is required in the product (value = 1) or not (value = 0).

The set M contains m modules. It may be a selection of modules defined by the engineering or all the possible modules issued from the whole combinatory.

The problem is now to determine the subset M' M, of minimum cost, such that all products in P can be built in a constrained time window T with elements from M'. Concerning the products, the goal is to determine which bill of material is the most suitable (Figure 1).

We have done a model of the problem using an Integer Linear Program formulation. Our objective consists in minimizing costs linked to the producer activity. These costs are: fixed costs due to modules management in the nearby location facility and modules assembly costs in the nearby location facility.
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Where X ij = 1 if module M j is used in the bill of materials of product P i , 0 otherwise. Y j = 1 if module M j is selected (belongs to M'), 0 otherwise. A is the binary matrix whose the column j is the vector M j . X j is the column vector composed by the variables X ij .

The objective function minimizes the costs occurring in the nearby location facility, where
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Constraint (1) shows that a finished product P i must be assembled exactly like the customer demand. Constraint (2) indicates that products must be assembled within the time window T in order to respect the delivery time. Constraint (3) traduces the relation between X ij and Y j variables. If a module is used in the bill of materials of some products then it belongs to M'.

The problem described here contains the set partitioning problem. We then conclude that it is NPhard in the strong sense.

HEURISTIC DESCRIPTION

The product building heuristic (PBH)

The main idea of this heuristic is to affect an attractive coefficient to each module and to determine the bill of materials of products one by one (by using Cplex) in such a way as to maximize the sum of attractive coefficients of the product's components. So at each iteration, we resolve the problem described above but only for one finished product. The coefficient expression is given as follow: As much as a module is compatible with finished products F2 becomes bigger. So that, this coefficient favours modules which are compatible with many finished products.
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We have used two different functions F3:
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, 0 otherwise. This function favours small modules which is necessary when cost configuration is such that total fixed costs are greater than total variable costs. In such case it is better to select small modules because they are compatible with much more products, so using them leads to a solution with small number of modules which reduces fixed costs which represent the great part of objective function (el hadj khalaf, R., et al. 2008).
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This function favours relatively big modules which is necessary when cost configuration is such that total variable costs are greater than total fixed costs. In such case using big modules allows to have small and so to reduce total variable costs which represent the great part of the objective function.

Since we don't know in advance the report between fixed and variable costs, we test this heuristic with both functions F3. Moreover, to improve this heuristic we sort finished products by increasing (and decreasing) order of their weights.

The module selecting heuristic (MSH)

This heuristic is quite simple; the idea is to select the module having the smallest value of
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and insert it in the bill of materials of compatible finished products.

To improve this heuristic also, we determine first at each iteration k the ideal weight of the module to be selected by the formula:

        i ik ik k k W WhP n Wh 1
with: WhP ik is the weight of the remaining functions of product P i at iteration k which are not covered yet and W ik = T -W0 ik where W0 ik is the number of modules inserted in the bill of materials of the product P i up to the iteration k, n k is the number of remaining products at iteration k ( those which haven't the complete bill of materials yet). This operation aims to avoid selecting unitary modules (whose weight is 1) at the beginning which is proved to be bad for the solution quality.

So we can summarize this heuristic as follow at iteration k:

1. Calculate the ideal weight Wh k of the module to be selected. With WhP i1 = WhP i and n 1 = n and W i1 = T and P i1 = P i 2. Select the module M j whose weight is equal to Wh k and having the smallest value of
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. (i represents the products P ik compatible with M j ).

3. Insert the module selected in the bill of materials of compatible finished products.

4. For these compatible products update the product code: P ik = P i(k-1) -M j 5. Update also W ik = W i(k-1) -1 which represents the maximum number of modules that can be inserted in product P ik .

6. For products having W ik = 1, complete their bill of materials by the alone compatible module.

7. Repeat these steps until constructing all bills of materials.

COMPUTATIONAL EXPERIMENTS

Data sets and experimental conditions

We have randomly generated ten small instances for five different sizes;

  The demand D i of a product P i is a decreasing function on the product function number. So that, as soon as the finished product contains more options, then its demand becomes lesser than if it had a few ones. The assembly operating times w j were fixed to 1, so that the constraint (2) turns out on a limitation of the number of modules in a bill of materials.

In order to simplify the problem data, we introduced some rules on the different costs:
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Where q j is the number of existing functions in module M j , f is the square root function
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, we estimate that this function represents at best the relation between costs and q j than the identity and the square functions [START_REF] El Hadj Khalaf | Product and supply chain design using a two-phases optimization approach[END_REF]. α, β are coefficients used to scan different cost configurations. λ1, λ2 are jamming factors.

For each instance size, three cost files are generated by the method described above. The aim is to scan different cases of report between fixed and variable costs.

Table 2 gives the values affected to α and β for each cost. For cost 1 fixed costs are prependerant than variable ones while for cost 2 the two costs are almost equivalen, for cost 3 variable costs are the most preponderant. We have
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. For the tests, T was varied from Minf to Maxf. Heuristics are then tested on all instances and all costs. Finally, the mean value of the ten instance objective value is recorded for comparison analyses.

Result analyses

At first, our objective is to compare heuristic results with optimal solutions. This is why we have tested them on an instance of size eight. Table 3 shows the gap rate between the both heuristic results and the optimal solutions for the three cost tests. The first lecture of these results shows that the MS heuristic is better than the PB one. In addition to this, we note that both heuristics run well for medium and high values of T and specially for cost 2 and cost 3 thus when assembly fixed costs are not greater than assembly variable costs. This leads to think that these heuristics optimize well variable costs. Our second objective is to test the two heuristics on relatively big instances in order to compare there performance for a higher problem sizes. That was the object of tests on sizes 10, 11, 12 and 13.

Figures 2, 3 and 4 show the gap rate (as a percentage) between the results of the product building heuristic and the module selecting heuristic (MSH objective value is considered as the reference value). These figures confirm the results obtained for q=8, MSH is much better than PBH and this is true for practically all sizes, delays, and costs. We can note also that the gap rate increases as the problem size increases too. So the gap for q=13 is generally greater than the one for q=12 and so on.

We note also that generally the gap rates are more important for cost 1 than cost 2 and for cost 2 than cost 3. This indicates that MSH optimizes fixed costs more effectively than PBH.

Finally Figure 5 shows the computational time of PBH for q=13. At the end, we present table 4 which show the gap rate (as a percentage) between the MSH results and the problem linear relaxation results for each problem size, cost file and delivery delay. As we can see, the gap is quite reasonable for medium and big delays, it could reaches till 0% in some cases (when T = Maxf). However, it is very great for small values of T because in this case the problem itself becomes much more difficult and even for small instances Cplex spends much more time to reaches the optimal.

We note again, that the gap rate is more important (for small delays) for the cost 1 contrarily to the other costs. We can hope that MSH provides relatively good solutions for cost configurations on which assembly fixed costs are not preponderant than assembly variable costs.

CONCLUSION

This paper was dedicated to a difficult industrial problem arising when companies try to offer a large variety of products to consumers. In this problem, a choice of components (modules) has to be efficient. These modules are produced for stock, and used in the last stage, in the assembly line. Several authors considered this problem, using different assumptions -a function can appear twice in a final product, a final product can be substituted by another one containing more functions -but few papers consider the problem in which each final product must correspond exactly to the demand.

We have focus on the assembly operation and we tried to determine an efficient module set allowing to assemble products and to avoid function redundancy while respecting the delivery delay. The objective function consists in optimizing the costs occurring in the producer activity.

Our aim was to analyze to strategies of heuristic design. The first one consists in determining the bill of materials of finished products one by one by fixing attractive coefficients for each module. The second strategy takes the ideal module verifying the selecting criterion and inserts it in the bill of materials of compatible finished products.

Besides the computational time speed, our tests reveal that the MSH strategy is by far the one which gives the best results. This can be explained by the difficulty to find good module coefficients and especially the problem structure in which solutions must take into account the interactions between finished products which make very difficult the determining of one product bill of materials independently from the other ones.

Finally, the MSH results encourage us to use it as an initial solution for a metaheuristic resolution in the future. It would be also interesting to extrapolate this heuristic in order to take into account the logistic chain phase.
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