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Abstract

Let K/F be a quadratic extension of p-adic fields. The Bernstein-Zelevinsky’s clas-
sification asserts that generic representations are parabolically induced from quasi-square-
integrable representations. Assuming a conjecture about classification of distinguished generic
representations in terms of the inducing quasi-square-integrable representations, we show,
following a method developed by Cogdell and Piatetski-Shapiro, that the Rankin-Selberg
type Asai L-function of a generic representation of GL(n, K), is equal to the canonical Asai
L-function of the Langlands parameter. As the conjecture is true for principal series repre-
sentations, this gives the expression of the Asai L-function of such representations.

Introduction

Given K/F a quadratic extension of p-adic fields, we denote by σ the non trivial element of the
Galois group of K over F . This work concerns itself with two interrelated themes, the first being
the properties of the Rankin-Selberg type Asai L-functions of generic representations of the group
GL(n,K), the second being to know how to recognize when such a representation admits on its
space a nonzero GL(n, F )-invariant linear form, i.e. when it is distinguished.

The local Asai L-function of an irreducible representation π of GL(n,K), denoted by LKF (π),
defined as the gcd of functions obtained as meromorphic extension of Rankin-Seberg integrals,
appears implicitly in Flicker’s paper [F1]. Its basic properties and its functional equation are
established in [F4], in the manner that this latter is obtained for L-functions of pairs by Jacquet,
Piatetski-Shapiro and Shalika in [J-P-S]. The study of its poles is related with the distinction of
the representation π.
There are two other ways to associate an Asai L-function to a representation π of the group
GL(n,K).
The first is by considering the n-dimensional representation ρ of the Weil-Deligne W ′

K of K,
associated to π by local Langlands correspondence. One then defines by multiplicative induction
a representation of the Weil-Deligne group W ′

F (which contains W ′
K as a subgroup of index 2),

of dimension n2, denoted by M
W ′

F

W ′

K

(ρ). The Asai L-function corresponding to π, and denoted

by LK,WF (π, s) is by definition the classical L-function of the representation M
W ′

F

W ′

K

(ρ), which we

denote by LKF (ρ).

The second, called the Langlands-Shahidi method, is introduced in [Sh]. We denote by LK,UF (π)
the meromorphic function obtained by this process, and the study of its poles is this time related
to the fact of knowing when a representation π is obtained by base change lift from a unitary
group. This work is done in [Go]. We will not concern ourselves with this aspect of distinguished
representations here.
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It is conjectured that these three functions are actually the same (cf. [He], [K], [A-R]). Hen-

niart proved in [He] that the functions LK,UF and LK,WF are equal. Anandavardhanan and Rajan

proved in [A-R] that the functions LKF and LK,UF coincide for the representations of the discrete
series of GL(n,K). These two equalities have global proofs. In this work, as an application of
these equalities, we will give in Proposition 3.1 an explicit computation of the Asai L-function of
essentially discrete series representations of the group GL(n,K).

We recall that a representation π of GL(n,K) is called distinguished if there is a nonzero
GL(n, F )-invariant linear form on its space (cf. Definition 1.4, where we define more generally
µ-distinction for a character µ of F ∗). In the local context which we are interested in, the first
link between distinction and the Asai L-function LKF is brought to light by Kable in [K]. He
shows that if the Asai L-function LKF (π) of a discrete seris representation π admits a pole at zero,
then the representation π is distinguished. Then Anandanvardhanan, Kable and Tandon show
in [A-K-T] that the Asai L-function of a distinguished tempered representation admits a pole at
zero. Eventually, it is proved in [M2] that a generic representation of GL(n,K) is distinguished
if and only if its Asai L-function admits an exceptional pole (in the terminology of Cogdell and
Piatetski-Shapiro) at zero.

In this paper, we adapt the method developed by Cogdell and Piatetski-Shapiro in [C-P], for
computing L-functions of pairs of generic representations, to the framework of Asai L-functions.
In [C-P], the computation of the function L(π× π′, s) for two generic representations π and π′ of
the group GL(n,K) is boiled down to understand when the representation π ⊗ π′ of the product
group GL(n,K)×GL(n,K) is distinguished by the subgroup GL(n,K) diagonally embedded. In
this case, this comes down to say that the smooth dual π∨ of the representation π, is isomorphic to
the representation π′. Hence one obtains a simple necessary and sufficient condition on the quasi-
square-integrable representations which, parabolically induced, give birth to the representations
π and π′. In our case, One doesn’t know a necessary and sufficient condition on the inducing
data, characterizing distinction, but the following statement is conjectured.

Conjecture 1.1. Let π be a generic representation of the group GL(n,K), obtained by normalised
parabolic induction of quasi-square-integrable representations ∆1, . . . ,∆t. It is distinguished if and
only if there exists a reordering of the ∆i’s, and an integer r between 1 and t/2, such that we
have ∆σ

i+1 = ∆∨
i for i = 1, 3, .., 2r − 1, and ∆i is distinguished for i > 2r.

One then shows in the corollary of Theorem 3.4, that up to this conjecture, the functions LKF
and LK,WF are equal for generic representations.

Corollary 3.7. If the preceeding Conjecture is true, then the functions LKF and LK,WF are equal
for all generic representations of the group GL(n,K).

Now as Conjecture 3.5 is proved in [M1] for irreducible principal series representation. The
preceeding theorem has as a consequence, the following result.

Theorem 3.6. Let π be an irreducible principal series representation of GL(n,K). Then the

functions LKF (π) and LK,WF (π) are equal.

The first part of Section 1 (Subsections 1.1 to 1.3) concerns itself with results of Bernstein
and Zelevinsky about classification of generic representations of GL(n,K) and derivatives of
such representations (cf.[BZ],[Z]), results of Jacquet, Piatetski-Shapiro and Shalika about L-
functions of pairs of Whittaker representations of GL(n,K) (cf.[J-P-S]), and basic results of
Cogdell and Piatetski-Shapiro about Whittaker models of derivatives of Whittaker representa-
tions of GL(n,K), and exceptional poles of L-functions of pairs. The end of first section is a
reminder of classical results about distinguished representations of GL(n,K), and we state Con-
jecture 1.1 about classification of distinguished generic representations.
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In the second section, we first recall standard facts from [F4] about Asai L-functions of generic
representations such as their functional equation. Then we recall results from [M2], in particular
Theorem 2.2, which asserts that a generic representation of Gn(K) is distinguished if and only if
its Rankin-Selberg type Asai L-function admits a pole at 0.

The last section is devoted to adapt the method Cogdell and Piatetski-Shapiro (see [C-P])
for the computation, assuming Conjecture 1.1, of Asai L-functions of generic representations of
GL(n,K). The result is obtained in Theorem 3.4 and its corollary, and has as an application,
the computation of Asai L-functions of principal series representations of GL(n,K).

1 Preliminary results

1.1 Basic properties of studied groups and representations

We fix until the end of this paper a local field F of characteristic zero, and an algebraic closure
F̄ of F . All the finite extensions of F we will consider will be subfields of F̄ . We fix a quadratic
extension K of F .

If A is a ring, M and M ′ two A-modules, we denote by HomA(M,M ′) the space of morphisms
of A-modules from M two M ′. If G is a group acting on two vector spaces V and V ′, then
HomG(V, V ′) designates the space of G-equivariant maps from V to V ′.
If E is a field, and if E′ is a Galois extension of E, we then denote by GalE(E′) the Galois group
of E′ over E. We denote by σ the non trivial element in GalF (K).
If E is a finite extension of F , we denote by vE the discrete valuation of E, which verifies that
vE(πE) is 1 if πE is a prime element of E. We denote by qE the cardinality of the residual field of

E. We denote by | |E the absolute value of E defined by |x|E = q
−vE(x)
E , for x in E. We denote

by RE the valuation ring of E, and by PE the maximal ideal of RE . Finally we denote by WE

the Weil group of E (cf. [T]), and by W ′
E the Weil-Deligne group of E. The group W ′

E is the
semidirect product group WE ⋊ SL(2,C), with WE acting by its quotient group qZ

E on SL(2,C),
such that if we take a Frobenius element φE in WE , the action of φE on SL(2,C) is given by

conjugation by the matrix

(
qE 0
0 1

)
.

Let G be an affine algebraic group defined on the field F , and if E is an extension of F , we
denote by G(E) the group of the points of G over E. Such a group is locally compact and totally
disconnected, we will call it an l-group. More generally if G is an algebraic group defined over Z

and if A is a ring, we denote by G(A) the group of its points over A.

Let n be a positive integer, we denote by Mn = Mn(F̄ ) the additive group of n×n matrices with
entries in F̄ , and we denote by Gn the general linear group GL(n, F̄ ) of invertible matrices of
Mn(F̄ ). If M belongs to Mn, we denote its determinant by det(M).
We call partition af a positive integer n, a family n̄ = (n1, . . . , nt) of positive integers (for a
certain t in N − {0}), such that the sum n1 + · · · + nt is equal to n. To such a partition, we
associate an algebraic subgroup of Gn denoted by Pn̄, given by matrices of the form





g1 ⋆ ⋆ ⋆ ⋆
g2 ⋆ ⋆ ⋆

. . . ⋆ ⋆
gt−1 ⋆

gt




,

with gi in Gni
for i between 1 and t. We call it the standard parabolic subgroup associated with

the partition n̄. We call parabolic subgroup any conjugate of a standard parabolic subgroup. We
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denote by Nn̄ its unipotent radical subgroup, given by the matrices




In1

⋆ ⋆
. . . ⋆

Int





and by Mn̄ its Levi subgroup given by the matrices




g1

. . .

gt





with the gi’s in Gni
. The group Pn̄ identifies with the semidirect product Nn̄ ⋊Mn̄.

If the partition n̄ is (1, . . . , 1), we denote by Bn the group Pn̄, which we call the standard Borel
subgroup of Gn, we denote by Nn its unipotent radical.

We denote by Pn the subgroup of Gn given by the matrices

(
g ⋆

1

)
, with g in Gn−1, we

call it the standard affine subgroup (sometimes called mirabolic subgroup) of Gn. We note Un

its unipotent radical, given by matrices of the form

(
In−1 V

01,n−1 1

)
.

We denote by An the standard maximal torus of Gn of diagonal matrices.

If E is a finite extension of the field F , we denote by KE
n the standard maximal compact sub-

group Gn(RE) of Gn(E). This group admits a natural filtration by the compact open subgroups
KE
n,r = In +Mn(P

r
E), for r in N − {0}.

Let G be an l-group, we denote by dGg or simply dg if the context is clear, a left Haar measure
G. For x in G, we denote by ∆G(x) the positive number defined by the relation dg(gx) =
∆G(x)dg(g). The module ∆G defines a morphism from G into R>0. We denote by δG the
morphism from G into R>0 defined by x 7→ ∆G(x−1).
If H is a closed subgroup of G, we denote by dH\Gg (resp. dG/Hg) a right invariant (resp. left
invariant) measure on the quotient space H\G (resp. G/H), we simply note it dg if there is no
ambiguity.
We usually note d∗x the Haar measure when x varies in the multiplicative group of a field, or in
a product of such groups.
Let n̄ be a partition of n and E a finite extension of F , the module of Pn̄(E) is given by

∆Pn̄
:





m1 ⋆ ⋆ ⋆ ⋆
m2 ⋆ ⋆ ⋆

. . . ⋆ ⋆
mt−1 ⋆

mt




7→

t∏

i=1

|det(mi)|
n1+···+ni−1−ni+1−···−nt

E .

Let G be an l-group, and H a subgroup of G, a representation (π, V ) of G is said to be smooth
if for any vector v of the vector space V , there is a subgroup Uv of G stabilizing v through π. We
denote by V H subspace of fixed points of V under H . The category of smooth representations
of G is denoted by Alg(G). If (π, V ) is a smooth representation of G, we denote by π∨ its dual
representation in the smooth dual space Ṽ of V .

We will only consider smooth representations of l-groups.

Let X be a locally closed space of an l-group G, and H closed subgroup of G, with H.X ⊂ X .
If V is a complex vector space, we denote by C∞(X,V ) the space of smooth functions from X to

4



V , and by C∞
c (X,V ) the space of smooth functions with compact support from X to V (if one

has V = C, we simply denote it by C∞
c (X)).

If ρ is a complex representation of H in Vρ, we denote by C∞(H\X, ρ, Vρ) the space of functions
f from X to Vρ, fixed under the action by right translation of some compact open subgroup Uf
of G, and which verify f(hx) = ρ(h)f(x) for h ∈ H , and x ∈ X (if ρ is a character, we denote
this space by C∞(H\X, ρ). We denote by C∞

c (H\X, ρ, Vρ) subspace of functions with support
compact modulo H of C∞(H\X, ρ, Vρ).
We denote by IndGH(ρ) the representation by right translation of G in C∞(H\G, ρ, Vρ) and by

indGH(ρ) the representation by right translation of G in C∞
c (H\G, ρ, Vρ). We denote by Ind′

G
H(ρ)

the normalized induced representation IndGH((∆G/∆H)1/2ρ) and by ind′GH(ρ) the normalized
induced representation indGH((∆G/∆H)1/2ρ).
Let n be a positive integer, and n̄ = (n1, . . . , nt) be a partition of n, and suppose that we have a
representation (ρi, Vi) of Gni

(K) for each i between 1 and t. Let ρ be the extension to Pn̄ of the
natural representation ρ1 ⊗ · · · ⊗ ρt of Mn̄ ≃ Gn1

(K) × · · · ×Gnt
(K), by taking it trivial on Nn̄.

We denote by ρ1 × · · · × ρt the representation Ind′
Gn(K)
Pn̄(K) (ρ).

1.2 Classification of generic representations of GL(n, K)

From now on, we will assimilate a representation to its isomorphism class, hence two isomorphic
representations can be said to be equal.
We recall in this subsection classical results of Bernstein and Zelevinsky about classification of
irreducible representations of the group Gn(K).
If π is an irreducible representation of Gn(K), one denotes by cπ its central character.
We recall that an irreducible representation of Gn(K) is called supercuspidal if it doesn’t occur
as a quotient of any proper parbolically induced representation, which is equivalent to the fact
that it has a coefficient with support compact modulo the center Zn(K) of the group Gn(K).

An irreducible representation π of the group Gn(K) is called quasi-square-integrable, if there
exists a positive character χ of the multiplicative group K∗, such that one of the coefficients
g 7→ c(g) of π verifies that c(g)χ(det(g)) is a square-integrable function for a Haar measure of
Gn(K)/Zn(K). One says that the representation π is square-integrable (or belongs to the discrete
series of Gn(K)) if one can choose χ to be trivial.
If ρ is a supercuspidal representation of Gr(K) for a positive integer r, on denoteq by ρ| |K the
representation obtained by twisting with the character |det( )|K . We call segment a list ∆ of
supercuspidal representations of the form

∆ = [ρ, ρ| |F , . . . , ρ| |
l−1
F ]

for a positive integer l. We call length of the segment the integer rl. We denote by ∆ the unique
irreducible quotient of the representation ρ× ρ| |F × · · ·× ρ| |l−1

F of Grl(K). It is also common to
denote by Stl(ρ) the representation ∆, and to call it generalized Steinberg representation attached
to ρ. We have the following theorem (Theorem 9.3 of [Z]).

Theorem 1.1. A representation ∆ of the group Gn(K) is quasi-square-integrable if and only if
there is r ∈ {1, . . . , n} and l ∈ {1, . . . , n} such that lr = n, and ρ a supercuspidal representation
of Gr(K) such that the representation ∆ is equal to Stl(ρ).

A representation of this type is square-integrable if and only if it is unitarizable, or equivalently

if and only if ρ| |
(l−1)/2
F is unitarizable (i.e. its central character is unitary). We say that two

segments are linked if none of them is a subsegment of the other, but their union is still a segment.

We recall that from Theorem 6.1 of [Z], that every irreducible representation of the group
Gn(K), is obtained as the unique irreducible quotient of a representation parabolically induced
from quasi-square-integrables. We will focus in this work on representations called of Whittaker

5



type, we thus recall their definition. Before, we recall that if ψ is a character of K, we still denote
by ψ the character of the group Nn(K), given by n 7→ ψ(

∑n−1
i=1 ni,i+1).

Definition 1.1. We say that the representation (π, V ) of the group Gn(K) is a representation of
Whittaker type, if there is a non trivial character ψ of (K,+), such that the space of linear forms
λ on V , which verify λ(π(n)v) = ψ(n)v for n in Nn(K) and v in V , is of dimension 1.

Hence a representation of Whittaker type is not necessarily irreducible, but it is isomorphic,

up to unique (modulo scalars) isomorphism to a submodule of Ind
Gn(K)
Nn(K)(ψ). We note W (π, ψ)

this model of π on which Gn(K) acts by right translation, and call it the Whittaker model of π.
The following theorem due to Rodier (cf. [R]) describes the behaviour of the “Whittaker

type” with respect to parabolic induction.

Theorem 1.2. Let n̄ = (n1, . . . , nt) be a partition of n, and let πi be a representation of Gni
(K)

for i between 1 and t, then the representation π1 × . . . πt of the group Gn(K) is of Whittaker type
if and only if each πi is.

We now study irreducible representations of Whittaker type.

Definition 1.2. A representation (π, V ) of the group Gn(K) is called generic if it is irreducible
and of Whittaker type.

We have the following theorem due to Zelevinsky (Th. 9.7 of [Z]), which classifies the generic
representations of the group Gn(K):

Theorem 1.3. Let n̄ = (n1, . . . , nt) be a partition of n, and let ∆i be a quasi-square-integrable
of Gni

(K) for i between 1 and t, the representation π = ∆1 × · · · × ∆t of the group Gn(K) is
irreducible if and only if no ∆i’s are linked, in which case π is generic. If (m1, . . . ,mt′) is another
partition of n, and if the ∆′

j’s are unlinked segments of length mj for j between 1 and t′, then
the representation π equals ∆′

1 × · · · ×∆′
t′ if and only if t = t′, and ∆i = ∆′

s(i) for a permutation

s of {1, . . . , t}. Eventually, every generic representation of Gn(K) is obtained this way.

In [BZ], Bernstein and Zelevinsky show the following result:

Theorem 1.4. Let π be a generic representation of Gn(K), and ψ a non trivial character of K,
the restriction map to the affine subgroup Pn(K) of functions of W (π, ψ) is injective.

We denote by K(π, ψ) the model of π obtained this way, we call it its Kirillov model, it has
the following important property.

Theorem 1.5. Let π be a generic representation of the group Gn(K), and ψ a non trivial
character of K, Then the kirillov model K(π, ψ) contains the space C∞

c (Nn(K)\Pn(K), ψ).

1.3 Whittaker models and derivatives

We start by recalling results of [BZ] and [Z]. We define four functors Φ+, Φ−, Ψ+, Ψ−:
• Ψ+ is a functor from Alg(Gn−1(K)) into Alg(Pn(K)). If (σ, V ) belongs to Alg(Gn−1(K)), the
space of Ψ+(σ) is V , and Un(K) acts trivially by Ψ+(σ) whereas Gn−1(K) acts by Ψ+(σ)(g) =
|det(g)|1/2σ(g).
• Ψ− is a functor from Alg(Pn(K)) into Alg(Gn−1(K)). If (τ,W ) is in Alg(Pn(K)), the space of
Ψ−(τ) is the quotient of W by the Gn−1(K)-module

W (Un, 1) = {τ(u)w − w/w ∈ W,u ∈ Un(K)} ,

and
Ψ−(τ)(g)(w +W (Un, 1)) = |det(g)|−1/2τ(g)w +W (Un, 1)
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for g in Gn−1(K).
• Φ+ is a functor from Alg(Pn−1(K)) into Alg(Pn(K)). If (σ, V ) belongs to Alg(Pn−1(K)), we
extend σ to Pn−1(K)Un(K) by making Un(K) act by the character ψ. We denote by σ ⊗ ψ this
extension, then we have

Φ+(σ) = ind
Pn(K)
Pn−1(K)Un(K)(| det( )|1/2σ ⊗ ψ).

• Φ− is a functor from Alg(Pn(K)) into Alg(Pn−1(K)). If (τ,W ) is in Alg(Pn(K)), the space of
Φ−(τ) is the quotient of W by the Pn−1(K)-module

W (Un, ψ) = {τ(u)w − ψ(u)w/w ∈W,u ∈ Un(K)} ,

and one has
Φ−(τ)(p)(w +W (Un, ψ)) = |det(p)|−1/2τ(p)w +W (Un, ψ)

for p in Pn−1(K).

These four functors are exact and verify the following relations:

1. Φ−Φ+ ≃ Id and Ψ−Ψ+ ≃ Id

2. Φ−Ψ+ = 0 and Ψ−Φ+ = 0

3. 0 → Φ+Φ− → Id→ Ψ+Ψ− −→ 0 is exact.

The functors Ψ+ and Φ+ send irreducible representations to irreducible representations. Any
irreducible representation of Pn(K) is of the form (φ+)k−1ψ+(ρ) for an irreducible representa-
tion ρ of Gn−k(K). For τ in Alg(Pn(K)), we denote by τ(k) the representation (Φ−)k(τ) ∈

Alg(Pn−k(K)) and τ (k) the representation Ψ−(Φ−)k−1(τ) = Ψ−(τ(k−1)) ∈ Alg(Gn−k(K)). The

representation τ (k) is called the kth derivative of τ .
If π belongs to Alg(Gn(K)), we denote by π(k) the kth derivative of π viewed as a Pn(K)-module,
and we call it the kth derivative of π again.
A representation τ in Alg(Pn(K)) admits a filtration of Pn(K)-modules

0 ⊂ τn ⊂ τn−1 ⊂ · · · ⊂ τ2 ⊂ τ1 = τ

with τk = (Φ+)k−1(Φ−)k−1(τ). Hence the quotient τk/τk+1 is isomorphic to

(Φ+)k−1Ψ+(τ (k)).

Let ψ be a non trivial character of K, the representation τ admits a nonzero Whittaker linear
form with respect to ψ if and only if τn is nonzero, and the dimension of the space of these linear
forms is the dimension of τ (n). In particular, the representation τ admits a Whittaker model if
and only if τ (n) is of dimension 1, in which case all the representations τk admit a Whittaker
model.
For an irreducible representation π of the group Gn(K), the dimension of π(n) is at most 1, so
that the representation π is generic if and only if π(n) is nonzero.

The following proposition allows to compute the derivatives of generic representations ([Z],
Theorem 4.4 and Lemma 4.5).

Proposition 1.1. 1. Let π be a supercuspidal representation of the group Gn(K), then the
representation π(k) is zero for k between 1 and n− 1, and π(n) = 1.

2. Let ρ be a supercuspidal representation of Gr(K), and π a quasi-square-integrable represen-
tation [ρ, ρ| |F , . . . , ρ| |

l−1
F ] of Grl(K). Then π(k) is zero if k is not a multiple of r, and

π(kr) = [ρ| |kF , . . . , ρ| |
l−1
F ] for k between 1 and l − 1.
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3. Let n̄ = (n1, . . . , nt) be a partition of n, and for i between 1 and t, let ∆i be an irreducible
representation of Gni

(K). We denote by π the representation ∆1 × · · · × ∆t of the group
Gn(K), then for k between 1 and n, the representation π(k) has a composition series, with

factors the ∆
(k1)
1 × · · · × ∆

(kt)
t for k1 + · · · + kt = n.

We end this subsection by recalling few results on Whittaker models and derivatives.

Proposition 1.2. ([C-P], proposition 1.2) Let π be a representation of Whittaker type of the
group Gn(K), the for all k between 1 and n, the representation π(k−1) of Pn−k+1(K), admits for
model

W (π(k−1), ψ) =

{
g 7→ |det(g)|

(1−k)/2
K W

(
g

Ik

)
|W ∈W (π, ψ), g ∈ Gn−k(K)

}

which we call the Whittaker model of π(k−1).

In this model, Proposition 1.4. of [C-P] asserts that the subspace

W (π(k−1), ψ)(Un−k+1, 1) =
{
π(u)W −W |u ∈ Un−k+1,W ∈ W (π(k−1), ψ)

}

is equal to

{g 7→ |det(g)|
(1−k)/2
K W

(
g

Ik

)
— there exists N > 0 such that si max

i
|gn−k,i| < q−N ,

then W

(
g

Ik

)
= 0}.

Now let π
(k)
0 be an irreducible subrepresentation of the representation π(k) with model the

quotient normalised representation W (π(k−1), ψ)/W (π(k−1), ψ)(Un−k+1, 1). We denote by τ0 the

inverse image of π
(k)
0 in π(k−1), and W (τ0, ψ) the corresponding subspace W (π(k−1), ψ) (which

contains W (π(k−1), ψ)(Un−k+1, 1)).

The following proposition implies that π
(k)
0 is generic.

Proposition 1.3. ([C-P], Proposition 1.7) Let π be a generic representation of the group Gn(K),

let k be an integer 1 and n−1, and π
(k)
0 an irreducible subspace of π(k) with central character ω0.

One defines τ0 as above, then for any function F in W (τ0, ψ), the function

a 7→ ω−1
0 (a)|a|

(k−n)/2
K F

(
aIn−k

Ik

)

is constant when a ∈ K is in a sufficiently small neighbourhood of zero. The linear form on
W (τ0, ψ) defined by

F 7→ lim
a→0

ω−1
0 (a)|a|

(k−n)/2
K F

(
aIn−k

Ik

)
,

factors through the quotient by W (π(k−1), ψ)(Un−k+1, 1), and defines a (nonzero) Whittaker linear

form on the Whittaker model of π
(k)
0 .

A consequence of this proposition is the following

Corollary 1.1. ([C-P], corollary of Proposition 1.7) Let π be a generic representation of the

group Gn(K), let k be an integer between 1 and n−1, and π
(n−k)
(0) a sub-Gk(K)-module of π(n−k).

We denote by τ0 the inverse image of π
(n−k)
(0) in π(n−k−1) for the natural projection from π(n−k−1)

on π(n−k). Then if ψ is a non trivial character of K, for all W0 in W (π
(n−k)
(0) , ψ), there exists W

in W (τ0, ψ) and Φ0 ∈ C∞
c (Kk), nonvanishing at zero such that

W0(g)Φ0(ekg) = |det(g)|−(n−k)/2W

(
h

In−k

)
Φ0(ekg).
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Moreover, for all W in W (τ0, ψ) and for all Φ0 in C∞
c (Kk), with support sufficiently small around

zero, there exists W0 in W (π
(n−k)
(0) , ψ) such that

W

(
h

In−k

)
Φ0(ekg) = |det(g)|(n−k)/2W0(g)Φ0(ekg).

1.4 Functional equations for representations of Whittaker type

We first recall that an Euler factor is a function of the complex variable s, of the form 1/P (q−sK )
(or 1/P (q−sF ) later in the framework of Asai L functions) with P in C[X ] and P (0) = 1.

We now summerize the results of Section 2 of [J-P-S].
Let π and π′ be two representations of Whittaker type of the group Gn(K),and ψ a non trivial
character of K. Let W belong W (π, ψ), W ′ belong to W (π′, ψ−1),and φ be in C∞

c (Kn). We
denote by ηn the row vector with n entries (0, . . . , 0, 1). Then, there exists a real number rπ,π′

independant of (W,W ′, φ), such that the following integral is absolutely convergent whenever
Re(s) ≥ rπ,π′ :

I(W,W ′, φ, s) =

∫

Gn(K)/Nn(K)

W (g)W ′(g)φ(ηng)|det(g)|
s
Kdg.

The integrals I(W,W ′, φ, s) define for Re(s) large enough rational functions in qsK and q−sK ,
which have a Laurent series developpement in q−sK . Their analytic extensions define meromorphic
functions on C. The C-vector space generated by the functions I(W,W ′, φ, s)for (W,W ′, φ) in
W (π, ψ)×W (π′, ψ−1)×C∞

c (Kn)is actually a fractional ideal of C[qsK , q
−s
K ], having a unique gener-

ator which is an Euler facteur. We denote by L(π×π′, s)this generator which is independant of ψ.

We denote by wn the element




1

. .
.

1



 of Gn(F ).

If π is a representation of Whittaker type of the group Gn(K), and if W belongs to W (π, ψ), then
the function W̃ sending g in Gn(K) to W (wn

tg−1) belongs to W (π∨, ψ−1). If ψ is a non trivial
character of a finite extension E over F , it defines naturally a character of En that we denote
by ψ again, we denote by dψx the autodual Haar measure on En. If φ belongs to C∞

c (En), we

denote by φ̂ψ or by φ̂ if there is no ambiguity, the Fourier transform y 7→
∫
x∈En φ(x)ψ(xy)dψx.

Proposition 1.4 (Functional equations for representations of Whittaker type). Let ψ
be a non trivial character of (K,+), π and π′ two representations of Whittaker type of the group
Gn(K).If (W,W ′, φ) belongs to W (π, ψ) × W (π′, ψ−1) × C∞

c (Kn), there exists a factor ǫ(π ×
π′, ψ, s), complex multiple of a (maybe negative) power of qsK , such that the following functional
equation is satisfied:

I(W̃ , W̃ ′, φ̂, 1 − s)

L(π∨ × π′∨, 1 − s)
= cπ′(−1)n−1ǫ(π × π′, ψ, s)

I(W,W ′, φ, s)

L(π × π′, s)
.

We then put

γ(π × π′, ψ, s) = cπ′(−1)n−1ǫ(π × π′, ψ, s)
L(π∨ × π′∨, 1 − s)

L(π × π′, s)
.

We now recall the notion of exceptional pole introduced in [C-P].
Let π and π′ be two representations of Whittaker type of the group Gn(K), and let s0 be a pole
of order d of L(π × π′, s), the Laurent developement

I(W,W ′, φ, s) = Ts0(W,W
′, φ)/(qsK − qs0K )d + higher order terms

defines a linear form on W (π, ψ) ×W (π′, ψ−1) × C∞
c (Kn) satisfying the quasi-invariance:

Ts0(π(g)W,π′(g)W ′, ρ(g)φ, s) = |det(g)|−s0K Ts0(W,W
′, φ, s).
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Definition 1.3. In the preceeding situation, we say that a pole s0 of L(π × π′, s) is exceptional
if the trilinear form Ts0 vanishes on W (π, ψ) ×W (π′, ψ−1) × C∞

c (Kn − {0}).

It is shown in [C-P] that if π and π′ are irreducible, and if s0 is an exceptional pole of
L(π × π′, s), then π∨ = | |s0Kπ

′. A proof analoguous to that of Theorem 2.1 of [M2], appealing to
Theorem A of [Ber] instead of Proposition 1.1 of [M2], would show the converse of this fact.

Theorem 1.6. Let π and π′ be two generic representations of the group Gn(K), then the function
L(π × π′, s) admits an exceptional at s0 if and only if we have π∨ = | |s0Kπ

′.

In the same context, we call Lex(π×π
′, s) the product of the 1/(1−q(s0−s))d when s0 describes

the set of the exceptional poles of L(π × π′, s), where d is the ordrer of s0 in L(π × π′, s). We
denote by LRad(ex)(π × π′, s) the product of the 1/(1 − q(s0−s)) when s0 describes the set of the
exceptional poles of L(π × π′, s).

1.5 Classical results and conjectures about distinguished representa-

tions

We first define the notion of distinction.

Definition 1.4. Let µ be a character of F ∗, a representation (π, V ) of the group Gn(K) is
said to be µ-distinguished if there exists on V a nonzero linear form L, satisfying the relation
L(π(g)v) = µ(det(g))L(v) for g in Gn(F ) and v in V . We say that π is distinguished if the
character µ is trivial.

If π is a homomorphism from a group G to another group, and φ a homomorphism from G to
itself, we denote by πφ the homomorphism π ◦ φ. The irreducible distinguished representations
have two fondamental properties.

Proposition 1.5. ([F2], proposition 11) Let π be an irreducible distinguished representation of
the group Gn(K), then the dimension of the space of Gn(F )-invariant linear forms on the space
of π is 1.

Proposition 1.6. ([F2], proposition 12) Let π be an irreducible distinguished representation of
the group Gn(K), then π∨ is isomorphic to πσ.

We denote by ηK/F the order two 2 character of F ∗, trivial on the norms of the multiplicative
group K∗. Kable showed in the discrete series case, some sort of converse to the preceeding
theorem.

Proposition 1.7. Let π be a discrete series representation of the group Gn(K) such that the dual
representation π∨ is isomorphic to πσ, then π is distinguished or ηK/F -distinguished. A represen-
tation of the discrete series of the group Gn(K) cannot be distinguished and ηK/F -distinguished
at the same time.

We find a local proof in [A-T] (Proposition 3.1) for the case of the group G2(K), the proof in
the general case uses global methods, and is due to Kable (cf. [K]).

A consequence of Proposition 1.6 and Theorem 1.3 is the following. If π = ∆1 × · · · × ∆t

is a generic representation as in the statement of Theorem 1.3 and if it is distinguished, then
there exists a reordering of the ∆i’s, and an integer r between 1 and t/2, such that ∆σ

i+1 = ∆∨
i

for i = 1, 3, .., 2r − 1, and ∆σ
i = ∆∨

i for i > 2r. According to Proposition 1.7, this means that
there exists a reordering of the ∆i’s, and an integer r between 1 and t/2, such that ∆σ

i+1 = ∆∨
i

for i = 1, 3, .., 2r − 1, and such that ∆i is distinguished or ηK/F -distinguished for i > 2r. The
following statement is actually conjectured (cf. [F3]):

Conjecture 1.1. Let π = ∆1 × · · · × ∆t a generic representation of the group Gn(K) as in
Theorem 1.3, it is distinguished if and only if il there is a reordering of the ∆i’s, and an integer r
between 1 and t/2, such that ∆σ

i+1 = ∆∨
i for i = 1, 3, .., 2r− 1, and ∆i is distinguished for i > 2r.
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2 Conjectures and known results on Rankin-Selberg type

Asai L-functions

We first recall standard results from [F4].
We fix a nonzero element δ in the kernel of TrK/F . A non trivial character ψ of (K,+), trivial
on F corresponds uniquely to a character ψ′ of F , by ψ(x) = ψ′(TrK/F (δx)) for x in K.
Let π be a representation of Whittaker type of the group Gn(K). If W belongs to the Whittaker
model W (π, ψ), for ψ a nontrivial character of K trivial on F , and φ belongs to C∞

c (Fn), then
there exists a real number rπ , depending only on π, such that the following integral converges:

I(W,φ, s) =

∫

Nn(F )\Gn(F )

W (g)φ(ηng)|det(g)|F
s
dg.

This integral as a function of s has a meromorphic extension to C.
For s of real part greater than rπ , the function I(W,φ, s) is a rational function in q−sF , which
actually has a Laurent series development.
The C-vector space generated by these functions is in fact a fractional ideal I(π) of C[q−sF , qsF ].
This ideal I(π) is principal, and has a unique generator of the form 1/P (q−sF ), where P is a
polynomial with P (0) = 1.

Definition 2.1. We denote by LKF (π, s) the generator of I(π) defined just above, and call it the
Asai L-function of π.

For φ in C∞
c (Fn), we denote by φ̂ the function φ̂ψ

′

, we then have the following functional
equation.

Theorem 2.1. (Functional equation)(Th. of [F4])
Let π be a representation of Whittaker type of the group Gn(K) and ψ a non trivial character

of (K,+), trivial on F , corresponding to the character ψ′ by the fixed δ. There exists an epsilon
factor ǫKF (π, ψ′, s) which is, up to scalar, a (maybe negative) power of qsF , such that the following
functional equation is satisfied for any W in W (π, ψ) and any φ in C∞

c (Fn):

I(W̃ , φ̂ψ
′

, 1 − s)/LKF (π∨, 1 − s) = cπ(−1)n−1ǫKF (π, ψ′, s)I(W,φ, s)/LKF (π, s).

We denote by γKF (π, ψ′, s) the function cπ(−1)n−1ǫKF (π, ψ′, s)LKF (π∨, 1 − s)/LKF (π, s).

Now suppose LKF (π, s) has a pole at s0, its order d is the highest order pole of the family of
functions of I(π).
Then we have the following Laurent expansion at s0:

I(W,φ, s) = Bs0(W,φ)/(qsF − qs0F )d + higher order terms (1)

The quantity Bs0(W,φ) defines a nonzero bilinear form on W (π, ψ)×C∞
c (Fn), satisfying the

quasi-invariance:

Bs0(π(g)W,ρ(g)φ) = |det(g)|−s0F Bs0(W,φ), g ∈ Gn(F ).

Following [C-P] for the split case K = F × F , we state the following definition:

Definition 2.2. A pole s0 of the Asai L-function LKF (π, s) is called exceptional if the associated
bilinear form Bs0 vanishes on W (π, ψ) × C∞

c (Fn − {0}).

As an immediate consequence, if s0 is an exceptional pole of LKF (π, s), then Bs0 is of the form
Bs0(W,φ) = λs0(W )φ(0), where λs0 is a nonzero |det( )|−s0F -invariant linear form on W (π, ψ).

11



For more convenience, we introduce a second L-function: for W in W (π, ψ), by standard
arguments, the following integral is convergent for Re(s) large, and defines a rational function in
q−s, which has a Laurent series development in q−s:

I(0)(W, s) =

∫

Nn(F )\Pn(F )

W (p)|det(p)|F
s−1

dp.

By standard arguments again, the vector space generated by the functions I(0)(W, s), for W

in W (π, ψ), is a fractional ideal I(0)(π) of C[q−sF , qsF ], which has a unique generator which is an
Euler factor.

Definition 2.3. Let π be a representation of the group Gn(K) which is of Whittaker type, we
denote by L(0)(π, s) the Euler factor which generates the ideal spanned by the functions I(0)(W, s)
for W in W (π, ψ).

We now recall Lemma 2.1 of [M2].

Lemma 2.1. (Compare to [J-P-S] p. 393)
Let W be in W (π, ψ), one can choose φ with support small enough around (0, . . . , 0, 1) such

that I(W,φ, s) = I(0)(W, s).

Hence we have the inclusion I(0)(π) ⊂ I(π), which implies that L(0)(π, s) = LKF (π, s)R(qsF , q
−s
F )

for some R in C[q−sF , qsF ]. But because L(0) and LKF are both Euler factors, R is actually just a

polynomial in q−sF , with constant term equal to one. Denoting by LRad(ex)(π, s) its inverse (which
is an Euler factor), we have LKF (π, s) = L(0)(π, s)LRad(ex)(π, s), we will say that L(0) divides LKF .

We now recall Proposition 2.2 of [M2] which gives a characterisation of exceptional poles:

Proposition 2.1. A pole of LKF (π, s) is exceptional if and only if it is a pole of the function
LRad(ex)(π, s) defined just above.

We denote by Lex(π, s) (as in [C-P] for the split case, cf. Definition 1.3) the product function∏
si

(1 − qsi−s
F )di , where the si’s are the exceptional poles of LKF (π, s) and the di’s their order in

LKF (π, s).
Theorem 2.1 of [M2] then links the notions of exceptional pole and distinction.

Theorem 2.2. A generic representation π of the group Gn(K) is distinguished if and only if the
function LKF (s, π) admits an exceptional pole at zero.

For discrete series representations, the previous theorem has the simpler form:

Proposition 2.2. ([K], Theorem 4)

A discrete series representation π of the group Gn(K) is distinguished if and only if its Asai
L-function LKF (s, π) admits a pole at zero.

Let s0 be in C. We notice that if the representation π is a generic representation of the group

Gn(K), it is | |−s0F -distinguished if and only if the representation π ⊗ | |
s0/2
K is distinguished, but

as LKF (π ⊗ | |
s0/2
K , s) is equal to LKF (π, s+ s0), Theorem 2.2 becomes:

Theorem 2.3. A generic representation π of the group Gn(K) is | |−s0F -distinguished if and only
if the function LKF (π, s) admits an exceptional pole at s0.

It is shown in Remark 2.1 of [M2] that if π is a generic representation of Gn(K), then the
function LRad(ex)(π, s) has simple poles, the following proposition specifies this statement.

Proposition 2.3. (cf. [M2], Proposition 2.5)
Let π be an generic representation of the group Gn(K), then the Euler factor LRad(ex)(π, s) is

equal to
∏

1/(1 − qs0−sF ) where the product is taken over the exceptional poles s0 of the function
LKF (π, s), i.e. the qs0F ’s such that the representation π is | |−s0F -distinguished. In particular, the
function LRad(ex)(π, s) divides Lex(π, s).
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Suppose now that the representation π is supercuspidal, then the restriction to Pn(K) of any
W in W (π, ψ) has compact support modulo Nn(K), hence I(0)(W, s) is a polynomial in q−s, and
L(0)(π, s) is equal to 1. Hence Proposition 2.3 implies:

Proposition 2.4. Let π be an irreducible supercuspidal representation of the group Gn(K), it is
| |−s0F -distinguished if and only if its Asai L-function LKF (π, s) has a pole at s0.

We end this paragraph by stating a conjecture relating the Asai L-function LKF of generic
a representation and a certain canonical L function also denoted by LKF of the corresponding
representation (through Langlands correspondence) of the Weil-Deligne group of K.

If ρ is a finite dimensional representation of the Weil-Deligne group W ′
K , we denote by M

W ′

F

W ′

K

(ρ)

the representation of W ′
F induced multiplicatively from ρ. We recall its definition:

If V is the space of ρ, then the space of M
W ′

F

W ′

K
(ρ) is V ⊗V . Denoting by τ an element of WF −WK ,

and σ the element (τ, I2) of W ′
F , we have:

M
W ′

F

W ′

K
(ρ)(h)(v1 ⊗ v2) = ρ(h)v1 ⊗ ρσ(h)v2

for h in W ′
K , v1 and v2 in V .

M
W ′

F

W ′

K

(ρ)(σ)(v1 ⊗ v2) = ρ(σ2)v2 ⊗ v1

for v1 and v2 in V .

We refer to section 7 of [P] for the definition and the basic properties of multiplicative induction
in general.

Definition 2.4. The function LKF (ρ, s) is by definition the usual L-function of the representation

M
W ′

F

W ′

K
(ρ), i.e. LKF (ρ, s) = L(M

W ′

F

W ′

K
(ρ), s). If π is the irreducible representation of Gn(K), associ-

ated to ρ by the local Langlands correspondence, we denote by LK,WF (π, s) the function LKF (ρ, s).

The following conjecture is expected to be true.

Conjecture 2.1. Let π be a generic representation of the group Gn(K), and let ρ be the represen-
tation of dimension n of the Weil-Deligne group W ′

K of K, corresponding to π through Langlands
correspondence. Then we have the following equality of L-functions:

LKF (π, s) = LKF (ρ, s).

Indeed, this conjecture is true for discrete series representations, it follows from Theorem 1.6
of [A-R] and Theorem of Section 1.5 in [He]. The proof uses global methods. For G2(K), the
conjecture is proved in [M2] for ordinary representations, using local methods.

3 Asai L-functions of generic representations

The aim of this section is to show that Conjecture 1.1 of the first section implies the
conjecture 2.1 about Asai L-functions of generic representations.

Assuming Conjecture 1.1, we will first show in Subsection 3.3 that Conjecture 2.1 is true for
representations in general position (see Definition 3.1). Then in Subsection 3.4, we will deform
a representation π in general position by twisting it by an unramified character of the center
of a standard Levi subgroup, identified with a complex multivariable u ∈ (C/ 2iπ

ln(qK)Z )t, into a

representation πu. We will then prove that the equality of Conjecture 2.1 is preserved when u
varies. This will allow us to conclude.
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For irreducible principal series representations (i.e. if the ∆i’s are characters), the conjecture
1.1 is proved in [M1], hence this will allow us to compute Asai L-functions of such representations.

3.1 Asai L-functions of quasi-square-integrable representations

We start this subsection by computing Asai L-functions of quasi-square-integrable representa-
tions.

Proposition 3.1. Let ρ be an irreducible supercuspidal representation of Gm(K), and Stn(ρ) the

representation π = [ρ| |
(1−n)/2
K , ρ| |

(3−n)/2
K , . . . , ρ| |

(n−3)/2
K , ρ| |

(n−1)/2
K ] of Gmn(K). We have the

following equality:

LKF (Stn(ρ), s) =

n−1∏

k=0

LKF (ηn−1−k
K/F ρ, s+ k). (2)

Proof. We know from Proposition Theorem 1.6 of [A-R] and Theorem of Paragraph 1.5 in [He]

that LKF (π, s) is equal to the standard L-function of M
W ′

F

W ′

K

(ρ⊗Sp(n)). This latter representation

is isomorphic to M
W ′

F

W ′

K

(ρ)⊗M
W ′

F

W ′

K

(Sp(n)). Here SL(2,C) acts trivially on M
W ′

F

W ′

K

(ρ), and WF acts

as MWF

WK
(ρ). The SL(2,C)-module M

W ′

F

W ′

K

(Sp(n)) is isomorphic to Sp(n) ⊗ Sp(n), which is the

direct sum ⊕nk=1Sp(2k− 1). In this direct sum, the submodules Sym(Sp(n)) and Alt(Sp(n)) are

respectively isomorphic to ⊕
E((n−1)/2)
k=0 Sp(2n− 1 − 4k) and ⊕

E(n/2−1)
k=0 Sp(2n− 3 − 4k).

As WF acts trivially on Sym(Sp(n)), and by ηK/F on Alt(Sp(n)), we deduce the equality

M
W ′

F

W ′

K
(ρ⊗ Sp(n)) = ⊕n−1

k=0ρ⊗ ηkK/FSp(2n− 1 − 2k).

The wanted equality of Asai L-functions follows.

This has for corollary the following result (see Section 4 of [A-R]).

Corollary 3.1. Let ρ be an irreducible supercuspidal representation of Gm(K). The representa-
tion π = Stn(ρ) of Gmn(K) is distinguished if and only if ρ is ηn−1

K/F -distinguished.

Proof. Suppose ρ is ηn−1
K/F -distinguished, then it is unitary because its central character has unitary

restriction to F ∗, hence is unitary itself. Thus π is a discrete series representation, and its Asai
L-function has a pole at zero from Proposition 3.1, the representation π is then distinguished
according to Proposition 2.2.
On the other hand, if the representation π is distinguished, its central character cπ is trivial on
F ∗, hence unitary, but as cπ = cnρ , the central character cρ is also unitary, and the supercuspidal
representation ρ is unitary too. Again π is a discrete series representation, and its Asai L-function
has a pole at zero because it is distinguished according to Proposition 2.2. From equality 2, there
is k between 0 and n − 1 such that LKF (ηn−1−k

K/F ρ, s + k) has a pole at zero, which implies from

Proposition 2.4 that ρ is ηn−1−k
K/F | |−kF -distinguished, but as cρ is unitary, the integer k must be

equal to zero, and ρ is ηn−1
K/F -distinguished.

Corollary 3.2. If ∆ is a discrete series representation of the group Gn(K), the function LKF (∆, s)
has no pole in the half plane {s/Re(s) > 0}.

Proof. There is a unitary supercuspidal representation ρ of Gm(K), and a divisor d of n such
that ∆ = Std(ρ). According to Proposition 3.1 and Proposition 2.4, the function LKF (∆, s) has a

pole at s0 if and only if there is an integer k between 0 and d − 1 such that ρ is ηn−1−k
K/F | |−s0−kF

distinguished. The central character of ρ being unitary, the real part of s0 must be equal to
−k.
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Corollary 3.3. If ∆ is a quasi-square-integrable representation of the group Gn(K), and k is
an integer between 1 and n− 1, such that ∆(k) is nonzero, then the function LKF (∆(k), s) divides
LKF (∆, s).

Proof. It is a consequence of Proposition 1.1 and Proposition 3.1.

Remark 3.1. In the same manner, it follows from Proposition 1.1 and Theorem 8.2 of [J-P-S]
(or Theorem 2.3 of [C-P]) that if ∆ and ∆′ are respectively two quasi-square-integrable repre-
sentations of Gn(K) and G′

n(K), then if k and k′ are two integers such that ∆(k) and ∆′(k′) are
nonzero, the function L(∆(k) × ∆′(k′), s) divides the function L(∆ × ∆′, s).

3.2 Asai L-functions and derivatives

In this subsection, we analyse the function L(0)(π, s) for π in “general position”. This is a straight-
forward transposition of the results of [C-P], to the context of Asai L-functions.

To do this we write the Laurent expansion of I(0)(W, s), for W in W(π, ψ). Suppose that
L(0)(π, s) (see definition 2.3) has a pole of order d at s0:

I(0)(W, s) = Ls0(W, s)/(q
s
F − qs0F )d + higher order terms.

Here the linear form Ls0 is a non trivial linear form on W (π, ψ), which satisfies the quasi-
invariance Ls0(π(p)W ) = |det(p)|1−s0F Ls0(W ) for p in Pn(F ) and W in W (π, ψ).

Considering the filtration of Pn(K)-submodules W (πn, ψ) ⊂ ... ⊂ W (π2, ψ) ⊂ W (π1, ψ) =
W (π, ψ), then Ls0 must be zero on W (πn, ψ), because restrictions to Pn(K) of functions W in
W (πn, ψ) have compact support modulo Nn(K), hence functions I(0)(W, s) belong to C[q−sF ].
Therefore there exists a smallest k such that Ls0 vanishes on W (πn−k+1, ψ) but is non-zero on
W (πn−k, ψ).
Hence the functions I(0)(W, s) with W in W (πn−k, ψ) account for the pole at s0 with order d.

From Section 1 of [C-P], functions W of W (πn−k, ψ) viewed as functions W (
g

1
) on Gn−1(K)

have compact support in the last n − k − 1 rows of g modulo Nn−1(K). Using partial Iwasava
decomposition to write g in Gn−1(K) as

g =





h
ak+1

. . .

an−1




k′ (mod Nn−1(K))

with h in Gk(K), k′ in KK
n−1, the function W has compact multiplicative support in the ai. Then

there exists constants ci and βi such that our integral becomes a finite sum of the form

I(0)(W, s) =
∑

i

ciq
−βis

∫

Nk(F )\Gk(F )

Wi

(
h

In−k

)
|det(h)|

s−(n−k)
F dh.

Set

I(n−k−1)(W, s) =

∫

Nk(F )\Gk(F )

W

(
h

In−k

)
|det(h)|

s−(n−k)
F dh. (3)

The pole at s0 of order d must come from an integral I(n−k−1)(W, s). Morover since W enters
into these integrals via its restriction to Gk(F ), it only depends on its image in W (π(n−k−1), ψ).
But by Lemma 9.2 of [J-P-S], each I(n−k−1)(W, s) actually occurs in I(0)(W0, s) for some W0 in
W (π, ψ), hence belongs to I(0)(π). These integrals have therefore a pole of order at most d at s0,
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and a pole of order d for appropriate choice of W in W (π, ψ).
We now write the expansion of I(n−k−1)(W, s) at s0 for W in W (π, ψ):

I(n−k−1)(W, s) = L(n−k−1),s0(W )/(qsF − qs0F )d + higher order terms.

The value at W ∈ W (π, ψ) of the linear form L(n−k−1),s0 depends only of the image of W in
W (π(n−k−1), ψ). Because of the twists involved in the definitions of the derivatives, the linear
form L(n−k−1),s0 still verifies the quasi-invariance under the subgroup Pk+1(F ):

L(n−k−1),s0(π(n−k−1)(p)(W )) = |det(p)|1−s0F L(n−k−1),s0(W ).

Furthermore the index k was chosen so that L(n−k−1),s0 is non trivial but vanishes onW (πn−k+1, ψ),
i.e. on W (π(n−k−1),2, ψ) if we consider it as a linear form on W (π(n−k−1), ψ).

As the Pk+1(K)-module π(n−k−1)/π(n−k−1),2 is isomorphic to Ψ+(π(n−k)), the functionnal L(n−k−1),s0

defines a non trivial linear form on W (Ψ+(π(n−k)), ψ).
We now make the same assumption as in [C-P], which is verified for representations in “general
position”.

Assumption 3.1. For all j between 1 and n, the derivative π(n−j) is completely reducible.

Taking k as before, such that L(n−k−1),s0 defines a non trivial linear form onW (Ψ+(π(n−k)), ψ).

Then the representation π(n−k) = ⊕π
(n−k)
i , with π

(n−k)
i irreducible, and there exists i0 such that

L(n−k−1),s0 restrict non trivially to W (Ψ+(π
(n−k)
i0

), ψ). Now from Corollary 1.1 of Proposition

1.3, if Wi0 belongs to W (Ψ+(π
(n−k)
i0

), ψ), there exists a function W ′
i0 and a function φ0 in C∞

c (K)
which is the characteristic function of a sufficiently small neighborhood of 0, such that for h in
Gk(K),

Wi0

(
h

In−k

)
φ0(ηkh) = W ′

i0 (h)|det(h)|
(n−k)/2
K φ0(ηkh). (4)

The integral I(n−k−1)(Wi0 , s) decomposes as I(n−k−1)(Wi0 , s) = I0
(n−k−1)(Wi0 , s)+I

1
(n−k−1)(Wi0 , s),

where

I0
(n−k−1)(Wi0 , s) =

∫

Nk(F )\Gk(F )

Wi0

(
h

In−k

)
φ0(ηkh)|det(h)|

s
F dh

and

I1
(n−k−1)(Wi0 , s) =

∫

Nk(F )\Gk(F )

Wi0

(
h

In−k

)
(1 − φ0(ηkh))|det(h)|

s
F dh.

As the (1 − φ0(ηkh)) term restricts the support of the integrand to being compact in the last
row of h, modulo Nk(F ), the integral I1

(n−k−1)(Wi0 , s) is actually a linear combination of in-

tegrals involving restrictions of functions of W (π, ψ) to Gk−1(F ), which depend only on their
image in W (π(n−k), ψ). But the linear form L(n−k−1),s0 vanishes on this space, hence the term
I1
(n−k−1)(Wi0 , s) cannot contribute to a pole of order d at s0.

We deduce that integrals I0
(n−k−1)(Wi0 , s) =

∫
Nk(F )\Gk(F )

W ′
i0

(h)φ0(ηkh)|det(h)|
s
F dh contribute

to a pole of order d at zero. These are integrals defining the Asai L-function of π
(n−k)
i0

, and as

φ0(0) = 1, the pole s0 of order d is an exceptional pole of LKF (π
(n−k)
i0

, s). Moreover, from equation

4, any integral for π
(n−k)
i0

corresponding to an exceptional pole comes from a I0
(n−k−1)(Wi0 , s) for

some good choice of Wi0 .
We thus proved:

Proposition 3.2. Suppose that all the derivatives of the generic representation π are completely

reducible. Then any pole of L(0)(π, s) occurs as an exceptional pole of some LKF (π
(n−k)
i0

, s) with

same order, for some integer k between 1 and n − 1, with π
(n−k)
i0

an irreducible constituent of

π(n−k). Furthermore any exceptional pole of LKF (π
(n−k)
i0

, s), for k an integer between 1 and n− 1

and π
(n−k)
i0

an irreducible constituent of π(n−k), occurs with at least same order in L(0)(π, s).
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Put in another way, we proved the following:

Theorem 3.1. Let π be a generic representation, such that its derivatives are completely re-

ducible, then the Euler factor L(0)(π, s) is equal to the least common multiple ∨i,kLex(π
(n−k)
i , s),

where the l.c.m. is taken over k in {1, . . . , n− 1} and π
(n−k)
i in the irreducible components of

π(n−k). This implies that LKF (π, s) is equal to the least common multiple ∨i,kLex(π
(n−k)
i , s), where

the l.c.m. is taken over k in {0, . . . , n} and π
(n−k)
i in the irreducible components of π(n−k)

Corollary 3.4. a) Let π be a generic representation of Gn(K), such that its derivatives are
completely reducible, then if the complex number s0 is a pole of LKF (π, s), there is a minimal k,

such that s0 is a pole of Lex(π
(k)
i , s), for an irreducible component π

(k)
i of π(k).

b) If π′ is a generic representation of Gn′(K), for a pole s0 of L(π × π′, s), there is a minimal

k, such that s0 is a pole of Lex(π
(k)
i × π

(k)
j , s), for some irreducible components π

(k)
i and π

(k)
j of

π(k).

Proof. For a), the assertion follows from Theorem 3.1. Assertion b) follows from Theorems 1.1
and 2.2 of [C-P].

Corollary 3.5. If ∆ = Stm(ρ) is a generalized Steinberg representation of Gmr(K) associated
to the supercuspidal representation ρ of Gr(K), then one has L(0)(∆) = LKF (∆(r)). In the same
manner, if ∆′ = St′m(ρ′) is a generalized Steinberg representation of Gm′r(K) associated to the
supercuspidal representation ρ′ of Gr(K), then one has L(0)(∆ × ∆′) = LKF (∆(r) × ∆′(r)).

Proof. It is a consequence of Theorem 3.1 and Proposition 1.1.

3.3 LRad(ex) for generic representations

In this subsection, we prove that Conjecture 1.1 implies Conjecture 2.1 about Asai L-functions
for representations in general position (see Definition 3.1).

We first translate Conjecture 1.1 in terms of functions LRad(ex) of the ∆i’s. We will need
some notations.
For each integer r ≤ t/2, we denote by A(r) the set of subsets of {1, . . . , t} with 2r elements. If
Ir belongs to A(r), we denote by P (Ir) the set of partitions of Ir in pairs {i1, j1}∐ · · · ∐ {ir, jr},
and we denote by Icr the complement of Ir in {1, . . . , t}. Finally if Pr = {i1, j1} ∐ · · · ∐ {ir, jr}
belongs to P (Ir), we denote by {Pr} the set {{i1, j1} , . . . , {ir, jr}}.

Proposition 3.3. The following conjecture is equivalent to the conjecture 1.1. Conjecture: Let
π = ∆1 × · · · × ∆t be a generic representation of the group Gn(K) as in Theorem 1.3, then the
Euler factor LRad(ex)(π, s) is equal to the lcm for r between 1 and t/2, Ir in A(r) and Pr in P (Ir)
of the functions ∧{i,j}∈{Pr}LRad(ex)(∆i × ∆σ

j , s) ∧i′∈Ic
r
LRad(ex)(∆i′ , s). This gives the formula

LRad(ex)(π, s) = ∨r≤t/2∨Ir∈A(r)∨Pr∈P (Ir)(∧{i,j}∈{Pr}LRad(ex)(∆i×∆σ
j , s)∧i′∈Ic

r
LRad(ex)(∆i′ , s)).

(5)

Proof. Assume the preceeding conjecture. According to Theorem 2.2, the representation π is
distinguished if and only if LRad(ex)(π, s) admits a pole at zero. From equation 5, it is equivalent
to say that there is an integer r ≤ t/2, a set Ir with 2r elements, and a partition with {i1, j1} ∐
· · · ∐ {ir, jr} of Ir such that for every k between 1 and r, the function LRad(ex)(∆ik ×∆σ

jk
, s) has

a pole at zero, and for every i′ in {1, . . . , t} − {i1, j1, . . . , ir, jr} the function LRad(ex)(∆i′ , s) has
a pole at zero. This is nothing else than the statement of Conjecture 1.1 according to Theorem
1.6 and Proposition 2.2.

Now suppose that the conjecture 1.1 is true. Then tensoring by the character | |
s0/2
K , for a complex

number s0, the more general (though equivalent) statement is also true: the representation π =
∆1×· · ·×∆t is | |−s0F distinguished if and only if there exists a reordering of the ∆i’s, and r ≤ t/2,
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such that ∆σ
i+1 = | |−s0K ∆∨

i for i = 1, 3, .., 2r− 1, and ∆i is | |−s0F -distinguished for i > 2r. Hence
s0 is a pole of LRad(ex)(π, s) if and only if there exists an integer r ≤ t/2, a set Ir ∈ Ar, and a
partition in pairs Pr ∈ P (Ir), such that s0 is a pole of LRad(ex)(∆i × ∆σ

j , s) for every {i, j} in
{Pr}, and a pole of LRad(ex)(∆i′ , s) for every i′ in Icr . Hence both functions LRad(ex)(π, s) and

∨r≤t/2 ∨Ir∈A(r) ∨Pr∈P (Ir)(∧{i,j}∈{Pr}LRad(ex)(∆i × ∆σ
j , s) ∧i′∈Ic

r
LRad(ex)(∆i′ , s))

have the same poles, but as both have simple poles and are Euler factors, they are equal.

Remark 3.2. The Asai L-function of a quasi-square-integrable representation ∆ of the group
Gn(K) is computed in Proposition 3.1 of Subsection 3.1, it has simple poles, and so is the case
for L(∆ × ∆′, s) for quasi-square-integrable representations ∆ and ∆′ (see for example Theorem
2.3 of [C-P]). Hence in the statement of Conjecture 3.3, the functions LRad(ex)(∆i × ∆σ

j , s) and
LRad(ex)(∆i′ , s) are respectively equal to Lex(∆i × ∆σ

j , s) and Lex(∆i′ , s).

We next define what we mean by “in general position” for a representation of the group
Gn(K). There is actually a slight difference between our definition and the definition in [C-P]
(we add condition 3.).

Definition 3.1. Let π = ∆1 × · · ·×∆t be a representation of the group Gn(K), obtained by nor-
malized parabolic induction of quasi-square-integrable representations ∆i of Gni

(K), for positive
integers ni such that their sum is equal to n.
We say that it is in general position, if it verifies the following properties:

1. It is generic (hence irreducible).

2. For all k between 1 and n−1, the central characters of the irreducible components of π(n−k)

are different. Thus, for such a representation, the assumption 3.1 is satisfied.

3. If (i, j, k) are three different integers between 1 and t, and (li, lj , lk) three integers in {0, . . . , ni−

1}× {0, . . . , nj − 1}× {0, . . . , nk − 1}, then the functions L(∆
(li)
i × (∆

(lj)
j )σ) and L(∆

(li)
i ×

(∆
(lk)
k )σ) have no common poles, and the functions

L(∆
(li)
i × (∆

(lj)
j )σ) and LKF (∆

(li)
i ) have no common poles.

We are now able to state the following theorem.

Theorem 3.2. Assume Conjecture 1.1. Let π = ∆1 × · · · × ∆t be a generic representation of
the group Gn(K) as in Theorem 1.3, and suppose that it is in general position, then the following
equality holds:

LKF (π, s) =
∏

1≤i<j≤t

L(∆i × ∆σ
j , s)

∏

1≤k≤t

LKF (∆k, s) (6)

Proof. We first recall from Proposition 1.1 that if the representation π
(n−k)
i is an irreducible

component of the derivative π(n−k) of π = (∆1 × · · · × ∆n) in general position, it is of the form

∆
(t1)
i1

× · · · × ∆
(tn)
ik

for a subset {i1, . . . , ik} of {1, . . . , n}, hence it is still in general position.We
proove the theorem 3.2 by induction on n. Case n = 1 is trivial, and n = 2 is treated in [M2].
Suppose that the theorem is true for any positive integer strictly less than n. By definition of L(0)

and LRad(ex), we have LKF (π, s) = L(0)(π, s)LRad(ex)(π, s). From Theorem 3.1 and Proposition
3.3, this is equivalent to the function LKF (π, s) being equal to

[∨l,kLex(π
(n−k)
l , s)][∨r≤t/2 ∨Ir∈A(r) ∨Pr∈P (Ir)(∧{i,j}∈{Pr}Lex(∆i × ∆σ

j , s) ∧i′∈Ic
r
Lex(∆i′ , s))]

for k in {1, . . . , n− 1} and π
(n−k)
l in the irreducible components of π(n−k).

By induction hypothesis, any pole of L(0)(π, s) is a pole of

∏

1≤i<j≤t

L(∆i × ∆σ
j , s)

∏

1≤k≤t

LKF (∆k, s).
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The same holds for poles of LRad(ex)(π, s) according to Equation 6.
Hence to prove Equation 6, as we are dealing with Euler factors, it suffices to prove that any pole
of order d of

∏
1≤i<j≤t L(∆i × ∆σ

j , s)
∏

1≤k≤t L
K
F (∆k, s) occurs with same order in LKF (π, s).

Let s0 be such a pole, because π is in general position, and because the LKF (∆k, s)’s and the
L(∆i × ∆σ

j , s)’s have simple poles, there are two integers p and q such that the pole s0 occurs
exactly in p functions

L(∆i1 × ∆σ
j1 , s), . . . , L(∆ip × ∆σ

jp , s),

and q functions
LKF (∆k1 , s), . . . , L

K
F (∆kq

, s),

where p + q = d and I2p+q = {i1, j1, . . . , ip, jp, k1, . . . , kq} is a subset of cardinality 2p + q of
{1, . . . , t}.
From Corollary 3.4, there exist minimal integers ai’s, bj ’s and ck’s, such that s0 is a pole of each
function

Lex(∆
(a1)
i1

× (∆
(b1)
j1

)σ, s), . . . , Lex(∆
(ap)
ip

× (∆
(bp)
jp

)σ, s),

and each function
Lex(∆

(c1)
k1

, s), . . . , Lex(∆
(cq)
kq

, s).

There are two cases:
1) If 2p+ q < t or if an element of the family (ai, bj, ck)i,j,k is positive:

Then by induction hypothesis, the product of the Lex(∆
(ar)
ir

×(∆
(br)
jr

)σ, s)’s and of the Lex(∆
(cr′ )
kr′

, s)’s

for r and r′ respectiveley between 1 and p and 1 and q, divides the function

LKF (∆
(a1)
i1

× ∆
(b1)
j1

× · · · × ∆
(ap)
ip

× ∆
(bp)
jp

× ∆
(c1)
k1

× · · · × ∆
(cq)
kq

).

Hence s0 is a pole of order d of this function, and it is exceptional from Proposition 3.3.
Proposition 3.1 then implies that s0 is a pole of order at least d of L(0)(π, s).

Suppose π
(l)
i is an irreducible component of π(l) with l positive, then it is of the form

∆
(d1)
1 ×· · ·×∆

(dt)
t , with the sum of the di’s being equal to l. Now by induction hypothesis, the func-

tion Lex(∆
(d1)
1 ×· · ·×∆

(dt)
t , s) divides the function

∏
1≤i<j≤t L(∆

(di)
i ×(∆

(dj)
j )σ, s)

∏
1≤k≤t L

K
F (∆

(dk)
k , s),

which in turn divides
∏

1≤i<j≤t L(∆i×∆σ
j , s)

∏
1≤k≤t L

K
F (∆k, s) because of Corollary 3.3. Hence

the order of s0 in Lex(π
(l)) is at most d.

We just proved, according to Proposition 3.1, that the order of s0 in L(0)(π) is at most d, hence
d.
As the pole s0 doesn’t occur in LRad(ex)(π) because of Proposition 3.3, it has order d in LKF (π).

2) The integer 2p+ q is equal to t and all the ai’s, bj’s and cj ’s are zero:
We first reorder the ∆i’s such that ir = 2r − 1, jr = 2r for r ≤ p, and kr′ = 2p+ r′ for r′ ≤ q.
In this case s0 is an axceptional pole of LKF (π, s) from Proposition 3.3. It thus occurs with order
1 in the function LRad(ex)(π, s).
Considering the d− 1 last functions of

Lex(∆1 × ∆σ
2 , s), . . . , Lex(∆2p−1 × ∆σ

2p, s), Lex(∆2p+1, s), . . . , Lex(∆2p+q , s)

if p ≥ 1, and the d − 1 first otherwise, we show by induction hypothesis, that s0 is a pole of
order d − 1 of either LKF (∆3 × · · · × ∆t, s) if p ≥ 1, or of LKF (∆1 × · · · × ∆t−1, s) otherwise. In
both situations, the pole must be exceptional according to Proposition 3.3, and we deduce from
Proposition 3.1, that s0 is a pole of order at least d− 1 of L(0)(π, s).

Now let π
(k)
i be an irreducible component of π(k) for a positive integer k. Then π

(k)
i is equal to

∆
(d1)
1 × · · · × ∆

(dt)
t for non negative integers di with sum equal to k. The function Lex(∆

(d1)
1 ×

· · · × ∆
(dt)
t ) divides by induction hypothesis the function

∏

1≤i<j≤t

L(∆
(di)
i × (∆

(dj)
j )σ, s)

∏

1≤k≤t

LKF (∆
(dk)
k , s).

19



As each function L(∆
(di)
i ×(∆

(dj)
j )σ, s) (resp. LKF (∆

(dk)
k , s)) divides L(∆i×∆σ

j , s) (resp. LKF (∆k, s)),
and as s0 occurs exactly in the functions L(∆2i−1 ×∆σ

2i, s), for i in 1, . . . , p, and in the functions

LKF (∆2p+j , s), for j in 1, . . . , q, the order of s0 in Lex(∆
(d1)
1 × · · · × ∆

(dt)
t ) is at most d.

Suppose it is d, then s0 must occur in each L(∆
(d2i−1)
2i−1 × (∆

(d2i)
2i )σ, s) for i in 1, . . . , p, and in the

functions L(∆
(d2p+j)
2p+j , s), for j in 1, . . . , q, and no other. But as s0 is a pole of LRad(ex)(∆

(d1)
1 ×

· · · × ∆
(dt)
t ), Proposition 3.3 implies that it is actually a pole of Lex(∆

(d2i−1)
2i−1 × (∆

(d2i)
2i )σ, s) for i

in 1, . . . , p, and Lex(∆
(d2p+j)
2p+j , s) for j in 1, . . . , q.

As at least one of the di’s is positive, this would implie that s0 is a pole of Lex(∆
(d2i−1)
2i−1 ×

(∆
(d2i)
2i )σ, s) and Lex(∆2i−1 × ∆σ

2i, s) at the same time for some positive d2i−1 or d2i, or of

Lex(∆
(d2p+j)
2p+j , s) and Lex(∆2p+j , s) at the same time for some positive d2p+j . But as Lex(∆

(d2i−1)
2i−1 ×

(∆
(d2i)
2i )σ, s) divides L(0)(∆2i−1 × ∆σ

2i, s) and Lex(∆
(d2p+j)
2p+j , s) divides L(0)(∆2p+j , s), this would

imply that s0 is a pole of order 2 of L(∆2i−1 × ∆σ
2i, s) or LKF (∆2p+j , s), which contradicts the

fact that these functions have simple poles.

Finally the order in any Lex(π
(k)
i , s), for any positive k, and any irreducible component π

(k)
i of

π(k) is at most d − 1. We deduce that s0 occurs in L(0)(π) with order d − 1 exactly, hence it
occurs with order d in LKF (π) = LRad(ex)(π)L(0)(π).

3.4 Deformation, derivatives and local factors

We again recall a few facts from [C-P], Sections 3 and 4, about deformations of representations
and behaviour of the derivatives.
Let t be a positive integer, the map u = (u1, . . . , ut) 7→ quK = (qu1

K , . . . , qut

K ) defines an isomor-
phism of varieties between (DK)t = (C/ 2iπ

ln(qK)Z )t and (C∗)t. We also denote by DF the variety

(C/ 2iπ
ln(qF )Z ) which the isomorphism s 7→ q−sF identifies to (C∗)t.

Definition-Proposition 3.1. Let (n1, . . . , nt) denote a partition of n by positive integers, and let
∆i be a quasi-square-integrable representation of Gni

(K) for i between 1 and t. As quasi-square-
integrable representations are generic from Theorem 1.3, and according to [R], the representation
π = ∆1×· · ·×∆t of the group Gn(K) is of Whittaker type, though it is not necessarily irreducible.
We say that such a representation π is of parabolic type.

For u ∈ Dt, and π of parabolic type, we define the deformed representation πu = ∆1| |
u1

K ×
· · · × ∆t| |

ut

K .

Definition-Proposition 3.2. Let π be a parabolic type representation of the group Gn(K), then
outside a finite number of hyperplanes in u, the representation πu is in general position (see
Definition 3.1). If π is fixed, we say that u is in general position if the representation πu is.

Proof. The fact that conditions 1. and 2. of Definition 3.1 are verified follows from the discussion
before Proposition 3.5 of [C-P]. For condition 3., let i, j and k be three different integers between
1 and t. It is enough to show that outside a finite number of hyperplanes in u, the functions
L(∆i| |

ui

K ×∆σ
j | |

uj

K , s) and LKF (∆i| |
ui

K , s), and the functions L(∆i| |
ui

K ×∆σ
j | |

uj

K , s) and L(∆i| |
ui

K ×
∆σ
k | |

uk

K , s) have no common pole. To do this we write ∆i as Stmi
(ρi) and ∆j as Stmi

(ρj).
According to Theorem (8.2) of [J-P-S], we know that L(∆i| |

ui

K × ∆j | |
uj

K , s) is equal to 1 unless
ρi and ρj are supercuspidal representations of the same group Gm′(K). So we suppose it is the
case, and from the same proposition of [J-P-S], one has the equality L(∆i| |

ui

K × ∆σ
j | |

uj

K , s) =
∏mi−1
k=0 L(ρi×ρ

σ
j , s+ui+uj+(mi−mj)/2+k). Suppose L(∆i| |

ui

K ×∆σ
j | |

uj

K , s) and LKF (∆i| |
ui

K , s)

have a common pole at s0, then ρ∨i = ρσj | |
s0+ui+uj+(mi−mj)/2+l
K for an integer l between 0 and

mj−1, and according to Proposition 3.1 and Proposition 2.4, there exists l′ between 0 and mi−1

such that ηmi−1−l′

K/F | |
(s0+l′)/2+ui

K ρi is distinguished. We deduce from Proposition 1.6 that ρ∨i must
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be equal to | |s0+l′+2ui

F ρσi . This eventually implies that ρj is equal to ρi| |
(mj−mi)/2+l

′−l+uj−ui

K .
As −(mj+mi)/2 ≤ (mj−mi)/2+ l′− l ≤ (mj+mi)/2, considering central characters, we deduce
that L(∆i| |

ui

K × ∆σ
j | |

uj

K , s) and LKF (∆i| |
ui

K , s) have no common poles outside a finite number of
hyperplanes in (ui, uj).
We show in a similar way that L(∆i| |

ui

K ×∆σ
j | |

uj

K , s) and L(∆i| |
ui

K ×∆σ
k | |

uk

K , s) have no common
pole outside a finite number of affine hyperplanes in (ui, uj, uk). This concludes the proof of the
proposition.

Now we are going to prove that whenever the representation π is of parabolic type, then the
factor γKF (πu, ψ, s) (see after Theorem 2.1) is a rational function of q−uK and q−sF .

We denote by Q the standard parabolic subgroup of the group Gn(K) corresponding to the
partition (n1, . . . , nt), by M the associated Levi subgroup, which is isomorphic to Gn1

(K)×· · ·×
Gnt

(K), and NQ the unipotent radical of Q. Whenever u is in DK, the representation πu is of
Whittaker type from Proposition-Definition 3.1. For m in M , we denote by |m|uK the positive
number |det(m1)|

u1

K . . . |det(mt)|
ut

K .
We first recall from [C-P] that πu can be realised in the space Fπ of smooth funtions of restrictions
to KK

n of functions
f : Gn(K) →W (∆1, ψ) ⊗ · · · ⊗W (∆t, ψ)

satisfying
f(hg,m) = ∆Q(mh)

−1/2f(g,mmh)

for h in Q, g in G, m in M and mh in M such that h = nmh for n in NQ.
A function f in Fπ determines a function fu in the space of smooth funtions from Gn(K) to
W (∆1| |

u1

K , ψ)⊗ · · · ⊗W (∆t| |
u1

K , ψ), satisfying fu(hg,m) = ∆(mh)
−1/2fu(g,mmh) as before. To

do this, we define for g = n′m′k′ with n′ in NQ, m′ in M and k′ in KK
n , the value of the function

fu to be fu(g,m) = |m′|uK∆(m′)−1/2f(k′,mm′). This indentifies the set of representations πu
with u in DK with the trivial vector bundle DK × Fπ, with Gn(K) acting in each fibers with
different action.
Considering πu as acting on F , a Whittaker functional

Λu(f) =

∫

Nf

(πu(n)f)(wQ, e)ψ
−1(n)dn

is defined in Section 3 of [C-P], to which we refer for notations. For f ∈ F , the Whittaker function

Wf,u(g) = Λu(πu(g)f) = Λ0(π(g)fu) = Wfu
(g)

is defined and describes W (πu, ψ) when f describes F .
It is shown in [C-P] that for fixed g, the function Wf,u(g) belongs to C[q±u1

K , . . . , q±ut

K ]. As in

[C-P], we define W
(0)
π the complex vector space generated by the functions (u, g) 7→Wfu

(gg′) for

g′ ∈ Gn(K) and f ∈ Fπ. It is shown in [C-P] that the action of the group Gn(K) on W
(0)
π by

right translation is a smooth representation, and we denote by Wπ,(0) the space of restrictions of

functions of W
(0)
π to Pn. As in [C-P], we denote by P0 the vector subspace of C[q±uK ] consisting of

all Laurent polynomials of the form u 7→W (u, In) for some W ∈W
(0)
π . We now state Proposition

3.1 of [C-P] which we will use later.

Proposition 3.4. Let π be a representation of parabolic type, the complex vector space Wπ,(0)

defined above contains the space C∞
c (Nn(K)\Pn(K),P0, ψ).

In order to prove rationality properties of the Asai-gamma factor of πu, we will show that if f
belongs to Fπ, and φ belongs to C∞

c (Fn), the integral I(Wfu
, φ, s) is a rational function in q−uF

and q−sF . To do this, we use as in [C-P] a theorem of Bernstein about solutions of a polynomial
family of affine equations.
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Let V be a complex vector space of countable dimension. Let R be an index set, and let Ξ
be a collection {(xr , cr)|r ∈ R} with xr ∈ V and cr ∈ C. A linear form λ in V ∗ = HomC(V,C) is
said to be a solution of the system Ξ if λ(xr) = cr for all r in R.
Let D be an irreducible algebraic variety over C, and suppose that to each d, a system Ξd =
{(xr(d), cr(d))|r ∈ R} with the index set R independant of d in D. We say that the family of
systems {Ξd, d ∈ D} is polynomial if xr(d) and cr(d) belong respectively to C[D]⊗C V and C[D].
Let M = C(D) be the field of fractions of C[D], we denote by VM the space M⊗C V and by V ∗

M

the space HomM(VM,M). The theorem is the following (see Subsection 3.2. of [C-P]).

Theorem 3.3. (Bernstein) In the above situation, suppose that there exists a non-empty subset
Ω ⊂ D open in the usual complex topology of D, such that for each d in Ω, the system Ξd has a
unique solution λd. Then the system Ξ = {(xr(d), cr(d))|r ∈ R} over the field M = C(D) has a
unique solution λ(d) in V ∗

M, and λ(d) = λd is the unique solution of Ξd on a subset of D which
is the complement of a countable number of hypersurfaces.

Proof. We reproduce the proof of Bernstein, which is exctracted from a letter to Piatetski-Shapiro.
It proceeds in three steps.

Step 1: The system Ξ has a solution f . It is enough to check

(*) For each collection {ar ∈ M|r ∈ R} in which all but a finite number of ar are 0, then∑
arxr = 0 implies

∑
arcr = 0.

Indeed, if we know (*), we can unambiguously define f on the M-linear span of {xr} and
then extend it arbitrarily to VM.
Suppose that (*) is not true, i.e., there exists a linear combination

∑
arxr which is zero

such that
∑
arcr 6= 0. Multiplying ar by a polynomial we can assume that ar ∈ C[D] and∑

arλr 6= 0. Then at some point d ∈ Ω, the sum
∑
arλr(d) is different from 0, i.e., Ξd does

not have a solution, which is a contradiction.

Step 2: The solution f is unique.

Let ξi be a C-basis of V . then f is defined by a countable number of functions f(ξi) ∈ M.
If there are two solutions f , f ′, then outside of a countable number of hypersurfaces f(d)
and f ′(d) are defined and are sloutions of Ξd. Since on Ω, the system Ξd has a unique
solution, we obtain f(d) = f ′(d) for d outside of a countable number of hypersurfaces of Ω.
This implies that f is equal to f ′.

Step 3: Outside of a countable number of hypersurfaces, the system Ξd has a unique solution which
is equal to f(d).

Since Ξ has a unique solution, each vector ξi can be written as a finite linear combination
xr =

∑
ai,rξi. Put D′ = {d| ai,r and f are defined at d}. Then for all d ∈ Ω, the function

f(d) is the unique solution of Ξd.

In order to apply this theorem, we will need the following proposition.

Proposition 3.5. Let π be a representation of parabolic type, there are t affine linear forms Li,
for i between 1 and t, with Li depending on the variable ui, such that if the Li(ui)’s and s have
positive real parts, the integral I(W,φ, s) is convergent for any W in W (πu, ψ) and any φ in
C∞
c (Fn).

22



Proof. Let W belong to W (πu, ψ) and φ belong to C∞
c (Fn), because of the formula

∫

Nn(F )\Gn(F )

W (g)φ(ηng)|det(g)|
s
Fdg =

∫

Kn,F

∫

Nn(F )\Pn(F )

W (pk)|det(p)|s−1
F dp

∫

F∗

φ(ηnak)cπ(a)|a|
ns
F d

∗adk,

one deduces that the absolute convergence of the integral

∫

Nn(F )\Gn(F )

W (g)φ(ηng)|det(g)|
s
Fdg

is guaranteed by those of
∫
Nn(F )\Pn(F )W

′(p)|det(g)|s−1
F dp for anyW ′ inW (πu, ψ), and of

∫
F∗
φ′(ηnaIn)|a|

ns
F d

∗a

for any φ′ in C∞
c (Fn).

It is classical that the latter integrals converge as soon as Re(s) > 0, so we focus on integrals of
the form

∫
Nn(F )\Pn(F )W

′(p)|det(p)|s−1
F dp for W ′ in W (πu, ψ).

We now recall the following claim, which is proved in the lemma of Section 4 of [F1].

Claim. Let τ be a sub-Pn(K)-module of C∞(Nn(K)\Pn(K), ψ), such that for every k between
0 and n, the central exponents of τ (k) are positive (i.e. the central characters of all the irre-
ducible subquotients of τ (k) have positive real parts), then whenever W belongs to τ , the integral∫
Nn(F )\Pn(F )W (p)dp is absolutely convergent.

Applying this to our situation, and noting eπ the maximal element of the set of central
exponents of π (see Section 7.2 of [Ber]), we deduce that as soon as u is such that Li(u) = ui−eπ−1
has positive real part for i between 1 and t, and as soon as s has positive real part, the integral∫
Nn(F )\Pn(F )W

′(p)|det(p)|s−1
F dp converges for all W ′ in W (πu, ψ).

We now can prove the following:

Proposition 3.6. Let π be a representation of parabolic type, for every W in W
(0)
π , and φ ∈

C∞
c (Fn), the function I(W,φ, s) belongs to C(q−uF , q−sF ).

Proof. In our situation, the underlying vector space is V = Fπ ⊗ C∞
c (Fn) and is of countable

dimension because π is admissible. The invariance property satisfied by the functional I,is

I(πu(g)Wf,u, ρ(g)φ, s) = |det(g)|sF I(Wf,u, φ, s) (7)

for f in Fπ and φ in C∞
c (Fn), and g in Gn(F ).

From the proofs of Lemma 8 and of the unique proposition of [F2], it follows that out of the

hyperplanes in (u, s) defined by cρu
|z|j(s−1) = 1, for ρu in the irreducible components of π

(n−j)
u ,

and for j > 0, and out of the hyperplane cπu
|z|ns = 1, the space of solutions of equation 7 is of

dimension at most one. If we take a basis of (fα)α∈A of Fπ, and a basis (φβ)β∈B of C∞
c (Fn),

the polynomial family over the irreducible complex variety D = (DK)t × DF of systems Ξ′
d, for

d = (u, s) ∈ D expressing the invariance of I is given by:

Ξ′
d =

{
(πu(g)πu(gi)Wfα,u ⊗ ρ(g)φβ − |det(g)|sFπu(gi)Wfα,u ⊗ φβ , 0),
α ∈ A, β ∈ B, g ∈ Gn(F ), gi ∈ Gn(K)

}

Now we define Ω to be the intersection of the three following subets of D:

• the intersection of the complements of the hyperplanes such that πu is in general position
on this intersection (see Proposition 3.2),

• the intersection of the complements of the hyperplanes on which uniqueness up to scalar
fails,

• the intersection of the domains {Re(Li(u)) > 0} and {Re(s) > 0}, on which I(Wf,u, φ, s) is
given by an absolutely convergent integral.
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The functional I is the unique solution up to scalars of the system Ξ′, in order to apply
Theorem 3.3, we add for each d ∈ D a normalization equation Ed depending polynomially on d.
This is done as follows, we recall the following integration formula, which is valid for W (u, g) ∈

W
(0)
π with u ∈ Ω and φ ∈ C∞

c (Fn):

I(W,φ, u, s) =

∫

Nn(F )\Gn(F )

W (u, g)φ(ηng)|det(g)|
s
Fdg

=

∫

KF
n

∫

Nn(F )\Pn(F )

W (u, pk)|det(p)|s−1
F dp

∫

F∗

φ(ηak)cπ(a)|a|nsF d
∗adk.

Now from Proposition 3.4, if F is a positive function in C∞
c (Nn(K)\Pn(K), ψ), we choose a W

in W
(0)
π such that its restriction to Pn(K) is of the form W (u, p) = F (p)P (q±uK ) for some nonzero

P in P0. Let K ′ be a sufficiently small subgroup of of KF
n , such that K ′ ∩ Pn(K) stabilizes W ,

and let φ′ be the characteristic function of ηnK
′, then one has

I(W,φ′, u, s) = r

∫

Nn(F )\Pn(F )

F (p)|det(p)|s−1
F dpP (q±u),

for some positive constant r. Calling c the constant r
∫
Nn(F )\Pn(F ) F (p)|det(p)|s−1

F dp, this latter

equality becomes I(W,φ′, u, s) = cP (q±uK ). Now as W is in W
(0)
π , it can be expressed as a

finite linear combination W (g, u) =
∑

k πu(gi)Wfα,u(g) for appropriate gα ∈ Gn(K). Hence our
polynomial family of normalization equations (which is actually independant of s) can be written

E(u,s) =

{
(
∑

α

πu(gα)Wfα,u ⊗ φ′, cP (q±uK )

}
.

We now call Ξ the system given by Ξ′ and E, it satisfies the hypotheses of Theorem 3.3. We
thus conclude that there is a functional I ′ which is a solution of Ξ such that (u, s) 7→ I ′([u 7→

W (u)], φ, s) is a rational function of q±uF and q±sF for W ∈ W
(0)
π and φ in C∞

c (Fn). We also
know that I ′([u 7→ W (u)], φ, s) is the unique solution of Ξ′

(u,s) outside a countable number of

hypersurfaces in (u, s). In particular, on the intersection of Ω and of the complementary set of
the removed hypersurfaces, the functionals I and I ′ agree. This implies that for fixed u ∈ (DK)t

and f ∈ Fπ, for Re(s) large enough (let’s say Re(s) ≥ r for some real number r) , there is at least
an open subset of the domain Re(s) ≥ r such that both functions I(Wf,u, φ, s) and I ′(Wf,u, φ, s)
are equal. As they are rational functions of q−sF , they are equal for all s, and we conclude that
(u, s) 7→ I(Wf,u, φ, s) belongs to C(q−uF , q−sF ).

An immediate corollary is the following.

Proposition 3.7. Let π be a parabolic type representation of the group Gn(K), then the factor
γKF (πu, s) belongs to C(q−uF , q−sF ).

We now prove a first step towards our main result.

Proposition 3.8. Assuming Conjecture 1.1, let π = ∆1×· · ·×∆t be a parabolic type representa-
tion of the group Gn(K), then the Euler factor LKF (π, s) divides

∏
1≤i<j≤t L(∆i×∆σ

j , s)
∏

1≤k≤t L
K
F (∆k, s).

Proof. We know from Theorem 3.2 that

LKF (πu, s) =
∏

1≤i<j≤m

L(∆i × ∆σ
j , ui + uj + s)

∏

1≤k≤m

LKF (∆k, 2uk + s)

when u is in general position, hence for any f ∈ Fπ, and any φ in C∞
c (Fn), the function

I(Wf,u, φ, s)∏
1≤i<j≤m L(∆i × ∆σ

j , ui + uj + s)
∏

1≤k≤m L
K
F (∆k, 2uk + s)
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has no poles when u is in general position. But the removed hyperplanes defining general position
don’t depend on s, but only on u. As we know that for fixed u, the integral defining I(Wf,u, s)
converges for Re(s) large enough, we deduce that no polar locus of I(Wf,u, s) can lie in those
removed hyperplanes. This implies that the rational function I(Wf,u, s) of q−uF and q−sF has no
poles, hence belongs to C[q±uF , q±sF ]. We now specialize at u = 0, to get that

I(W,φ, s)∏
1≤i<j≤m L(∆i × ∆σ

j , s)
∏

1≤k≤m L
K
F (∆k, s)

belongs to C[q±sF ] for every W in W (π, ψ) and φ in C∞
c (Fn). The conclusion follows.

Proposition 3.9. Assuming Conjecture 1.1, let π = ∆1 × · · · × ∆t be a parabolic type represen-
tation of the group Gn(K), the two rational functions γKF (πu, ψ, s) and

∏
1≤i<j≤t γ(∆i ×∆σ

j , s+

ui + uj)
∏t
k=1 γ

K
F (∆k, s+ 2uk) are equal up to a unit in C[q−uF , q−sF ].

Proof. We define the ratio ǫK,0F (πu, ψ, s) to be the function

γKF (πu, ψ, s)
∏

1≤i<j≤t L(∆i × ∆σ
j , s+ ui + uj)

∏
1≤k≤t L

K
F (∆k, s+ 2uk)∏

1≤i<j≤t L(∆∨
i × (∆σ

j )
∨, 1 − s− ui − uj)

∏
1≤k≤t L

K
F (∆∨

k , 1 − s− 2uk)
.

Hence for u in general position, we have the equality ǫK,0F (πu, ψ, s) = ǫKF (πu, ψ, s), which imples
this second equality. Applying the functional equation 2.1 twice, we deduce that for u in general
position, one has ǫK,0F (πu, ψ, s)ǫ

K,0
F (π∨

u , ψ
−1, 1 − s) = 1. This equality of rational functions being

true on the Zariski open subset of u in general position, it is always true, and ǫK,0F (πu, ψ, s) is
therefore a unit in C[q−uF , q−sF ]. Combining the following equalities,

γKF (πu, ψ, s) =

ǫK,0F (πu, ψ, s)
∏

1≤i<j≤t

L(∆∨
i × (∆σ

j )
∨, 1 − s− ui − uj)

∏

1≤k≤t

LKF (∆∨
k , 1 − s− 2uk)

∏

1≤i<j≤t

L(∆i × ∆σ
j , s+ ui + uj)

∏

1≤k≤t

LKF (∆k, s+ 2uk)
,

γ(∆i × ∆σ
j , s+ ui + uj, ψ) =

ǫ(∆i × ∆σ
j , s+ ui + uj , ψ)L(∆∨

i × (∆σ
j )

∨, 1 − s− ui − uj)

L(∆i × ∆σ
j , s+ ui + uj)

and

γKF (∆k, s+ 2uk, ψ) =
ǫ(∆k, s+ 2uk, ψ)L(∆∨

k , 1 − s− 2uk)

L(∆k, s+ 2uk)
,

we conclude that γKF (πu, ψ, s) and
∏

1≤i<j≤t

γ(∆i × ∆σ
j , s+ ui + uj)

t∏

k=1

γKF (∆k, s+ 2uk) are equal

up to a unit in C[q−uF , q−sF ].

This proposition has an immediate corollary.

Corollary 3.6. Assuming Conjecture 1.1, let π = ∆1 × · · · × ∆t be a parabolic type rep-
resentation of the group Gn(K), the two rational functions γKF (π, ψ, s) and

∏
1=i<j=t γ(∆i ×

∆σ
j , s)

∏t
k=1 γ

K
F (∆k, s) are equal up to a unit in C[q−sF ].

We will denote by ∼ the fact of being equal up to a unit in C[q−sF ], hence we can write

γKF (π, ψ, s) ∼
∏

1=i<j=t γ(∆i × ∆σ
j , s)

∏t
k=1 γ

K
F (∆k, s).

Proposition 3.10. Suppose that π1 and π2 are representations of Whittaker type of Gn1
(K) and

Gn2
(K), and π = π1 × π2 the corresponding representation of the group Gn(K), for n = n1 +n2.

Then the Euler factor LKF (π, s) divides LKF (π2, s).
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Proof. We know from discussion after the formula (3) that if W belongs to W (π, ψ), then the
function

I(n1−1)(W, s) =

∫

Nn2
(F )\Gn2

(F )

W

(
h

In1

)
|det(h)|s−n1

F dh

belongs to I(π). But from Proposition 9.1 of [J-P-S], for each couple (W2, φ) in W (π2, ψ) ×

C∞
c (Kn2), there exists W in W (π, ψ), such that W

(
h

In1

)
= W2(h)φ(ηn2

h)|det(h)|
n1/2
K for

h in Gn2
(K). Hence each integral

I(W2, φ, s) =

∫

Nn2
(F )\Gn2

(F )

W2(h)φ(ηn2
h)|det(h)|sFdh

is equal to I(n1−1)(W, s) for some W in W (π, ψ) because | |
n1/2
K restricts as | |n1

F to F ∗. Hence
every function I(W2, φ, s) belongs to I(π), which is I(π2) ⊂ I(π) and the conclusion follows.

We are now able to show our main result.

Theorem 3.4. Let (n1, . . . , nt) be a partition of the positive integer n, and for each i between 1
and t, let ∆i be a square-integrable representation of Gni

(K). We take π to be the Langlands type
representation ∆1| |

u1 × · · · × ∆1| |
ut with the ui’s real numbers ordered decreasingly. Assuming

Conjecture 1.1, then one has the equality

LKF (π, s) =
∏

1≤i<j≤t

L(∆i × ∆σ
j , s+ ui + uj)

∏

1≤k≤t

LKF (∆k, s+ 2uk).

Proof. We denote by L′
W (π, s) the function

∏

1≤i<j≤t

L(∆i × ∆σ
j , s+ ui + uj)

∏

1≤k≤t

LKF (∆k, s+ 2uk).

We prove the theorem by induction on t.
There is nothing to prove when n = 1.
t − 1 → t: we assume that the result is true for any k ≤ t − 1. Let π be the Langlands type
representation ∆1| |

u1 × · · · × ∆1| |
ut . Fom Proposition 3.8, there are two polynomials such P

and P̃ that LKF (π, s) = P (q−sF )L′
W (π, s) and LKF (π∨, s) = P̃ (q−sF )L′

W (π∨, 1−s). We want to show
that P is 1.
From Proposition 3.6, we deduce P (q−sF ) ∼ P̃ (q−sF ). Now we denote by π2 the representation
∆2| |

u2 × · · · × ∆t| |
ut , hence π is equal to ∆1| |

u1 × π2. By induction hypothesis, we have the
equality LKF (π2, s) = L′

W (π2, s) and we know from Proposition 3.10 that there exists a polynomial
Q such that LKF (π2, s) = Q(q−sF )L′

W (π, s). We thus have LKF (π2, s) = Q(q−sF )P (q−sF )L′
W (π, s),

and P (q−sF ) divides [
∏
j≥2 L

K
F (∆1 × ∆σ

j , s + u1 + uj)L
K
F (∆1, s + 2u1)]

−1. Corollary of The-

orem 2.3 of [C-P] implies that [
∏
i≥2 L

K
F (∆1 × ∆σ

j , s + u1 + uj)]
−1 has its zeros in the set

∪tj=2 {s/Re(s) ≤ −u1 − uj} and Corollary 3.2, that the function [LKF (∆1, s + 2u1)]
−1 has its

zeros in the set {s/Re(s) ≤ −2u1}. Finally P (q−sF ) has its zeros in the set {s/Re(s) ≤ −u1 − ut}.
Now we denote by π3 the representation ∆1| |

u1×· · ·×∆t−1| |
ut−1 , hence π is equal to π3×∆t| |

ut .
We obtain in the same manner that P̃ (q−sF ) divides [

∏
j≤t−1 L

K
F (∆∨

j × (∆σ
t )∨, 1 − s − ut −

uj)L
K
F (∆t, 1−s−2ut)]

−1, hence its zeroes must have real part greater than or equal to 1−u1−ut.

This implies that P (q−sF ) and P̃ (q−sF ) have no zero in common, but are equal up to a unit in C[q−sF ],

hence both are constant, and as P (0) = P̃ (0) = 1, both are equal to one.

As any generic representation, is isomorphic to a representation of Langlands type, we have
the following corollary.

Corollary 3.7. Assuming Conjecture 1.1, if the representation π is a generic representation of
the group Gn(K), then the functions LKF (π, s) and LK,WF (π, s) are equal.
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Proof. We know that this equality is true for quasi-square-integrable representations. Let π =
∆1 × · · · × ∆t be a generic representation. Each quasi-square-integrable representation ∆i is
associated by Langlands correspondence to a representation ρi of the Weil-Deligne groupW ′

K , and

π is thus associated with ρ1⊕· · ·⊕ρn. From Lemma 7.1 of [P], one deduces that LK,WF (∆1×· · ·×
∆n), which is by definition LKF (ρ1⊕· · ·⊕ρt), is equal to

∏
1≤i<j≤t L(ρi×ρ

σ
j , s)

∏
1≤k≤t L

K
F (ρk, s),

and the latter is known to be equal to
∏

1≤i<j≤t L(∆i × ∆σ
j , s)

∏
1≤k≤t L

K
F (∆k, s). Conclusion

then follows from Theorem 3.4.

Finally, we know from the main theoem of [M1], that Conjecture 1.1 is true for principal series
representations of Gn(K). The theorem is the following.

Theorem 3.5. Let χ = (χ1, . . . , χn) be a character of Tn(K) with unlinked characters χi of
K∗, the irreducible principal series representation π(χ) is distinguished if and only if there exists
r ≤ n/2, such that χσi+1 = χi

−1 for i = 1, 3, .., 2r − 1, and that χi|F∗ = 1 for i > 2r.

Now as a consequence of this theorem, and of the results of this section, we have the following:

Theorem 3.6. Let π = λ1 × · · · × λn be an irreducible principal series representation, where the
λi’s are unlinked characters of F ∗. Then we have the following equality of L-functions:

LKF (π, s) =
∏

1≤i<j≤n

L(λi × λσj , s)

n∏

k=1

LKF (λk, s) = LK,WF (π, s)

Proof. One only has to show that the proof of Theorem 3.2 adapts to the subclass of represen-
tations of the principal series. The only thing to notice to adapt the proof, is that in this case,
the irreducible components of the derivatives of π are still principal series representations. The
validity of the result for π not in general position, follows from the deformation arguments of
Subsection 3.4.
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