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Abstract: In the last decade, many methods have been proposed for rendering image-based objects. However, the number
and the size of the images required are highly memory demanding. Based on the light field data structure, we
propose an improved compression scheme favoring visual appearance and fast random access. Our method
relies on vector quantization for preserving access in constant time. 2D Bounding boxes and masks are used to
reduce the number of vectors during quantization. Several light field images are used instead of blocks of 4D
samples, so that image similarities be exploited as much as possible. Psychophysical experiments performed
in a room designed according to ITU recommendations validate the quality metrics of our method.

1 INTRODUCTION

Image-based rendering methods offer an attractive
mean for realistically rendering and/or relighting real-
life objects, with potentially complex shape and re-
flectance properties. In many cases, modeling objects
from our real world is unpractical, not only because of
shape that is difficult to reproduce, but also due to re-
flectance properties that should also be modeled and
rendered, with subsurface scattering, anisotropy and
so on.

With image-based rendering methods, object com-
plexity is postponed to image complexity. Further-
more, in some cases, rendering time is constant. This
is one important reason why this representation has
been a method of choice for several years.

However, these methods suffer from various draw-
backs such as the high number of images required, the
lack of precision when the observer is close to the ob-
ject, or the (blurred) discontinuities appearing on the
rendered images.

This paper addresses the problem of compression
for light fields (or lumigraphs) interactive rendering
[9, 4]. Even though compression is necessary for re-
ducing the size of data for generating images, both vi-
sual quality and rendering time have to be taken into
account (Figure 1).

Several methods have been applied for compress-
ing data related to light fields [17, 2, 10, 15, 3]. The

Figure 1: Images from compressed light fields. (a) refer-
ence image; (b) original 4D compression scheme from [9];
(c) our method. GPU implementation allows the rendering
of 20 light fields at between 25 to 65 frames per second.

original work described in [9] presents a compression
method based on the 4D structure. In the literature,
high compression rates can only be achieved at the
expense of image quality or with a loss of random
access. In addition, object contours are subject to ar-
tifacts (see Figure 1.b).

In this paper, we propose to adapt vector quantiza-



tion for light field rendering so as to perform well in
every way of these. Our method relies in the 2D space
of images and highly benefits from inter-image simi-
larities when viewpoints are close. Our contributions
include: (i) the use of object masks for reducing the
compression areas and preserving the object contours;
(ii) the combination of images for improving vector
quantization in terms of visual appearance and com-
pression rates; (iii) the validation of our compression
scheme using a PSNR (Peak Signal to Noise Ratio)
metric validated by a psychophysical study quantify-
ing its correlation with human judgment.

This paper is organized as follows: Section 2
presents the work related to our paper; Section 3
presents the broad lines of our method; Section 4 sum-
marizes the vector quantization method we use; Sec-
tion 5 discusses light field compression using quanti-
zation; Section 6 shows how object silhouette can ef-
ficiently be used for improving quantization; Section
7 presents our quality assessment system; Section 8
gives implementation details; Section 9 provides re-
sults; Section 10 concludes and proposes future work.

2 RELATED WORK

2.1 Light Field Data Structure

Light fields (or lumigraphs) correspond to a 4D sam-
pling of the plenoptic function defined in [1] by Adel-
son and Bergen. They are defined by a set of slabs.
Each slab is a pair of parallel planesuv andst uni-
formly sampled [9, 4]. Figure 2 illustrates the light
field representation.

2.2 Light Field Compression

In the original work proposed in [9], light field com-
pression is achieved through vector quantization. In-
stead of using 2D vectors on the images, the authors
compress 4D vectors corresponding to 2D samples on
the uv plane combined with 2D samples on thest
plane. The aim is to benefit from the similarity ex-
isting between two close viewpoints.

In [18], prediction is used for recovering images
and achieving high compression rates. In [20], com-
pression makes use of prediction on intermediate im-
ages for concentric mosaics. Principal component
analysis [8], 2D shape encoding [3] or wavelet coders
[19, 10] can also advantageously be exploited for in-
creasing compression rates.

Several authors addressperceptual image qual-
ity with image-based rendering compression methods
without quantization [16, 14, 15, 13, 20]. For instance
in [14], the authors propose two methods dedicated to
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Figure 2: Light field representation. (a) an image corre-
sponds to oneuv sample associated with the wholest plane;
(b) conversely, onest sample associated with all theuv
directions provides radiance samples passing through the
point located in(s, t).

light field compression. The first one relies on DCT-
based video compression while the second one re-
lies on disparity-compensated image prediction. The
compression rates achieved are very high (from 100:1
to 2000:1).

Nevertheless, as pointed out in [5, 9] vector quan-
tization is more practical for graphics hardware im-
plementation since decompression can be achieved by
the GPU.

Geometry has also been used for improving ob-
ject appearance and reducing the image-based infor-
mation size [15, 2]. However, some reconstruction
process is required. This paper rather addresses light
fields compression without geometry reconstruction.

3 WORK OVERVIEW

Our compression scheme is based on vector quan-
tization. Instead of using vectors in the 4D space of
light fields, we propose to exploit image similarities
using several images with 2D vectors. As shown in
the results, the visual quality is greatly improved, with
a high compression rate.

Most light fields represent 3D objects in front of a
neutral background (uniformly black by convention).
In this paper, we focus on that type of light field and
take advantage of it: pixels corresponding to the back-
ground are ignored using 2D bounding boxes on the
images and a binary mask matching the object silhou-
ette. This is used for: (i) avoiding the compression
of groups of background pixels and (ii) providing a
better representation for PSNR computations.



In order to validate the use of PSNR which is often
considered as uncorrelated to human judgment, we
have designed and conducted a psychophysical exper-
iment. After a correlation study, we have been able to
link the PSNR to the MOS (Mean Opinion Score) so
as to extract a quality threshold.

We have applied our compression method on a set
of virtual and real objects, with various reflectances,
textures and sizes. Our method proves fast and effi-
cient for compressing light field images and render-
ing them in real-time directly from their compressed
form.

A LZ scheme can further reduce the light field sizes
on the disk (for instance when a light field has to be
transmitted though a computer network).

4 VECTOR QUANTIZATION

Even with loss, vector quantization is a method of
choice for reducing image sizes. However, visual ar-
tifacts should be unnoticeable for quality light field
rendering.

The aim of vector quantization is to replace a (high)
number of vectors by a set of indexes referencing a
reduced set of representatives (thedictionary). The
size required for each index depends on the number
of vectors contained in the dictionary.

Several methods have been proposed for the dictio-
nary construction. Most of them provide comparable
results in terms of compression rates. We have cho-
sen the LBG method [11] since the dictionary size is
a power of two. This is convenient for storing data
in the memory as explained in Section 8. Moreover,
the dictionary size can be automatically chosen de-
pending on a measured quality value (the PSNR in
our case). The dictionary refinement is based on a
generalized Lloyd iteration [12].

We have tried various color spaces (RGB, CIE Luv,
CIE Lab, LCh). In all the tests we made for light field
compression, the quadratic RGB distance associated
with a PSNR quality measurement provided the best
results.

5 LIGHT FIELD COMPRESSION

Figure 3 and Table 1 present the light fields used in
this paper, including real and virtual objects. TheSun-
flower is a real object as well as theClown. TheQuad
is a virtual object, rendered withPOV-ray. Buddha
andDragonare provided by Stanford University.

Figure 3: Images of light fields used for our tests: (a)Sun-
flower, (b) Clown, (c) Quad, (d) Buddha, (e)Dragon.

LF Sl (u, v) (s, t) m.size
Sunflower 4 8 × 8 256 × 256 48
Clown 5 8 × 8 256 × 256 60
Quad 6 8 × 8 256 × 256 72
Buddha 1 32 × 32 256 × 256 192
Dragon 1 32 × 32 256 × 256 192

Table 1: Light fields characteristics.Sl is the number of
slabs;(u, v) and(s, t) represent the number of samples on
theuv andst planes;m.sizecorresponds to the memory re-
quired for storing the whole light field without compression
(given in MB).

5.1 Images (2D Vectors)

On one hand, it is possible to compress every light
field image independently. Thus, one dictionary is
necessary for each image. However in this case, com-
pression rates do not benefit from images similarity
when viewpoints are close. Moreover, since dictio-
naries are separated, as many dictionaries as images
are necessary in the memory during rendering.

On the other hand, only one dictionary for all the
images of a light field is not more attractive since all
the viewpoints show various portions of the object,
with varying lighting conditions and potentially vary-
ing reflectance properties. Therefore, a single dictio-
nary clamps many important noticeable tints. This
method is thus inappropriate for coding shading re-
finements.

5.2 UVST Blocks (4D Vectors)

Another solution consists in exploiting the whole light
field coherence. This is why the authors of [9] pro-



pose a compression scheme based on 4Duvst blocks.
With this approach, a2×2×2×2 uvst vector corre-
sponds to 4 blocks of2× 2 pixels in2× 2 uv sample
images in the same slab.

Increasing the vector size also requires to increase
the dictionary size. Furthermore, the vectors in this
dictionary are also larger. This is why a single dictio-
nary should be used for the whole light field with 4D
vectors.

LF v.type d.size c.time m.size PSNR
1 4D 16384 2h 1173 30.63

2D 256 40s 916 30.70
2 4D 16384 7h 2598 33.43

2D 256 3m 4104 32.72

Table 2: Comparison of compression methods: 4D quanti-
zation vs. 2D quantization. Two light fields (LF) are used:
1- theSunflowerand 2- theBuddha. v.type indicates the
type of vectors used for quantization;d.size is the dic-
tionary size;c.time provides the computing time;m.size
is the memory size (in KB) with compression. The given
PSNR corresponds to a mean over the compressed images.

The results provided in Table 2 show that larger
vectors and unique dictionary for all the slabs im-
ply higher compression time. As stated in [9], the
approach using 4D vectors remains interesting only
when theuv plane is densely sampled. However, in-
creasing the sampling density also increases the light
field size whatever the compression scheme used.
Both these affirmations can be verified in this example
(Buddhais 16 times denser thanSunflower).

5.3 Slab Images

As shown in Figure 4.a, a block of pixels on thest
plane does generally not correspond to the same re-
gion of the object for2×2 uv samples. This produces
artifacts when using4D vectors. On the other hand,
2D st vectors can be associated with one region of
the object for more distant viewpoints, thus increas-
ing image quality with a smaller dictionary.

This is the reason why we have associated one dic-
tionary for groups of severaluv images in each slab.
This method better benefits from image similarities
for bothuv andst planes.

As shown in Table 3, reducing the number of dic-
tionaries for each slab allows to increase the dictio-
nary size (and thus the image quality) while keeping
a similar overall memory size. Nevertheless, we have
noticed that the loss in visual quality is not worth the
benefit in memory space when the number of dictio-
naries is too low (with fixed dictionary size). Addi-
tionally, we show in Section 9 that the number of dic-
tionaries should remain high enough for ensuring a

uv plane

st plane st plane

uv plane
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Figure 4: (a) A2× 2× 2× 2 block ofuvst does not cover
the same region of the object; (b) With2 × 2 blocks ofst
samples, it is possible to associate pixels corresponding to
the same region of the object for several viewpoints.

# Dict. d.size m.size PSNR
64 128 1144 30.8
16 256 1060 31.8
4 512 1073 32.6
1 1024 1133 33.3

Table 3: Comparison of number of dictionaries per slab for
theSunflowerlight field. d.size corresponds to the dictio-
nary size whilem.size indicates the size required in mem-
ory (in KB). The given PSNR (in dB) corresponds to a mean
on the compressed images (background pixels are not taken
into account).

homogeneous quality over the whole light field. In
practice, the best compromise has generally been ob-
tained with 4 dictionaries per slab, corresponding to4
regions ofuv images subdividing the slab.

6 OBJECT SILHOUETTE

Background pixels in the images do not corre-
spond to any information. Quantifying these pix-
els increases the computing time, the dictionary size
and contributes to the impairment of visual quality
through aliasing on the object contour. This is why we
propose to only take into account pixels correspond-
ing to the object in our quantization method.

6.1 Silhouette Bounding Box

In most light fields, thest plane is placed so that the
object be located at the center of the images. We
first associate a 2D bounding box enclosing the object
with each image. All the pixels outside the box are not
considered during the quantization process; they are
not even stored in the memory. In practice, depend-
ing on light fields, between 40% and 80% of vectors
are ignored during encoding.



6.2 Silhouette Mask

Inside each bounding box (for eachuv image), a bi-
nary mask indicates whether a pixel corresponds to
the object or to the background. It is RLE-encoded
on the disk, and stored uncompressed in the memory
for rendering performance reasons.

Light Field Mask size (KB) Benefit
Sunflower 430 67.1%
Clown 704 57.4%
Quad 1510 24.8%
Buddha 2031 62.6%
Dragon 4779 12.1%

Table 4: Mask size in the memory for each light field and
benefit compared to compression without bounding boxes
nor masks. Dictionaries contain 256 vectors.

As shown in Table 4, even though bounding boxes
and masks have to be stored in the memory, compres-
sion rates are higher than pure 2D compression with
equal PSNR. Last but not least, object silhouettes are
accurately preserved.

7 QUALITY ASSESSMENT

Quality assessment addresses several types of ap-
plications such as medical imaging, image and video
compression, etc. The assessment can be subjective
involving human judgment, objective implying the
use of mathematical tools, or both [7].

Formal subjective testing has been used for many
years with a relatively stable set of standard methods
described in the ITU recommendation [6].

Objective quality assessment offers several types of
measures or metrics. Simple metrics such as PSNR
are very easy to compute and are appropriate for real-
time assessment but they may not correlate with hu-
man judgment. Other measures are based on the Hu-
man Visual System (HVS) modeling which allows a
good correlation but are often difficult to implement.

Because subjective experiments are complicated to
manage and time consuming, they are difficult to re-
peat. To ensure repeatability, the correlation existing
between the opinion score (subjective) and the results
of mathematical metrics (objective) is studied. In the
case of a good correlation (greater than 70%), it is
possible to use the metric and to extrapolate the re-
sults for human judgement.

In existing light field works, compression bit-rate
(i.e. size of dictionaries) is chosen only with regards
to the used memory while the PSNR is used for final
quality assessment. In our approach, bit-rate is reg-
ulated by a quality criterion (see Section 8). During

quantization, the dictionary is iteratively constructed.
At every step, the quality associated to the dictionary
is measured and compared to a threshold. If it exceeds
the threshold, the algorithm stops. Otherwise, a new
step starts with an increased dictionary size.

7.1 Evaluations conditions

In the framework of psychophysical assessment, we
have verified that the observer has a normal visual
acuity and no color blindness. Our psychophysical
test room conforms to ITU recommendations [6] (Fig-
ure 5.a):

• an adjustable and directional lighting with a tem-
perature between 5000K and 6500K delivering 25
lux on the display because of the black background;

• a calibrated display with a resolution of800 × 600
pixels to display256 × 256 images;

• a non reflective wall painting;

• an adapted viewing distance: 75 cm.

(a)

(b)

Figure 5: Psychophysical experiments: (a) Test room instal-
lation; (b) Snapshot of the proposed protocol using ”Presen-
tation” software from Neurobehavioral Systems.

7.2 Assessment protocol

The duration of a subjective experiment is around 15
minutes. It should not exceed 30 min because of the



observer fatigue. The test protocol is composed of 5
different light fields where only 3 images have been
chosen for their specific content. 4 couples of suc-
cessive dictionary sizes are confronted for each view,
from 128 vs. 256 to 1024 vs. 2048, defining 60 tests
(5 × 3 × 4). The original image is displayed on the
top in order to have a reference of quality. A snapshot
of the protocol is given in Figure 5.b.

In front of the configuration of Figure 5.b, the ob-
server has to make a choice. If one of the two com-
pressed images looks less impaired than the other, he
clicks on the best one. If no difference is perceptible,
the reference image or the ”Bad” button are clicked
respectively when both images seem similar to the
reference image or when they are strongly impaired.

When the result is validated, an intermediate black
screen is displayed during half a second for memo-
rization avoidance. Another test among the sixty is
proposed to the observer in a random way.

7.3 Assessment results

Nineteen observers have participated to the subjective
experiment (a minimum of fifteen is recommended
for coherent statistics). The average score of each
image is computed for all the observers. This score
is called Mean Opinion Score (MOS) and its value
is between 0 (no observer chose it) and 1 (all the ob-
servers chose it). To reject the incoherent answers and
the observers that do not make the test seriously, the
kurtosis test is performed with the whole data.

The next step is to study the correlation between the
PSNR and the MOS (see Figure 6). For this purpose,
we use the Pearson correlation coefficient which pro-
vides the link existing between two data sets. A high
correlation value means that the two measures have
a similar evolution. Furthermore, the behavior of the
first one could be extrapolated from the second one.
We thus obtain a value of 83.3% for the Pearson co-
efficient which demonstrates that the PSNR and the
MOS are very correlated in the framework of our ap-
plication.

The quality threshold implemented in the compres-
sion stage is based on the definition of the straight line
drawn in Figure 6 obtained by linear regression. The
equation of this line is:

PSNR = 9.032× MOS + 26.168 (1)

For instance, the threshold value for MOS= 0.7
(agreement of 70% of the observers) is PSNR=
32.5dB. Equation 1 is integrated in the system for
the automatic dictionary size determination: the user
can specify a MOS value as the quality criterion.

Figure 6: Correlation between PSNR and MOS.

8 IMPLEMENTATION

For constructing a dictionary as representative as
possible, we have chosen to use all theuvst sam-
ples as a learning set. Even though this choice im-
plies longer computing times, the final image qual-
ity is better during rendering. Moreover, compression
time only corresponds to a preprocessing step and is
much shorter than with 4D vectors.

The dictionary size is automatically fixed accord-
ing to the PSNR measured at each step of the LBG
algorithm. This method provides a dictionary size
equal to2n, n being the number of steps of the al-
gorithm (each step doubles the dictionary size). With
such a representation, the size of each index is equal
to n bits, which allows to store efficiently the index
table and offers a random access to any value inside
this table.

Black Red
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Red
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Yellow Light red
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Figure 7: Block selection when not taking background
(black) pixels into account. The vector distance between
(a) and (b) is lower than between (a) and (c) since the black
pixel is not taken into account.

The distancedv used between a pair of vectorsV1

andV2 during quantization is computed as follows:

dv(V1, V2) =

n∑

i=1

dp(V1,i, V2,i)

Vk,i corresponds to theith pixel of the vectorVk. dp

is the Euclidean distance between two pixels, using
their respective primary components in the RGB color
space. This is the distance usually used for vector



quantization. As shown in Figure 7, background pix-
els are advantageously discarded during quantization
by always getting a minimal distance with other pix-
els. These background pixels are recovered during
rendering thanks to the binary masks.

Algorithm 1 provides the decompression method
for a (slab, u, v, s, t) sample.

Algorithm 1: R,G,B sample fromu, v, s, t coordi-
nates and a compressed light field.

Data:
slab, u, v, s, t: light field direction;
LFc: compressed light field

Result:
r, g, b: light field sample (”color”);

begin
image = LFc.images(Slab, u, v);
codebook = LFc.codebooks(Slab, u, v);
if (s, t) ∈ image.bbox then

if (s, t) ∈ image.mask then
index = image.indexes(s, t);
(r, g, b) = codebook(index);

else
(r, g, b) = background;

else
(r, g, b) = background;

end

9 RESULTS

The PSNR values provided in this paper do not in-
clude background pixels since they disturb the actual
value. Using these pixels generally provides a much
higher PSNR value which is in practice unreliable be-
cause it depends on the number of such pixels in the
image. Tables 5 and 6 provide the results obtained for
the 5 test light fields.

The size selection is automatic and incremental,
based on the PSNR. A light field is compressed using
4 dictionaries per slab, each having its own size, such
that the PSNR is always greater than32.5dB (MOS
of 70%).

We have implemented both GPU and CPU light
field rendering programs. The tests were run with a
Xeon 2.4 GHz processor with 2GB RAM. For more
information about rendering, please refer to [9].

For CPU rendering, when using compressed in-
stead of uncompressed light fields, performance in
terms of frames per second decreases of about10%
with the whole data in memory. The rate is between
30 and52 frames per second for a single light field.
The difference is essentially due to access indirections
even though silhouette bounding boxes and masks

LF PSNR m.size c.rate c.time
Sunflower 33.0 1.52 31.6:1 4m14s
Clown 33.2 2.90 20.7:1 22m12s
Quad 33.4 4.47 16.1:1 5m14s
Buddha 33.1 6.09 31.5:1 9m52s
Dragon 32.9 15.25 12.6:1 36m04s

Table 5: Compression rates and PSNR for the test light
fields. PSNRis given in dB,m.sizecorresponds to the size
required in memory after compression (in MB),c.ratepro-
vides the compression rate,c.time indicates the time re-
quired for the compression process.

Light field v.coeff Images LT PSNR Min.
Sunflower 0.55 12.1% 31.4
Clown 0.53 5.6% 32.0
Quad 0.92 16.1% 31.0
Buddha 0.96 27.7% 30.4

Table 6: Results obtained in terms of variation coefficient.
v.coeffrepresents the variation coefficient in terms of PSNR
computed for all the images of the light field.Images LT
provide the percentage of images having a PSNR lower than
the given threshold.PSNR Minprovides the minimum value
found for the PSNR of one image.

avoid searching the dictionary for pixels outside the
object.

The GPU used for our tests is a NVIDIA Quadro
FX 3450/4000 SDI with 256 MB of memory. De-
pending on the viewpoint, our GPU program gener-
ates between 25 and 65 images per second with 20
light fields together.

Dragon LF Rendering Our Method
PSNR vc 1.20 dB 0.25 dB 0.26 dB
PSNR min 30.0 dB 30.4 dB 32.3 dB
PSNR max 36.8 dB 31.6 dB 33.6 dB
PSNR avg 31.1 dB 30.8 dB 32.9 dB
MOS avg 55 % 51% 74 %
Mem. size 9.5 MB 9.6 MB 10.6 MB

Table 7: PSNR comparison without background pixels for
theDragonobject between theLight Field Renderingcom-
pression scheme and our method. The size provided for our
method does not include the binary mask.PSNR vccor-
responds to the PSNR variation coefficient. Note that this
coefficient is much lower with our method.

Table 7 shows results obtained by our compres-
sion method and the approach proposed in [9] with
the original images of theDragon. With equiva-
lent PSNR and without masks, compression rates are
equivalents though it is the worst case for our com-
pression scheme. However, the variation coefficient
is much lower with our method (due to the use of



several dictionaries), implying a better visual qual-
ity during rendering. Using binary masks increases
further the object silhouette quality as shown in Fig-
ure 1. Unfortunately, this parameter is difficult to es-
timate in terms of PSNR. Another advantage of our
method concerns the automatic choice of compres-
sion rate that provides an average PSNR greater than
32.5 dB. It generally increases the PSNR of 2 dB at
the expense of 10% on the the light field size. In aver-
age, our method gives a PSNR high enough to ensure
that most observers do not notice any loss in quality
(MOS> 70%) while the previous method does not.

10 CONCLUSION

This paper presents an improved compression
method relying on quantization dedicated to interac-
tive quality rendering. Compression time and visual
quality have been improved with the help of object
bounding boxes and silhouette masks for each light
field image. The introduction of a PSNR threshold
has allowed to tune directly the visual quality of the
compressed objects with regards to human judgment.
As shown in the results, our method provides efficient
random access touvst samples during the rendering
phase. We wish to integrate depth to the binary masks
so as to reduce aliasing artifacts due touv sampling,
also validated by visual experiments.

11 AKNOWLEDGEMENTS

We wish to thank Stanford University for providing
the original and compressedDragonimages. We also
aknowledge James Cowley for theQuadmodel.

REFERENCES

[1] E. H. Adelson and J. R. Bergen.The Plenoptic Func-
tion and the Elements of Early Vision, chapter 1. Com-
putational Models of Visual Processing, MIT Press,
1991.

[2] C. Chang, X. Zhu, P. Ramanathan, and B. Girod.
Shape adaptation for light field compression. InIEEE
ICIP, 2003.

[3] B. Girod, C. Chang, P. Ramanathan, and X. Zhu.
Light field compression using disparity-compensated
lifting. In IEEE ICASSP, 2003.

[4] Steven J. Gortler, Radek Grzeszczuk, Richard
Szeliski, and Michael F. Cohen. The lumigraph.
ACM Computer Graphics, 30(Annual Conference
Series):43–54, August 1996.

[5] W. Heidrich, H. Lensch, M. Cohen, and H. Seidel.
Light field techniques for reflections and refractions.
In Eurographics Rendering Workshop 1999. Euro-
graphics, june 1999.

[6] ITU-R Recommendation BT.500-10. Methodology
for the subjective assessment of the quality of televi-
sion pictures. Technical report, ITU, Geneva, 2000.

[7] B. W. Keelan. Handbook of Image Quality: Charac-
terization and Prediction. Marcel Dekker, New York,
NY, 2002.

[8] Dan Lelescu and Frank Bossen. Representation and
coding of light field data.Graph. Models, 66(4):203–
225, 2004.

[9] Marc Levoy and Pat Hanrahan. Lightfield render-
ing. ACM Computer Graphics, 30(Annual Conference
Series):31–42, August 1996.

[10] J. Li, H. Shum, and Y. Zhang. On the the compression
of image based rendering scene: A comparison among
block, reference and wavelet coders. InInt. Journal of
Image and Graphics, 1(1):45–61, january 2001.

[11] Y. Linde, A. Buzo, and R. Gray. An algorithm for
vector quantizer design.IEEE Trans. on Communica-
tions, 1:84–95, Jan. 1980.

[12] Stuart P. Lloyd. Least squares quantization in
pcm. IEEE Transactions on Information Theory,
28(2):129–136, 1982.

[13] M. Magnor and B. Girod. Hierarchical coding of light
fields with disparity maps. InIEEE ICIP,Kobe, Japan,
pages 334–338, 1999.

[14] M. Magnor and B. Girod. Data compression for light
field rendering.IEEE Trans. Circuits and Systems for
Video Technology, 10(3):338–343, 2000.

[15] M. Magnor, P. Ramanathan, and B. Girod. Multi-view
coding for image-based rendering using 3-d scene ge-
ometry. InIEEE Trans. Circuits and Systems for Video
Technology, 13(11):1092–1106, november 2003.

[16] P. Ramanathan, M. Flierl, and B. Girod. Multi-
hypothesis prediction for disparity-compensated light
field compression. InIEEE ICIP, 2001.

[17] P. Ramanathan, M. Kalman, and B. Girod. Rate-
distortion optimized streaming of compressed light
fields. InIEEE ICIP, pages 277–280, 2003.

[18] X. Tong and R. Gray. Coding of multi-view images
for immersive viewing. InIEEE ICASSP, Istanbul,
Turkey, pp. 1879-1882, june 2000.

[19] Li-Yi Wei. Light field compression using wavelet
transform and vector quantization. Technical Report
EE372, University of Stanford, 1997.

[20] Cha Zhang and Jin Li. Compression of lumigraph with
multiple reference frame (MRF) prediction and just-
in-time rendering. InData Compression Conference,
pages 253–262, 2000.


