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Spectrum of large random reversible Markov chains

Charles Bordenave, Pietro Caputo, Djalil Chafäı

Preprint, November 2008

Abstract

In this work, we adopt a Random Matrix Theory point of view to study the spec-
trum of large reversible Markov chains in random environment. As the number of
states tends to infinity, we consider both the almost sure global behavior of the spec-
trum, and the local behavior at the edge including the so called spectral gap. We study
presently two simple models. The first one is on the complete graph while the second
is on the chain graph (birth-and-death dynamics). These two models exhibit different
scalings and limiting objects. The first model is related to the semi–circle law and
Wigner’s theorem. It contains as a special case a natural reversible Dirichlet Markov
Ensemble. The second model is related to homogenization and also to asymptotics for
the roots of random orthogonal polynomials. A special case gives rise to the arc–sine
law as in a theorem by Erdős & Turán. This work raises several open problems.

Keywords: random matrices, random graphs, reversible Markov chains, random walks, random en-

vironment, spectral gap, Wigner semi–circle law, arc–sine law, tridiagonal matrices, birth-and-death pro-

cesses, spectral analysis, orthogonal polynomials, weak and strong limit theorems, homogenization.
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1 Introduction

The spectral analysis of large dimensional random matrices is a very active domain of re-
search, connected to a remarkable number of areas of Mathematics and their applications,
see e.g. [51, 24, 35, 29, 2, 10, 28]. On the other hand, it is well known that the spectrum of
reversible Markov chains provides useful information on their trend to equilibrium, see e.g.
[40, 15, 37]. In the present work, we propose to study the spectrum of random reversible
Markov chains with very large finite state space. The randomness of these chains, which
appears as a random environment, is constructed by putting random weights on the edges
of a finite graph. This approach raises a collection of stimulating open problems, lying at
the interface between random matrix theory, random walks in random environment, and
random graphs. We focus here on two elementary models, on the complete graph and on
the chain graph. These two models exhibit different scalings and limiting objects. The
study of spectral aspects of certain random Markov chains or random walks in random
environment is not new, see for instance [20, 9, 53, 14, 13, 11, 45] and references therein.
Here we adopt a particular Random Matrix Theory point of view.
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More precisely, consider a finite connected undirected graph G = (V,E), with vertex
set V and edge set E, together with a set of weights, given by positive random variables

U = {Ui,j ; {i, j} ∈ E}.

Since the graph G is undirected we set Ui,j = Uj,i. On the network (G,U), we consider
the random walk in random environment with state space V and transition probabilities

Ki,j =
Ui,j

ρi
where ρi =

∑

j:{i,j}∈E

Ui,j . (1)

The Markov kernel K is reversible with respect to the measure ρ = {ρi , i ∈ V } in that

ρiKi,j = ρjKj,i

for all i, j ∈ V . Positivity of the weights implies that K is irreducible and ρi is its unique
invariant distribution, up to normalization. When the variables U are identically equal
this is just the standard simple random walk on G, and K− I is the associated Laplacian.

The construction of reversible Markov kernels from graphs with weighted edges as in
(1) is classical in the Markovian literature, see e.g. [15, 23]. As for the choice of the graph
G = (V,E), we shall work with the simplest cases, namely the complete graph or a one–
dimensional chain graph. Before passing to the precise description of models and results,
let us briefly recall some broad facts.

By labeling the n = |V | vertices of G and putting Ki,j = 0 if {i, j} 6∈ E, one can see K
as a random n × n Markov matrix. The entries of K belong to [0, 1] and each row sums
up to 1. The spectrum of K does not depend on the way we label V . In general, even if
the random weights U are i.i.d. the random matrix K has non–independent entries due to
the normalizing sums ρi. Note that K is in general non–symmetric, but by reversibility,
it is symmetric in L2(ρ) and its spectrum σ(K) is real. Moreover,

1 ∈ σ(K) ⊂ [−1,+1]

and it is convenient to denote the eigenvalues of K by

−1 ≤ λn(K) ≤ · · · ≤ λ1(K) = 1.

Since K is irreducible, the eigenspace of the largest eigenvalue 1 is one–dimensional and
thus λ2(K) < 1. Moreover, since K is reversible, the period of K is 1 or 2, and this last
case is equivalent to λn(K) = −1 (the spectrum of K is in fact symmetric when K has
period 2). For all these Markovian spectral aspects, see e.g. [41]. The bulk behavior of
σ(K) is studied via the Empirical Spectral Distribution (ESD)

µK =
1

n

n∑

k=1

δλk(K).

Since K is Markov, its ESD contains a probabilistic pathwise information on the corre-
sponding random walk. Namely, the moments of the ESD µK satisfy, for any ℓ ∈ Z+

∫ +1

−1
xℓµK(dx) =

1

n
Tr(Kℓ) =

1

n

∑

i∈V

rUℓ (i) (2)

2



where rUℓ (i) denotes the probability that the random walk on (G,U) started at i returns
to i after ℓ steps. The averaged version of (2) obtained by taking the expectation of both
sides is also at the heart of the so called trace–moments method in Random Matrix Theory,
see e.g. [2, 29].

The edge behavior of σ(K) corresponds to the extreme eigenvalues λ2(K) and λn(K), or
more generally, to the k–extreme values λ2(K), . . . , λk+1(K) and λn(K), . . . , λn−k+1(K).
The geometric decay to the equilibrium measure ρ of the continuous time random walk
with semigroup (et(K−I))t≥0 generated by K − I is governed by the so called spectral gap

gap(K − I) = 1 − λ2(K).

When the period of K is 1, the relevant quantity for the discrete time random walk with
kernel K is

ς(K) = 1 − max
λ∈σ(K)

λ6=1

|λ| = 1 − max(−λn(K), λ2(K)) .

In that case, for any fixed value of n, we have (Kℓ)i,· → ρ as ℓ→ ∞, for every 1 ≤ i ≤ n.
The reader may find an introduction to such aspects in [40].

Complete graph model

Here we set V = {1, . . . , n} and E = {{i, j}; i, j ∈ V }. Note that we have self–loops at
any vertex. The weights Ui,j , 1 ≤ i ≤ j ≤ n are i.i.d. random variables with common law
L supported on (0,∞) (with no atom at 0). The law L is independent of n. Without loss
of generality, we assume that the marks U come from the truncation of a single infinite
triangular array (Ui,j)1≤i≤j of i.i.d. random variables of law L. This defines a common
probability space, which is convenient for almost sure convergence as n→ ∞.

Since all the entries of K are positive, the kernel K is irreducible and aperiodic (i.e.
the period is 1). As a consequence, λn(K) > −1 and thus σ(K) is of the form

−1 < λn(K) ≤ · · · ≤ λ2(K) < λ1(K) = 1.

As in the case of matrices with i.i.d. entries, the spectral properties of K will depend
mostly on the tail of L at infinity. When L has finite mean

∫∞
0 xL(dx) = m we set m = 1.

This is no loss of generality since K is invariant under the linear scaling t → t Ui,j. If L
has a finite second moment we write σ2 =

∫∞
0 (x− 1)2 L(dx) for the variance. The rows of

K are equally distributed (but not independent) and follow an exchangeable law on Rn.
Since each row sums up to one, we get by exchangeability that for every 1 ≤ i, j 6= j′ ≤ n,E(Ki,j) =

1

n
and Cov(Ki,j,Ki,j′) = − 1

n− 1
Var(K1,1).

However, the common variance of the entries of K may depend on L. When L is expo-
nential then the rows of K are Dirichlet distributed. The following theorem states that if
L has finite positive variance 0 < σ2 <∞, then the bulk of the spectrum of

√
nK behaves

as in the case of Wigner matrices, i.e. as if we had truly i.i.d. entries. The ESD of
√
nK is

µ√nK =
1

n

n∑

k=1

δ√nλk(K).
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Theorem 1.1 (Bulk behavior). If L has finite positive variance 0 < σ2 <∞ then

µ√nK
w−→

n→∞
W2σ

almost surely, where “
w→” stands for weak convergence of probability measures and W2σ is

the Wigner semi–circle law with Lebesgue density

x 7→ 1

2πσ2

√
4σ2 − x2 1[−2σ,+2σ](x) . (3)

The proof of Theorem 1.1, given in Section 2, relies on a uniform strong law of large
numbers which allows to estimate ρi = n(1 + o(1)) and therefore yields a comparison of√
nK with a suitable Wigner matrix with i.i.d. entries. Note that even though

λ1(
√
nK) =

√
n→ ∞ as n→ ∞, (4)

the weak limit of µ√nK is not affected since λ1(
√
nK) has weight 1/n in µ√nK . Theorem

1.1 implies that the bulk of σ(K) collapses globally in a weak sense at speed n−1/2. This
result is too weak to provide the almost sure convergence of the extremal eigenvalues
λn(

√
nK) and λ2(

√
nK) to the edge of the limiting support [−2σ,+2σ]. We only get from

Theorem 1.1 that almost surely, for every fixed k ∈ Z+,

lim inf
n→∞

√
nλn−k(K) ≤ −2σ and lim sup

n→∞

√
nλk+2(K) ≥ +2σ.

The weak convergence stated in Theorem 1.1 is relative to continuous bounded functions
and cannot be used directly for polynomials. In particular the convergence of the moments
of the ESD µ√nK to the moments of W2σ is not provided immediately by Theorem 1.1.
Also, the identity (2) is useless for now. The control of the moments of the ESD µ√nK

requires the control of the extremal eigenvalues of
√
nK. Our next result below expresses

that the convergence of the extremal eigenvalues of
√
nK to the edge of the limiting

support [−2σ,+2σ] holds provided that L has finite fourth moment (i.e. E(U4
1,1) <∞).

Theorem 1.2 (Edge behavior). If L has finite positive variance 0 < σ2 <∞ and finite
fourth moment then almost surely, for any fixed k ∈ Z+,

lim
n→∞

√
nλn−k(K) = −2σ and lim

n→∞

√
nλk+2(K) = +2σ.

In particular, almost surely,

gap(K − I) = 1 − 2σ√
n

+ o

(
1√
n

)
and ς(K) = 1 − 2σ√

n
+ o

(
1√
n

)
. (5)

The proof of Theorem 1.2, given in Section 2, relies on a rank one reduction (refered as
a “Wedderburn rank one reduction” [50, p. 69] by G. H. Golub in Matrix Analysis) which
will allow us to compare for instance λ2(

√
nK) with the largest eigenvalue of a Wigner

matrix with centered entries. The approach requires refined versions of the uniform law
of large numbers used in the proof of Theorem 1.1.

The edge behavior of Theorem 1.2 allows to reinforce the convergence of the bulk of
Theorem 1.1 by providing the convergence of moments. Recall that for any integer p ≥ 1,
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the weak convergence together with the convergence of moments up to order p is equivalent
to the convergence in Wasserstein Wp distance, see e.g. [49, 39]. For every real p ≥ 1, the
Wasserstein distance Wp(µ, ν) between two probability measures µ, ν on R is defined by

Wp(µ, ν) = inf
Π

(∫R×R|x− y|p Π(dx, dy)

)1/p

(6)

where the infimum runs over the convex set of probability measures on R2 = R×R with
marginals µ and ν. Let µ̃√nK be the trimmed ESD defined by

µ̃√nK =
1

n− 1

n∑

k=2

δ√nλk(K) =
n

n− 1
µ√nK − 1

n− 1
δ√n.

We have then the following Corollary of theorems 1.1 and 1.2, proved in Section 2.

Corollary 1.3 (Strong convergence). If L has finite positive variance and finite fourth
moment then almost surely, for every p ≥ 1,

lim
n→∞

Wp(µ̃√nK ,W2σ) = 0 while lim
n→∞

Wp(µ√nK ,W2σ) =





0 if p < 2

1 if p = 2

∞ if p > 2.

Recall that for every k ∈ Z+, the kth moment of the Wigner semi–circle law W2σ is
zero if k is odd and is σk times the (k/2)th Catalan number if k is even. On the other
hand, from (2), we know that for every k ∈ Z+, the kth moment of the ESD µ√nK writes

∫Rxk µ√nK(dx) =
1

n
Tr
(
(
√
nK)k

)
= n−1+ k

2

n∑

i=1

rUk (i)

where rUk (i) be the probability that the random walk on V with kernel K started at i
returns to i after k steps. Additionally, from (4) we get

∫Rxk µ√nK(dx) = n−1+ k
2 +

(
1 − 1

n

)∫Rxk µ̃√nK(dx)

where µ̃√nK is the trimmed ESD defined earlier. We can then state the following.

Corollary 1.4 (Return probabilities). Let rUk (i) be the probability that the random
walk on V with kernel K started at i returns to i after k steps. If L has finite positive
variance 0 < σ2 <∞ and finite fourth moment then almost surely, for every k ∈ Z+,

lim
n→∞

n−1+ k
2

(
n∑

i=1

rUk (i) − 1

)
=

{
0 if k is odd

σk

k/2+1

( k
k/2

)
if k is even.

(7)

The sequence of Catalan numbers appears in the enumeration of many combinatorial
objects. Here it is of particular interest that the rth Catalan number 1

r+1

(
2r
r

)
is the number

of non–negative simple paths of length r that start and end at 0.
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We end up our analysis of the complete graph model with the behavior of the invariant
probability distribution ρ̂ of K, obtained by normalizing the invariant vector ρ as

ρ̂ = (ρ1 + · · · + ρn)−1(ρ1δ1 + · · · + ρnδn).

Let us denote by U = n−1(δ1 + · · ·+ δn) the uniform law on {1, . . . , n}. We recall that the
total variation distance ‖µ− ν‖tv between two probability measures µ =

∑n
k=1 µkδk and

ν =
∑n

k=1 νkδk on {1, . . . , n} is given by

‖µ− ν‖tv =
1

2

n∑

k=1

|µk − νk|.

Theorem 1.5 (Invariant probability measure). If L has finite second moment, then
a.s.

lim
n→∞

‖ρ̂− U‖tv = 0. (8)

The proof of Theorem 1.5, given in Section 2, relies as before on a uniform law of large
numbers. The speed of convergence and fluctuation of ‖ρ̂ − U‖tv depends on the tail of
L. The reader can find in Lemma 2.3 of Section 2 some estimates in this direction.

Recall that for a Markov matrix, the law U is invariant iff the matrix is bistochastic,
and is reversible iff the matrix is symmetric. Also, from this point of view, the random re-
versible Markov kernel K behaves asymptotically like a symmetric (and thus bistochastic)
matrix. This is compatible with the Wigner–like behavior stated by Theorem 1.1.

Chain graph model (birth-and-death)

The complete graph model discussed earlier provides a random reversible Markov kernel
which is irreducible and aperiodic. One of the key feature of this model lies in the fact
that the degree of each vertex is n, which goes to infinity as n→ ∞. This property allows
to use a law of large numbers to control the normalization ρi. The method will roughly
still work if we replace the complete graphs sequence by a sequence of graphs for which
the degrees are of order n. To go beyond this framework, it is natural to consider local
models (i.e. finite range models) for which the degrees are uniformly bounded. We shall
focus on a simple birth-and-death Markov kernel K = (Ki,j)1≤i,j≤n on {1, . . . , n} given by

Ki,i+1 = bi, Ki,i = ai, Ki,i−1 = ci

where (ai)1≤i≤n, (bi)1≤i≤n, (ci)1≤i≤n are in [0, 1] with c1 = bn = 0 , bi + ai + ci = 1 for
every 1 ≤ i ≤ n, and ci+1 > 0 and bi > 0 for every 1 ≤ i ≤ n− 1. In other words, we have

K =




a1 b1
c2 a2 b2

c3 a3 b3
. . .

. . .
. . .

cn−1 an−1 bn−1

cn an




. (9)
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The kernel K is irreducible, reversible, and every vertex has degree ≤ 3. For an arbitrary
ρ1 > 0, the measure ρ = ρ1δ1 + · · · + ρnδn defined for every 2 ≤ i ≤ n by

ρi = ρ1

i−1∏

k=1

bk
ck+1

= ρ1
b1 · · · bi−1

c2 · · · ci

is invariant and reversible for K. In other words, for every 1 ≤ i, j ≤ n,

ρiKi,j = ρjKj,i.

For every 1 ≤ i ≤ n, the ith row (ci, ai, bi) of K belongs to the 3-dimensional simplex

Λ3 = {v ∈ [0, 1]3; v1 + v2 + v3 = 1}.

For every v ∈ Λ3, we define the left and right “reflections” v− ∈ Λ3 and v+ ∈ Λ3 of v by

v− = (v1 + v3, v2, 0) and v+ = (0, v2, v1 + v3).

The following result provides a general answer for the behavior of the bulk.

Theorem 1.6 (Global behavior for ergodic environment). Let p : Z → Λ3 be
an ergodic random field. Let K be the random birth-and-death kernel (9) on {1, . . . , n}
obtained from p by taking for every 1 ≤ i ≤ n

(ci, ai, bi) =





p(i) if 2 ≤ i ≤ n− 1

p(1)+ if i = 1

p(n)− if i = n.

Then there exists a non-random probability measure µ on [−1,+1] such that almost surely,

lim
n→∞

Wp(µK , µ) = 0

for every p ≥ 1, where Wp is the Wasserstein distance (6). Moreover, for every ℓ ≥ 0,

∫ +1

−1
xℓ µ(dx) = E[rpℓ (0)]

where rpℓ (0) is the probability of return to 0 in ℓ steps for the random walk on Z with
random environment p. The expectation is taken with respect to the environment p.

The proof of Theorem 1.6, given in Section 3, in a simple consequence of the ergodic
theorem, see also [9] for an application to random conductance models. The reflective
boundary condition is not necessary for this result on the bulk of the spectrum, and
essentially any boundary condition (e.g. Dirichlet or periodic) produces the same limiting
law, with essentially the same proof. Moreover, this result is not limited to the one–
dimensional random walks and it remains valid for any finite range reversible random walk
with ergodic random environment on Zd. However, and as we shall see below, a more
precise analysis is possible for certain type of environments when d = 1.

Observe that a random conductance model on the chain graph can be obtained by
defining K with (1) by putting i.i.d. positive weights U of law L on the edges of the chain
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graph. For instance, if we remove the self–loops from the chain graph, this corresponds to
define K by (9) with a1 = · · · = an = 0, b1 = cn = 1, and, for every 2 ≤ i ≤ n− 1,

bi = 1 − ci = Vi =
Ui,i+1

Ui,i+1 + Ui,i−1
.

where (Ui,i+1)i≥1 are i.i.d. random variables of law L supported in (0,∞). The random
variables V1, . . . , Vn are dependent here. When L is exponential, the Vi’s have a Beta law.

Let us consider now an alternative simple way to make K random. Namely, we use
a sequence (Vi)i≥1 of i.i.d. random variables on [0, 1] of common law L and we define the
random birth-and-death Markov kernel K by (9) with

b1 = cn = 1 and bi = 1 − ci = Vi for every 2 ≤ i ≤ n− 1.

In other words, the random Markov kernel K is of the form

K =




0 1
1 − V2 0 V2

1 − V3 0 V3

. . .
. . .

. . .

1 − Vn−1 0 Vn−1

1 0




. (10)

This is not a random conductance model. However, this kernel is a particular case of the
one appearing in Theorem 1.6, corresponding to the i.i.d. environment given by

p(i) = (1 − Vi, 0, Vi)

for every i ≥ 1. This allows to state the following Corollary of Theorem 1.6, which can
be obtained alternatively by using the trace–moment method used in [38] for random
symmetric tridiagonal matrices with i.i.d. entries, see Section 3. If L has no atom at 0
and 1, then K is irreducible, reversible, 2-periodic, with spectrum σ(K) of the form

−1 = λn(K) < λn−1(K) ≤ · · · ≤ λ2(K) < λ1(K) = 1, (11)

and moreover σ(K) is symmetric with respect to 0, with 0 ∈ σ(K) when n is odd.

Corollary 1.7 (Global behavior for i.i.d. environment). Let K be the random birth-
and-death Markov kernel (10) where (Vi)i≥2 are i.i.d. of law L on [0, 1]. Then there exists
a non-random probability distribution µ on [−1,+1] such that almost surely,

lim
n→∞

Wp(µK , µ) = 0

for every p ≥ 1, where Wp is the Wasserstein distance as in (6). The limiting spectral
distribution µ is fully characterized by its sequence of moments, given for every k ≥ 1 by

∫ +1

−1
x2k−1 µ(dx) = 0 and

∫ +1

−1
x2k µ(dx) =

∑

γ∈Dk

∏

i∈ZE(V Nγ(i)(1 − V )Nγ(i−1)
)

8



where V is a random variable of law L and where

Dk = {γ = (γ0, . . . , γ2k) : γ0 = γ2k = 0, and |γℓ − γℓ+1| = 1 for every 0 ≤ ℓ ≤ 2k − 1}
is the set of loop paths of length 2k of the simple random walk on Z (walk bridge), and

Nγ(i) =

2k−1∑

ℓ=0

1{(γℓ,γℓ+1)=(i,i+1)}

is the number of times γ crosses the horizontal line y = i+ 1
2 in the increasing direction.

When the random variables (Vi)i≥2 are only stationnary and ergodic, Corollary 1.7
remains valid provided that we adapt slightly the formula for the even moments of µ
(more precisely, we just have to put the product inside the expectation).

For the complete graph model, Theorem 1.1 states that the weak limit of the ESD µK

is trivial and that one has to consider instead the dilated ESD µ√nK . In contrast, for the
models on the chain graph considered in Theorem 1.6 and Corollary 1.7, the ESD µK does
not need to be scaled in order to converge to a non–trivial object.

Remark 1.8 (From Dirac masses to arc–sine laws). Corollary 1.7 gives a formula
for the moments of µ. This formula is a series involving the “Beta-moments” of L. We
ignore how to explicitly compute these series when L is an arbitrary law on [0, 1]. However,
in the deterministic case where L = δ1/2, we have, for every integer k ≥ 1,

∫ +1

−1
x2kµ(dx) =

∑

γ∈Dk

2−
∑

i Nγ(i)−
∑

i Nγ(i−1) = 2−2k

(
2k

k

)
=

∫ +1

−1
x2k dx

π
√

1 − x2

which shows that µ is the arc–sine law on [−1,+1] (see also Figure 4). More generally, a
very similar computation reveals that if L = δp with 0 < p < 1 then µ is the arc–sine law
on [−2

√
p(1 − p) , +2

√
p(1 − p)]. We give in figures 2-3-4 some simulations illustrating

Corollary 1.7 for various other choices of L.

Remark 1.9 (Universality). The law µ in Corollary 1.7 is not universal, in the sense
that it depends on many “Beta-moments” of L, in contrast with the complete graph case
where the limiting spectral distribution depends on L only via its first two moments.

We turn now to the edge behavior of σ(K) where K is as in (10). The structure of
σ(K) given by (11) suggest to seek for the almost sure behavior of λ2(K) and λn−1(K) as
n goes to infinity. Since the limiting spectral distribution µ is symmetric, the convex hull
of its support is of the form [−αµ,+αµ] for some 0 ≤ αµ ≤ 1. The following result gives
an interesting information on αµ. More generally, the reader may forge many conjectures
in the same spirit for the map L 7→ µ from the simulations given by figures 2-3-4.

Theorem 1.10 (Edge behavior for i.i.d. environment). Let K be the random birth-
and-death Markov kernel (10) where (Vi)i≥2 are i.i.d. of law L on [0, 1]. Let µ be the
symmetric limiting spectral distribution on [−1,+1] which appears in Corollary 1.7. Let
[−αµ,+αµ] be the convex hull of the support of µ. If L has a positive density at 1/2 then
αµ = 1. Consequently, almost surely,

λ2(K) = −λn−1(K) = 1 + o(1).

Additionally, if L is supported on [0, t] with 0 < t < 1/2 or on [t, 1] with 1/2 < t < 1 then
almost surely lim supn→∞ λ2(K) < 1 and therefore αµ < 1.
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The proof of Theorem 1.10 is given in Section 3. The speed of convergence of λ2(K)−1
to 0 is highly dependent on the choice of the law L. More precisely, ifE [log V

1 − V

]
= 0 and E[(log

V

1 − V

)2
]
> 0

where V ∼ L, then K is the so called Sinai random walk on {1, . . . , n}, see e.g. [14]. In
this case, by a slight modification of the analysis of [14], one can prove that almost surely,

−∞ < lim inf
n→∞

1√
n

log(1 − λ2(K)) ≤ lim sup
n→∞

1√
n

log(1 − λ2(K)) < 0.

Thus, the convergence to the edge here occurs exponentially fast in
√
n. On the other hand,

if for instance L = δ1/2 (simple reflected random walk on {1, . . . , n}) then it is known that
1−λ2(K) decays as n−2 only. Even slower decay can be obtained with L = (δ1/2 +δ3/4)/2.

We end up with an interpretation of Corollary 1.7 in terms of the roots of certain
random orthogonal polynomials. The proof of Corollary 1.11 is given is Section 3.

Corollary 1.11 (Random orthogonal polynomials). Let (Vn)n≥2 be a sequence of
i.i.d. random variables with law L supported in (0, 1). Set V1 = 1 and let (Qn)n≥0 be the
random sequence of polynomials defined by the recursive relation

Qn+1(x) = xQn(x) − Vn(1 − Vn+1)Qn−1(x)

for every n ≥ 1, with initial values Q0 ≡ 1 and Q1(x) = x. Let (xn,k)1≤k≤n be the roots
of Qn and µQn = 1

n

∑n
k=1 δxn,k

. Then almost surely,

lim
n→∞

Wp(µQn , µ) = 0

for every p ≥ 1, where Wp is the Wasserstein distance as in (6) and where µ is the
non–random probability measure on [−1,+1] depending on L and given by Corollary 1.7.

From the classical theory of orthogonal polynomials, (Qn)n≥0 is the sequence of or-
thogonal polynomials of a compactly supported law which is random, see Section 3. In
the simple case where L = δ1/2, it turns out that (Qn)n≥0 are the Chebyshev polynomials
of the first kind, which are orthogonal with respect to the arc–sine law on [−1,+1]. In
this case, the roots (xn,i)1≤i≤n of Qn are explicitly known:

xn,i = cos

(
2i− 1

n

π

2

)
, 1 ≤ i ≤ n.

On the other hand, we know by Remark 1.8 that µ is the arc–sine law on [−1,+1]. In
this example, the limit of µQn coincides with the law for which (Qn)n≥0 are orthogonal,
and the arc–sine law on [−1,+1] appears as a sort of fixed point. This is not the case for
more general L, see Section 3 for more explanations.

Further remarks and open problems

We have defined random reversible Markov kernels with n states by using the complete
or the chain graph with n vertices and random weights on the edges. The underlying
graph appears as a prescribed skeleton for these Markov kernels. One can explore several
other topologies. One can also think about making the skeleton itself random, by using
a random graph such as random k-regular graphs. We mention below some other open
problems together with remarks on related models considered in the literature.
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Fluctuations at the edge

An interesting problem concerns the fluctuations of λ2(
√
nK) around its limiting value

2σ in the complete graph model. Under suitable conditions on L, one may seek for a
deterministic sequence (an), and a probability distribution D on R such that

an

(
λ2(

√
nK) − 2σ

) d−→
n→∞

D

where “
d→” stands for convergence in distribution. The same may be asked for the random

variable λn(
√
nK) + 2σ. Computer simulations (see Figure 1) suggest that an ≈ n2/3 and

that D is close to a Tracy-Widom distribution. The heuristics here is that λ2(
√
nK)

behaves like the λ1 of a centered Gaussian random symmetric matrix. The difficulty is
that the entries of K are not i.i.d. , not centered, and of course not Gaussian. At the
time of writing, the fluctuations of the extremal eigenvalues of random matrices is still an
active domain of research, even in the i.i.d. case, see e.g. [26, 42, 47].

Example of symmetric Markov generator

Rather than considering the random walk with infinitesimal generator K − I on the com-
plete graph as we did, one may start with the symmetric infinitesimal generator G defined
by Gi,j = Gj,i = Ui,j for every 1 ≤ i < j ≤ n and Gi,i = −∑j 6=iGi,j for every 1 ≤ i ≤ n.
Here (Ui,j)1≤i<j is a triangular array of i.i.d. real random variables of law L. For this
model, the uniform probability measure U is reversible and invariant. Such kind of ran-
dom matrices have been investigated in [16]. In particular, if L has first moment m > 0
and variance σ2 = 1 then from [16, Theorem 1.3] we get that a.s. the limiting spectral
distribution of the random symmetric matrix

n−1/2(G− (n− 2)mI −m1)

is the free convolution of a Wigner semi–circle law with a standard Gaussian law. Here 1 is
the n×nmatrix full of 1’s. This limiting spectral distribution is a symmetric law on R with
smooth bounded density of unbounded support. This is not a complete surprise since the
diagonal of G is asymptotically independent of the off-diagonal entries of G, and gives rise
to a Gaussian law by the central limit theorem. By using perturbative arguments (rank
lemma), one may show that the same result holds for the empirical spectral distribution

δ−n−1/2(n−2)m ∗ 1

n

n∑

k=1

δλk(n−1/2G).

Non–reversible Markov ensembles

A non–reversible model is obtained when the underlying complete graph is oriented. That
is each vertex i has now (besides the self–loop) n − 1 outgoing edges (i, j) and n − 1
incoming edges (j, i). On each of these edges we place an independent positive weight Vi,j

with law L, and on each self–loop an independent positive weight Vi,i with law L. This
gives us a non–reversible stochastic matrix

K̃i,j =
Vi,j∑n

k=1 Vi,k
.

11



The spectrum of K̃ is now complex. If L is exponential, then the matrix K̃ describes the
Dirichlet Markov Ensemble considered in [18]. Numerical simulations suggest that if L has
say finite positive variance then with probability one, the complex ESD of n1/2K̃ converges
weakly as n→ ∞ to the uniform law on the unit disc of the complex plane (known as the
circle or circular law). At the time of writing, this conjecture is still open, see e.g. [19].
It was shown in [17] that if L has positive variance and finite fourth moment, then with
probability one, the complex ESD of (n−1/2Vi,j)1≤i,j≤n converges weakly as n → ∞ to
the circular law. In fact, for this i.i.d. case, a finite positive variance is enough, as shown
recently in [46].

Geometric point of view

The set of Markov kernels on V = {1, . . . , n} is a convex and compact polytope of Rn2

with n(n− 1) degrees of freedom. Additionally, K belongs to the interior of this polytope
iff K has positive entries. Such kernels are irreducible. By a famous reversibility criterion
due to Kolmogorov, see e.g. [34, Theorem 1.7 page 21], these kernels are reversible iff
they belong to the intersection of polynomial hypersurfaces. This shows that considering
random reversible Markov kernels corresponds to defining a probability measure on a non–
linear non–convex compact set. Note however that the set of Markov kernels which are
reversible for a fixed probability measure is convex.

Heavy–tailed weights

Remarkable works has been devoted in the recent years to the spectral analysis of large
dimensional symmetric random matrices with heavy–tailed i.i.d. entries, see e.g. [43, 1, 5,
52, 8]. Similarly, on the complete graph, one may consider the bulk and edge behavior of
the random reversible Markov kernels constructed by (1) when the law L of the weights is
heavy–tailed (i.e. with at least an infinite second moment). In that case, and in contrast
with Theorem 1.1, the scaling is not

√
n and the limiting spectral distribution is not the

Wigner semi–circle law. We address such heavy–tailed models in a forthcoming paper in
preparation [12]. Another interesting model is the so called trap model which corresponds
to put heavy–tailed weights only on the diagonal of U (holding times), see e.g. [13] for
some recent advances.

2 Proofs for the complete graph model

Here we prove theorems 1.1, 1.2, 1.5 and Corollary 1.3. Recall that K is self–adjoint as an
operator from L2(ρ) to L2(ρ). Here L2(ρ) denotes Rn equipped with the scalar product

〈x, y〉ρ =

n∑

i=1

ρi xi yi.

Let us also denote by L2(1) the usual Euclidean Hilbert space Rn with the scalar product

〈x, y〉 =
n∑

i=1

xi yi.

The following simple lemma allows us to work with symmetric matrices when needed.
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Lemma 2.1 (Spectral equivalence). Almost surely, the spectrum of the reversible
Markov matrix K coincides with the spectrum of the symmetric matrix S defined by

Si,j =

√
ρi

ρj
Ki,j =

Ui,j√
ρiρj

.

Moreover, the corresponding eigenspaces dimensions also coincide.

Proof. It suffices to observe that the map x 7→ x̂ defined by

x̂ = (x1
√
ρ1, . . . , xn

√
ρn)

is an isometry from L2(ρ) to L2(1) and that for any x, y ∈ Rn and 1 ≤ i ≤ n, we have

(Kx)i =
n∑

j=1

Ki,jxj

and

〈Kx, y〉ρ =

n∑

i,j=1

Ki,jxjyiρi =

n∑

i,j=1

Ui,jxjyi =

n∑

i,j=1

Si,jx̂iŷj = 〈Sx̂, ŷ〉 .

The random symmetric matrix S has non–centered, non–independent entries. Each
entry of S is bounded and belongs to the interval [0, 1], since for every 1 ≤ i, j ≤ n, we
have Si,j ≤ Ui,j/

√
Ui,jUj,i = 1. The off-diagonal entries of S are distributed as

ξ0√
(ξ−(n−1) + · · · + ξ0)(ξ0 + · · · + ξn−1)

,

where ξ−(n−1), . . . , ξ0, . . . , ξn−1 are 2n−1 i.i.d. random variables with law L. The diagonal
entries Si,i = Ki,i are distributed as ξ1/(ξ1 + · · ·+ ξn) where ξ1, . . . , ξn are n i.i.d. random
variables with law L. In the sequel, for any n× n real symmetric matrix A, we denote by

λn(A) ≤ · · · ≤ λ1(A)

its ordered spectrum. We shall also denote by ‖A‖ the operator norm of A, defined by

‖A‖2 = max
x∈Rn

〈Ax,Ax〉
〈x, x〉 .

Clearly, ‖A‖ = max(λ1(A),−λn(A)). To prove Theorem 1.1 we shall compare the sym-
metric random matrix

√
nS with the symmetric n× n random matrices

Wi,j =
Ui,j − 1√

n
and W̃i,j =

Ui,j√
n
. (12)

Note that W defines a so called Wigner matrix, i.e. W is symmetric and it has centered
i.i.d. entries with finite positive variance. We shall also need the non–centered matrix W̃ .
It is well known that under the sole assumption σ2 ∈ (0,∞) on L, almost surely,

µW
w−→

n→∞
W2σ and µ

W̃

w−→
n→∞

W2σ
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where µW and µ
W̃

are the ESD of W and W̃ , see e.g. [2, Theorems 2.1 and 2.12]. Note

that W̃ is a rank one perturbation of W , which implies that the spectra of W and W̃ are
interlaced (Weyl-Poincaré inequalities, see e.g. [31, 2]). Moreover, under the assumption
of finite fourth moment on L, it is known that almost surely

λn(W ) → −2σ and λ1(W ) → +2σ.

In particular, almost surely,
‖W‖ = 2σ + o(1) . (13)

On the other hand, and still under the finite fourth moment assumption, almost surely,

λ1(W̃ ) → +∞ while λ2(W̃ ) → +2σ and λn(W̃ ) → −2σ

see e.g. [3, 27, 2]. Heuristically, when n is large, the law of large numbers implies that ρi

is close to n (recall that here L has mean 1), and thus
√
nS is close to W̃ . The main tools

needed for comparison of the matrix
√
nS with W̃ are listed in the following lemmas. We

begin with a Kolmogorov-Marcinkiewicz-Zygmund strong uniform law of large numbers,
connected to Baum-Katz type theorems.

Lemma 2.2 (Uniform law of large numbers). Let (Ai,j)i,j≥1 be a symmetric array of
i.i.d. random variables. For any reals a > 1/2, b ≥ 0, and M > 0, if E(|A1,1|(1+b)/a) <∞
then

max
1≤i≤Mnb

∣∣∣∣
n∑

j=1

(Ai,j − c)

∣∣∣∣ = o(na) a.s. where c =

{E(A1,1) if a ≤ 1

any number if a > 1.

Proof. This Kolmogorov-Marcinkiewicz-Zygmund strong uniform law of large numbers is
proved in [4, Lemma 2] for a non–symmetric array. The symmetry makes the random
variables (

∑n
j=1Ai,j)i≥1 dependent, but a careful analysis of the argument shows that this

is not a problem except for a sort of converse, see [4, Lemma 2] for details.

Lemma 2.3 (Almost sure bounds). If L has finite moment of order κ ∈ [1, 2] then

max
1≤i≤nκ−1

∣∣∣ρi

n
− 1
∣∣∣ = o(1) (14)

almost surely, and in particular, if L has finite second moment, then almost surely

max
1≤i≤n

∣∣∣ρi

n
− 1
∣∣∣ = o(1). (15)

Moreover if L has finite moment of order κ with 2 ≤ κ < 4, then almost surely

max
1≤i≤n

∣∣∣ρi

n
− 1
∣∣∣ = o(n

2−κ
κ ). (16)

Additionally, if L has finite fourth moment, then almost surely

n∑

i=1

(ρi

n
− 1
)2

= O(1) . (17)
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Proof. Proof of (14-15-16). The result (14) follows from Lemma 2.2 with

Ai,j = Ui,j , a = M = 1, b = κ− 1.

We recover the standard strong law of large numbers with κ = 1. The result (16) follows
from Lemma 2.2 with this time (we recover (15) with κ = 2)

Ai,j = Ui,j, a = 2/κ, b = M = 1.

Proof of (17). We set ǫi = n−1ρi − 1 for every 1 ≤ i ≤ n. Since L has finite fourth
moment, the result (13) for the centered Wigner matrix W defined by (12) gives that

n∑

i=1

ǫ2i =
〈W1,W1〉

〈1, 1〉 ≤ ‖W‖2 = 4σ2 + o(1) = O(1)

almost surely. Here 〈·, ·〉 is the Euclidean dot product of Rn.

We are now able to give a proof of Theorem 1.5.

Proof of Theorem 1.5. Since L has finite first moment, by the strong law of large numbers,

ρ1 + · · · + ρn =

n∑

i=1

Ui,i + 2
∑

1≤i<j≤n

Ui,j = n2(1 + o(1))

almost surely. For every fixed i ≥ 1, we have also ρi = n(1 + o(1)) almost surely. As a
consequence, for every fixed i ≥ 1, almost surely,

ρ̂i =
ρi

ρ1 + · · · + ρn
=

n(1 + o(1))

n2(1 + o(1))
=

1

n
(1 + o(1)).

Moreover, since L has finite second moment, the o(1) in the right hand side above is
uniform over 1 ≤ i ≤ n thanks to (15) of Lemma 2.3. This achieves the proof.

Note that ρ̂i = n−1(1 +O(δ)) for every 1 ≤ i ≤ n, where

δ = max
1≤i≤n

|ǫi| = o(1) with ǫi = n−1ρi − 1. (18)

We will repeatedly use these notations in the sequel. Let us consider now Theorem 1.1.
Lemma 2.1 reduces Theorem 1.1 to the study of the ESD of

√
nS. Any couple of entries of

S are dependent. One can find in the literature many extensions of the Wigner theorem for
random symmetric matrices with non–i.i.d. entries. However, these results are irrelevant
for our model, or do not apply directly, or do not provide the almost–sure convergence.

Proof of Theorem 1.1. We first recall a standard fact about comparison of spectral densi-
ties of symmetric matrices. Let L(F,G) denote the Lévy distance between two cumulative
distribution functions F and G on R, defined by

L(F,G) = inf{ε > 0 such that F (· − ε) − ǫ ≤ G ≤ F (· + ǫ) + ǫ)} .

It is well known [6] that the Lévy distance is a metric for weak convergence of probability
distributions on R. If FA and FB are the cumulative distribution functions of the empirical
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spectral distributions of two hermitian n × n matrices A and B, we have the following
bound for the third power of L(FA, FB) in terms of the trace of (A−B)2:

L3(FA, FB) ≤ 1

n
Tr((A−B)2) =

1

n

n∑

i,j=1

(Ai,j −Bi,j)
2 . (19)

The proof of this estimate is a consequence of the Hoffman-Wielandt inequality [30], see
also [2, Lemma 2.3]. By Lemma 2.1, we have

√
nλk(K) = λk(

√
nS) for every 1 ≤ k ≤ n.

We shall use the bound (19) for the matrices A =
√
nS and B = W̃ , where W̃ is defined

in (12). We will show that a.s.

1

n

∑

i,j=1

(Ai,j −Bi,j)
2 = O(δ2) , (20)

where δ = maxi |ǫi| as in (18). Since L has finite positive variance, we know that the ESD
of B tends weakly as n→ ∞ to the Wigner semi–circle law on [−2σ,+2σ]. Therefore the
bound (20), with (19) and the fact that δ → 0 as n→ ∞ is sufficient to prove the theorem.
We turn to a proof of (20). For every 1 ≤ i, j ≤ n, we have

Ai,j −Bi,j =
Ui,j√
n

(
n

√
ρiρj

− 1

)
.

Set, as usual ρi = n(1 + ǫi) and define ψi = (1 + ǫi)
− 1

2 − 1. Note that by Lemma 2.3,
almost surely, ψi = O(δ) uniformly in i = 1, . . . , n. Also,

n
√
ρiρj

− 1 = (1 + ψi)(1 + ψj) − 1 = ψi + ψj + ψiψj .

In particular, n√
ρiρj

− 1 = O(δ). Therefore

1

n

∑

i,j=1

(Ai,j −Bi,j)
2 ≤ O(δ2)


 1

n2

n∑

i,j=1

U2
i,j


 .

By the strong law of large numbers, 1
n2

∑n
i,j=1 U

2
i,j → σ2 + 1 a.s., which implies (20).

Next, we turn to the proof of Theorem 1.2 which concerns the edge of σ(
√
nS).

Proof of Theorem 1.2. Thanks to Lemma 2.1 and the global behavior proven in Theorem
1.1, it is enough to show that, almost surely,

lim sup
n→∞

√
nmax(|λ2(S)|, |λn(S)|) ≤ 2σ .

The eigenspace of S of the eigenvalue 1 is almost surely of dimension 1, and is given byR(
√
ρ1, . . . ,

√
ρn). Let P be the orthogonal projector on R√ρ. The matrix P is n × n

symmetric of rank 1, and for every 1 ≤ i, j ≤ n,

Pi,j =

√
ρiρj∑n

k=1 ρk
.
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The spectrum of the symmetric matrix S − P is

{λn(S), . . . , λ2(S)} ∪ {0}.

By subtracting P from S we remove the largest eigenvalue 1 from the spectrum, without
touching the remaining eigenvalues. Let V be the random set of vectors of unit Euclidean
norm of Rn which are orthogonal to

√
ρ for the scalar product 〈·, ·〉 of Rn. We have then

√
nmax(|λ2(S)|, |λn(S)|) = max

v∈V

∣∣〈√nSv, v
〉∣∣ = max

v∈V
|〈Ãv, v〉|

where Ã is the n× n random symmetric matrix defined by

Ãi,j =
√
n(S − P )i,j =

√
n

(
Ui,j√
ρiρj

−
√
ρiρj∑n

k=1 ρk

)
.

In Lemma 2.4 below we establish that almost surely 〈v, (Ã −W )v〉 = O(δ) + O(n−1/2)
uniformly in v ∈ V, where W is defined in (12) and δ is given by (18). Thus, using (13),

|〈Wv, v〉| ≤ max(|λ1(W )|, |λn(W )|) = 2σ + o(1) ,

we obtain that almost surely, uniformly in v ∈ V,

|〈Ãv, v〉| ≤ |〈Wv, v〉| + |〈(Ã−W )v, v〉| = 2σ + o(1) +O(δ).

Thanks to Lemma 2.3 we know that δ = o(1) and the theorem follows.

Lemma 2.4. Almost surely, uniformly in v ∈ V, we have, with δ := maxi |ǫi|,

〈v, (Ã −W )v〉 = O(δ) +O(n−1/2).

Proof. We start by rewriting the matrix

Ãi,j =

√
nUi,j√
ρiρj

−
√
n
√
ρiρj∑

k ρk

by expanding around the law of large numbers. We set ρi = n(1 + ǫi) and we define

ϕi =
√

1 + ǫi − 1 and ψi =
1√

1 + ǫi
− 1.

Observe that ϕi and ψi are of order ǫi and by Lemma 2.3, cf. (17) we have a.s.

〈ϕ,ϕ〉 = O(1) and 〈ψ,ψ〉 = O(1) . (21)

We expand √
ρiρj = n(1 + ǫi)

1

2 (1 + ǫj)
1

2 = n(1 + ϕi)(1 + ϕj) .

Similarly, we have
1

√
ρiρj

= n−1(1 + ψi)(1 + ψj).
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Moreover, writing
n∑

k=1

ρk = n2

(
1 +

1

n

∑

k

ǫk

)

and setting γ := (1 + 1
n

∑
k ǫk)

−1 − 1 we see that

(
n∑

k=1

ρk

)−1

=
1

n2
(1 + γ) .

Note that γ = O(δ). Using these expansions we obtain

√
nUi,j√
ρiρj

=
1√
n
Ui,j(1 + ψi)(1 + ψj)

and √
n
√
ρiρj∑

k ρk
=

1√
n

(1 + ϕi)(1 + ϕj)(1 + γ) .

From these expressions, with the definitions

Φi,j = ϕi + ϕj + ϕiϕj and Ψi,j = ψi + ψj + ψiψj,

we obtain

Ãi,j = Wi,j(1 + Ψi,j) +
1√
n

[Ψi,j − Φi,j(1 + γ) + γ] .

Therefore, we have

〈v, (W − Ã)v〉 = −
∑

i,j

viWi,jΨi,jvj +
1 + γ√
n

〈v,Φv〉 − 1√
n
〈v,Ψv〉 − γ√

n
〈v, 1〉2.

Let us first show that
〈v, 1〉 = O(1) . (22)

Indeed, v ∈ V implies that for any c ∈ R,

〈v, 1〉 = 〈v, 1 − c
√
ρ〉.

Taking c = 1/
√
n we see that

1 − c
√
ρi = 1 −

√
1 + ǫi = −ϕi.

Thus, Cauchy–Schwarz’ inequality implies

〈v, 1〉2 ≤ 〈v, v〉〈ϕ,ϕ〉

and (22) follows from (21) above. Next, we show that

〈v,Φv〉 = O(1). (23)

Note that
〈v,Φv〉 = 2〈v, 1〉〈v, ϕ〉 + 〈v, ϕ〉2.
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Since 〈v, ϕ〉2 ≤ 〈v, v〉〈ϕ,ϕ〉 we see that (23) follows from (21) and (22). In the same way
we obtain that 〈v,Ψv〉 = O(1). So far we have obtained the estimate

〈v, (W − Ã)v〉 = −
∑

i,j

viWi,jΨi,jvj +O(n−1/2). (24)

To bound the first term above we observe that
∑

i,j

viWi,jΨi,jvj = 2
∑

i

ψivi(Wv)i +
∑

i,j

ψiviWi,jψjvj

= 2〈ψ̂,Wv〉 + 〈ψ̂,W ψ̂〉 ,

where ψ̂ denotes the vector ψ̂i := ψivi. Note that

〈ψ̂, ψ̂〉 =
∑

i

ψ2
i v

2
i ≤ O(δ2)〈v, v〉 = O(δ2).

Therefore, by definition of the norm ‖W‖

|〈ψ̂,W ψ̂〉| ≤
√

〈ψ̂, ψ̂〉
√

〈Wψ̂,Wψ̂〉 ≤ ‖W‖ 〈ψ̂, ψ̂〉 = O(δ2) ‖W‖ .
Similarly, we have

|〈ψ̂,Wv〉| ≤
√

〈ψ̂, ψ̂〉
√

〈Wv,Wv〉 ≤ O(δ) ‖W‖
√

〈v, v〉 = O(δ) ‖W‖ .
From (13), ‖W‖ = 2σ + o(1) = O(1). Therefore, going back to (24) we have obtained

〈v, (W − Ã)v〉 = O(δ) +O(n−1/2).

We end this section with the proof of Corollary 1.3.

Proof of Corollary 1.3. By Theorem 1.2, almost surely, and for any compact subset C ofR containing strictly [0, 2σ], the law µ̃√nK is supported in C for large enough n. On the

other hand, since µ√nK = (1−n−1)µ̃√nK +n−1δ√n, we get from Theorem 1.1 that almost
surely, µ̃√nK tends weakly to W2σ as n→ ∞. Now, for sequences of probability measures
supported in a common compact set, by the Weierstrass theorem, weak convergence is
equivalent to Wasserstein convergence Wp for every p ≥ 1. Consequently, almost surely,

lim
n→∞

Wp(µ̃√nK ,W2σ) = 0. (25)

for every p ≥ 1. It remains to study Wp(µ√nK ,W2σ). Recall that if ν1 and ν2 are
two probability measures on R with cumulative distribution functions Fν1

and Fν2
with

respective generalized inverses F−1
ν1

and F−1
ν2

, then, for every real p ≥ 1, we have, according
to e.g. [49, Remark 2.19 (ii)],

Wp(ν1, ν2)
p =

∫ 1

0

∣∣F−1
ν1

(t) − F−1
ν2

(t)
∣∣p dt. (26)

Let us take ν1 = µ√nK = (1 − n−1)µ̃√nK + n−1δ√n and ν2 = W2σ. Theorem 1.2 gives
λ2(

√
nK) <∞ a.s. Also, a.s., for large enough n, and for every t ∈ (0, 1),

F−1
ν1

(t) = F−1
µ√

nK
(t) =

√
n1[1−n−1,1)(t) + F−1

µ̃√
nK

(t+ n−1)1(0,1−n−1)(t).

The desired result follows then by plugging this identity in (26) and by using (25).
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3 Proofs for the chain graph model

Here we prove theorem 1.6 and 1.10 and corollaries 1.7 and 1.11.

Proof of Theorem 1.6. Since µK is supported in the compact set [−1,+1] which does not
depend on n, the Weierstrass theorem implies that the weak convergence of µK as n→ ∞
is equivalent to the convergence of all moments, and is also equivalent to the convergence
in Wasserstein distance Wp for every p ≥ 1. Thus, by a Prohorov tightness argument, it
suffices to show that a.s. for any ℓ ≥ 0, the ℓth moment of µK converges to E[rpℓ (0)] as
n → ∞. The sequence (E[rpℓ (0)])ℓ≥0 will be then necessarily the sequence of moments of
a probability measure µ on [−1,+1] which is the unique adherence value of µK as n→ ∞.

For any ℓ ≥ 0 and i ≥ 1 let rp,n
ℓ (i) be the probability of return to i after ℓ steps for

the random walk on {1, . . . , n} with kernel K (this probability is a random variable since
K is random). Clearly, rp,n

ℓ (i) = rpℓ (i) whenever 1 + ℓ < i < n − ℓ. Therefore, for every
fixed ℓ, the ergodic theorem implies that almost surely,

lim
n→∞

1

n

n∑

i=1

rp,n
ℓ (i) = lim

n→∞
1

n

n∑

i=1

rpℓ (i) = E[r
p(0)
ℓ ].

This ends the proof.

Proof of Corollary 1.7. The desired convergence follows immediately from Theorem 1.6
with p(i) = (1−Vi, 0, Vi) for every i ≥ 1. The expression of the moments of µ is immediate.
Let us explain now how the result can be deduced also from the trace-moment method.
Let us take a1 = · · · = an in (9). The Markov matrix K defined by (9) is not symmetric
in general, but we have an analog of Lemma 2.1. Namely, the spectrum of K is identical
to the spectrum of the symmetric tridiagonal matrix S defined for any 1 ≤ i, j ≤ n by

Si,j =

√
ρi

ρj
Ki,j =

√
bici+1δj,i+1 +

√
bi−1ciδj,i−1

where δk,l = 1{k=l} is the Kronecker symbol. In other words

S =




0
√
b1c2√

b1c2 0
√
b2c3√

b2c3 0
√
b3c4

. . .
. . .

. . .√
bn−2cn−1 0

√
bn−1cn√

bn−1cn 0




. (27)

Moreover, the eigenspaces dimensions are also identical. The random reversible Markov
kernel K defined by (10) is spectrally equivalent to the random symmetric tridiagonal
matrix obtained from (27) by taking bi = 1 − ci = Vi for every 2 ≤ i ≤ n − 1 and
b1 = cn = 1. The entries of this matrix are dependent. Nevertheless, the desired result
follows from the trace-moments method and appears as a variant of the proof used by
Popescu for models of random symmetric tridiagonal matrices with independent entries
[38, Theorem 2.8]. We leave the details to the reader.
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Remark 3.1 (Computation of the moments of µ for Beta environments). As
noticed in Remark 1.8, the limiting spectral distribution µ is the arc–sine law when L =
δ1/2. Assume now that L is uniform on [0, 1]. Then for every integers m ≥ 0 and n ≥ 0,E(V m(1 − V )n) =

∫ 1

0
um(1 − u)n du = Beta(n + 1,m+ 1) =

Γ(n+ 1)Γ(m+ 1)

Γ(n+m+ 2)

which gives E(V m(1 − V )n) =
n!m!

(n+m+ 1)!
=

1

(n+m+ 1)
(n+m

m

) .

The law of
(
n+m

m

)
V m(1 − V )n is the law of the probability of having m success in n +m

tosses of a coin with a probability of success p uniformly distributed in [0, 1]. One may
think about the trivial case (Uniform-Binomial) of the Dirichlet-Multinomial Bose-Einstein
distribution. Similar formulas may be obtained when L is an Euler Beta law Beta(α, β).

Proof of Theorem 1.10. Proof of the first statement. It is enough to show that for every
0 < a < 1, there exists an integer ka such that for all k ≥ ka,

∫ +1

−1
x2kµ(dx) ≥ a2k. (28)

By assumption, there exists C > 0 and 0 < t0 < 1/2 such that for all 0 < t < t0,P(V ∈ [1/2 − t, 1/2 + t]) ≥ Ct

where V is random variable of law L. In particular, for all 0 < t < t0,E [V Nγ(i)(1 − V )Nγ(i−1)
]
≥ Ct

(
1

2
− t

)Nγ(i)+Nγ (i−1)

,

and, if
‖γ‖∞ = max{i ≥ 0 : max(Nγ(i), Nγ(−i)) ≥ 1}

then
∫ +1

−1
x2kµ(dx) ≥

∑

γ∈Dk

∏

i∈ZCt(1

2
− t

)Nγ(i)+Nγ (i−1)

≥
∑

γ∈Dk

(Ct)2‖γ‖∞
(

1

2
− t

)∑
i Nγ(i)+Nγ(i−1)

≥
(

1

2
− t

)2k ∑

γ∈Dk

(Ct)2‖γ‖∞

≥
(

1

2
− t

)2k

|Dk,α|(Ct)2kα
,

where Dk,α = {γ ∈ Dk : ‖γ‖∞ ≤ kα}. Now, from the Brownian Bridge version of
Donsker’s Theorem, for all α > 1/2,

lim
k→∞

|Dk,α|
|Dk|

= 1.
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Since |Dk| = Card(Dk) =
(
2k
k

)
, Stirling’s formula gives |Dk| ∼ 4k(πk)−1/2, and thus

∫ +1

−1
x2kµ(dx) ≥ (πk)−1/2(1 − 2t)2k(Ct)2kα

(1 + o(1)).

We then deduce the desired result (28) by taking t small enough such that 1− 2t > a and
1/2 < α < 1. This achieves the proof of the first statement.

Proof of the second statement. One can observe that if L = δp for some p ∈ (0, 1)
with p 6= 1/2, an explicit computation of the spectrum will provide the desired result, in
accordance with Remark 1.8. For the general case, we get from [36], for any 2 ≤ k ≤ n−1,

1 − λ2(K) ≥ 1

4max(B+
k , B

−
k )

where

B+
k = max

i>k






i∑

j=k+1

1

ρj(1 − Vj)


∑

j≥i

ρj


 and B−

k = max
i<k






k−1∑

j=i

1

ρjVj


∑

j≤i

ρj




with the convention V1 = 1 − Vn = 1. Here we have fixed the value of n and ρ is any
invariant (reversible) measure forK. It is convenient to take ρ1 = 1 and for every 2 ≤ i ≤ n

ρi =
V2 · · · Vi−1

(1 − V2) · · · (1 − Vi)
.

By symmetry, it suffices to consider the case where L is supported in [0, t] with 0 < t < 1/2.
Let us take k = 2. In this case, B−

2 = 1, and the desired result will follow if we show that
B+

2 is bounded above by a constant independent of n. To this end, we remark first that for

any ℓ > j we have ρℓ = ρj
∏ℓ−1

m=j(Vm/(1 − Vm+1)). Therefore, setting e−γ = t/(1 − t) < 1,

we have ρℓ ≤ ρje
−γ(ℓ−j). It follows that, for any k < i,

i∑

j=k+1

∑

ℓ≥i

ρℓ

ρj(1 − Vj)
≤ 1

1 − t

i∑

j=k+1

e−γ(i−j)
∑

ℓ≥i

e−γ(ℓ−i)

≤ (1 − e−γ)−2

1 − t
=

1 − t

(1 − 2t)2
.

In particular, B+
2 ≤ (1 − t)/(1 − 2t)2, which concludes the proof.

Relation to random orthogonal polynomials

There are deep links between orthogonal polynomials, symmetric tridiagonal matrices,
and the Hamburger moments problem, see e.g. [48, 44, 21, 22]. See also [33, 32, 48, 22] for
the relationship with birth-and-death processes on Z+. More precisely, fix a prescribed
bounded sequence (γn)n≥0 of positive reals and define the symmetric tridiagonal matrix

Γ =




0 γ1

γ1 0 γ2

γ2 0 γ3

. . .
. . .

. . .

γn−2 0 γn−1

γn−1 0




(29)
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with eigenvalues (λn,k)1≤k≤n and ESD

µΓ =
1

n

n∑

k=1

δλn,k
.

The characteristic polynomial Pn of Γ is the last term of the second order recursion

Pk+1(x) = xPk(x) − γ2
kPk−1(x)

for every 0 ≤ k ≤ n− 1, with P−1 ≡ 0 and P0 ≡ 1. From the classical theory [21, 44, 48],
(Pn)n≥0 is the sequence of orthogonal polynomials for a compactly supported probability
measure ν on R. Namely, for every i, j ≥ 0,

∫RPi(x)Pj(x) ν(dx) = δi,j.

The law ν is unique and solves a Hamburger moments problem. The matrix Γ and the
law ν are known respectively as the Jacobi matrix and the spectral measure of (Pn)n≥0.
The roots (λn,k)1≤k≤n of Pn are real, distinct, belong to the support of ν, and there exists
one and only one root of Pn+1 between two roots of Pn (interlacement). The Stieltjes
transform of ν is given by the continuous fraction (for every z ∈ C with I(z) > 0)

∫R 1

z − x
ν(dx) =

1

z −
γ2
1

z −
γ2
2

z − . . .

.

The nth approximant of this continuous fraction is the Stieltjes transform of the Gauss-
Christoffel quadrature νn of ν. In other words, νn is the discrete law on R with atoms
(λn,k)1≤k≤n which is equal to ν as a linear form on all polynomials of degree ≤ n. If
(vn,k)1≤k≤n are the orthogonal eigenvectors of the symmetric matrix Γ associated to the
eigenvalues (λn,k)1≤k≤n, then from [29, Proposition 1.1.9] we get for every real p ≥ 1

lim
n→∞

Wp(νn, ν) = 0 where νn =
1

n

n∑

k=1

〈vn,k, e1〉2 δλn,k
.

It turns out that νn is the so called distribution measure at vector e1 of the self–adjoint
operator Γ, while ν is the distribution measure at vector e1 of the self–adjoint operator
Γ : ℓ2(N) → ℓ2(N) where N = {1, 2, . . .}, see e.g. [29, Example 1.1.1 and Proposition
1.1.9]. Here Γ is the operator which coincides with Γ on ℓ2({1, . . . , n}) for every n ≥ 1. In
other words, for every k ≥ 0,

〈Γk
e1, e1〉ℓ2(N) = lim

n→∞
〈Γke1, e1〉ℓ2({1,...,n}) = lim

n→∞

∫Rxk νn(dx) =

∫Rxk ν(dx).

One should not confuse νn with µΓ. In general, µΓ does not converge weakly to ν. Ac-
tually, a famous theorem by Erdős & Turán [25] states that if ν is supported on [−1,+1]
with almost-everywhere positive density, then µΓ tends weakly as n→ ∞ to the arc–sine
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distribution on [−1,+1], see e.g. [48, p. 24–25]. In fact the convergence holds for Wasser-
stein distance Wp for every p ≥ 1. In the special case where γn = 1 for every n ≥ 1,
then ν turns out to be a Wigner semi–circle law on [−1,+1] and (Pn)n≥0 are the Jacobi
polynomials with parameters α = β = 1/2, also known as the Chebyshev polynomials of
the second kind. From the Erdős-Turán theorem, we get then a simple example for which
ν (Wigner semi–circle law on [−1,+1]) is not the weak limit µ of µΓ (arc–sine law on
[−1,+1]). On the other hand, it is well known that the arc–sine law on [−1,+1] is a fixed
point of the map ν 7→ µ and (Pn)n≥0 are in this case the Chebyshev polynomials of the
first kind.

Recall that the recursive relations of the Chebyshev polynomials of the first and second
kind differ only on the first coefficients. We are now ready for the proof of Corollary 1.11.

Proof of Corollary 1.11. Observe first that µQn = µΓ where Γ is the random symmetric
tridiagonal matrix defined from (29) with γn =

√
Vn(1 − Vn+1) for every n ≥ 1. On the

other hand, let S be the symmetric tridiagonal matrix (27) considered in the proof of
Corollary 1.7. It coincides with the matrix (29) with this time γk =

√
bkck+1 for every

1 ≤ k ≤ n− 1. Due to the reflection boundary conditions b1 = cn = 1, the finite sequence
γ1, . . . , γn−1 is not the first n − 1 terms of a fixed infinite sequence. Also, the roots of
Qn are not the eigenvalues of the random reversible kernel K of Corollary 1.7. However,
the empirical distribution µQn of the roots of Qn and the ESD of K share the same weak
adherence values since the roots of Qn−1 are interlaced with the roots of the characteristic
polynomial of K. The desired result follows then from Corollary 1.7.

Remark 1.8 and the numerical experiments of figures 2-3-4 shows that µ is not the
arc–sine law on [−1,+1] for many choices of L. In such cases, the hypothesis on ν of
the Erdős-Turán theorem are necessarily almost-surely violated. Note that the arc–sine
law appears also in the literature as the limit of the empirical distribution of the roots
of orthogonal polynomials associated to random measures defined with uniform random
canonical moments, see e.g. [7] and references therein.

Remark 3.2 (Yet another sequence of random orthogonal polynomials). It is
quite natural to consider the empirical measure of the roots µQn associated to the sequence
of random orthogonal polynomials (Qn)n≥0 defined by the recursive relation

Qn+1(x) = xQn(x) −WnQn−1(x)

for every n ≥ 1 with initial conditions Q0 ≡ 1 and Q1(x) = x, where this time (Wn)n≥1

are i.i.d. positive random variables. For every n ≥ 1, the random polynomial Qn is the
characteristic polynomial of the random matrix




0
√
W1√

W1 0
√
W2√

W2 0
√
W3

. . .
. . .

. . .√
Wn−2 0

√
Wn−1√

Wn−1 0




.

This matrix is the so called Jacobi matrix of the sequence (Qn)n≥0, and its ESD is µQn.
Since this matrix is symmetric tridiagonal with i.i.d. entries, the result of Popescu in [38]
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implies that a.s. µQn tends as n→ ∞ to a non-random probability measure which depends
on the common law of the Wi’s via its moments. Here again, the limit of µQn as n→ ∞
does not coincide in general with the (random) law for which (Qn)n≥0 are orthogonal.
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Verlag, Basel, 2002. MR MR1890289 (2003f:60183)
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[17] D. Chafäı, Circular law for non-central random matrices, preprint arXiv:0709.0036 [math.PR], 2007.

[18] , The Dirichlet Markov Ensemble, preprint arXiv:0709.4678 [math.PR], 2007.

[19] , Circular Law Theorem for Random Markov Matrices, partial results, arXiv:0808.1502

[math.PR], 2008.

25



[20] D. Cheliotis and B. Virag, The spectrum of the random environment and localization of noise, preprint,
arXiv.math:0804.4814, 2008.

[21] T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach Science Publishers,
New York, 1978, Mathematics and its Applications, Vol. 13. MR MR0481884 (58 #1979)

[22] H. Dette and W. J. Studden, The theory of canonical moments with applications in statistics, probabil-

ity, and analysis, Wiley Series in Probability and Statistics: Applied Probability and Statistics, John
Wiley & Sons Inc., New York, 1997, A Wiley-Interscience Publication. MR MR1468473 (98k:60020)

[23] P. G. Doyle and J. L. Snell, Random walks and electric networks, Carus Mathematical Monographs,
vol. 22, Mathematical Association of America, Washington, DC, 1984.

[24] F. J. Dyson, Statistical theory of the energy levels of complex systems. Parts I, II, III, J. Mathematical
Phys. 3 (1962), 140–175.
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Figure 1: These plots correspond to the fluctuation of the sub–dominant eigenvalue of K
in Theorem 1.2 (complete graph) with L uniform on [0, 1]. In both plots, the green solid
bell shaped curve is the density of the Tracy-Widom distribution, for the λmax of the so
called Beta Ensemble with β = 1, which is the Gaussian Orthogonal Ensemble GOE, see
e.g. [47], plotted by using the Matlab package RMLab version 0.02 by Momar Dieng. Both
histograms were obtained with a sample of size 1000 of n2/3(m

σ λ2(
√
nK) − 2), where m

is the first moment of L. The left hand side histogram corresponds to n = 50, whereas
the right hand side histogram corresponds to n = 500. One can notice in both graphics a
negative bias, which is smaller for n = 500 than for n = 50. Is it asymptotically zero?
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Figure 2: These plots illustrate Corollary 1.7. Each histogram corresponds to the spectrum
of a single realization of K with n = 5000, for various choices of L. From left to right L
is the uniform law on [0, t] ∪ [1 − t, 1] for t = 1/8, t = 1/4.
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Figure 3: These plots illustrate Corollary 1.7 and the second statement of Theorem 1.10.
Each histogram corresponds to the spectrum of a single realization of K with n = 5000,
for various choices of L. From left to right and top to bottom, L is uniform on [0, t] with
t = 1/8, t = 1/4, t = 1/2, and t = 1.
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Figure 4: These plots illustrate Corollary 1.7. Each histogram corresponds to the spectrum
of a single realization of K with n = 5000, for various choices of L. From left to right and
top to bottom, L is uniform on [t, 1 − t] with t = 0, t = 1/8, t = 1/4, t = 1/2. The last
case corresponds to the arc–sine limiting spectral distribution mentioned in Remark 1.8.
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