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Abstract

We prove that small smooth solutions of semi-linear Klein-Gordon equations with quadratic
potential exist over a longer interval than the one given by local existence theory, for almost
every value of mass. We use normal form for the Sobolev energy. The difficulty in comparison
with some similar results on the sphere comes from the fact that two successive eigenvalues λ, λ′

of
√
−∆ + |x|2 may be separated by a distance as small as 1√

λ
.

0 Introduction

Let −∆+ |x|2 be the harmonic oscillator on R
d. This paper is devoted to the proof of lower bounds

for the existence time of solutions of non-linear Klein-Gordon equations of type

(∂2
t − ∆ + |x|2 + m2)v = vκ+1

v|t=0 = ǫv0

∂tv|t=0 = ǫv1

where m ∈ R
∗
+, xα∂β

xvj ∈ L2 when |α| + |β| ≤ s + 1− j (j = 0, 1) for a large enough integer s, and
where ǫ > 0 is small enough.

The similar equation without the quadratic potential |x|2, and with data small, smooth and
compactly supported, has global solutions when d ≥ 2 (see Klainerman [18] and Shatah [23] for
dimensions d ≥ 3, Ozawa, Tsutaya and Tsutsumi [22] when d = 2). The situation is drastically
different when we replace −∆ by −∆ + |x|2, since the latter operator has pure point spectrum.
This prevents any time decay for solutions of the linear equation. Because of that, the question of
long time existence for Klein-Gordon equations associated to the harmonic oscillator is similar to
the corresponding problem on compact manifolds.

For the equation (∂2
t − ∆ + m2)v = vκ+1 on the circle S

1, it has been proved by Bourgain [6]
and Bambusi [1], that for almost every m > 0, the above equation has solutions defined on intervals
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of length cN ǫ−N for any N ∈ N, if the data are smooth and small enough (see also the lectures of
Grébert [13]). These results have been extended to the sphere S

d instead of S
1 by Bambusi, Delort,

Grébert and Szeftel [2]. A key property in the proofs is the structure of the spectrum of
√
−∆ on

S
d. It is made of the integers, up to a small perturbation, so that the gap between two successive

eigenvalues is bounded from below by a fixed constant.
A natural question is to examine which lower bounds on the time of existence of solutions might

be obtained when the eigenvalues of the operator do not satisfy such a gap condition. The problem
has been addressed for (∂2

t − ∆ + m2)v = vκ+1 on the torus T
d when d ≥ 2 by Delort [9]. It has

been proved that for almost every m > 0, the solution of such an equation exists over an interval
of time of length bounded from below by cǫ−κ(1+2/d) (up to a logarithm) and has Sobolev norms of
high index bounded on such an interval. Note that two successive eigenvalues λ, λ′ of

√
−∆ on T

d

might be separated by an interval of length as small as c/λ. A natural question is then to study
the same problem for a model for which separation of eigenvalues is intermediate between the cases
of the sphere and of the torus. The harmonic oscillator provides such a framework, as the distance
between two successive eigenvalues λ, λ′ of

√
−∆ + |x|2 is of order 1/

√
λ. Our goal is to exploit

this to get for the corresponding Klein-Gordon equation a lower bound of the time of existence of
order cǫ−4κ/3 when d ≥ 2 (and a slightly better bound if d = 1).

Note that the estimate we get for the time of existence is explicit (given by the exponent −4κ/3)
and independent of the dimension d. This is in contrast with the case of the torus, where the gain
2/d on the exponent brought by the method goes to zero as d → +∞. The point is that when
the dimension increases, the multiplicity of the eigenvalues of −∆ + |x|2 grows, while the spacing
between different eigenvalues remains essentially the same.

The method we use is based, as for similar problems on the sphere and the torus, on normal
form methods. Such an idea has been introduced in the study of non-linear Klein-Gordon equations
on R

d by Shatah [23], and is at the root of the results obtained on S
1, Sd, Td in [6, 1, 3, 2, 9]. In

particular, we do not need to use any KAM results, unlike in the study of periodic or quasi-periodic
solutions of semi-linear wave or Klein-Gordon equations. For such a line of studies, we refer to the
books of Kuksin [20, 21] and Craig [8] in the case of the equation on S

1, to Berti and Bolle [4] for
recent results on the sphere, and to Bourgain [7] and Elliasson-Kuksin [12] in the case of the torus.

Finally let us mention that very recently Grébert, Imekraz and Paturel [14] have studied the
non-linear Schrödinger equation associated to the harmonic oscillator. They have obtained almost
global existence of small solutions for this equation.

1 The semi-linear Klein-Gordon equation

1.1 Sobolev Spaces

We introduce in this subsection Sobolev spaces we will work with. From now on, we denote by
P =

√
−∆ + |x|2, x ∈ R

d, d ≥ 1. The operator P 2 = −∆ + |x|2 is called the harmonic oscillator on
R

d. The eigenvalues of P 2 are given by λ2
n, where

(1.1.1) λn =
√

2n + d, n ∈ N.

Let Πn be the orthogonal projector to the eigenspace associated to λ2
n. There are several ways to

characterize these spaces. Of course we will show they are equivalent after giving definitions.

Definition 1.1.1. Let s ∈ R. We define H s
1 (Rd) to be the set of all functions u ∈ L2(Rd) such

that
(λs

n||Πnu||L2)n∈N ∈ ℓ2, equipped with the norm defined by ||u||2
H s

1
=

∑
n∈N

λ2s
n ||Πnu||2L2 .
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The space H s
1 (Rd) is the domain of the operator g(P ) on L2(Rd), which is defined using

functional calculus and where

(1.1.2) g(r) = (1 + r2)
s
2 , r ∈ R.

Because of (1.1.1), we have

(1.1.3) ||g(P )u||L2 ∼ ||u||H s
1
.

Definition 1.1.2. Let s ∈ N. We define H s
2 (Rd) to be the set of all functions u ∈ L2(Rd) such that

xα∂βu ∈ L2(Rd),∀|α|+ |β| ≤ s, equipped with the norm defined by ||u||2
H s

2
=

∑
|α|+|β|≤s ||xα∂βu||2L2 .

We shall give another definition of the space in the view point of pseudo-differential theory. Let
us first list some results from [16].

Definition 1.1.3. We denote by Γs(Rd), where s ∈ R, the set of all functions u ∈ C∞(Rd) such

that: ∀α ∈ N
d, ∃ Cα, s.t. ∀z ∈ R

d, we have |∂α
z a(z)| ≤ Cα〈z〉s−|α|, where 〈z〉 = (1 + |z|2) 1

2 .

Definition 1.1.4. Assume aj ∈ Γsj(Rd)(j ∈ N
∗) and that sj is a decreasing sequence tending to

−∞. We say a function a ∈ C∞(Rd) satisfies:

a ∼
∞∑

j=1

aj

if: ∀r ≥ 2, r ∈ N, a − ∑r−1
j=1 aj ∈ Γsr(Rd).

We now would like to consider operators of the form

(1.1.4) Au(x) = (2π)−d

∫∫
ei(x−y)·ξa(x, ξ)u(y)dydξ

where a(x, ξ) ∈ Γs(R2d). We can also consider a more general formula for the action of the operator

(1.1.5) Au(x) = (2π)−d

∫∫
ei(x−y)·ξa(x, y, ξ)u(y)dydξ

where the function a(x, y, ξ) is called the amplitude. We will describe the class of amplitudes as
following:

Definition 1.1.5. Let s ∈ R and Ωs(R3d) denote the set of functions a(x, y, ξ) ∈ C∞(R3d), which
for some s′ ∈ R satisfy

|∂α
ξ ∂β

x∂γ
y a(x, y, ξ)| ≤ Cαβγ〈z〉s−(|α|+|β|+|γ|)〈x − y〉s′+|α|+|β|+|γ|,

where z = (x, y, ξ) ∈ R
3d.

The following proposition is a special case of proposition 1.1.4 in [16].

Proposition 1.1.6. If b ∈ Γs(R2d), then a(x, y, ξ) = b(x, ξ) and a(x, y, ξ) = b(y, ξ) belong to
Ωs(R3d).
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Let χ(x, y, ξ) ∈ C∞
0 (R3d), χ(0, 0, 0) = 1. It is shown by lemma 1.2.1 in [16] that (1.1.5) makes

sense in the following way:

(1.1.6) Au(x) = lim
ε→+0

(2π)−d

∫∫
ei(x−y)·ξχ(εx, εy, εξ)a(x, y, ξ)u(y)dydξ

if a(x, y, ξ) ∈ Ωs(R3d) for some s. It is also shown in the same section of it the operator A is
continuous from S(Rd) to S(Rd) and it can be uniquely extended to an operator from S ′(Rd) to
S ′(Rd).

Definition 1.1.7. The class of pseudo-differential operators A of the form (1.1.5) with amplitudes
a ∈ Ωs(R3d) will be denoted by Gs(Rd).

We set G−∞(Rd) =
⋂

s∈R
Gs(Rd).

Example 1.1.8. For s ∈ N, the constant coefficient differential operator
∑

|α|+|β|≤s

cαβxα∂β is in the

class Gs(Rd).

The class Gs(Rd) has some properties which are just theorems 1.3.1, 1.4.7, 1.4.8 in [16]:

Theorem 1.1.9. Let s1, s2 ∈ R and A ∈ Gs1(Rd), A′ ∈ Gs2(Rd). Then A ◦ A′ ∈ Gs1+s2(Rd).

Theorem 1.1.10. The operator A ∈ G0(Rd) can be extended to a bounded operator on L2(Rd).

Theorem 1.1.11. The operator A ∈ Gs(Rd) for s < 0 can be extended to a compact operator on
L2(Rd).

We shall give a subclass of that of pseudo-differential operators.

Definition 1.1.12. We say a ∈ Γs
cl(R

d) if a ∈ Γs(Rd) and a has asymptotic expansion:

a ∼
∑

j∈N

as−j

with as−j ∈ C∞(Rd) satisfying for θ ≥ 1, |x| + |ξ| ≥ 1

as−j(θx, θξ) = θs−jas−j(x, ξ).

Definition 1.1.13. Let A be a pseudo-differential operator with amplitude a ∈ Γs
cl(R

d). We then
call as defined above the principle symbol of A.

Definition 1.1.14. We say a pseudo-differential operator A ∈ Gs
cl(R

d) if its amplitude a ∈
Γs

cl(R
2d).

By proposition 1.1.6, definition 1.1.14 is meaningful.

Definition 1.1.15. We say that A ∈ Gs
cl(R

d) is globally elliptic if we have: ∃R > 0,∃ C > 0 such
that ∀(x, ξ) ∈ R

2d satisfying |x| + |ξ| ≥ R, we have |as(x, ξ)| ≥ C(|x| + |ξ|)s, where as denotes the
principle symbol of A.

We can invert the operator A ∈ Gs
cl(R

d) up to a regularizing operator, which is just theorem
1.5.7 in [16].
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Theorem 1.1.16. Let A ∈ Gs
cl(R

d) be a globally elliptic operator. Then there is an operator
B ∈ G−s

cl (Rd) such that

(1.1.7) B ◦ A = I + R1, A ◦ B = I + R2,

where R1, R2 are regularizing, i.e. R1, R2 ∈ G−∞(Rd).

Definition 1.1.17. Let A be a pseudo-differential operator whose symbol is 〈ξ, x〉s modulo Γs−1
cl .

We define H s
3 (Rd) to be the set of all functions u ∈ S ′(Rd) such that Au ∈ L2(Rd), equipped with

the norm defined by ||u||2
H s

3
= ||Au||2L2 + ||u||2L2 .

Remark 1.1.1. The pseudo-differential operator A defined above is globally elliptic. Thus by
theorem 1.1.16 if Au ∈ L2(Rd), we must have u ∈ L2(Rd).

Remark 1.1.2. H s
3 (Rd) does not depend on the choice of A according to corollary 1.6.5 in [16].

Corollary 1.1.18. When s ∈ N, definitions 1.1.1, 1.1.2 and 1.1.17 characterize the same space.
Moreover H s

3 (Rd) = H s
1 (Rd) for any s ∈ R.

Proof. First let s ∈ N. Since A in definition 1.1.17 is globally elliptic, by theorem 1.1.16 there is
B ∈ G−s

cl (Rd) such that

(1.1.8) B ◦ A = I + R1, A ◦ B = I + R2

where R1, R2 are regularizing. Thus for any α, β with |α| + |β| ≤ s, by the example after def-
inition 1.1.12 and theorems 1.1.9, 1.1.10 and 1.1.11, we have ||xα∂βu||L2 ≤ ||xα∂βBAu||L2 +
||xα∂βR1u||L2 ≤ C(||Au||L2 + ||u||L2), which implies ||u||H s

2
≤ C||u||H s

3
. The inverse inequal-

ity follows from the proof of proposition 1.6.6 in [16]. Let us now prove that definition 1.1.1 is
equivalent to definition 1.1.17 for any s ∈ R.

By Theorem 1.11.2 in [16] the operator g(P ) defined in (1.1.2) is an essentially self-adjoint
globally elliptic operator in the class Gs(Rd). We have again by theorem 1.1.16 that there is
Q ∈ G−s

cl (Rd) such that

(1.1.9) g(P ) ◦ Q = I + R′
1, Q ◦ g(P ) = I + R′

2

where R′
1, R

′
2 are regularizing. We compute using (1.1.3), (1.1.8), (1.1.9) together with theorem

1.1.9 and theorem 1.1.10

||u||H s
1
∼ ||g(P )u||L2 ≤ ||(g(P ) ◦ B ◦ A)u||L2 + ||(g(P ) ◦ R1)u||L2

≤ C(||Au||L2 + ||u||L2) ≤ C||u||H s
3

and

||u||H s
3
≤ C(||(A ◦ Q ◦ g(P ))u||L2 + ||(A ◦ R′

2)u||L2 + ||u||L2)

≤ C(||g(P )u||L2 + ||u||L2) ≤ C||u||H s
1
,

where the last inequality follows from the fact λn ≥ 1.

We denote H s(Rd) = H s
1 (Rd) = H s

3 (Rd) when s ∈ R. When s ∈ N, this space coincides with
H s

2 (Rd). Let us present some properties of the spaces we shall use.

Proposition 1.1.19. If s1 ≤ s2, then H s2(Rd) →֒ H s1(Rd).
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Proposition 1.1.20. If s > d/2, then H s(Rd) →֒ L∞(Rd).

Proposition 1.1.21. Let f ∈ C∞(R), f(0) = 0, u ∈ H s(Rd), s ∈ N, s > d. Then we have f(u) ∈
H s(Rd). Moreover if f vanishes at order p + 1 at 0, where p ∈ N, then ||f(u)||H s ≤ C||u||p+1

H s .

Proof. Proposition 1.1.19 and 1.1.20 follow respectively from the definition and Sobolev embedding.
By the chain rule, for |α|+ |β| ≤ s, xα∂βf(u) may be written as the sum of terms of following form:

xαf (k)(u)(∂β1u) . . . (∂βku),

where k ≤ s, |α| + ∑k
i=1 |βi| ≤ s, |βi| > 0, i = 1, . . . , k. Let j0 be the index such that |βj0 | is the

largest among |β1|, . . . , |βk|. Thus we must have |βi| ≤ s
2 , i 6= j0. By the assumption on s and

proposition 1.1.20, ∂γu ∈ L∞(Rd) if |γ| ≤ d
2 . We then estimate the factor xα∂βj0u of the above

quantities in L2-norm and others in L∞-norm. Thus we have f(u) ∈ H s(Rd) by proposition 1.1.20.
When f vanishes at 0 at order p + 1, by Taylor formula there is a smooth function h such that
f(u) = up+1h(u). Then we argue as above to get an upper bound of ||f(u)||H s by C||u||p

H s ||u||H s .
This concludes the proof.

Remark 1.1.3. Proposition 1.1.21 actually holds true for s > d/2 if we argue as the proof of
corollary 6.4.4 in [17]. Since we will consider only in H s(Rd) for large s, the lower bound of s is
not important.

1.2 Statement of main theorem

Let d be an integer, d ≥ 1 and F : R → R a real valued smooth function vanishing at order κ + 1
at 0, κ ∈ N

∗. Let m ∈ R
∗
+. we consider the solution v of the following Cauchy problem:





(∂2
t − ∆ + |x|2 + m2)v = F (v) on [−T, T ] × R

d

v(0, x) = ǫv0

∂tv(0, x) = ǫv1,

(1.2.1)

where v0 ∈ H s+1(Rd), v1 ∈ H s(Rd), and ǫ > 0 is a small parameter. By local existence theory
one knows that if s is large enough and ǫ ∈ (0, 1), equation (1.2.1) admits for any (v0, v1) in the
unit ball of H s+1(Rd) × H s(Rd) a unique smooth solution defined on the interval |t| ≤ cǫ−κ, for
some uniform positive constant c. Moreover, ||v(t, ·)||H s+1 + ||∂tv(t, ·)||H s may be controlled by
Cǫ, for another uniform constant C > 0, on the interval of existence. The goal would be to obtain
existence over an interval of longer length under convenient condition by controlling the Sobolev
energy. Our main result is the following:

Theorem 1.2.1. There is a zero measure subset N of R
∗
+ and for every m ∈ R

∗
+ − N , there are

ǫ0 > 0, c > 0, s0 ∈ N such that for any s ≥ s0, s ∈ N, ǫ ∈ (0, ǫ0), any pair (v0, v1) of real valued
functions belonging to the unit ball of H s+1(Rd)×H s(Rd), problem (1.2.1) has a unique solution

(1.2.2) u ∈ C0((−Tǫ, Tǫ),H
s+1(Rd)) ∩ C1((−Tǫ, Tǫ),H

s(Rd)),

where Tǫ has a lower bound Tǫ ≥ cǫ−
4
3
(1−ρ)κ for any ρ > 0 if d ≥ 2 and Tǫ ≥ cǫ−

25
18

(1−ρ)κ for any
ρ > 0 if d = 1. Moreover, the solution is uniformly bounded in H s+1(Rd) on (−Tǫ, Tǫ) and ∂tu is
uniformly bounded in H s(Rd) on the same interval.
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1.3 A property of spectral projectors on Rd

As we have pointed out P has eigenvalues given by λn =
√

2n + d, n ∈ N. Remark that Πn is the
orthogonal projector of L2(Rd) onto the eigenspace associated to λ2

n. Let us first introduce some
notations. For ξ0, ξ1, . . . , ξp+1 p + 2 nonnegative real numbers, let ξi0 , ξi1 , ξi2 be respectively the
largest, the second largest and the third largest elements among them and ξ′ the largest element
among ξ1, . . . , ξp, that is,

ξi0 = max{ξ0, . . . , ξp+1}, ξi1 = max({ξ0, . . . , ξp+1} − {ξi0}),
ξi2 = max({ξ1, . . . , ξp+1} − {ξi0 , ξi1}), ξ′ = max{ξ1, . . . , ξp}.

(1.3.1)

Denote

(1.3.2) µ(ξ0, . . . , ξp+1) = (1 +
√

ξi1)(1 +
√

ξi2).

Set also

(1.3.3) S(ξ0, . . . , ξp+1) = |ξi0 − ξi1 | + µ(ξ0, . . . , ξp+1).

The main result of this subsection is the following one:

Theorem 1.3.1. There is a ν ∈ R
∗
+, depending only on p (p ∈ N

∗) and dimension d, and for any
N ∈ N, there is a CN > 0 such that for any n0, . . . , np+1 ∈ N, any u0, . . . , up+1 ∈ L2(Rd),

(1.3.4) |
∫

Πn0u0 . . . Πnp+1up+1dx| ≤ CN (1 +
√

ni2)
ν µ(n0, . . . , np+1)

N

S(n0, . . . , np+1)N

p+1∏

j=0

||uj ||L2 .

Furthermore if d = 1, we may find for any ς ∈ (0, 1)

(1.3.5) |
∫

Πn0u0 . . . Πnp+1up+1dx| ≤ CN
(1 +

√
ni2)

ν

(1 +
√

ni0)
1
6
(1−ς)

µ(n0, . . . , np+1)
N

S(n0, . . . , np+1)N

p+1∏

j=0

||uj ||L2 .

Proof. By the symmetries we may assume n0 ≥ n1 ≥ · · · ≥ np+1. Then recalling the definition of
λn in (1.1.1), we only need to show under the condition of theorem 1.3.1

(1.3.6) |
∫

Πn0u0 . . . Πnp+1up+1dx| ≤ CNλν
n2

(λn1λn2)
N

(|λ2
n0

− λ2
n1
| + λn1λn2)

N

p+1∏

j=0

||uj ||L2

and when d = 1

(1.3.7) |
∫

Πn0u0 . . . Πnp+1up+1dx| ≤ CN
λν

n2

λ
1
6
(1−ς)

n0

(λn1λn2)
N

(|λ2
n0

− λ2
n1
| + λn1λn2)

N

p+1∏

j=0

||uj ||L2

for any ς ∈ (0, 1). We follow the proof of proposition 3.6 in [14]. Let A be a linear operator which
maps D(P 2k) into itself. We define a sequence of operators

(1.3.8) AN = [P 2, AN−1]; A0 = A.

Then using integration by parts we have

(1.3.9) (λ2
n0

− λ2
n1

)N 〈A Πn1u1,Πn0u0〉 = 〈ANΠn1u1,Πn0u0〉.
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Now we set A to be the multiplication operator generated by the function

a(x) = (Πn2u2) . . . (Πnp+1up+1).

Then an induction argument shows

(1.3.10) AN =
∑

|β|+|γ|≤N, |α|+|β|+|γ|≤2N

Cαβγ(∂αa)xβ∂γ

for constants Cαβγ . Therefore we compute for some ν ′ > d
2

|(λ2
n0

− λ2
n1

)N
∫

(Πn0u0) . . . (Πnp+1up+1)dx|

≤ C
∑

|β|+|γ|≤N, |α|+|β|+|γ|≤2N

||(∂αa)xβ∂γΠn1u1||L2 ||Πn0u0||L2

≤ C
∑

|β|+|γ|≤N, |α|+|β|+|γ|≤2N

||a||
H ν ′+|α| ||Πn1u1||H |β|+|γ| ||Πn0u0||L2 ,

(1.3.11)

where in the last estimate we used definition 1.1.2 and proposition 1.1.20. Remark that by definition
1.1.1, one has for any s ≥ 0

(1.3.12) ||Πnu||H s ≤ Cλs
n||Πnu||L2 .

This estimate together with the proof of proposition 1.1.21 gives for n2 ≥ n3 · · · ≥ np+1

(1.3.13) ||a||
H ν′+|α| ≤ Cλν+|α|

n2

p+1∏

j=2

||Πnj
uj||L2

for some ν > 0 depending only on p and dimension d. Thus we have

|(λ2
n0

− λ2
n1

)N
∫

(Πn0u0) . . . (Πnp+1up+1)dx|

≤ C
∑

|β|+|γ|≤N, |α|+|β|+|γ|≤2N

λν+|α|
n2

λ|β|+|γ|
n1

p+1∏

j=0

||Πnj
uj ||L2

≤ C
∑

|α|≤N

λν+2N−|α|
n2

λ|α|
n1

p+1∏

j=0

||Πnj
uj ||L2

≤ Cλν+2N
n2

(
λn1

λn2

)N
p+1∏

j=0

||Πnj
uj||L2

≤ Cλν
n2

(λn1λn2)
N

p+1∏

j=0

||Πnj
uj||L2 .

(1.3.14)

Now if λn1λn2 ≤ |λ2
n0

− λ2
n1
|, then the last estimate implies (1.3.6), while if λn1λn2 > |λ2

n0
− λ2

n1
|,

then
λn1λn2

|λ2
n0

−λ2
n1

|+λn1λn2
≥ 1

2 and thus (1.3.6) is trivially true.

On the other hand, we use the property of the eigenfunctions (see[19]), which in dimension d = 1

says that if φn is the eigenfunction associated to λ2
n, then one has ||φn||L∞ ≤ Cλ

− 1
6

n . Therefore we
have

(1.3.15) ||Πnu||L∞ ≤ Cλ
− 1

6
n ||Πnu||L2
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since in this case the eigenvalues are simple. This estimate gives us

(1.3.16) |
∫

Πn0u0 . . . Πnp+1up+1dx| ≤ Cλ
− 1

6
n0

p+1∏

j=0

||Πnj
uj||L2 .

Combining (1.3.16) with (1.3.6) one gets (1.3.7) for all N ≥ 1 and some ν > 0 in the case d = 1.
This concludes the proof.

2 Long time existence

2.1 Definition and properties of multilinear operators

Denote by E the algebraic direct sum of the ranges of the Πn
′s, n ∈ N. With notations (1.3.1),

(1.3.2) and (1.3.3) we give the following definition.

Definition 2.1.1. Let ν ∈ R+, τ ∈ R, p ∈ N
∗. We denote by Mν,τ

p+1 the space of all p + 1-linear

operators (u1, . . . , up+1) → M(u1, . . . , up+1), defined on E × · · ·× E with values in L2(Rd) such that

• For every (n0, . . . , np+1) ∈ N
p+2, u1, . . . , up+1 ∈ E

(2.1.1) Πn0 [M(Πn1u1, . . . ,Πnp+1up+1)] = 0,

if |n0 − np+1| > 1
2(n0 + np+1) or n′ def

= max{n1, . . . , np} > np+1.

• For any N ∈ N, there is a C > 0 such that for every (n0, . . . , np+1) ∈ N
p+2,

u1, . . . , up+1 ∈ E, one has

||Πn0 [M(Πn1u1, . . . ,Πnp+1up+1)]||L2

≤ C(1 +
√

n0 +
√

np+1)
τ (1 +

√
n′)ν

µ(n0, . . . , np+1)
N

S(n0, . . . , np+1)N

p+1∏

j=1

||uj ||L2 .
(2.1.2)

The best constant in the preceding inequality will be denoted by ||M ||Mν,τ
p+1,N

.

We may extend the operators in Mν,τ
p+1 to Sobolev spaces.

Proposition 2.1.2. Let ν ∈ R+, τ ∈ R, p ∈ N
∗, s ∈ N, s > ν + 3. Then any element M ∈ Mν,τ

p+1

extends as a bounded operator from H s(Rd) × · · · × H s(Rd) to H s−τ−1(Rd). Moreover, for any
s0 ∈ (ν + 3, s], there is C > 0 such that for any M ∈ Mν,τ

p+1, and any u1, . . . , up+1 ∈ H s(Rd),

(2.1.3) ||M(u1, . . . , up+1)||H s−τ−1 ≤ C||M ||Mν,τ
p+1,N

p+1∑

j=1

[
||uj ||H s

∏

k 6=j

||uk||H s0

]
.

Proof. The proof is a modification of proposition 4.4 in [10]. There is one derivative lost compared
to that case. We give it for the convenience of the reader. Using definition 1.1.1 we write

(2.1.4) ||M(u1, . . . , up+1)||2H s−τ−1

≤ C
∑

n0

||
∑

n1

· · ·
∑

np+1

Πn0M(Πn1u1, . . . ,Πnp+1up+1)||2L2(1 +
√

n0)
2s−2τ−2
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Because of (2.1.1) and using the symmetries we may assume

(2.1.5) n0 ∼ np+1 and n1 ≤ · · · ≤ np ≤ np+1 ≤ Cn0

when estimating the above quantity. Consequently, we have

µ(n0, . . . , np+1) ∼ (1 +
√

np)(1 +
√

np+1),

S(n0, . . . , np+1) ∼ |n0 − np+1| + µ(n0, . . . , np+1).
(2.1.6)

By (2.1.2) the square root of the general term over n0 sum in (2.1.4) is smaller than

(2.1.7) C
∑

n1≤···≤np+1

(1 +
√

n0)
s−1 (1 +

√
np)

νµ(n0, . . . , np+1)
N

S(n0, . . . , np+1)N

p+1∏

1

||Πnj
uj||L2 .

We have by (2.1.5) and (2.1.6)

(2.1.8)
µ(n0, . . . , np+1)

S(n0, . . . , np+1)
∼ 1 +

√
np

|√n0 −√
np+1| + 1 +

√
np

.

The following fact will be useful in this section: For q ∈ N, A ≥ 1 and N > 1, there is a C > 0
independent of q and A such that

(2.1.9)
∑

n∈N

1

(|√n −√
q| + A)N

≤ C
1 +

√
q

AN−2
.

Let ι > 2 be a constant as close to 2 as wanted. Using (2.1.8) and (2.1.9) we deduce

∑

n0

µ(n0, . . . , np+1)
ι

S(n0, . . . , np+1)ι
≤ C(1 +

√
np+1)(1 +

√
np)

2,

∑

np+1

µ(n0, . . . , np+1)
ι

S(n0, . . . , np+1)ι
≤ C(1 +

√
n0)(1 +

√
np)

2.

(2.1.10)

We estimate the sum over n1 ≤ · · · ≤ np+1 in (2.1.7) by

C

( ∑

n1≤···≤np+1

(1 +
√

np)
νµι

Sι

p∏

j=1

||Πnj
uj ||L2

)1/2

×
( ∑

n1≤···≤np+1

(1 +
√

n0)
2s−2(1 +

√
np)

ν µ2N−ι

S2N−ι

p∏

j=1

||Πnj
uj ||L2 ||Πnp+1up+1||2L2

)1/2

.

(2.1.11)

Using (2.1.10) to handle np+1 sum, we bound the first factor in (2.1.11) from above by C(1 +
√

n0)
1
2 Πp

j=1||uj ||
1
2
H s0 if s0 > ν + 3 using definition 1.1.1. Incorporating (1 +

√
n0)

1
2 into the second

factor, we have to bound the quantity

(2.1.12)

( ∑

n1≤···≤np+1

(1 +
√

n0)
2s−1(1 +

√
np)

ν µ2N−ι

S2N−ι

p∏

j=1

||Πnj
uj||L2 ||Πnp+1up+1||2L2

)1/2

.

By (2.1.5) and µ ≤ S we have

(2.1.13) (1 +
√

n0)
2s−1(

µ

S
)2N−ι ≤ C(1 +

√
np+1)

2s−1(
µ

S
)ι
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if N > ι. Plugging in (2.1.12), (2.1.11) and then (2.1.4) we bound from above the n0 sum in (2.1.4)
by
(2.1.14)

C

p∏

1

||uj ||H s0

∑

n1≤···≤np+1≤Cn0

(1 +
√

np+1)
2s−1(1 +

√
np)

ν(
µ

S
)ι

p∏

j=1

||Πnj
uj ||L2 ||Πnp+1up+1||2L2 .

Changing the order of sums for n0 and np+1, we then use (2.1.10) to handle n0 sum and get a
control of (2.1.14) by C

∏p
j=1 ||uj ||2H s0 ||up+1||2H s according to definition 1.1.1 if s > ν + 3. This

concludes the proof.

Let us define convenient subspaces of the spaces of definition 2.1.1.

Definition 2.1.3. Let ν ∈ R+, τ ∈ R, p ∈ N
∗, ω : {0, . . . , p + 1} → {−1, 1} be given.

• If
∑p+1

j=0 ω(j) 6= 0, we set M̃ν,τ
p+1(ω) = Mν,τ

p+1;

• If
∑p+1

j=0 ω(j) = 0, we denote by M̃ν,τ
p+1(ω) the closed subspace of Mν,τ

p+1 given by those M ∈
Mν,τ

p+1 such that

(2.1.15) Πn0M(Πn1u1, . . . ,Πnp+1up+1) ≡ 0

for any (n0, . . . , np+1) ∈ N
p+2 such that there is a bijection σ from {j; 0 ≤ j ≤ p + 1, ω(j) =

−1} to {j; 0 ≤ j ≤ p + 1, ω(j) = 1} so that for any j in the first set nσ(j) = nj.

We shall have to use also classes of remainder operators. If n1, . . . , np+1 ∈ N and j0 ∈ {1, . . . , p+
1} is such that nj0 = max{n1, . . . , np+1}, we denote

(2.1.16) max2(
√

n1, . . . ,
√

np+1) = 1 + max{√nj ; 1 ≤ j ≤ p + 1, j 6= j0}.

Definition 2.1.4. Let ν ∈ R+, τ ∈ R, p ∈ N
∗. We denote by Rν,τ

p+1 the space of C (p + 1)-linear

maps from E × · · · × E → L2(Rd), (u1, . . . , up+1) → R(u1, . . . , up+1) such that for any N ∈ N, there
is a C > 0 such that for any (n0, . . . , np+1) ∈ N

p+2, any u1, . . . , up+1 ∈ E,

(2.1.17) ||Πn0R(Πn1u1, . . . ,Πnp+1up+1)||L2 ≤ C(1 +
√

n0)
τ max2(

√
n1, . . . ,

√
np+1)

ν+N

(1 +
√

n0 + · · · + √
np+1)N

p+1∏

j=1

||uj ||L2 .

The elements in Rν,τ
p+1 also extend as bounded operators on Sobolev spaces.

Proposition 2.1.5. Let ν ∈ R+, τ ∈ R, p ∈ N
∗ be given. There is s0 ∈ N such that for

any s ≥ s0, any R ∈ Rν,τ
p+1, (u1, . . . , up+1) → R(u1, . . . , up+1) extends as a bounded map from

H s(Rd) × · · · × H s(Rd) → H 2s−ν−τ−7(Rd). Moreover one has

(2.1.18) ||R(u1, . . . , up+1)||H 2s−ν−τ−7 ≤ C
∑

1≤j1<j2≤p+1

[
||uj1||H s ||uj2 ||H s

∏

k 6=j1,k 6=j2

||uk||H s0

]
.

Proof. We may assume τ = 0. By definition 1.1.1 we have to bound ||Πn0R(u1, . . . , up+1)||L2

from above by (1 +
√

n0)
−2s+ν+7cn0 for a sequence (cn0)n0 in ℓ2. To do that we decompose uj as∑

nj
Πnj

uj and use (2.1.17). By symmetry we limit ourselves to summation over

(2.1.19) n1 ≤ · · · ≤ np+1,
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from which we deduce

(2.1.20) max2(
√

n1, . . . ,
√

np+1) = 1 +
√

np.

Therefore we are done if we can bound from above

(2.1.21) C
∑

n1≤···≤np+1

(1 +
√

np)
ν+N

(1 +
√

n0 + · · · + √
np+1)N

p−1∏

j=1

(1 +
√

nj)
−s0(1 +

√
np)

−s(1 +
√

np+1)
−s

by (1+
√

n0)
−2s+ν+7cn0 for s0, s large enough with s ≥ s0 since ||Πnj

uj ||L2 ≤ C(1+
√

nj)
−s||uj ||H s .

Using (2.1.19) we get an upper bound of (2.1.21) by

(2.1.22) C
∑

n1≤···≤np+1

(1 +
√

np)
ν+N−2s

(1 +
√

n0 +
√

np+1)N

p−1∏

j=1

(1 +
√

nj)
−s0

Using the fact
∑

n∈N

1
(
√

n+A)N ≤ C
AN−2 for N > 2 and A ≥ 1 , we take the sum over np+1 to get an

upper bound of (2.1.21) by

(2.1.23) C
∑

n1≤···≤np

(1 +
√

np)
ν+N−2s

(1 +
√

n0)N−2

p−1∏

j=1

(1 +
√

nj)
−s0

if N > 2. Now take N = 2s− ν − 5
2 and sum over n1, . . . , np. This gives the upper bound we want

and thus concludes the proof.

Definition 2.1.6. Let ν ∈ R+, τ ∈ R, p ∈ N
∗, ω : {0, . . . , p + 1} → {−1, 1} be given.

• If
∑p+1

j=0 ω(j) 6= 0, we set R̃ν,τ
p+1(ω) = Rν,τ

p+1;

• If
∑p+1

j=0 ω(j) = 0, we denote by R̃ν,τ
p+1(ω) the closed subspace of Rν,τ

p+1 given by those R ∈ Mν,τ
p+1

such that

(2.1.24) Πn0R(Πn1u1, . . . ,Πnp+1up+1) ≡ 0

for any (n0, . . . , np+1) ∈ N
p+2 such that there is a bijection σ from {j; 0 ≤ j ≤ p + 1, ω(j) =

−1} to {j; 0 ≤ j ≤ p + 1, ω(j) = 1} so that for any j in the first set nσ(j) = nj.

2.2 Rewriting of the equation and the energy

In this subsection we will write the time derivative of the energy in terms of multilinear operators
defined in the previous subsection. To do that, we shall need to analyze the nonlinearity. Decompose

(2.2.1) −F (v) = −
2κ−1∑

p=κ

∂p+1
v F (0)

(p + 1)!
vp+1 + G(v)

where G(v) vanishes at order 2κ + 1 at v = 0. One has

cvp+1 = c
∑

n1

· · ·
∑

np+1

(Πn1v) . . . (Πnp+1v)
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for a real constant c. One may also write this as Ap(v) · v where Ap(v) is an operator of form

(2.2.2) Ap(v) · w =
∑

n1

· · ·
∑

np+1

B(n1, . . . , np+1)(Πn1v) . . . (Πnpv)(Πnp+1w),

where B(n1, . . . , np+1) is a real valued bounded function supported on max{n1, . . . , np} ≤ np+1 and
B is constant valued on the domain max{n1, . . . , np} < np+1. For instance, when p = 2, one may
write

{(n1, n2, n3);nj ∈ N} = {max{n1, n2} ≤ n3} ∪ {n1 ≥ n2 and n1 > n3} ∪ {n1 < n2 and n2 > n3}

and
∑

n1

∑

n2

∑

n3

(Πn1v)(Πn2v)(Πn3v) =
∑

1{max{n1,n2}≤n3}(Πn1v)(Πn2v)(Πn3v)

+
∑

1{n3≥n2 and n3>n1}(Πn1v)(Πn2v)(Πn3v) +
∑

1{n3>n2 and n3>n1}(Πn1v)(Πn2v)(Πn3v)

using the symmetries, so that in this case

B(n1, n2, n3) = c(1{max{n1,n2}≤n3} + 1{n3≥n2 and n3>n1} + 1{n3>n2 and n3>n1}).

So if we make a change of unknown u = (Dt + Λm)v with

Dt = −i∂t, Λm =
√
−∆ + |x|2 + m2,

we may write using (2.2.1)

(2.2.3) (Dt − Λm)u = −
2κ−1∑

p=κ

Ap

(
Λ−1

m (
u + ū

2
)

)
Λ−1

m (
u + ū

2
) + G

(
Λ−1

m (
u + ū

2
)

)
.

Denote C(u, ū) = −1
2

∑2κ−1
p=κ Ap

(
Λ−1

m (u+ū
2 )

)
Λ−1

m so that

(2.2.4) (Dt − Λm)u = C(u, ū)u + C(u, ū)ū + G

(
Λ−1

m (
u + ū

2
)

)
.

We have to estimate for the solution u of (2.2.3)

(2.2.5) Θs(u(t, ·)) =
1

2
〈Λs

mu(t, ·),Λs
mu(t, ·)〉.

Now comes the main result of this subsection:

Proposition 2.2.1. There are ν ∈ R+ and large enough s0 such that for any natural number
s ≥ s0, there are:

• Multilinear operators Mp
ℓ ∈ M̃ν,2s−a

p+1 (ωℓ), κ ≤ p ≤ 2κ − 1, 0 ≤ ℓ ≤ p with ωℓ defined by

ωℓ(j) = −1, j = 0, . . . , ℓ, ωℓ(j) = 1, j = ℓ + 1, . . . , p + 1 and a = 2 if d ≥ 2 and a = 13
6 − ς for

any ς ∈ (0, 1) if d = 1;

• Multilinear operators M̃p
ℓ ∈ M̃ν,2s−1

p+1 (ω̃ℓ), κ ≤ p ≤ 2κ − 1, 0 ≤ ℓ ≤ p with ω̃ℓ defined by
ω̃ℓ(j) = −1, j = 0, . . . , ℓ, p + 1, ω̃ℓ(j) = 1, j = ℓ + 1, . . . , p;
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• Multilinear operators Rp
ℓ ∈ R̃ν,2s

p+1(ωℓ), R̃
p
ℓ ∈ R̃ν,2s

p+1(ω̃ℓ), κ ≤ p ≤ 2κ − 1, 0 ≤ ℓ ≤ p;

• A map u → T (u) defined on H s(Rd) with values in R, satisfying when ||u||H s ≤ 1, |T (u)| ≤
C||u||2κ+2

H s

such that

d

dt
Θs(u(t, ·)) =

2κ−1∑

p=κ

p∑

ℓ=0

Re i〈Mp
ℓ (ū, . . . , ū︸ ︷︷ ︸

ℓ

, u, . . . , u︸ ︷︷ ︸
p+1−ℓ

), u〉

+

2κ−1∑

p=κ

p∑

ℓ=0

Re i〈M̃p
ℓ (ū, . . . , ū︸ ︷︷ ︸

ℓ

, u, . . . , u︸ ︷︷ ︸
p−ℓ

, ū), u〉 +

2κ−1∑

p=κ

p∑

ℓ=0

Re i〈Rp
ℓ (ū, . . . , ū︸ ︷︷ ︸

ℓ

, u, . . . , u︸ ︷︷ ︸
p+1−ℓ

), u〉

+

2κ−1∑

p=κ

p∑

ℓ=0

Re i〈R̃p
ℓ (ū, . . . , ū︸ ︷︷ ︸

ℓ

, u, . . . , u︸ ︷︷ ︸
p−ℓ

, ū), u〉 + T (u).

(2.2.6)

Proof. We compute according to (2.2.4)

(2.2.7)
d

dt
Θs(u(t, ·)) = Re i〈Λs

mDtu,Λs
mu〉

= Re i〈Λs
mC(u, ū)u,Λs

mu〉 + Re i〈Λs
mC(u, ū)ū,Λs

mu〉 + Re i〈Λs
mG(Λ−1

m (
u + ū

2
)),Λs

mu〉.

The last term in the right hand side of (2.2.7) contributes to the last term in (2.2.6) by proposition
1.1.21. Let us treat the other two terms in the right hand side of (2.2.7).

Lemma 2.2.2. There are Mp
ℓ ∈ M̃ν,2s−a

p+1 (ωℓ), Rp
ℓ ∈ R̃ν,2s

p+1(ωℓ), κ ≤ p ≤ 2κ − 1, 0 ≤ ℓ ≤ p with ωℓ

defined by ωℓ(j) = −1, j = 0, . . . , ℓ, ωℓ(j) = 1, j = ℓ+1, . . . , p+1 and a = 2 if d ≥ 2 and a = 13
6 − ς

for any ς ∈ (0, 1) if d = 1, such that

Re i〈Λs
mC(u, ū)u,Λs

mu〉 =

2κ−1∑

p=κ

p∑

ℓ=0

Re i〈Mp
ℓ (ū, . . . , ū︸ ︷︷ ︸

ℓ

, u, . . . , u︸ ︷︷ ︸
p+1−ℓ

), u〉

+
2κ−1∑

p=κ

p∑

ℓ=0

Re i〈Rp
ℓ (ū, . . . , ū︸ ︷︷ ︸

ℓ

, u, . . . , u︸ ︷︷ ︸
p+1−ℓ

), u〉.
(2.2.8)

Proof of Lemma 2.2.2: Let χ be a cut-off function near 0 with small support and λn defined in
(1.1.1). We may decompose the operator Ap(v) defined in (2.2.2) as

(2.2.9) Ap(v) = A1
p(v) + A2

p(v) + A3
p(v),

where Aj
p(v)(j = 1, 2, 3) are operators of form

A1
p(v) · w =

∑

n0

· · ·
∑

np+1

B1(n0, . . . , np+1)Πn0 [(Πn1v) . . . (Πnpv)(Πnp+1w)],

A2
p(v) · w =

∑

n0

· · ·
∑

np+1

B2(n0, . . . , np+1)Πn0 [(Πn1v) . . . (Πnpv)(Πnp+1w)],

A3
p(v) · w =

∑

n1

· · ·
∑

np+1

B3(n1, . . . , np+1)Πn0 [(Πn1v) . . . (Πnpv)(Πnp+1w)],

(2.2.10)
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with

B1(n0, . . . , np+1) = B(n1, . . . , np+1)χ

( |λ2
n0

− λ2
np+1

|
λ2

n0
+ λ2

np+1

)
1{max{n1,...,np}<δnp+1},

B2(n0, . . . , np+1) = B(n1, . . . , np+1)

(
1 − χ

( |λ2
n0

− λ2
np+1

|
λ2

n0
+ λ2

np+1

))
1{max{n1,...,np}<δnp+1},

B3(n1, . . . , np+1) = B(n1, . . . , np+1)1{max{n1,...,np}≥δnp+1},

(2.2.11)

with some small δ > 0. Therefore for the operator C(u, ū) defined above (2.2.4), we have

(2.2.12) C(u, ū) = −1

2

3∑

j=1

2κ−1∑

p=κ

Aj
p

(
Λ−1

m (
u + ū

2
)

)
Λ−1

m .

So the left hand side of (2.2.8) may be written as

(2.2.13) −1

2

3∑

j=1

2κ−1∑

p=κ

Re i〈Λ2s
mAj

p

(
Λ−1

m (
u + ū

2
)

)
Λ−1

m u, u〉 :=

3∑

j=1

2κ−1∑

p=κ

Ij
p .

Let us treat these quantities term by term.

(i) The term I1
p .

Note that −4I1
p equals to

(2.2.14) Re i〈
[
Λ2s

mA1
p

(
Λ−1

m (
u + ū

2
)

)
Λ−1

m −
(

A1
p

(
Λ−1

m (
u + ū

2
)

)
Λ−1

m

)∗
Λ2s

m

]
u, u〉,

which may be written as

Re i〈
[
Λ2s

m , A1
p

(
Λ−1

m (
u + ū

2
)

)
Λ−1

m

]
u, u〉

+ Re i〈
[
A1

p

(
Λ−1

m (
u + ū

2
)

)
Λ−1

m −
(

A1
p

(
Λ−1

m (
u + ū

2
)

)
Λ−1

m

)∗]
Λ2s

mu, u〉 := I + II

(2.2.15)

We expand the first term in (2.2.15) using (2.2.10) to get

I = Re i〈
∑

n∈Np+2

π1Πn0

[(
Πn1Λ

−1
m (

u + ū

2
)

)
. . .

(
ΠnpΛ

−1
m (

u + ū

2
)

)(
Πnp+1Λ

−1
m u

)]
, u〉(2.2.16)

= Re i〈
∑

n∈Np+2

p∑

ℓ=0

π2Πn0 [(Πn1Λ
−1
m ū) . . . (Πnℓ

Λ−1
m ū)(Πnℓ+1

Λ−1
m u) . . . (Πnp+1Λ

−1
m u)], u〉

= Re i
∑

n∈Np+2

p∑

ℓ=0

π2

∫
(Πn0 ū)(Πn1Λ

−1
m ū) . . . (Πnℓ

Λ−1
m ū)(Πnℓ+1

Λ−1
m u) . . . (Πnp+1Λ

−1
m u)dx,

where we have used notations

n = (n0, . . . , np+1),

π1 = B1(n0, . . . , np+1)[(m
2 + λ2

n0
)s − (m2 + λ2

np+1
)s],(2.2.17)
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π2 =
1

2p

(
p
ℓ

)
B1(n0, . . . , np+1)[(m

2 + λ2
n0

)s − (m2 + λ2
np+1

)s].

Let ωℓ be defined in the statement of the lemma and set

Sℓ
p = {(n0, . . . , np+1) ∈ N

p+2; there exists a bijection σ from

{j; 0 ≤ j ≤ p + 1, ωℓ(j) = −1} to {j; 0 ≤ j ≤ p + 1, ωℓ(j) = 1}
such that for each j in the first set nj = nσ(j)}.

(2.2.18)

Now we look at the integral in the last line of (2.2.16). If n ∈ Sℓ
p with Sℓ

p 6= ∅, there is a
bijection σ from {0, . . . , ℓ} to {ℓ, . . . , p + 1} such that nj = nσ(j), j = 0, . . . , ℓ. So we may couple
Πnj

ū, j = 0, . . . , ℓ with Πnσ(j)
u, j = 0, . . . , ℓ. Since π2 is real, we get zero if we take the sum over

n ∈ Sℓ
p when computing the right hand side of (2.2.16). Therefore we may assume n /∈ Sℓ

p when
computing I. Now we define

(2.2.19) Mp,1
ℓ (u1, . . . , up+1) = −1

4

∑

n/∈Sℓ
p

π2Πn0 [(Πn1Λ
−1
m u1) . . . (Πnp+1Λ

−1
m up+1)].

It follows from the second equality in (2.2.16) that

(2.2.20) I = −4

p∑

ℓ=0

Re i〈Mp,1
ℓ (ū, . . . , ū︸ ︷︷ ︸

ℓ

, u, . . . , u︸ ︷︷ ︸
p+1−ℓ

), u〉.

Let us turn to the term II in (2.2.15). Note that A1
p(v)∗ is an operator of form

(2.2.21) A1
p(v)∗ · w =

∑

n∈Np+2

B1(np+1, n1, . . . , np, n0)Πn0 [(Πn1v) . . . (Πnpv)(Πnp+1w)].

Thus we may compute using (2.2.10)

II = Re i〈
∑

n∈Np+2

p∑

ℓ=0

π3Πn0[(Πn1Λ
−1
m ū) . . . (Πnℓ

Λ−1
m ū)(Πnℓ+1

Λ−1
m u) . . . (ΠnpΛ

−1
m u)(Πnp+1Λ

2s
mu)], u〉

= Re i
∑

n∈Np+2

p∑

ℓ=0

π3

∫
(Πn0 ū)(Πn1Λ

−1
m ū) . . . (Πnℓ

Λ−1
m ū)(Πnℓ+1

Λ−1
m u) . . . (ΠnpΛ

−1
m u)(Πnp+1Λ

2s
mu)dx,

(2.2.22)

where
(2.2.23)

π3 =
1

2p

(
p
ℓ

)
[B1(n0, n1, . . . , np, np+1)(m

2 + λ2
np+1

)−
1
2 − B1(np+1, n1, . . . , np, n0)(m

2 + λ2
n0

)−
1
2 ].

With the same reasoning as in the paragraph above (2.2.19) we get zero if we take the sum over
n ∈ Sℓ

p when computing the right hand side of (2.2.22). So we may assume n /∈ Sℓ
p and define

(2.2.24) Mp,2
ℓ (u1, . . . , up+1) = −1

4

∑

n/∈Sℓ
p

π3Πn0[(Πn1Λ
−1
m u1) . . . (ΠnpΛ

−1
m up)(Πnp+1Λ

2s
mup+1)].
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It follows from (2.2.22) that

(2.2.25) II = −4

p∑

ℓ=0

Re i〈Mp,2
ℓ (ū, . . . , ū︸ ︷︷ ︸

ℓ

, u, . . . , u︸ ︷︷ ︸
p+1−ℓ

), u〉.

Let us check that Mp,1
ℓ ,Mp,2

ℓ ∈ M̃ν,2s−a
p+1 (ωℓ) for some ν > 0, where a = 2 if d ≥ 2 and

a = 13
6 − ς for any ς ∈ (0, 1) if d = 1. Since the function B1(n0, . . . , nnp+1) is supported on domain

n′ = max{n1, . . . , np} < δnp+1 and n0 ∼ np+1 (this is because of the cut-off function and (1.1.1)),
we see that (2.1.1) holds true if suppχ and δ are small. Let us use theorem 1.3.1 to show that
(2.1.2) holds true with τ = 2s − a for Mp,1

ℓ and Mp,2
ℓ . Remark that we have

|π2| ≤ C(1 + |√n0 −
√

np+1|)(1 +
√

n0 +
√

np+1)
2s−1,(2.2.26)

|π3| ≤ C(1 +
√

n′)2(1 + |√n0 −
√

np+1|)(1 +
√

n0 +
√

np+1)
−2.(2.2.27)

Indeed, (2.2.26) follows from the fact

|(m2 + λ2
n0

)s − (m2 + λ2
np+1

)s| ≤ C(|λn0 − λnp+1 |)(1 + λn0 + λnp+1)
2s−1.

If n′ < δn0 and n′ < δnp+1 for small δ > 0, then

B1(n0, n1, . . . , np, np+1) = B1(np+1, n1, . . . , np, n0)

since B(n1, . . . , np+1) is constant valued on the domain n′ < np+1. Thus (2.2.27) follows from the
fact

|(m2 + λ2
n0

)−
1
2 − (m2 + λ2

np+1
)−

1
2 | ≤ C(|λn0 − λnp+1|)(1 + λn0 + λnp+1)

−2.

Otherwise, assume n′ ≥ δn0 or n′ ≥ δnp+1. Then we must have n′ ≥ Cn0 and n′ ≥ Cnp+1 if B1 is
non zero, since n0 ∼ np+1 which is because of the cut-off function. In this case, (2.2.27) holds true
trivially.

Moreover, on the support of Πn0M
p,l
ℓ (Πn1u1, . . . ,Πnp+1up+1)(l = 1, 2), i.e., n0 ∼ np+1 and

np+1 ≥ max{n1, . . . , np} = n′, we have

1 +
√

ni2 ∼ 1 +
√

n′,

µ(n0, . . . , np+1) ∼ (1 +
√

np+1)(1 +
√

n′),(2.2.28)

S(n0, . . . , np+1) ∼ |n0 − np+1| + (1 +
√

np+1)(1 +
√

n′),

from which we deduce

(2.2.29)
µ(n0, . . . , np+1)

S(n0, . . . , np+1)
∼ 1 +

√
n′

|√n0 −√
np+1| + 1 +

√
n′ .

Thus

(1 + |√n0 −
√

np+1|)
µ(n0, . . . , np+1)

S(n0, . . . , np+1)
≤ C(1 +

√
n′).

Then we use theorem 1.3.1 (with dimension d ≥ 2) to get for l = 1, 2

||Πn0M
p,l
ℓ (Πn1u1, . . . ,Πnp+1up+1)||L2

≤ C(1 +
√

n0 +
√

np+1)
2s−2(1 +

√
n′)ν+2(1 + |√n0 −

√
np+1|)

µ(n0, . . . , np+1)
N

S(n0, . . . , np+1)N

p+1∏

j=1

||uj ||L2

≤ C(1 +
√

n0 +
√

np+1)
2s−2(1 +

√
n′)ν+3 µ(n0, . . . , np+1)

N−1

S(n0, . . . , np+1)N−1

p+1∏

j=1

||uj ||L2 .

(2.2.30)
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So Mp,l
ℓ ∈ Mν,2s−2

ℓ for some other ν > 0 in dimension d ≥ 2. The case of dimension one is similar.

(2.1.15) with ω = ωℓ is satisfied by definition. Thus Mp,1
ℓ ,Mp,2

ℓ ∈ M̃ν,2s−a
p+1 (ωℓ) and we have proved

(2.2.31) I1
p =

p∑

ℓ=0

Re i〈Mp,1
ℓ (ū, . . . , ū︸ ︷︷ ︸

ℓ

, u, . . . , u︸ ︷︷ ︸
p+1−ℓ

), u〉 +

p∑

ℓ=0

Re i〈Mp,2
ℓ (ū, . . . , ū︸ ︷︷ ︸

ℓ

, u, . . . , u︸ ︷︷ ︸
p+1−ℓ

), u〉.

(ii) The term I2
p .

Using (2.2.10) we get

− 2I2
p = Re i〈

∑

n∈Np+2

p∑

ℓ=0

π4Λ
2s
mΠn0[(Πn1Λ

−1
m ū) . . . (Πnℓ

Λ−1
m ū)(Πnℓ+1

Λ−1
m u) . . . (Πnp+1Λ

−1
m u)], u〉

= Re i
∑

n∈Np+2

p∑

ℓ=0

π4

∫
(Πn0Λ

2s
m ū)(Πn1Λ

−1
m ū) . . . (Πnℓ

Λ−1
m ū)(Πnℓ+1

Λ−1
m u) . . . (Πnp+1Λ

−1
m u)dx

(2.2.32)

where

π4 =
1

2p

(
p
ℓ

)
B2(n0, . . . , np+1).

We may rule out the sum over n ∈ Sℓ
p in the above computation with the same reasoning as in the

paragraph above (2.2.19). Thus if we define

(2.2.33) Rp,1
ℓ (u1, . . . , up+1) = −1

2

∑

n/∈Sℓ
p

π4Λ
2s
mΠn0 [(Πn1Λ

−1
m u1) . . . (Πnp+1Λ

−1
m up+1)],

we have

(2.2.34) I2
p =

p∑

ℓ=0

Re i〈Rp,1
ℓ (ū, . . . , ū︸ ︷︷ ︸

ℓ

, u, . . . , u︸ ︷︷ ︸
p+1−ℓ

), u〉.

From the support property of function B2(n0, . . . , np+1) we know that

Πn0R
p,1
ℓ (Πn1u1, . . . ,Πnp+1up+1) is supported on max{n1, . . . , np} < δnp+1 and |n0−np+1| ≥ c(n0 +

np+1) for some small c > 0. Therefore, on its support, if n0 > Cnp+1 for a large C, we have

µ(n0, . . . , np+1) = (1 +
√

np+1)(1 +
√

n′) ≤ (1 +
√

n0)(1 +
√

n′),

S(n0, . . . , np+1) = |n0 − np+1| + (1 +
√

np+1)(1 +
√

n′) ∼ (1 +
√

n0)
2

and if n0 ≤ Cnp+1, we have

µ(n0, . . . , np+1) ≤ (1 +
√

n′)(1 +
√

np+1),

S(n0, . . . , np+1) ≥ c(|n0 − np+1|) ≥ c(n0 + np+1) ∼ (1 +
√

np+1)
2.

In both cases we have

(2.2.35)
µ(n0, . . . , np+1)

S(n0, . . . , np+1)
≤ C

1 +
√

n′

1 +
√

n0 + · · · + √
np+1

= C
max2(

√
n1, . . . ,

√
np+1)

1 +
√

n0 + · · · + √
np+1

,

where max2(
√

n1, . . . ,
√

np+1) is defined above definition 2.1.4. Thus theorem 1.3.1 allows us to get

(2.1.17) with τ = 2s and some ν > 0. (2.1.24) with ω = ωℓ is satisfied by the definition of Rp,1
ℓ . So

Rp,1
ℓ ∈ R̃ν,2s

p+1(ωℓ).
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(iii) The term I3
p .

The treatment of I3
p is similar to that of I2

p . The only difference is that we have different support
for B2 and B3. So we define

(2.2.36) Rp,2
ℓ (u1, . . . , up+1) = −1

2

∑

n/∈Sℓ
p

π5Λ
2s
mΠn0 [(Πn1Λ

−1
m u1) . . . (Πnp+1Λ

−1
m up+1)]

with π5 given by

(2.2.37) π5 =
1

2p

(
p
ℓ

)
B3(n1, . . . , np+1)

and we get

(2.2.38) I3
p =

p∑

ℓ=0

Re i〈Rp,2
ℓ (ū, . . . , ū︸ ︷︷ ︸

ℓ

, u, . . . , u︸ ︷︷ ︸
p+1−ℓ

), u〉.

From the support property of B3 we know that Πn0R
p,2
ℓ (Πn1u1, . . . ,Πnp+1up+1) is supported on

domain δnp+1 ≤ max{n1, . . . , np} = n′ ≤ np+1. So on this domain we have

µ(n0, . . . , np+1) ≤ (1 +
√

np+1)(1 +
√

n′),

S(n0, . . . , np+1) ∼ (1 +
√

n0 +
√

np+1)
2,

from which we deduce

(2.2.39)
µ(n0, . . . , np+1)

S(n0, . . . , np+1)
≤ C

1 +
√

n′

1 +
√

n0 + · · · + √
np+1

.

Thus we have by theorem 1.3.1, for any N ∈ N, there exists CN > 0, such that (2.1.17) holds true
with τ = 2s and some ν > 0. On the other hand, (2.1.24) with ω = ωℓ is satisfied by the definition.
So Rp,2

ℓ ∈ R̃ν,2s
p+1(ωℓ).

Taking Mp
ℓ to be the sum of Mp,1

ℓ and Mp,2
ℓ , and Rp

ℓ the sum of Rp,1
ℓ and Rp,2

ℓ , we get (2.2.8)

with Mp
ℓ ∈ M̃ν,2s−a

p+1 (ωℓ) and Rp
ℓ ∈ R̃ν,2s

p+1(ωℓ). This concludes the proof the lemma.

We have to treat the second term in the right hand side of (2.2.7).

Lemma 2.2.3. There are multilinear operators M̃p
ℓ ∈ M̃ν,2s−1

p+1 (ω̃ℓ), R̃p
ℓ ∈ R̃ν,2s

p+1(ω̃ℓ), κ ≤ p ≤ 2κ−1,
0 ≤ ℓ ≤ p with ω̃ℓ defined by ω̃ℓ(j) = −1, j = 0, . . . , ℓ, p + 1, ω̃ℓ(j) = 1, j = ℓ + 1, . . . , p, such that

Re i〈Λs
mC(u, ū)ū,Λs

mu〉 =

2κ−1∑

p=κ

p∑

ℓ=0

Re iM̃p
ℓ (ū, . . . , ū︸ ︷︷ ︸

ℓ

, u, . . . , u︸ ︷︷ ︸
p−ℓ

, ū), u〉

+

2κ−1∑

p=κ

p∑

ℓ=0

Re i〈R̃p
ℓ (ū, . . . , ū︸ ︷︷ ︸

ℓ

, u, . . . , u︸ ︷︷ ︸
p−ℓ

, ū), u〉.
(2.2.40)
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Proof of Lemma 2.2.3: Let ω̃ℓ be defined in the statement of the lemma. We set

S̃ℓ
p = {(n0, . . . , np+1) ∈ N

p+2; there exists bijection σ from

{j; 0 ≤ j ≤ p + 1, ω̃ℓ(j) = −1} to {j; 0 ≤ j ≤ p + 1, ω̃ℓ(j) = 1}
such that for each j in the first set nj = nσ(j)}.

(2.2.41)

Taking the expression of C(u, ū) defined above (2.2.4) into account, we compute using notation
(2.2.2)

Re i〈Λ2s
mC(u, ū)ū, u〉

= Re i〈−1

2

2κ−1∑

p=κ

Λ2s
mAp

(
Λ−1

m (
u + ū

2
)

)
Λ−1

m ū, u〉

= Re i〈
2κ−1∑

p=κ

∑

n∈Np+2

p∑

ℓ=0

π6Λ
2s
mΠn0 [(Πn1Λ

−1
m ū) . . . (Πnℓ

Λ−1
m ū)

× (Πnℓ+1
Λ−1

m u) . . . (ΠnpΛ
−1
m u)(Πnp+1Λ

−1
m ū)], u〉

= Re i

2κ−1∑

p=κ

∑

n∈Np+2

p∑

ℓ=0

π6

∫
(Πn0Λ

2s
m ū)(Πn1Λ

−1
m ū) . . . (Πnℓ

Λ−1
m ū)

× (Πnℓ+1
Λ−1

m u) . . . (ΠnpΛ
−1
m u)(Πnp+1Λ

−1
m ū)dx,

(2.2.42)

where π6 is given by

(2.2.43) π6 = − 1

2p+1

(
p
ℓ

)
B(n1, . . . , np+1).

With the same reasoning as in the paragraph above (2.2.19) we may assume n /∈ S̃ℓ
p in the com-

putation of (2.2.42). Let χ ∈ C∞
0 (R), χ ≡ 1 near zero, and suppχ small enough. According to

(2.2.42), we define

M̃p
ℓ (u1, . . . , up+1) =

∑

n/∈S̃ℓ
p

χ

( |λ2
n0

− λ2
np+1

|
λ2

n0
+ λ2

np+1

)
π6Λ

2s
mΠn0[(Πn1Λ

−1
m u1), . . . , (Πnp+1Λ

−1
m up+1)],

R̃p
ℓ (u1, . . . , up+1) =

∑

n/∈S̃ℓ
p

(
1 − χ

( |λ2
n0

− λ2
np+1

|
λ2

n0
+ λ2

np+1

))
π6Λ

2s
mΠn0[(Πn1Λ

−1
m u1), . . . , (Πnp+1Λ

−1
m up+1)].

It follows that (2.2.40) holds true.

Now we are left to check that M̃p
ℓ ∈ M̃ν,2s−1

p+1 (ω̃ℓ) and R̃p
ℓ ∈ R̃ν,2s

p+1(ω̃ℓ).

Because of cut-off function and the support property of function B in the definition of M̃p
ℓ

we know that (2.1.1) holds true for M̃p
ℓ and we may assume n0 ∼ np+1 when estimating L2

norm of Πn0M̃
p
ℓ (Πn1u1, . . . ,Πnp+1up+1). Since there is a Λ−1

m following each orthogonal projector
Πnj

, j = 1, . . . , p+1, we see that (1.3.4) implies (2.1.2) with τ = 2s−1 and some ν > 0. Moreover,

(2.1.15) with ω = ω̃ℓ is satisfied by the definition of M̃p
ℓ . So M̃p

ℓ ∈ M̃ν,2s−1
p+1 (ω̃ℓ).

Assume Πn0[R(Πn1u1, . . . ,Πnp+1up+1)] does not vanish. Then we have |n0−np+1| ≥ c(n0+np+1)
for some small c > 0 because of the cut-off function and np+1 ≥ max{n1, . . . , np} = n′ because of
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the support property of function B. Therefore if n0 ≥ n′, we have

µ(n0, . . . , np+1) = (1 +
√

n′)(1 + min{√n0,
√

np+1}),
S(n0, . . . , np+1) = |n0 − np+1| + (1 +

√
n′)(1 + min{√n0,

√
np+1}),

and thus

µ(n0, . . . , np+1)

S(n0, . . . , np+1)
≤ C

1 +
√

n′
√

n0 +
√

np+1 + 1 +
√

n′ ≤ C
max2(

√
n1, . . . ,

√
np+1)

1 +
√

n0 + · · · + √
np+1

;

if n0 < n′, we have

µ(n0, . . . , np+1) ≤ (1 +
√

n′)2, S(n0, . . . , np+1) = |n′ − np+1| + µ(n0, . . . , np+1),

and thus

µ(n0, . . . , np+1)

S(n0, . . . , np+1)
≤ C

1 +
√

n′
√

n′ +
√

np+1 + 1 +
√

n′ ≤ C
max2(

√
n1, . . . ,

√
np+1)

1 +
√

n0 + · · · + √
np+1

.

Now using theorem 1.3.1 we see that (2.1.17) holds true with τ = 2s and some ν > 0. But (2.1.24)
with ω = ω̃ℓ is satisfied according to the definition. So R̃p

ℓ ∈ R̃ν,2s
p+1(ω̃ℓ). This concludes the proof of

lemma.

Summarizing the above analysis gives an end to the proof of the proposition 2.2.1.

In order to control the energy, let us first turn to some useful estimates in the following subsec-
tion.

2.3 Geometric bounds

This subsection is a modification of section 2.1 in [9]. We give it for the convenience of the
reader. Consider the function on R

p+2 depending on the parameter m ∈ (0,+∞), defined for
ℓ = 0, . . . , p + 1 by

(2.3.1) F ℓ
m(ξ0, . . . , ξp+1) =

ℓ∑

j=0

√
m2 + ξ2

j −
p+1∑

j=ℓ+1

√
m2 + ξ2

j .

The main result of this subsection is the following theorem:

Theorem 2.3.1. There is a zero measure subset N of R
∗
+ such that for any integers 0 ≤ ℓ ≤ p+1,

any m ∈ R
∗
+ −N , there are constants c > 0, N0 ∈ N such that the lower bound

|F ℓ
m(λn0 , . . . , λnp+1)| ≥ c(1 +

√
n0 +

√
np+1)

−3−ρ(1 + |√n0 −√
np+1| +

√
n′)−2N0(2.3.2)

holds true for any ρ > 0 and any (n0, . . . , np+1) ∈ N
p+2 − Sℓ

p. Here λn are given by (1.1.1),

n′ = max{n1, . . . , np}, and Sℓ
p is defined in (2.2.18), in which we have set ωℓ(j) = −1, j =

0, . . . , ℓ, ω(j) = 1, j = ℓ + 1, . . . , p + 1.
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The proof of the theorem will rely on some geometric estimates that we shall deduce from results
of [10]. Let us show that under the condition of theorem 2.3.1 we have
(2.3.3)
|F ℓ

m(λn0 , . . . , λnp+1)| ≥ c(1 +
√

n0 +
√

np+1)
−3−ρ(1 + |√n0 −

√
np+1|)−N0(1 +

√
n1 + · · ·+√

np)
−N0 .

Let I ⊂ (0,+∞) be some compact interval and define for 0 ≤ ℓ ≤ p + 1 functions

fℓ : [0, 1] × [0, 1]p+2 × I −→ R

(z, x0, . . . , xp+1, y) → fℓ(z, x0, . . . , xp+1, y)

gℓ : [0, 1] × [0, 1]p × I −→ R

(z, x1, . . . , xp , y) → gℓ(z, x1, . . . , xp , y)

(2.3.4)

by

fℓ(z, x0, . . . , xp+1, y) =

ℓ∑

j=0

√
z2 + y2x2

j −
p+1∑

j=ℓ+1

√
z2 + y2x2

j

gℓ(z, x1, . . . , xp, y) = z

[ ℓ∑

j=1

z√
z2 + y2x2

j

−
p∑

j=ℓ+1

z√
z2 + y2x2

j

]
when z > 0,

gℓ(0, x1, . . . , xp, y) ≡ 0.

(2.3.5)

Then the graphs of fℓ, gℓ are subanalytic subsets of [0, 1]p+3 × I and [0, 1]p+1 × I respectively, so
that fℓ, gℓ are continuous subanalytic functions (refer to Bierstone-Milman [5] for an introduction
to subanalytic sets and functions). Let us consider the set Γ of points (z, x) ∈ [0, 1]p+3(resp.
(z, x) ∈ [0, 1]p+1) such that y → fℓ(z, x, y) (resp. y → gℓ(z, x, y)) vanishes identically. If (z, x) ∈ Γ
and z 6= 0, we have

ℓ =
p

2
and

∑

j≤ℓ

x2κ
j −

∑

j≥ℓ+1

x2κ
j = 0,∀κ ∈ N

∗

where the sum is taken respectively for 0 ≤ j ≤ p + 1 in the case of fℓ and 1 ≤ j ≤ p for gℓ. This
implies that there is a bijection σ : {0, . . . , ℓ} → {ℓ+1, . . . , p+1} (resp. {1, . . . , ℓ} → {ℓ+1, . . . , p})
such that xσ(j) = xj for any j = 0, . . . , ℓ (resp. j = 1, . . . , ℓ)— see for instance the proof of lemma
5.6 in [10]. When p is even, denote by Sp the set of all bijections respectively from {0, . . . , p

2} to
{p

2 + 1, . . . , p + 1} and from {1, . . . , p
2} to {p

2 , . . . , p}. Define for 0 ≤ ℓ ≤ p + 1

ρℓ(z, x) ≡ z if ℓ 6= p

2
,

ρℓ(z, x) = z
∏

σ∈Sp

[ ∑

j≤p/2

(x2
σ(j) − x2

j)
2

]
if ℓ =

p

2
,

(2.3.6)

where the sum in the above formula is taken for j ≥ 0 (resp. j ≥ 1) when we study fℓ (resp. gℓ).
Then the set {ρℓ = 0} contains those points (z, x) such that y → fℓ(z, x, y) (resp. y → gℓ(z, x, y))
vanishes identically. The following proposition is the same as proposition 2.1.2 in [9].

Proposition 2.3.2. (i)There are Ñ ∈ N, α0 > 0, δ > 0, C > 0, such that for any 0 ≤ ℓ ≤ p + 1,
any α ∈ (0, α0), any (z, x) ∈ [0, 1]p+3 (resp. (z, x) ∈ [0, 1]p+1) with ρℓ(z, x) 6= 0, any N ≥ Ñ the
sets

If
ℓ (z, x, α) = {y ∈ I; |fℓ(z, x, y)| < αρℓ(z, x)N}

Ig
ℓ (z, x, α) = {y ∈ I; |gℓ(z, x, y)| < αρℓ(z, x)N}

(2.3.7)
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have Lebesgue measure bounded from above by Cαδρℓ(z, x)Nδ .
(ii) For any N ≥ Ñ , there is K ∈ N such that for any α ∈ (0, α0), any (z, x) ∈ [0, 1]p+1, the set

Ig
ℓ (z, x, α) may be written as the union of at most K open disjoint subintervals of I.

We shall deduce (2.3.3) from several lemmas. Let us first introduce some notations. When p is
odd or p is even and ℓ 6= p

2 , we set N
′p
ℓ = ∅. When p is even and ℓ = p

2 , we define

N
′p
ℓ = {ñ = (n1, . . . , np) ∈ N

p; there is a bijection

σ : {1, . . . , ℓ} → {ℓ + 1, . . . , p} such that nσ(j) = nj, j = 1, . . . , ℓ}.(2.3.8)

We set also

(2.3.9) N
p+2
ℓ = {(n0, . . . , np+1) ∈ N

p+2; ñ ∈ N
′p
ℓ and n0 = np+1}.

Of course, N
p+2
ℓ = ∅ if p is odd or p is even and ℓ 6= p

2 .

We remark first that it is enough to prove (2.3.3) for those (n1, . . . , np) which do not belong to N
′p
ℓ :

actually if p is even, ℓ = p
2 and (n1, . . . , np) ∈ N

′p
ℓ , we have |F ℓ

m(λn0 , . . . , λnp+1)| = |
√

m2 + λ2
n0

−√
m2 + λ2

np+1
| which is bounded from below, when m stays in some compact interval, by

2|n0 − np+1|√
m2 + λ2

n0
+

√
m2 + λ2

np+1

≥ c

1 + λn0 + λnp+1

since from (n0, . . . , np+1) ∈ N
p+2−Sℓ

p, we have n0 6= np+1. Consequently (2.3.3) holds true trivially.

From now on, we shall always consider p−tuple ñ which do not belong to N
′p
ℓ .

Let us define for ℓ = 1, . . . , p another function on R
p given by

(2.3.10) Gℓ
m(ξ1, . . . , ξp) =

ℓ∑

j=1

√
m2 + ξ2

j −
p∑

j=ℓ+1

√
m2 + ξ2

j .

Let J ⊂ (0,+∞) be a given compact interval. For α > 0, N0 ∈ N, 0 ≤ ℓ ≤ p+1, n = (n0, . . . , np+1) ∈
N

p+2 define

Eℓ
J(n, α,N0) = {m ∈ J ; |F ℓ

m(λn0 , . . . , λnp+1)| < α(1 + λn0 + λnp+1)
−3−ρ

×(1 + |λn0 − λnp+1|)−N0(1 + λn1 + · · · + λnp)
−N0}.

(2.3.11)

We set also for β > 0, N1 ∈ N
∗, ñ = (n1, . . . , np) ∈ N

p − N
′p
ℓ

(2.3.12) E′ℓ
J (ñ, β,N1) = {m ∈ J ;

∣∣∣∣
∂Gℓ

m

∂m
(λn1 , . . . , λnp)

∣∣∣∣ < β(1 + λn1 + · · · + λnp)
−N1}.

We define for γ > β a subset of N
p+2 by

S(β, γ,N1) = {(n0, . . . , np+1) ∈ N
p+2 − N

p+2
ℓ : λn0 <

γ

3β
(1 + λn1 + · · · + λnp)

N1

or λnp+1 <
γ

3β
(1 + λn1 + · · · + λnp)

N1}.
(2.3.13)
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Lemma 2.3.3. Let Ñ , δ, α0 be the constants defined in the statement of proposition 2.3.2. There
are constants C1 > 0,M ∈ N

∗ such that for any β ∈ (0, α0), any N1 ∈ N with N1 > MÑ and
N1 > 2pM

δ , one has

(2.3.14) meas

[ ⋃

ñ∈Np−N
′p
ℓ

E′ℓ
J (ñ, β,N1)

]
≤ C1β

δ.

Proof. Set y = 1
m and

z = (1 +

p∑

j=1

λnj
)−1, xj = λnj

z , j = 1, . . . , p.

Denote by X the set of points (z, x) ∈ [0, 1]p+1 of the preceding form for (n1, . . . , np) describing
N

p. When p is even and ℓ = p/2, let X ′p
ℓ be the imagine of N

′p
ℓ defined by (2.3.8) under the map

ñ → (z, x). Using definition (2.3.6), we see that there are constants M > 0, C > 0, depending only
on p, such that for 0 ≤ ℓ ≤ p + 1

(2.3.15) ∀(z, x) ∈ X − X ′p
ℓ , zM ≤ ρℓ(z, x) ≤ Cz

since , when ℓ = p
2 and (n1, . . . , np) /∈ N

′p
ℓ ,

∑ p
2
j=1(λ

2
nσ(j)

− λ2
nj

)2 ≥ 1, by the definition of λnj
.

Remark that with the above notations

∂Gℓ
m

∂m
(λn1 , . . . , λnp) =

ℓ∑

j=1

m√
m2 + λ2

nj

−
p∑

j=ℓ+1

m√
m2 + λ2

nj

=
1

z
gℓ(z, x1, . . . , xp, y).

Then if I = {m−1;m ∈ J}, we see that m ∈ E′ℓ
J (ñ, β,N1) for n /∈ N

′p
ℓ if and only if y = 1

m satisfies

(2.3.16) |gℓ(z, x1, . . . , xp, y)| < βzN1+1 ≤ βρℓ(z, x)
1
M

(N1+1)

using (2.3.15). Applying proposition 2.3.2 (i), we see that for any fixed value of (z, x) ∈ X − X ′p
ℓ ,

the measure of those y such that (2.3.16) holds true is bounded from above by

Cβδρℓ(z, x)
N1+1

M
δ ≤ Cβδz

N1+1
M

δ

if we assume N1 ≥ MÑ and β ∈ (0, α0). Consequently, we get with a constant C ′ depending only
on J ,

meas(E′ℓ
J (n′, β,N1)) ≤ C ′βδ(1 + λn1 + · · · + λnp)

−N1+1
M

δ

≤ C ′βδ(1 + n1 + · · · + np)
−N1+1

2M
δ.

Inequality (2.3.14) follows from this estimate and the assumption on N1.

Lemma 2.3.4. Let Ñ , δ, α0 be the constants defined in the statement of proposition 2.3.2. There
are constants M ∈ N

∗, θ > 1, C2 > 0 such that for any N0, N1 ∈ N
∗ satisfying N0 > ÑMN1 and

N0δ > 2(p + 2)MN1, any 0 < β < γ with γ
β > θ, any α > 0 satisfying α( β

2γ )
−N0

N1 < α0, one has

(2.3.17) meas

[ ⋃

n∈S(β,γ,N1)

Eℓ
J(n, α,N0)

]
≤ C2α

δ

(
β

2γ

)−N0
N1

δ

.

24



Proof. We first remark that if λn0 + λnp+1 > γ
β (1 + λn1 + · · · + λnp)

N1 and n ∈ S(β, γ,N1), then
either

λn0 ≥ 2γ

3β
(1 + λn1 + · · · + λnp)

N1 or λnp+1 ≥ 2γ

3β
(1 + λn1 + · · · + λnp)

N1 ,

which implies that

|F ℓ
m(λn0 , . . . , λnp+1)| ≥ c

γ

β
(1 + λn1 + · · · + λnp)

N1

for some constant c > 0 depending only on p and J , if γ
β > θ large enough. Consequently, if α < α0

small enough relatively to c, we see that we have in this case Eℓ
J(n, α,N0) = ∅ when n ∈ S(β, γ,N1).

We may therefore consider only indices n such that

n ∈ S(β, γ,N1) and λn0 + λnp+1 ≤ γ

β
(1 + λn1 + · · · + λnp)

N1 .

Consequently, for m ∈ Eℓ
J(n, α,N0) and n ∈ S(β, γ,N1), we have

|F ℓ
m(λn0 , . . . , λnp+1)| ≤ α(1 + λn1 + · · · + λnp)

−N0

≤ α

(
β

2γ

)−N0
N1

(1 + λn0 + · · · + λnp+1)
−N0

N1 .
(2.3.18)

Define for n ∈ N
p+2

(2.3.19) z = (1 +

p+1∑

j=0

λnj
)−1, xj = λnj

z, j = 0, . . . , p + 1.

Denote by X ⊂ [0, 1]p+3 the set of points (z, x) of the preceding form, and let Xp
ℓ be the imagine

of the set N
p+2
ℓ defined by (2.3.9) under the map n → (z, x). By (2.3.6) we have again

∀(z, x) ∈ X − Xp
ℓ , zM ≤ ρℓ(z, x) ≤ Cz

for some large enough M , depending only on p. Moreover

F ℓ
m(λn0 , . . . , λnp+1) =

m

z
fℓ(z, x0, . . . , xp+1, y)

and (2.3.18) implies that if n ∈ S(β, γ,N1) and m ∈ Eℓ
J(n, α,N0), then y satisfies

|fℓ(z, x0, . . . , xp+1, y)| ≤ Cα

(
β

2γ

)−N0
N1

z
1+

N0
N1

≤ Cα

(
β

2γ

)−N0
N1

ρℓ(z, x)
1
M

(1+
N0
N1

)

(2.3.20)

We assume that α,N0, N1 satisfy the conditions of the statement of the lemma. Then by (i) of
proposition 2.3.2 we get that the measure of those y ∈ J satisfying (2.3.20) is bounded from above
by

C

[
α

(
β

2γ

)−N0
N1

]δ

z
δ

M
(1+

N0
N1

)

25



for some constant C, independent of N0, N1, α, β, γ. Consequently the measure of Eℓ
J(n, α,N0) is

bounded from above when n ∈ S(β, γ,N1) by

C

[
α

(
β

2γ

)−N0
N1

]δ(
1 + λn0 + · · · + λnp+1

)− δ
M

(1+
N0
N1

)

≤ C ′
[
α

(
β

2γ

)−N0
N1

]δ(
1 + n0 + · · · + np+1

)− δ
2M

(1+
N0
N1

)

for another constant C ′ depending on J . The conclusion of the lemma follows by summation, using
that δ

M (1 + N0
N1

) > 2(p + 2).

Proof of theorem 2.3.1. : We fix N0, N1 satisfying the conditions stated in lemmas 2.3.3 and 2.3.4,
and such that N0 > 2p + N1. We write when n /∈ S(β, γ,N1), 0 ≤ ℓ ≤ p + 1,

Eℓ
J(n, α,N0) ⊂ [Eℓ

J(n, α,N0) ∩ E′ℓ
J (ñ, β,N1)] ∪ [Eℓ

J(n, α,N0) ∩ (E′ℓ
J (ñ, β,N1)

c]

and estimate, using that we reduced ourselves to those ñ /∈ N
′p
ℓ

meas

[ ⋃

n; ñ/∈N
′p
ℓ

Eℓ
J(n, α,N0)

]
≤ meas

[ ⋃

n∈S(β,γ,N1)

Eℓ
J(n, α,N0)

]
+ meas

[ ⋃

ñ/∈N
′p
ℓ

E′ℓ
J (ñ, β,N1)

]

+ meas

[ ⋃

n∈S(β,γ,N0)c−N
p+2
ℓ

Eℓ
J(n, α,N0) ∩ E′ℓ

J (ñ, β,N1)
c

]
.

(2.3.21)

Let us bound the measure of Eℓ
J(n, α,N0)∩E′ℓ

J (ñ, β,N1)
c for n ∈ S(β, γ,N0)

c −N
p+2
ℓ . If m belongs

to that set, the inequality in (2.3.11) holds true. Remark that we may assume ℓ ≤ p : if ℓ = p + 1,
|F ℓ

m(λn0 , . . . , λnp+1)| ≥ c(1 + λn0 + λnp+1) for some c > 0, which is not compatible with (2.3.11) for
α < α0 small enough. Let us write (2.3.11) as

|λn0 − λnp+1 + G̃m(λn0 , . . . , λnp+1)| < α(1 + λn0 + λnp+1)
−3−ρ

×(1 + |λn0 − λnp+1|)−N0(1 + λn1 + · · · + λnp)
−N0

(2.3.22)

with, using notation (2.3.10)

G̃m(λn0 , . . . , λnp+1) = Gm(λn1 , . . . , λnp) + Rm(λn0 , λnp+1)

Rm(λn0 , λnp+1) = (
√

m2 + λ2
n0

− λn0) − (
√

m2 + λ2
np+1

− λnp+1).
(2.3.23)

Since n ∈ S(β, γ,N1)
c, we have by (2.3.13)

(2.3.24) λn0 ≥ γ

3β
(1 + λn1 + · · · + λnp)

N1 , λnp+1 ≥ γ

3β
(1 + λn1 + · · · + λnp)

N1 .

Consequently there is a constant C > 0, depending only on J , such that

|∂Rm

∂m
(λn0 , λnp+1)| ≤ C

β

γ
(1 + λn1 + · · · + λnp)

−N1 .
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If γ is large enough and m ∈ E′ℓ
J (ñ, β,N1)

c, we deduce from (2.3.12) that

(2.3.25) |∂G̃m

∂m
(λn0 , . . . , λnp+1)| ≥

β

2
(1 + λn1 + · · · + λnp)

−N1 .

By (ii) of proposition 2.3.2, we know that there is K ∈ N, independent of α, β, γ such that the set
J−E′ℓ

J (ñ, β,N1) is the union of at most K disjoint intervals Jj(ñ, β,N1) , 1 ≤ j ≤ K. Consequently,
we have

(2.3.26) Eℓ
J(n, α,N0) ∩ (E′ℓ

J (ñ, β,N1))
c ⊂

K⋃

j=1

{m ∈ Jj(ñ, β,N1); (2.3.22) holds true},

and on each interval Jj(n
′, β,N1), (2.3.25) holds true. We may on each such interval perform

in the characteristic function of (2.3.22) the change of variable of integration given by m →
G̃m(λn0 , . . . , λnp+1). Because of (2.3.25) this allows us to estimate the measure of (2.3.26) by

K
2

β
α(1 + λn0 + λnp+1)

−3−ρ(1 + |λn0 − λnp+1|)−N0(1 + λn1 + · · · + λnp)
−N0+N1

≤ CK
2

β
α(1 + n0 + np+1)

− 1
2
(3+ρ)(1 + |√n0 −√

np+1|)−N0(1 + n1 + · · · + np)
− 1

2
(N0−N1)

Summing in n0, . . . , np+1, we see that since N0 > 2p + N1, the last term in (2.3.21) is bounded
from above by C3

α
β with C3 independent of α, β, γ. By lemmas 2.3.3 and 2.3.4, we may thus bound

(2.3.21) by

C2α
δ

(
β

2γ

)−N0
N1

δ

+ C1β
δ + C3

α

β

if α, β are small enough, γ is large enough and α(β
γ )

−N0
N1 is small enough. If we take β = ασ , γ = α−σ

with σ > 0 small enough, and α ≪ 1, we finally get for some δ′ > 0,

meas

[ ⋃

n; ñ/∈N
′p
ℓ

Eℓ
J(n, α,N0)

]
≤ Cαδ′ → 0 if α → 0+.

This implies that in this case the set of those m ∈ J for which (2.3.3) does not hold true for any
c > 0 is of zero measure. This concludes the proof.

We will need a consequence of theorem 2.3.1:.

Proposition 2.3.5. There is a zero measure subset N of R
∗
+ such that for any integers 0 ≤ ℓ ≤

p + 1, any m ∈ R
∗
+ −N , there are constants c > 0, N0 ∈ N such that the lower bound

|F ℓ
m(λn0 , . . . , λnp+1)| ≥ c(1 +

√
n0 +

√
np+1)

−3−ρ(1 +
√

n′)−2N0
µ(n0, . . . , np+1)

2N0

S(n0, . . . , np+1)2N0
(2.3.27)

holds true for any ρ > 0 and any (n0, . . . , np+1) ∈ N
p+2 − Sℓ

p with n0 ∼ np+1 and np+1 ≥ n′. Here

λn, n′, Sℓ
p are the same as those in theorem 2.3.1.
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Proof. By theorem 2.3.1 we know (2.3.2) holds true under the conditions of the proposition. Since
we assume n0 ∼ np+1 and np+1 ≥ n′, we have by (1.3.2) and (1.3.3)

µ(n0, . . . , np+1) ∼ (1 +
√

np+1)(1 +
√

n′),

S(n0, . . . , np+1) ∼ |n0 − np+1| + (1 +
√

np+1)(1 +
√

n′)(2.3.28)

∼ (1 +
√

np+1)(1 + |√n0 −√
np+1| +

√
n′).

Therefore we deduce from (2.3.2)

|F ℓ
m(λn0 , . . . , λnp+1)| ≥ c(1 +

√
n0 +

√
np+1)

−3−ρ (1 +
√

np+1)
2N0

S(n0, . . . , np+1)2N0

≥ c(1 +
√

n0 +
√

np+1)
−3−ρ(1 +

√
n′)−2N0

µ(n0, . . . , np+1)
2N0

S(n0, . . . , np+1)2N0
.

This concludes the proof of the proposition.

In the following subsection, we shall also use a simpler version of theorem 2.3.1. Let us introduce
some notations. For m ∈ R

∗
+, ξj ∈ R, j = 0, . . . , p + 1, e = (e0, . . . , ep+1) ∈ {−1, 1}p+2, define

(2.3.29) F̃ (e)
m (ξ0, . . . , ξp+1) =

p+1∑

j=0

ej

√
m2 + ξ2

j .

When p is even and ♯{j; ej = 1} = p
2 + 1, denote by N (e) the set of all (n0, . . . , np+1) ∈ N

p+2 such
that there is a bijection σ from {j; 0 ≤ j ≤ p + 1, ej = 1} to {j; 0 ≤ j ≤ p + 1, ej = −1} so that for
any j in the first set nj = nσ(j). In the other cases, set N (e) = ∅.

Proposition 2.3.6. There is a zero measure subset N of R
∗
+ and for any m ∈ R

∗
+ −N , there are

constants c > 0, N0 ∈ N such that for any (n0, . . . , np+1) ∈ N
p+2 − N (e) one has

(2.3.30) |F̃ (e)
m (λn0 , . . . , λnp+1)| ≥ c(1 +

√
n0 + · · · + √

np+1)
−N0 .

Moreover, if e0ep+1 = 1, one has the inequality

(2.3.31) |F̃ (e)
m (λn0 , . . . , λnp+1)| ≥ c(1 +

√
n0 +

√
np+1)(1 +

√
n1 + · · · + √

np)
−N0 .

Proof. With the reasoning as in the proof of proposition 2.1.5 in [9], we get just by replacing
(n0, . . . , np+1) with (λ0, . . . , λp+1)

|F̃ (e)
m (λn0 , . . . , λnp+1)| ≥ c(1 + λn0 + · · · + λnp+1)

−N0

and
|F̃ (e)

m (λn0 , . . . , λnp+1)| ≥ c(1 + λn0 + λnp+1)(1 + λn1 + · · · + λnp)
−N0

when e0ep+1 = 1. This concludes the proof of the proposition by noting (1.1.1).
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2.4 Energy control and proof of main theorem

We shall use the results of subsection 2.3 to control the energy. When M(u1, . . . , up+1) is a p + 1-
linear form, let us define for 0 ≤ ℓ ≤ p + 1,

L−
ℓ (M)(u1, . . . ,p+1 ) = −ΛmM(u1, . . . , up+1)(2.4.1)

−
ℓ∑

j=1

M(u1, . . . ,Λmuj , . . . , up+1) +

p+1∑

j=ℓ+1

M(u1, . . . ,Λmuj , . . . , up+1)

and

L+
ℓ (M)(u1, . . . ,p+1 ) = −ΛmM(u1, . . . , up+1) −

ℓ∑

j=1

M(u1, . . . ,Λmuj, . . . , up+1)(2.4.2)

+

p∑

j=ℓ+1

M(u1, . . . ,Λmuj , . . . , up+1) − M(u1, . . . , up,Λmup+1).

We shall need the following lemma:

Lemma 2.4.1. Let N be the zero measure subset of R
∗
+ defined by taking the union of the zero

measure subsets defined in proposition 2.3.5 and proposition 2.3.6, and fix m ∈ R
∗
+ −N . Let ωℓ, ω̃ℓ

be defined in the statement of proposition 2.2.1. There is a ν̄ ∈ N such that the following statements
hold true for any large enough integer s, any integer p with κ ≤ p ≤ 2κ − 1, any integer ℓ with
0 ≤ ℓ ≤ p, any ρ > 0:

• Let θ ∈ (0, 1), Mp
ℓ ∈ M̃ν,2s−a

p+1 (ωℓ) with a = 2 if d ≥ 2 and a = 13
6 − ς for any ς ∈ (0, 1) if

d = 1 and M̃p
ℓ ∈ M̃ν,2s−1

p+1 (ω̃ℓ). Define

(2.4.3) Mp,ǫ
ℓ (u1, . . . , up+1) =

∑

n0

∑

np+1

1{√n0+
√

np+1<ǫ−θκ}Πn0M
p
ℓ (u1, . . . , up,Πnp+1up+1).

Then there are Mp,ǫ
ℓ ∈ M̃ν+ν̄,2s−1

p+1 (ωℓ) and Mp
ℓ ∈ M̃ν,2s−2

p+1 (ω̃ℓ) satisfying

L−
ℓ (Mp,ǫ

ℓ )(u1, . . . , up+1) = Mp,ǫ
ℓ (u1, . . . , up+1),

L+
ℓ (Mp

ℓ )(u1, . . . , up+1) = M̃p
ℓ (u1, . . . , up+1)

(2.4.4)

with the estimate for all N ≥ ν̄,

||M p,ǫ
ℓ ||Mν+ν̄,2s−1

p+1,N
≤ Cǫ−(4−a+ρ)θκ||Mp

ℓ ||Mν,2s−a
p+1,N

,

||Mp
ℓ ||Mν+ν̄,2s−2

p+1,N
≤ C||M̃p

ℓ ||Mν,2s−1
p+1,N

,
(2.4.5)

where || · ||Mν,τ
p+1,N

is defined in the statement of definition 2.1.1.

• Let Rp
ℓ ∈ R̃ν,2s

p+1(ωℓ), R̃
p
ℓ ∈ R̃ν,2s

p+1(ω̃ℓ). Then there are Rp
ℓ ∈ R̃ν+ν̄,2s

p+1 (ωℓ) and R′p
ℓ ∈ R̃ν+ν̄,2s

p+1 (ω̃ℓ)
such that

L−
ℓ (Rp

ℓ)(u1, . . . , up+1) = Rp
ℓ (u1, . . . , up+1),

L+
ℓ (R′p

ℓ )(u1, . . . , up+1) = R̃p
ℓ (u1, . . . , up+1).

(2.4.6)
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Proof. (i) We substitute in (2.4.4) Πnj
uj to uj, j = 1, . . . , p + 1, and compose on the left with Πn0 .

According to (2.4.1), equalities in (2.4.4) may be written

−F ℓ
m(λn0 , . . . , λnp+1)Πn0M

p,ǫ
ℓ (Πn1u1, . . . ,Πnp+1up+1) = Πn0M

p,ǫ
ℓ (Πn1u1, . . . ,Πnp+1up+1),(2.4.7)

F̃ (e)
m (λn0 , . . . , λnp+1)Πn0M

p
ℓ (Πn1u1, . . . ,Πnp+1up+1) = Πn0M̃

p
ℓ (Πn1u1, . . . ,Πnp+1up+1),(2.4.8)

where F ℓ
m is defined by (2.3.1) and F̃

(e)
m is defined by (2.3.29) with e0 = · · · = eℓ = ep+1 =

−1, eℓ+1 = · · · = ep = 1.
When considering (2.4.7), we may assume n0 ∼ np+1, np+1 ≥ n′ and (n0, . . . , np+1) /∈ Sℓ

p if the

right hand side of (2.4.7) is non zero since we have (2.1.1) and (2.1.15) for Mp,ǫ
ℓ . Here Sℓ

p is the
same as that in proposition 2.3.5. Thus the assumptions concerning (n0, . . . , np+1) in proposition
2.3.5 hold true. We deduce from (2.3.27) and the condition

√
n0 +

√
np+1 < ǫ−θκ that

|F ℓ
m(λn0 , . . . , λnp+1)|−1 ≤ C(1 +

√
n0 +

√
np+1)

3+ρ(1 +
√

n′)2N0
S(n0, . . . , np+1)

2N0

µ(n0, . . . , np+1)2N0

≤ Cǫ−(4−a+ρ)θκ(1 +
√

n0 +
√

np+1)
a−1(1 +

√
n′)2N0

S(n0, . . . , np+1)
2N0

µ(n0, . . . , np+1)2N0
.

(2.4.9)

for any ρ > 0. Therefore if we define
(2.4.10)

M p,ǫ
ℓ (u1, . . . , up+1) = −

∑

n/∈Sℓ
p

n0∼np+1,np+1≥n′

F ℓ
m(λn0 , . . . , λnp+1)

−1Πn0M
p,ǫ
ℓ (Πn1u1, . . . ,Πnp+1up+1),

we obtain according to (2.4.9) and (2.1.2) that Mp,ǫ
ℓ ∈ M̃ν+ν̄,2s−1

p+1 (ωℓ) with the first estimate in
(2.4.5) with ν̄ = 2N0.

When considering (2.4.8), we may assume (n0, . . . , np+1) /∈ N (e) defined after (2.3.29). Actually,
because of (2.1.15), we cannot find a bijection σ from {0, . . . , ℓ, p + 1} to {ℓ + 1, . . . , p} such that
nj = nσ(j), j = 0, . . . , ℓ, p + 1 if the right hand side of (2.4.8) is non zero. Consequently, we may

use lower bound (2.3.31). If we define Mp
ℓ dividing in (2.4.8) by F̃

(e)
m , we thus see that we get an

element of M p
ℓ ∈ M̃ν+ν̄,2s−2

p+1 (ω̃ℓ) for some ν̄. This completes the proof of (2.4.4) and (2.4.5).
(ii) We deduce again from (2.4.6)

−F ℓ
m(λn0 , . . . , λnp+1)Πn0R

p
ℓ(Πn1u1, . . . ,Πnp+1up+1) = Πn0R

p
ℓ (Πn1u1, . . . ,Πnp+1up+1),(2.4.11)

F̃ (e)
m (λn0 , . . . , λnp+1)Πn0R

′p
ℓ (Πn1u1, . . . ,Πnp+1up+1) = Πn0R̃

p
ℓ (Πn1u1, . . . ,Πnp+1up+1),(2.4.12)

where F ℓ
m and F̃

(e)
m are the same as in (2.4.7) and (2.4.8). Since Rp

ℓ ∈ R̃ν,2s
p+1(ωℓ) and thus (2.1.24)

implies the right hand side of (2.4.11) vanishes if (n0, . . . , np+1) ∈ Sℓ
p, where Sℓ

p is defined in (2.2.18),

we may assume (n0, . . . , np+1) /∈ Sℓ
p. Consequently, the condition of theorem 2.3.1 is satisfied and

we have by (2.3.2)

|F ℓ
m(λn0 , . . . , λnp+1)|−1 ≤ C(1 +

√
n0 +

√
n1 + · · · + √

np+1)
2N0+4.

We then get an element of Rp
ℓ ∈ R̃ν+ν̄,2s

p+1 (ωℓ) dividing in (2.4.11) by −F ℓ
m with ν̄ = 2N0 + 4. Since

R̃p
ℓ ∈ R̃ν,2s

p+1(ω̃ℓ), we see that the right hand side of (2.4.12) vanishes if (n0, . . . , np+1) ∈ S̃ℓ
p, where S̃ℓ

p

is defined in (2.2.41). This implies that we may assume (n0, . . . , np+1) /∈ N (e) which is defined after
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(2.3.29) with e0 = · · · = eℓ = ep+1 = −1, eℓ+1 = · · · = ep = 1. Thus the condition of proposition
2.3.6 is satisfied and we have

|F̃ (e)
m (λn0 , . . . , λnp+1)|−1 ≤ C(1 +

√
n0 + · · · + √

np+1)
N0 .

This allows us to get an element R′p
ℓ ∈ R̃ν+ν̄,2s

p+1 (ω̃ℓ) for some ν̄ by dividing by F̃
(e)
m in (2.4.12). This

concludes the proof.

Proposition 2.4.2. Let N be the zero measure subset of R
∗
+ defined in lemma 2.4.1, and fix

m ∈ R
∗
+ − N . Let ρ > 0 be any positive number and Θs defined in (2.2.5). There are for any

large enough integer s , a map Θ1
s, sending H s(Rd)× (0, 1

2) to R, and maps Θ2
s, Θ3

s, Θ4
s sending

H s(Rd) to R such that there is a constant Cs > 0 and for any u ∈ H s(Rd) with ||u||H s ≤ 1 and
any ǫ ∈ (0, 1

2 ), one has

|Θ1
s(u, ǫ)| ≤ Csǫ

−(4−a+ρ)θκ||u||κ+2
H s , (a = 2 if d ≥ 2 and

a =
13

6
− ς for any ς ∈ (0, 1) if d = 1),

|Θ2
s(u)|, |Θ3

s(u)|, |Θ4
s(u)| ≤ Cs||u||κ+2

H s

(2.4.13)

and such that

R(u)
def
=

d

dt

[
Θs(u(t, ·)) − Θ1

s(u(t, ·), ǫ) − Θ2
s(u(t, ·)) − Θ3

s(u(t, ·)) − Θ4
s(u(t, ·))

]
(2.4.14)

satisfies

(2.4.15) |R(u)| ≤ Csǫ
−(4−a+ρ)θκ||u||2κ+2

H s + Csǫ
(a−1)θκ||u||κ+2

H s + Cs||u||2κ+2
H s .

Proof. Considering the right hand side of (2.2.6), we decompose

(2.4.16) Mp
ℓ (u1, . . . , up+1) = Mp,ǫ

ℓ (u1, . . . , up+1) + V p,ǫ
ℓ (u1, . . . , up+1),

where the first term is given by (2.4.3) and the second one by

(2.4.17) V p,ǫ
ℓ (u1, . . . , up+1) =

∑

n0

∑

np+1

1{√n0+
√

np+1≥ǫ−θκ}Πn0M
p
ℓ (u1, . . . , up,Πnp+1up+1).

By definition 2.1.1, we get for a = 2 if d ≥ 2 and a = 13
6 − ς if d = 1

||V p,ǫ
ℓ (u1, . . . , up+1)||H −s ≤ CN

∑

n0

· · ·
∑

p+1

(1 +
√

n0 +
√

np+1)
2s−a (1 +

√
n′)νµ(n0, . . . , np+1)

N

S(n0, . . . , np+1)N

×1{√n0+
√

np+1≥ǫ−θκ,|n0−np+1|< 1
2
(n0+np+1),n′≤np+1}(1 +

√
n0)

−s
p+1∏

j=1

||Πnj
uj||L2

(2.4.18)

Following the proof of proposition 2.1.2, we know that the gain of a powers of
√

n0 +
√

np+1 in

the first term in the right hand side, coming from the fact that Mp
ℓ ∈ Mν,2s−a

p+1 , together with the

condition
√

n0 +
√

np+1 ≥ ǫ−θκ, allows us to estimate , for N large enough and s0 large enough

with respect to ν, (2.4.18) by Cǫ(a−1)θκΠp
j=1||uj ||H s0 ||up+1||H s . Consequently, the quantity

(2.4.19)
2κ−1∑

p=κ

p∑

ℓ=0

Re i〈V p,ǫ
ℓ (ū, . . . , ū, u, . . . , u), u〉

is bounded form above by the second term of the right hand side of (2.4.15). In the rest of the
proof, we may therefore replace in the right hand side of (2.2.6) Mp

ℓ by Mp,ǫ
ℓ .
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Apply lemma 2.4.1 to Mp,ǫ
ℓ , M̃p

ℓ , Rp
ℓ , R̃p

ℓ . This gives Mp,ǫ
ℓ ,Mp

ℓ , R
p
ℓ , R

′p
ℓ . We set

Θ1
s(u(t, ·), ǫ) =

2κ−1∑

p=κ

p∑

ℓ=0

Re〈M p,ǫ
ℓ (ū, . . . , ū, u, . . . , u), u〉,

Θ2
s(u(t, ·)) =

2κ−1∑

p=κ

p∑

ℓ=0

Re〈M p
ℓ(ū, . . . , ū, u, . . . , u, ū), u〉,

Θ3
s(u(t, ·)) =

2κ−1∑

p=κ

p∑

ℓ=0

Re〈Rp
ℓ (ū, . . . , ū, u, . . . , u), u〉,

Θ4
s(u(t, ·)) =

2κ−1∑

p=κ

p∑

ℓ=0

Re〈R′p
ℓ (ū, . . . , ū, u, . . . , u, ū), u〉.

(2.4.20)

The general term in Θ1
s(u(t, ·), ǫ) has modulus bounded from above by

||M p,ǫ
ℓ (ū, . . . , ū, u, . . . , u)||H −s ||u||H s ≤ Cǫ−(4−a+ρ)θκ||u||κH s ||u||2H s

for u in the unit ball of H s(Rd), using proposition 2.1.2 with τ = 2s − 1 and proposition 1.1.19
and (2.4.5). This gives the first inequality of (2.4.13). To obtain the other estimates in (2.4.13), we
apply proposition 2.1.2 to Mp

ℓ , remarking that if in (2.1.3) τ = 2s−1 and s is large enough, the left
hand side of (2.1.3) controls the H −s norm of Mp

ℓ (ū, . . . , ū, u, . . . , u, ū). We also apply proposition
2.1.5 with τ = 2s in (2.1.18) to Rp

ℓ , R′p
ℓ . Then if s0 is large enough, the left hand side of (2.1.18)

controls H −s norm of Rp
ℓ(ū, . . . , ū, u, . . . , u) and R′p

ℓ (ū, . . . , ū, u, . . . , u, ū). These give us the other
inequalities in (2.4.13). Consequently we are left with proving (2.4.15). Remarking that we may
also write the equation as

(2.4.21) (Dt − Λm)u = −F

(
Λ−1

m (
u + ū

2
)

)
,

we compute using notation (2.4.1)

d

dt
Θ1

s(u, ǫ) =
2κ−1∑

p=κ

p∑

ℓ=0

Re i〈L−
ℓ (M p,ǫ

ℓ )(ū, . . . , ū, u, . . . , u), u〉

+

2κ−1∑

p=κ

p∑

ℓ=0

ℓ∑

j=1

Re i〈M p,ǫ
ℓ (ū, . . . , F̄ , . . . , ū, u, . . . , u), u〉

−
2κ−1∑

p=κ

p∑

ℓ=0

p+1∑

j=ℓ+1

Re i〈M p,ǫ
ℓ (ū, . . . , ū, u, . . . , F, . . . , u), u〉

+

2κ−1∑

p=κ

p∑

ℓ=0

Re i〈Mp,ǫ
ℓ (ū, . . . , ū, u, . . . , u), F 〉.

(2.4.22)

By assumption on F , we have by proposition 1.1.19 and 1.1.21 that ||F (v)||H s ≤ C||u||κ
H s ||u||H s

if s is large enough and ||u||H s ≤ 1. Since Mp,ǫ
ℓ ∈ M̃ν+ν̄,2s−1

p+1 (ωℓ), we may apply proposition 2.1.2
with τ = 2s− 1 and (2.4.5) to see that the last three terms in (2.4.22) have modulus bounded from
above by the first term in the right hand side of (2.4.15). When computing d

dtΘs(u), noting that
we have replaced Mp

ℓ by Mp,ǫ
ℓ , the first term in the right hand side of (2.2.6) is the first term in
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the right hand side of (2.4.22) because of (2.4.4). Consequently, these contributions will cancel out
each other in the expression d

dt [Θs(u) − Θ1
s(u, ǫ)]. We compute

d

dt
Θ2

s(u) =

2κ−1∑

p=κ

p∑

ℓ=0

Re i〈L+
ℓ (M p

ℓ )(ū, . . . , ū, u, . . . , u, ū), u〉

+
2κ−1∑

p=κ

p∑

ℓ=0

ℓ∑

j=1

Re i〈M p
ℓ (ū, . . . , F̄ , . . . , ū, u, . . . , u, ū), u〉

−
2κ−1∑

p=κ

p∑

ℓ=0

p∑

j=ℓ+1

Re i〈M p
ℓ (ū, . . . , ū, u, . . . , F, . . . , u, ū), u〉

+
2κ−1∑

p=κ

p∑

ℓ=0

Re i〈M p
ℓ(ū, , . . . , ū, u, . . . , u, F̄ ), u〉

+
2κ−1∑

p=κ

p∑

ℓ=0

Re i〈M p
ℓ(ū, , . . . , ū, u, . . . , u, ū), F 〉.

(2.4.23)

Since Mp
ℓ ∈ M̃ν+ν̄,2s−2

p+1 (ω̃ℓ), we have by proposition 2.1.2 with τ = 2s − 1, proposition 1.1.19 and
(2.4.5) that the last three terms are estimated by the last term in the right hand side of (2.4.15) if s

is large enough. The first one, according to lemma 2.4.1, cancels the contribution of M̃p
ℓ in (2.2.6)

when computing R(u). We may treat Θ3
s(u) and Θ4

s(u) in the same way using proposition 2.1.5
with τ = 2s, and this will lead to the third term in the right hand side of (2.4.15). Finally, the last
term in (2.2.6) contributes to the last term in the right hand side of (2.4.15). This concludes the
proof of the proposition.

Proof of theorem 2.1.1. : We deduce from (2.4.13) and (2.4.15)

Θs(u(t, ·)) ≤ Θs(u(0, ·)) − Θ1
s(u(0, ·), ǫ) − Θ2

s(u(0, ·)) − Θ3
s(u(0, ·)) − Θ4

s(u(0, ·))(2.4.24)

+Θ1
s(u(t, ·), ǫ) + Θ2

s(u(t, ·)) + Θ3
s(u(t, ·)) + Θ4

s(u(t, ·))

+Csǫ
−(4−a+ρ)θκ

∫ t

0
||u(t′, ·)||2κ

H s ||u(t′, ·)||2H sdt′

+Csǫ
(a−1)θκ

∫ t

0
||u(t′, ·)||κH s ||u(t′, ·)||2H sdt′

+Cs

∫ t

0
||u(t′, ·)||2κ

H s ||u(t′, ·)||2H sdt′,

where a = 2 if d ≥ 2 and a = 13
6 − ς for any ς ∈ (0, 1) if d = 1. Take θ = 1

3+ρ and B > 1 a constant

such that for any (v0, v1) in the unit ball of H s+1(Rd)×H s(Rd), u(0, ·) = ǫ(−iv1 +Λmv0) satisfies
||u(0, ·)||H s ≤ Bǫ. Let K > B be another constant to be chosen, and assume that for τ ′ in some
interval [0, T ] we have ||u(τ ′, ·)||H s ≤ Kǫ ≤ 1. If d ≥ 2, using (2.4.13) with a = 2 we deduce from
(2.4.24) and that there is a constant C > 0, independent of B,K, ǫ, such that as long as t ∈ [0, T ]

||u(t, ·)||2H s ≤ C[B2 + ǫ
1

3+ρ
κKκ+2 + tǫ

4+ρ
3+ρ

κ(K2κ+2 + Kκ+2) + tǫ2κK2κ+2]ǫ2.
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If we assume that T ≤ cǫ−
4+ρ
3+ρ , where ρ > 0 is arbitrary, for a small enough c > 0, and that ǫ is

small enough, we get ||u(t, ·)||2
H s ≤ C(2B2)ǫ2. If K has been chosen initially so that 2CB2 < K2,

we get by a standard continuity argument that the priori bound ||u(t, ·)||H s ≤ Kǫ holds true on

[0, cǫ
− 4+ρ

3+ρ ], in other words, the solution extends to such an interval |t| ≤ cǫ−
4
3
(1−ρ)κ with another

arbitrary ρ > 0. If d = 1, we may use (2.4.13) with a = 13
6 − ς to get

||u(t, ·)||2H s ≤ C[B2 + ǫ
7−6ς
18+6ρ

κ
Kκ+2 + tǫ

25+6(ρ−ς)
18+6ρ

κ
(K2κ+2 + Kκ+2) + tǫ2κK2κ+2]ǫ2.

With the same reasoning we may get in this case that the solution extends to an interval of
|t| < cǫ−

25
18

(1−ρ)κ for some small c > 0 and any ρ > 0. This concludes the proof of the theorem.
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[3] D. Bambusi and B. Grébert: Birkhoff normal form for partial differential equations with tame
modulus, Duke Math. J. 135 (2006), no. 3, 507–567.

[4] M. Berti and P. Bolle: Periodic solutions for higher dimensional nonlinear wave equations,
preprint (2007).

[5] E. Bierstone and P. Milman: Semianalytic and subanalytic sets, Inst. Hautes, Études Sci. Publ.
Math. (1998), no. 67, 5-42.

[6] J. Bourgain: Construction of approximative and almost periodic solutions of perturbed linear
Schrödinger and wave equations, Geom. Funct. Anal. 6 (1996), no. 2, 201–230.

[7] J. Bourgain: Green’s function estimates for lattice Schrödinger operators and applications.
Annals of Mathematics Studies, 158. Princeton University Press, Princeton, NJ, (2005), x+173
pp.
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[13] B. Grébert: Birkhoff normal form and hamiltonian PDEs, Partial differential equations and
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