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A Fast Algorithm to Track Changes of Direction
of a Person Using Magnetometers

A. Fleury, Student Member, IEEE, N. Noury, Senior Member, IEEE, N. Vuillerme

Abstract— Technological advances in signal processing and in
circuits integration offer numerous perspectives in telemedicine
and telemonitoring. Considering the increase of life expectancy,
accurate and reliable assessement of modification and/or deteri-
oration in the health status of a person is needed. One possible
indicator is the “activity index” of a person. To compute such
an index, previous studies have used accelerometers. Although
these sensors are appropriate for the detection of postural
transitions (e.g. Sit To Stand and Stand To Sit), they do not allow
to detect changes of direction of a walking individual insofar
as such activity occurs in a constant gravitation field. Within
this context, the purpose of the present work is to investigate
whether magnetometers can be used to monitor the changes of
direction of a person.

Index Terms— Magnetometers, embedded system, yaw angle,
quaternion, clustering

I. INTRODUCTION

PERCENTAGE of population over 65 is increasing and
this trend will accelerate in a near future. To reduce the

time spent in hospital and to allow older adults to stay at
home, smart sensors and smart house [1] can be used not only
to monitor the activity, but also to detect abnormal situation
in the daily life of the person. Most of these systems integrate
accelerometers to detect fall [2] or to classify postural tran-
sitions (e.g. Sit To Stand and Stand To Sit) [3]. Data relative
to postural transitions of a person can further be used in a
data fusion engine to detect and charaterize daily activity of
the person and to compute his/her “activity index”. At this
point, however, accelerometers, by definition, do not allow
to detect changes of direction of a walking individual insofar
as such activity occurs in a constant gravitation field. Other
sensors are thus needed. Interestingly, [4], [5] used a central
consisting of accelerometers, magnetometers and gyroscopes
to track movements of a limb. In these studies, however,
magnetometers are used to compensate the integration drift
of the gyroscopes, only. Within this context, the purpose of
the present work is to investigate whether magnetometers can
be used to monitor the changes of direction of a person.

II. MATERIALS AND METHODS

A. Central of sensors – Delivered signals
As illustrated in Fig. 1, the central of sensors comprises 1

one-axis magnetometer (HMC1021Z, Honeywell) and 1 two-
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Fig. 1. 3D axis set on the circuit
board

Fig. 2. 3D axis set on the subject
(the red point designates location of
the sensors)

axis one (HMC1022, Honeywell). This central, maintained
immobile on the subject’s body (Fig. 2), creates a tri-
dimensional direct orthogonal basis, and allows the collection
of three distinct signals for x, y and z axes, respectively. An
example of collected data from these two magnetometers is
given in Fig. 3-A.

B. Signal processing

To reduce the number of computations, and thus to de-
crease the calculus consumption of the algorithm, raw signals
computed from magnetometers along x, y and z axes are
first pre-processed. On the whole, the filters used for both
walking and non activity time period detections, are applied
on a two seconds window, allowing the use of a relatively
rapid algorithm that can be executed in real time.

1) Walk filtering: Considering walking as a periodic signal
in the bandwidth [0.5Hz; 2Hz], the first process is a three-
order bandstop digital filter aimed at reducing the unwanted
variations in the magnetometers signal. Note that the signal
is duplicated and inverted before and after (mirror effect)
to remove discontinuities and hence to prevent edge effects.
The second process is a low-pass filter with a 4Hz cutoff
frequency to remove the high frequency noise. Fig. 3-B
and Fig. 4-B. illustrate filtered signals computed from data
collected during 250s and 40s, respectively. The 40s window,
illstrated in Fig. 4-B, corresponds to a temporal frame during
which two 180° “rotations” and a walking sequence were
executed.

2) Detection of non-activity periods of time: Since numer-
ous temporal frames contains very few movements and thus
do not present any interest, we use a filter which computes



Fig. 3. Successive steps of the filtering process shown on the signal of an
experimentation in which the subject walked, sat, stand and made different
changes of direction

the running standard deviation of the signal. The standard
deviation is defined by the following expression:
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This procedure allows to reduce the number of windows
to be analyzed, and hence the calculus consumption of the
algorithm.

On the one hand, to maintain the continuity of informa-
tion from one sampling window to another and to avoid
saving all collected samples, the following seven floating
point parameters have to be computed: (1) the number of
samples processed (1 variable), (2) the sum of the samples
(1 parameter per axis = 3 parameters), (3) the sum of the
square of the samples (1 parameter per axis = 3 parameters).

On the other hand, to improve the effectiveness of this
filter, before collecting magnetometers data, we initialize
these seven variables in a temporal frame during which a
half-turn movement is executed. This procedure allows the
first windows to be defined as “activity windows” only if
they really are.

The standard deviation of each window is compared to the
running standard deviation. There are two possibilities : (1)

Fig. 4. Successive steps of the filtering process shown on a significant part
of the signal of Fig. 3 in which the subject made a 180° rotation, walked
and made a second 180° rotation in the opposite direction

if its value is small compared to the one of the signal, the
window is declared as “non-activity” and the whole window
signal is replaced by its mean (low pass filter that keeps only
the constant component); (2) if not, the signal is kept as is
(all-pass filter). This filter can be modelled as follows:

∀i ∈ [1;Nw], xi =

{
xi if sw > ε · st
xw else

(3)

with:
• Nw The size of the Window
• sw Standard deviation of the Window
• ε a coefficient determined by experimentation
• xw Mean value on the window
Results of the above-mentioned process are illustrated

on Fig. 3-C and Fig. 4-C. They show that most of the
windows are not processed due to their classification as “non-
activity” windows. This could allow to decrease time and
calculus consumption, that could be highly relevant if we
aim at developping embedded systems for tracking changes
of directions of a person. Note that even if this filter creates a
discontinuity in the signal (see Fig. 4-C), the processe is not
impaired. Indeed, when a “non-activity” window is detected,
the starting point of the analysis is automatically set at the
first point of the next “activity” window.

C. Movement clustering

As we can see on Fig. 4-C, change of direction of a
walking subject yields a significant increase in the euclidian



norm of the difference between the two points in the plan
(x;y). Within this context, the changes in direction can
be detected in the signal by a significant increased in the
euclidian norm of the difference vector measured during two
disctinct moments of the experiment. Let’s define ε90 and ε180
as the two thresholds values corresponding to two rotation
of 90° and 180°, respectively. Interestingly, if the movement
lasts more that 2 seconds, the analysis can be pursued on the
next windows.

A change of direction of a walking person is detected
when this euclidian norm is superior to ε90 and ε180 values.
Furthermore, the direction of this change is indicated by the
orientation of the difference vector.

On the whole, this filtering procedure, requiring to only
compute euclidian norm of the three x, y and z signals,
is relatively rapid. However, this algorithm necessitates to
verify the decision given by this filtering procedure by
computing the real yaw angle of the signal. Indeed, one of the
drawback concerns the correctness regarding to orientation
of the movement. Indeed, outside the interval

[
−π

2 ; π2
]
, the

classes for “plus” or “minus” angles are inverted. Once a false
decision is taken, all the following orientations are false.

D. Uncertainty minimisation

1) Quaternion of the rotation: To check the last decision
independantly of the previous ones, we compute the real
yaw angle of the transformation by using the quaternion
that describes the composition of the three rotations (around
x, y and z). A preliminary step is to normalize the values
delivered by the conditioning circuit positioned behind the
magnetometers. Considering that (1) this conditioning circuit
delivers linearly transformed values, and (2) each indivual
has morphological differences, we center the data from the
(x, y) plan in the interval [−1; 1] for the subject, by using
a first 360° movement performed at the beginning of the
experiment.

The norm of the magnetic field vector is almost constant
(the small variations are caused by the acquisition noise)
during the experimentation session. We measure the variable
projection of a fixed vector on a moving referential (attached
to the body of the subject).

To compute the yaw angle of the transformation, we first
determine the quaternion of the transformation. Let’s consider
B1 and B2 the magnetic field measured at two moments
of the experimentation. We want to determine a rotation of
vector k =

(
kx ky kz

)T
and of angle θ that transforms

B1 in B2. Then, the quaternion is:
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One possible basis in which the rotation can be written as

Fig. 5. Results of the execution of the algorithm on real data

a simple rotation of angle θ around one axis k is given by
the set of three vectors:

i =
B1∥∥B1

∥∥
j =

‖B1‖2B2 − (B1 ·B2)B1∥∥‖B1‖2B2 − (B1 ·B2)B1

∥∥
k =

B1 ∧B2

||B1 ∧B2 ||

(5)

Let b1 be the projection of B1 in the basis given by Eq.
5 and b2 the projection of B2 in the same basis. The angle
of the transformation is given by the expression:

θ = arccos

(
b1 · b2∥∥b1

∥∥ · ∥∥b2

∥∥
)

(6)

With Eq. 5 and Eq. 6, we calculated the main vector
and the angle of this rotation. We have now a numerical
expression of the quaternion Q given by Eq. 4.

From this quaternion, we can write the rotation matrix in
the basis (x,y,z). The expression of this matrix Mrxyz is:

q20 + q21 − q22 − q23 2(−q0q3 + q1q2) 2(q0q2 + q1q3)
2(q0q3 + q2q1) q20 − q21 − q22 − q23 2(−q0q1 + q2q3)

2(−q0q2 + q3q1) 2(q0q1 + q3q2) q20 − q21 − q22 + q23

 (7)



2) Roll, pitch and yaw angle: Assuming that our move-
ment is made of three rotations, one around the z axis (yaw),
of angle ψ, the second of angle φ around y, called pitch and
the third, the roll angle, θ, around x, we compute the yaw
angle of the rotation.

Let Mψ be the matrix of rotation around z, Mφ around
y and Mθ around x. To compute the roll, pitch and yaw
angles, we can identify the product of these three matrix,
M ′
rxyz

= MψMφMθ, with the matrix given by Eq. 7.
We obtain, with the same notations as previously :

ψ = arctan
(
Mrxyz (1,2)

Mrxyz (1,1)

)
θ = arcsin

(
Mrxyz (1, 3)

)
φ = arctan

(
Mrxyz (2,3)

Mrxyz (3,3)

) (8)

Since our application concerns the tracking of changes
of direction of a person, only ψ is of interest and will
be computed for the period of time that we are currently
checking only. To avoid any ambiguity, the computed yaw
angle for the whole signal of Fig. 5-A is illustrated in Fig.
5-B.

E. Final output of the algorithm

After the euclidian norm having being computed and the
decision having being verified by the quaternion, the executed
movement has been detected accurately. This decision allows
the calculation of final output of the algorithm, as follows. As
illustrated in Fig. 5-C, for the temporal frame during which
the movement takes place, the final output of the algorithm is
the value corresponding to the angle induced by the executed
rotation. this output gives us two main information: (1) the
angle of the modification of direction and (2) the time spent
to perform this rotation.

III. RESULTS

Eight young healthy adults (mean age : 27±3) voluntarily
participated to two experiments. Before these experiments,
each subject stood upright and were asked to perform a
360° rotation follwed by a 180° rotation to calibrate the
algorithm. In Experiment 1, they were asked to walk in a
corridor, at a confortable speed, to make multiples changes of
direction (ten 180° changes, five in each direction of rotation)
and to sit on a chair between these changes. In Experiment
2, they were asked to walk, to go up and down the stairs
and to make four 180° changes (two in each direction) and
eight 90° changes (four in each direction). Results showed
that our algorithm was able to accurately detect and classify
changes of direction exectued by each subject during each
experiment.

IV. DISCUSSION AND CONCLUSION

We have demonstrated the effectiveness of using a tri-axis
magnetometer in accurately tracking the changes of directions
of a person. Our algorithm, analysing the magnetometer

signals by 2 seconds windows, is relatively rapid and can
be executed in real time.

On the one hand, since the effectiveness of this algorithm
mainly stem from the determination of the two values of ε90
and ε180, pursuing investigations to increase their optimality
is necessary.

On the other hand, it is important to mention that our
experiments were not conducted in “ideal” situations, i.e.
without any magnetic disturbances. On the contrary, both
experimental sessions required subjects to walk near TV,
fridge, ... representing similar conditions to those occuring
at home. What is more, we further assessed the electro-
magnetic sensitivity. To achieve this goal, we positioned
the magnetometer 20 cm away from a TV for 30 minutes
and we compared the norm of the magnetic field acquired
and the standard deviation of this norm obtained when
the TV was on to those obtained when the TV was off.
Results showed similar magnetic field in these two conditions
(mean measured magnetic field of 528.9 mG ± 1.94 and
of 528.7 mG ± 1.65, for TV off and TV on, respectively).
Similar results were observed with fridge, microwave, fan
and CRT display. On the whole, results showed that neither
the TV, fridge, microwave, fan nor CRT display have any
notable effect on the magnetometer acquisition circuit. Nev-
ertheless, mean measured magnetic field obtained with the
magnetometer positioned close to the elevator is significantly
different to that obtained with the magnetometer positioned
1 m away from the elevator (2193.64 mG ± 303.13 versus
565.19 mG ± 10.21). This result suggests that being very
closed to an elevator, or more largely to a direct current
engine, induces a large modification of the acquired magnetic
field, that can be detected by our algorithm, but that limits the
use of the magnetometers for tracking changes of direction
of a person.
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