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A DUALITY APPROACH TO THE GENEALOGIES OF

DISCRETE NON-NEUTRAL WRIGHT-FISHER MODELS

THIERRY E. HUILLET

Abstract. Discrete ancestral problems arising in population genetics are in-
vestigated. In the neutral case, the duality concept has proved of particular
interest in the understanding of backward in time ancestral process from the
forward in time branching population dynamics. We show that duality formu-
lae still are of great use when considering discrete non-neutral Wright-Fisher
models. This concerns a large class of non-neutral models with completely
monotone (CM) bias probabilities. We show that most classical bias probabil-
ities used in the genetics literature fall within this CM class or are amenable to
it through some ‘reciprocal mechanism’ which we define. Next, using elemen-
tary algebra on CM functions, some suggested novel evolutionary mechanisms
of potential interest are introduced and discussed,

Running title: Duality and Discrete Non-Neutral Wright-Fisher Models.

Keywords: Wright-Fisher Models; Markov chains; Duality; Mutational
and evolutionary processes; Population dynamics; Phylogeny.

1. Introduction

Forward evolution of large populations in genetics has a long history, starting in
the 1920s; it is closely attached to the names of R. A. Fisher and S. Wright; see T.
Nagylaki (’1999) for historical commentaries and on the role played by the French
geneticist G. Malécot, starting shortly before the second world war. The book of
W. Ewens (’2004) is an excellent modern presentation of the current mathemat-
ical theory. Coalescent theory is the corresponding backward problem, obtained
while running the forward evolution processes backward-in-time. It was discovered
independently by several researchers in the 1980s, but definitive formalization is
commonly attributed to J. Kingman (’1982). Major contributions to the develop-
ment of coalescent theory were made (among others) by P. Donnelly, R. Griffiths,
R. Hudson, F. Tajima and S. Tavaré (see the course of Tavaré in Saint-Flour ’2004
for a review). It included incorporating variations in population size, mutation,
recombination, selection... In (’1999), J. Pitman and S. Sagitov, independently, in-
troduced coalescent processes with multiple collisions of ancestral lineages. Shortly
later, the full class of exchangeable coalescent processes with simultaneous multiple
mergers of ancestral lineages was discovered by M. Möhle and S. Sagitov (’2001)
and J. Schweinsberg (’2000). All these recent developments and improvements con-
cern chiefly the discrete neutral case and their various scaling limits in continuous
time and/or space. As was shown by Möhle (’1994 and ’1999), neutral forward
and backward theories learn much from one another by using a concept of duality
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introduced by T. Liggett (’1985). Backward theory in the presence of mutations
in the forward process is well-understood, as it requires the study of a marked
Kingman’s tree (see Tavaré, (’2004) for a review). In the works of C. Neuhauser
and S. Krone (’1997), there is also some use of the duality concept in an attempt
to understand the genealogies of a Wright-Fisher diffusion (as a limit of a discrete
Wright-Fisher model) presenting a selection mechanism; this led these authors to
the idea of the ancestral selection graph extending Kingman’s coalescent tree of the
neutral theory; see also T. Huillet (’2007) for related objectives in the context of
Wright-Fisher diffusions with and without drifts. There is therefore some evidence
that the concept of duality could help one understand the backward theory even
in non-neutral situations when various evolutionary forces are the causes of devi-
ation to neutrality (see J. Crow and M. Kimura, (’1970), T. Maruyama (’1977),
J. Gillepsie (’1991) and W. Ewens (’2004), for a discussion on various models of
utmost interest in population genetics).

In this Note, we focus on discrete non-neutral Wright-Fisher (say WF) models and
on the conditions on the bias probabilities under which forward branching popu-
lation dynamics is directly amenable to a dual discrete ancestral coalescent. We
emphasize that duality formulae still are of great use when considering discrete non-
neutral Wright-Fisher models, at least for specific deviation forces to neutrality. It
is shown that it concerns a large class of non-neutral models involving completely
monotone bias probabilities. Several classical examples are supplied in the light of
complete monotonicity. In the process leading us to focus on these peculiar bias
models, some unsuspected evolutionary mechanisms of potential interest are intro-
duced and discussed, as suggested by elementary algebra on completely monotone
functions. We emphasize that the relevance of these novel bias mechanisms in Bi-
ology seems to deserve additional work and confrontation with real-world problems
is urged for to pinpoint their biological significance.

We shall finally briefly outline the content of this manuscript. Section 2 is designed
to fix the background and ideas: We introduce some basic facts about the discrete-
time forward (subsection 2.2) and backward processes (subsection 2.3) arising from
exchangeable reproduction laws (subsection 2.1). In subsection 2.4, we introduce a
concept of duality and briefly recall its relevance to the study of the neutral case
problem. The basic question we address in subsequent sections is whether this
notion of duality still makes sense in non-neutral situations. We start supplying
important non-neutral examples in section 3. In section 4, we show that duality
does indeed make sense in the framework of discrete non-neutral Wright-Fisher
models, but only for the class of completely-monotone state-dependent transition
frequencies. In section 5, we show that most non-neutrality mechanisms used in the
literature fall within this class, or are amenable to it via some ‘reciprocal transfor-
mation’, starting with elementary mechanisms and ending up with more complex
ones. In section 6, we show that duality can be used in non-neutral situations
to compute the extinction probabilities (invariant measure) of the dual backward
ancestral process if one knows the invariant measure (respectively, extinction prob-
abilities) of the forward branching process.
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2. Discrete-time neutral coalescent

In this Section, to fix the background and notations, we review some well-known
facts from the cited literature.

2.1. Exchangeable neutral population models: Reproduction laws. (The
Cannings model: ’1974). Consider a population with non-overlapping generations
r ∈ Z. Assume the population size is constant, say n (n individuals (or genes))
over generations. Assume the random reproduction law at generation 0 is νn :=
(ν1,n, ..., νn,n) , satisfying:

n∑

m=1

νm,n = n.

Here, νm,n is the number of offspring of gene m. We avoid the trivial case: νm,n = 1,
m = 1, ..., n. One iterates the reproduction over generations, while imposing the
following additional assumptions:

- Exchangeability: (ν1,n, ..., νn,n)
d
=
(
νσ(1),n, ..., νσ(n),n

)
, for all permutations σ ∈

Sn.

- time-homogeneity: reproduction laws are independent and identically distributed
(iid) at each generation r ∈ Z.

This model therefore consists of a conservative conditioned branching Galton-

Watson process in [n]
Z
, where [n] := {0, 1, ..., n} (see Karlin-McGregor, ’1964).

Famous reproduction laws are:

Example 2.1.1 The multinomial Dirichlet model: νn
d∼ Multin-Dirichlet(n; θ),

where θ > 0 is a disorder parameter. With kn := (k1, ..., kn), νn admits the
following joint exchangeable distribution on the simplex |kn| :=

∑n
m=1 km = n:

Pθ (νn = kn) =
n!

[nθ]n

n∏

m=1

[θ]km

km!
,

where [θ]k = θ (θ + 1) ... (θ + k − 1) is the rising factorial of θ. This distribution
can be obtained by conditioning n independent mean 1 Pòlya distributed random

variables ξn = (ξ1, ..., ξn) on summing to n, that is to say: νn
d
= (ξn | |ξn| = n) ,

where

Pθ (ξ1 = k) =
[θ]k
k!

(1 + θ)
−k

(θ/ (1 + θ))
θ
, k ∈ N.

When θ ↑ ∞, this distribution reduces to the Wright-Fisher model for which νn
d∼

Multin(n; 1/n, ..., 1/n) . Indeed, νn admits the following joint exchangeable multi-
nomial distribution on the simplex |kn| = n:

P∞ (νn = kn) =
n! · n−n

∏n
m=1 km!

.

This distribution can be obtained by conditioning n independent mean 1 Poisson

distributed random variables ξn = (ξ1, ..., ξn) on summing to n: νn
d
= (ξn | |ξn| = n).

When n is large, using Stirling formula, n! ∼
√

2πnn+1/2e−n; it follows that

νn
d→

n↑∞
ξ∞ with joint finite-dimensional law: P (ξn = kn) =

∏n
m=1

e−1

km! = e−n
∏

n
m=1

km!
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on N
n. Thanks to the product form of all finite-dimensional laws of ξ∞, we get an

asymptotic independence property of νn.

Example 2.1.2 In the Moran model, νn
d∼ random permutation of (2, 0, 1, ..., 1) : in

such a model, only one new gene per generation may come to life, at the expense
of the simultaneous disappearance of some other gene.

2.2. Forward in time branching process. Take a sub-sample of size m from
[n] := {0, 1, ..., n} at generation 0. Let

Nr (m) = # offspring at generation r ∈ N+, forward-in-time.

This sibship process is a discrete-time homogeneous Markov chain, with transition
probability:

(1) P (Nr+1 (m) = k′ | Nr (m) = k) = P (ν1,n + ... + νk,n = k′) .

It is a martingale, with state-space {0, ..., n}, initial state m, absorbing states {0, n}
and transient states {1, ..., n − 1} . The first hitting time of boundaries {0, n}, which
is: τ (m) = τ{0} (m) ∧ τ{n} (m) is finite with probability 1 and has finite mean.
Omitting reference to any specific initial condition m, the process (Nr; r ∈ N) has
the transition matrix Πn with entries Πn (k, k′) = P (ν1,n + ... + νk,n = k′) given
by (1). We have Πn (0, k′) = δ0,k′ and Πn (n, k′) = δn,k′ and Πn is not irreducible.
However, Πn is aperiodic and (apart from absorbing states) cannot be broken down
into non-communicating subsets; as a result it is diagonalizable, with eigenvalues
|λ0| ≥ |λ1| ≥ ... ≥ |λn| and 1 = λ0 = λ1 > |λ2|.

Example 2.2.1 (Dirichlet binomial): With U a (0, 1)−valued random variable with
density beta(kθ, (n − k) θ)

P (ν1,n + .. + νk,n = k′) =

(
n

k′

)
[kθ]k′ [(n − k) θ]n−k′

[nθ]n
= E

[(
n

k′

)
Uk′

(1 − U)
n−k′

]
,

which is a beta mixture of the binomial distribution Bin(n, u) .

Example 2.2.2 The Wright-Fisher model has a Bin(n, k/n) transition matrix:

P (Nr+1 (m) = k′ | Nr (m) = k) =

(
n

k′

)(
k

n

)k′ (
1 − k

n

)n−k′

.

Remark (statistical symmetry): Due to exchangeability of the reproduction law,
neutral models are symmetric in the following sense: The transition probabilities
of N r (m) := n − Nr (m) are equal to the transition probabilities of Nr (m). �

2.3. Backward in time process. (neutral coalescent)

The coalescent backward process can be defined as follows: Take a sub-sample of
size m from [n] at generation 0. Identify two individuals from [m] at each step if
they share a common ancestor one generation backward-in-time. This defines an
equivalence relation between 2 genes from the set [m]. Define the induced ancestral
backward process:

Ar (m) ∈ Em = {equivalence classes (partitions) of [m]} , r ∈ N,
backward-in-time.
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The ancestral process is a discrete-time Markov chain with transition probability:

P (Ar+1 (m) = α | Ar (m) = β) = Pβ;α; with (α, β) ∈ Em, α ⊆ β

where, with a = |α| = number of equivalence classes of α, b = |β| = num-
ber of equivalence classes of β, ba := (b1, ..., ba) clusters sizes of β and (m)a :=
m (m − 1) ... (m − a + 1) a falling factorial,

Pβ;α = P
(n)
b;a (ba) =

(n)a

(n)b

E

(
a∏

l=1

(νl,n)bl

)

is the probability of a ba−merger. This is the probability that b randomly chosen
individuals out of n have a ≤ b distinct parents, c merging classes and cluster sizes
b1 ≥ ... ≥ bc ≥ 2, bc+1 = ... = ba = 1.

If c = 1: a unique multiple collision occurs of order b1 ≥ 2.

If b1 = 2: a simple binary collision occurs involving only two clusters.

If c > 1, simultaneous multiple collisions of orders b1 ≥ ... ≥ bc ≥ 2 occur.

Thus, the jump’s height of a transition b → a is b−a =
∑c

i=1 (bi − 1) , corresponding
to a partition of integer b − a into c summands, each ≥ 1.

The chain’s state-space is: {equivalence relations on (partitions of) {1, ..., m}}; it
has dimension Bm :=

∑m
l=0 Sm,l (a Bell number), where Sm,l are the second-kind

Stirling numbers.

The chain has initial state A0 = {(1) , ..., (m)}, and terminal absorbing state
{(1, ..., m)} .

Examples:

From the Dirichlet example 2.2.1, we get: P
(n)
b;a (ba) =

(n)
a

[nθ]
b

∏a
m=1 [θ]bm

.

From the WF example 2.2.2: In this case, P
(n)
b;a (ba) =

(n)
a

nb is the uniform distribu-

tion on {ba : b1 + ... + ba = b}.

The ancestral Count Process: Let

Ar (m) = # ancestors at generation r ∈ N, backward-in-time.

Then: Ar (m) = # blocks of Ar (m) .

The backward ancestral count process is a discrete-time Markov chain with transi-
tion probabilities (Cannings, ’1974 and Gladstien ’1978):

(2) P (Ar+1 (m) = a | Ar (m) = b) = P
(n)
b,a :=

b!

a!

∑

b1,...,ba∈N+

b1+...+ba=b

P
(n)
b;a (ba)

b1!...ba!
.

=

(
n
a

)
(
n
b

)
∑

b1,...,ba∈N+

b1+...+ba=b

E

(
a∏

l=1

(
νl,n

bl

))
.

This Markov chain has state-space {0, ..., m}, initial state m, absorbing states
{0, 1} . The process (Ar; r ∈ N) has the transition matrix Pn with entries Pn (b, a) =
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P
(n)
b,a given by (2). Note, by inclusion-exclusion principle, the alternative alternating

expression of P
(n)
b,a :

P
(n)
b,a :=

(
n
a

)
(
n
b

)
a∑

m=0

(−1)a−m

(
a

m

)
E

((
ν1,n + ... + νm,n

b

))
.

2.4. Duality (neutral case). We start with a definition of the duality concept
which is relevant to our purposes.

Definition [Liggett, ’1985]: Two Markov processes
(
X1

t , X2
t ; t ≥ 0

)
, with state-

spaces (E1, E2) , are said to be dual with respect to some real-valued function Φ on
the product space E1 × E2 if ∀x1 ∈ E1, ∀x2 ∈ E2, ∀t ≥ 0 :

(3) Ex1
Φ
(
X1

t , x2

)
= Ex2

Φ
(
x1, X

2
t

)
.

We then recall basic examples of dual processes from the neutral and exchangeable
population models (Möhle, ’1997): The neutral forward and backward processes
(Nr, Ar; r ∈ N) introduced in the two preceding subsections are dual with respect
to the hypergeometric sampling without replacement kernels:

(4) (i ) Φ1
n (m, k) =

(
m

k

)
/

(
n

k

)
and

(ii) Φ2
n (m, k) =

(
n − m

k

)
/

(
n

k

)
on {0, ..., n}2

.

Namely (i) reads:

Em

[(
Nr

k

)
/

(
n

k

)]
= Ek

[(
m

Ar

)
/

(
n

Ar

)]
= Ek

[(
n − Ar

n − m

)
/

(
n

n − m

)]
.

Call type A individuals the descendants of the m first chosen individuals (allele A)
in the study of the forward process; type a individuals are the remaining ones (allele
a). The left-hand-side of the above equality is an expression of the probability that
a k−sample (without replacement) from population of size Nr at time r are all of
type A, given N0 = m. If this k−sample are all descendants of Ar ancestors at
time −r, this probability must be equal to the probability that a (n − m)−sample
from population of size Ar at time −r are all of type a. This is the meaning of the
right-hand-side.

And (ii) reads:

Em

[(
n − Nr

k

)
/

(
n

k

)]
= Ek

[(
n − m

Ar

)
/

(
n

Ar

)]
= Ek

[(
n − Ar

m

)
/

(
n

m

)]
.

The left-hand-side is the probability that a k−sample (without replacement) from
population of size Nr at time r are all of type a, given N0 = m. If this k−sample are
all descendants of Ar ancestors at time −r, this probability must be equal to the
probability that a m−sample from population of size Ar at time −r are themselves
all of type a.

With P ′
n the transpose of Pn, a one-step (r = 1) version of these formulae is:

(i) ΠnΦ1
n = Φ1

nP ′
n and (ii) ΠnΦ2

n = Φ2
nP ′

n
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where
(
Φ1

n, Φ2
n

)
are n×n matrices with entries Φ1

n (m, k) and Φ2
n (m, k) , respectively

and (Πn, Pn) the transition matrices of forward and backward processes. Note that
the matrix Φ2

n is symmetric and left-upper triangular. The matrices Φ1
n and Φ2

n are
both invertible, with respective entries

[
Φ1

n

]−1
(i, j) = (−1)i−j

(
i

j

)(
n

i

)

and
[
Φ2

n

]−1
(i, j) = (−1)

i+j−n

(
i

n − j

)(
n

i

)
= (−1)

i+j−n

(
j

n − i

)(
n

j

)
.

The matrix
[
Φ1

n

]−1
is left-lower triangular, while

[
Φ2

n

]−1
is symmetric right-lower

triangular. Thus,

(i)
[
Φ1

n

]−1
ΠnΦ1

n = P ′
n and (ii)

[
Φ2

n

]−1
ΠnΦ2

n = P ′
n.

In any case, being similar matrices, Πn and P ′
n (or Pn) both share the same eigen-

values. If Rn diagonalizing Πn is known so that R−1
n ΠnRn = Λn := diag(λ0, ..., λn) ,

the diagonal matrix of the eigenvalues of Πn, then, with Φn = Φ1
n or Φ2

n, R̃n :=
Φ−1

n Rn diagonalizes P ′
n and is obtained for free (and conversely). Rn is the matrix

whose columns are the right-eigenvectors of Πn and R̃n is the matrix whose columns
(rows) are the right-eigenvectors (left-eigenvectors) of P ′

n (of Pn). Similarly, if Ln

is the matrix whose rows are the left-eigenvectors of Πn, L̃n := LnΦn is the ma-
trix whose rows (columns) are the left-eigenvectors (right-eigenvectors) of P ′

n (of
Pn). With l′k the k−th row of Ln and rk the k−th column of Rn, the spectral
decomposition of Πn is:

Πr
n =

n∑

k=0

λr
k

rkl′k
l′krk

, r ∈ N,

whereas, with l̃k the k−th column of L̃n and r̃′k the k−th row of R̃n, the one of Pn

reads:

P r
n =

n∑

k=0

λr
k

l̃kr̃′k

r̃′k l̃k
=

n∑

k=0

λr
k

Φ′
nlk
(
Φ−1

n rk

)′
(
Φ−1

n rk

)′
Φ′

nlk
, r ∈ N.

In Möhle ’1999, a direct combinatorial proof of the duality result can be found (in
the general exchangeable or neutral case); it was obtained by directly checking the
consistency of (1), (2) and (4).

The duality formulae allow one to deduce the probabilistic structure of one process
from the one of the other. The question we address now is: does duality still
make sense in non-neutral situations? We shall see that it does in discrete non-
neutral Wright-Fisher models, but only for some class of state-dependent transition
frequencies.

3. Beyond neutrality (symmetry breaking)

Discrete forward non-neutral models (with non-null drifts) can be obtained by sub-
stituting

k → np

(
k

n

)
in P (ν1,n + ... + νk,n = k′) ,
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where:

p (x) : x ∈ (0, 1) → (0, 1) is continuous, increasing, with p (0) = 0, p (1) = 1.

p (x) is the state-dependent Bernoulli bias probability different from identity x (as
in neutral case).

When particularized to the WF model, this leads to the biased transition probabil-
ities:

P (Nr+1 (m) = k′ | Nr (m) = k) =

(
n

k′

)
p

(
k

n

)k′ (
1 − p

(
k

n

))n−k′

.

In this binomial n−sampling with replacement model, a type A individual is drawn
with probability p

(
k
n

)
which is different from the uniform distribution k/n, due to

bias effects.

From this, we conclude (a symmetry breaking property): The transition probabili-
ties of N r (m) := n − Nr (m), r ∈ N are

Bin (n, 1 − p (1 − k/n)) 6= Bin (n, p (k/n)) ,

and so, no longer coincide with the ones of (Nr (m) ; r ∈ N) . The process Nr (m),
r ∈ N no longer is a martingale. Rather, if x → p (x) is concave (convex), Nr (m),
r ∈ N is a submartingale (supermartingale), because: E (Nr+1 (m) | Nr (m)) =
np (Nr (m) /n) ≥ Nr (m) (respectively ≤ Nr (m)).

In the binomial neutral Wright-Fisher transition probabilities, we replaced the suc-
cess probability k

n by a more general function p
(

k
n

)
. However, this replacement

leaves open the question what model is in the background and what quantity the
process (Nr, r ∈ N) really counts. A concrete model in terms of offspring vari-
ables must be provided instead. To address this question, we emphasize that
the reproduction law corresponding to the biased binomial model is multinomial

and asymmetric, namely: νn
d∼ Multin(n; πn), where πn := (π1,n, ..., πn,n) and:

πm,n = p
(

m
n

)
− p

(
m−1

n

)
, m = 1, ..., n. We note that under our hypothesis,

n∑

m=1

πm,n = p (1) − p (0) = 1.

Due to its asymmetry, the law of the biased νn no longer is exchangeable.

We now recall some well-known bias examples arising in population genetics.

Example 3.1 (homographic model, selection). Assume

(5) p (x) = (1 + s) x/ (1 + sx) ,

where s > −1 is a selection parameter. This model arises when gene A (respectively
a), with frequency x (respectively 1 − x), has fitness 1 + s (respectively 1). The
case s > 0 arises when gene of type A is selectively advantageous, whereas it is
disadvantageous when s ∈ (−1, 0) .

Example 3.2 (selection with dominance). Assume

(6) p (x) =
(1 + s)x2 + (1 + sh)x (1 − x)

1 + sx2 + 2shx (1 − x)
.
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In this model, genotype AA (respectively Aa and aa), with frequency x2 (respec-

tively 2x (1 − x) and (1 − x)2) has fitness 1 + s (respectively 1 + sh and 1). h is
a measure of the degree of dominance of heterozygote Aa. We impose s > −1
and sh > −1. Note that the latter quantity can be put into the canonical form of
deviation to neutrality:

p (x) = x + sx (1 − x)
h − x (2h − 1)

1 + sx2 + 2shx (1 − x)

where the ratio appearing in the right-hand-side is the ratio of the difference of
marginal fitnesses of A and a to their mean fitness. The case h = 1/2 corresponds

to balancing selection with: p (x) = x + s
2

x(1−x)
1+sx .

Example 3.3 (quadratic model) With c ∈ [−1, 1] , a curvature parameter, one may
choose:

(7) p (x) = x (1 + c − cx) .

If c = 1, p (x) = x (2 − x) = 1 − (1 − x)2: this bias appears in a discrete 2-sex
population model (Möhle, ’1994, ’1998)). We shall give below an interpretation of
this quadratic model when c ∈ (0, 1] in terms of a joint one-way mutations and
neutrality effects model.

We can relax the assumption p (0) = 0, p (1) = 1 by assuming 0 ≤ p (0) ≤ p (1) ≤ 1,
p (1) − p (0) ∈ [0, 1) .

Example 3.4 (affine model) Take for example

(8) p (x) = (1 − µ2) x + µ1 (1 − x) ,

where (µ1, µ2) are mutation probabilities, satisfying µ1 ≤ 1 − µ2. It corresponds

to the mutation scheme: a
µ1

⇄
µ2

A. To avoid discussions of intermediate cases,

we will assume that p (0) = µ1 > 0 and p (1) < 1 (µ2 > 0). In this case, the
matrix Πn is irreducible and even primitive and all states of this Markov chain
are now recurrent. We have P (Nr+1 > 0 | Nr = 0) = 1 − (1 − p (0))

n
> 0 and

P (Nr+1 < n | Nr = n) = 1 − p (1)n > 0 and the boundaries {0} and {n} no longer
are strictly absorbing as there is a positive reflection probability inside the domain
{0, 1, ..., n} .

For reasons to appear now, we shall be only interested in functions q such that
q (x) := 1−p (x) is a completely monotone function (CM) on (0, 1) that is, satisfying:

(−1)
l
q(l) (x) ≥ 0, for all x ∈ (0, 1) ,

for all order-l derivatives q(l) of q, l ≥ 0. If p (x) is such that q is CM, we shall call
it an admissible bias mechanism.

4. Non-neutral Wright-Fisher models and duality

Preliminaries: Let vn := (v (0) , v (1) , ..., v (n)) be a (n + 1)−vector of [0, 1]−valued
numbers. Define the backward difference operator ∇ acting on vn by: ∇v (m) =
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v (m) − v (m − 1), m = 1, ..., n. We have ∇0v (m) = v (m) , ∇2v (m) = v (m) −
2v (m − 1) + v (m − 2) , etc..., and, starting from the endpoint v (n)

∇jv (m) |m=n=

j∑

l=0

(−1)
j−l

(
j

l

)
v (n − l) , j = 0, ..., n.

Let u be some continuous function: [0, 1] → [0, 1] . Consider the (n + 1)−vector
un :=

(
u
(

0
n

)
, ..., u

(
m
n

)
, ..., u

(
n
n

))
, sampling u at points m/n. The function u is

said to be ∇−completely monotonic if (−1)
j ∇ju

(
m
n

)
|m=n≥ 0, for all j = 0, ..., n

and all n ≥ 0. Let
(
u1, u2

)
be two continuous functions on [0, 1]. Let u = u1 · u2.

With un the point-wise product of u1
n and u2

n, assuming both functions
(
u1, u2

)
to

be ∇−completely monotonic, so will be u, by the Leibniz rule. In particular, if u is
∇−completely monotonic, so will be its integral powers ui, i ∈ N. Our main result
is:

Theorem: Consider a non-neutral WF forward model (Nr; r ∈ N) on {0, ..., n},
with continuous, non-decreasing bias p (x) , satisfying:

0 ≤ p (0) ≤ p (1) ≤ 1, p (1) − p (0) ∈ [0, 1] .

This process has forward transition matrix:

Πn (k, k′) = P (ν1,n + ... + νk,n = k′) =

(
n

k′

)
p

(
k

n

)k′ (
1 − p

(
k

n

))n−k′

.

There exists a Markov chain (Ar; r ∈ N) on {0, ..., n} such that (Nr, Ar; r ∈ N) are
dual with respect to Φ2

n (m, k) =
(
n−m

k

)
/
(
n
k

)
if and only if: x → q (x) = 1 − p (x)

is completely monotone on (0, 1). In this case, the transition probability matrix of
(Ar; r ∈ N) is:

Pn (i, j) =

(
n

j

) j∑

l=0

(−1)
j−l

(
j

l

)
q

(
1 − l

n

)i

≥ 0.

Pn is a stochastic matrix if and only if p (0) = 0; else, if p (0) > 0, the matrix Pn

is sub-stochastic.

Proof: Developing
[
Φ2

n

]−1
ΠnΦ2

n = P ′
n, we easily obtain:

P
′

n (j, i) = Pn (i, j) =

(
n

j

) j∑

l=0

(−1)j−l

(
j

l

)[
1 − p

(
n − l

n

)]i

=

(
n

j

)
(−1)

j ∇j

(
q
(m

n

)i
)

|m=n

This entry is non-negative if and only if (−1)
j ∇j

(
q
(

m
n

)i) |m=n≥ 0, for all i, j =

0, ..., n. But, due to the above argument on ∇−complete monotonicity of integral

powers, this will be the case if and only if (−1)
j ∇j

(
q
(

m
n

))
|m=n≥ 0, for all j =

0, ..., n. As this must be true for arbitrary value of population size n, function q
has to be ∇−completely monotonic. Adapting now the arguments of Theorem 2
developed in Feller ’1971, page 223, for absolutely monotone functions on (0, 1),
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this will be the case if and only if x → q (x) := 1 − p (x) is a completely monotone
function on (0, 1) in the sense that:

(−1)
l
q(l) (x) ≥ 0, for all x ∈ (0, 1) , l ∈ N.

Next, since (I −∇)u (m) = u (m − 1) is a simple back-shift,

n∑

j=0

P
′

n (j, i) =
n∑

j=0

Pn (i, j) = (I −∇)n

(
q
(m

n

)i
)

|m=n= q (0)i

and, if q is CM, Pn is a stochastic matrix if and only if q (0) = 1; else, if q (0) < 1,
the matrix Pn is sub-stochastic.

We note that the first column of the matrix Pn is Pn (i, 0) = q (1)
i
whereas its first

line is: Pn (0, j) = δ0,j , expressing, as required, that the state 0 of (Ar; r ∈ N) is
absorbing. �

5. Examples

We show here that most of the simplest non-neutrality mechanisms used in the
literature fall within the class which we would like to draw the attention on, or are
amenable to it via some ‘reciprocal transformation’ which we define. Elementary
algebraic manipulations on CM functions allows to exhibit a vast class of unsus-
pected mechanisms. Note that in some cases, their biological relevance remains to
be elucidated. The results presented in this Section seem to be new. They serve as
an illustration of our theorem.

5.1. Elementary mechanisms. Assume first p (x) = x corresponding to the sim-
ple neutral case. Then q (x) = 1−x is completely monotone on (0, 1). With Si,j the
second kind Stirling numbers, we get a lower left triangular stochastic transition
matrix

Pn (i, j) =

(
n

j

) j∑

l=0

(−1)
j−l

(
j

l

)(
l

n

)i

= (n)j · n−i · Si,j , j ≤ i

Pn (i, j) = 0, else.

The diagonal terms (eigenvalues) are all distinct with Pn (i, i) = (n)i · n−i. The
matrix Pn is stochastic. Due to triangularity, ancestral process is a pure death
Markov process which may be viewed as a discrete coalescence tree.

From example 3.4 (mutation). Assume (8) holds: p (x) = (1 − µ2) x + µ1 (1 − x)
where (µ1, µ2) are mutation probabilities. Then, with κ := 1 − (µ1 + µ2), q (x) =
1 − µ1− κx is completely monotone on (0, 1) if and only µ1 ≤ 1 − µ2 (κ ≥ 0). In
this case, Pn is again lower left triangular (a pure death process). We have

(9) Pn (i, j) =

(
n

j

) j∑

l=0

(−1)
j−l

(
j

l

)(
µ2 + κ

l

n

)i

=: (n)j · n−i · Sµ2

i,j (κ/n) , j ≤ i

Pn (i, j) = 0, else,
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in terms of generalized Stirling numbers S
µ2

i,j (κ/n). We have Pn (i, i) = (n)i

(
κ
n

)i

and the spectrum of Pn is real. When µ1 > 0, this matrix is sub-stochastic with∑n
j=0 Pn (i, j) = (1 − µ1)

i
.

A particular case deals with one-way mutations (µ1 + µ2 > 0, µ1 · µ2 = 0):

If µ2 = 0, Pn (i, j) = (1 − µ1)
i · (n)j · n−i · Si,j , j ≤ i, = 0, else. Further,

∑n
j=0 Pn (i, j) = (1 − µ1)

i
< 1.

If µ1 = 0, Pn (i, j) = (n)j ·n−i ·Sµ2

i,j ((1 − µ2) /n), j ≤ i, = 0, else. The correspond-
ing matrix Pn is stochastic.

From example 3.3 (quadratic). Assume p (x) = x (1 + c − cx), as in (7). Then
q (x) = (1 − x) (1 − cx) which is completely monotone if and only if c ∈ [0, 1]. The
case c = 0 is the neutral case, whereas c = 1 appears in a 2-sex model of Möhle.

In this quadratic case, since ∇j
(
q
(

m
n

)i)
= 0 if j > 2i, then Pn (i, j) = 0 if j > 2i

and so Pn is a Hessenberg-like matrix. Note that
∑n

j=0 Pn (i, j) = q (0)
i
= 1.

From the selection example 3.1, when (5) holds

p (x) = (1 + s) x/ (1 + sx) ,

q (x) = 1 − p (x) = (1 − x) / (1 + sx) is CM whenever selection parameter s > 0.
The induced matrix Pn is stochastic. It is no longer lower left triangular so that
the ancestral no longer is a pure death process, rather a birth and death process.
The induced coalescence pattern no longer is a discrete tree, but rather a graph (a
discrete version of the ancestral selection graph of Neuhauser-Krone ’1997).

From example 3.2 (selection with dominance). The corresponding mechanism (6)
with parameters (s, h) satisfying s > −1 and sh > −1 is CM if and only if s > 0
and h ∈ (0, 1/2). The case h ∈ (0, 1) corresponds to directional selection where
genotype AA has highest fitness compared to aa’s and the heterozygote class Aa
has intermediate fitness compared to both homozygote classes. In this situation,
marginal fitness of A exceeds the one of a and selective sweep is expected. When
h ∈ (0, 1/2), allele A is dominant to a, whereas when h ∈ (1/2, 1), allele A is reces-
sive to a (a stabilizing effect slowing down the sweep). Critical value h = 1/2 is a
case of pure genic balancing selection.

Example 5.1.1 Consider the mechanism p (x) = xγ for some γ > 0. The function
q (x) = 1 − p (x) is CM if and only if γ ∈ (0, 1) . Although this model seems quite
appealing, we could find no reference to it in the specialized mathematical genetics’
literature.

Example 5.1.2 (Reciprocal mechanism) If p (x) is not admissible in that q is not CM,
it can be that p (x) := 1−p (1 − x) is itself admissible. As observed before, if Nr (m)
has transition probabilities given by Bin(n, p (k/n)) , p (x) arises in the transition
probabilities of N r (m) := n−Nr (m) . Indeed, such transitions are Bin(n, p (k/n))
distributed.
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If p (x) is the selection mechanism of example 3.1, (5), with s ∈ (−1, 0) (not ad-
missible), p (x) = (1 + s)x/ (1 + sx) is itself an admissible selection mechanism
because it has reciprocal selection parameter s = −s/ (1 + s) > 0. If p (x) is the
mechanism of example 3.2, namely (6), with parameters (s, h), then p (x) is itself
a selection with dominance mechanism with reciprocal parameters s = −s/ (1 + s)
and h = 1− h. Assuming (s < 0, h ∈ (1/2, 1)), p (x) is not admissible whereas p (x)
is because s > 0 and h ∈ (0, 1/2). Similarly, when γ ∈ (0, 1), the mechanism p (x) =
1 − (1 − x)

γ
is not admissible but, from example 5.1.1, p (x) := 1 − p (1 − x) = xγ

is.

5.2. Bias mechanisms with mutational effects. Let pM (x) = (1 − µ2)x +
µ1 (1 − x) be the mutational bias mechanism (with κ = 1 − (µ1 + µ2) ≥ 0). Let
p (x) be a bias mechanism such that q (x) is CM with p (1) − p (0) = 1. Then

p̃M (x) = pM (p (x))

is such that q̃M (x) := 1 − p̃M (x) is CM. It is therefore admissible and adds muta-
tional effects to the primary mechanism p (x) . For example,

p̃M (x) =
µ1 + x ((1 + s) (1 − µ2) − µ1)

1 + sx

is a mechanism of selection combined with mutational effects. We have p̃M (0) =
µ1, p̃M (1) = 1 − µ2. The mechanisms p̃M (x) obtained in this way all share the
specificity: p̃M (1)− p̃M (0) =: κ < 1.

Note that, except for the mutational affine mechanism, it is not true in general that
whenever p1 (x) and p2 (x) are two admissible bias mechanisms, then p1

(
p2 (x)

)
is

admissible.

5.3. Joint bias effects and Compound bias. Let p1 (x) and p2 (x) be two ad-
missible bias in that q1 (x) := 1−p1 (x) and q2 (x) := 1−p2 (x) are both completely
monotone. Then

q (x) = q1 (x) q2 (x) is CM.

Thus, with x1 ◦ x2 := x1 + x2 − x1x2, the probabilistic product in [0, 1]
(
p1 (x) , p2 (x)

)
→ p (x) = p1 (x) ◦ p2 (x) .

Whenever a WF model is considered with bias p (x) = p1 (x) ◦ p2 (x) obtained from
two distinct bias p1 (x) and p2 (x), we call it a WF model with joint bias effect.

Example 5.3.1 (Joint selection and mutational effects). Let p1 (x) = pM (x) and
p2 (x) = (1 + s)x/ (1 + sx). We get

q (x) =
(1 − µ1 − κx) (1 − x)

1 + sx
and p (x) =

µ1 + x (s + 1 − µ1 + κ) − κx2

1 + sx
,

with p (0) = µ1, p (1) = 1. This mechanism differs from the traditional mechanism
of selection combined with mutational effects.

Example 5.3.2 (Joint mutation and neutral effects). Let p1 (x) = (1 − µ2)x +
µ1 (1 − x) and p2 (x) = x. We get

q (x) = (1 − x) (1 − µ1 − κx) and p (x) = µ1 + x (1 − µ1 + κ (1 − x)) ,
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with p (0) = µ1, p (1) = 1. When µ1 = 0 (one-way mutations), we recover the
quadratic mechanism with curvature parameter c = 1 − µ2. This finding justifies
some interest into the quadratic mechanisms with c 6= 1.

With j = 1, 2, the reproduction law of each elementary effect is νj
n

d∼ Multin
(
n; πj

n

)
,

where πj
m,n = pj

(
m
n

)
− pj

(
m−1

n

)
, m = 1, ..., n. Then, νn

d∼ Multin(n; πn) , πm,n =

p
(

m
n

)
− p

(
m−1

n

)
, m = 1, ..., n, where πn := π1

n ⊙π2
n is easily obtained component-

wise by:

πm,n = π1
m,n

m∑

l=1

π2
l,n + π2

m,n

m∑

l=1

π1
l,n, m = 1, ..., n.

We let: νn := ν1
n ⊙ ν2

n
d∼ Multin

(
n; π1

n ⊙ π2
n

)
. It is the reproduction law of a WF

model obtained jointly from the two bias p1 (x) and p2 (x).

Let φ (x) : (0, 1) → (0, 1) be an absolutely monotone function satisfying: φ(l) (x) ≥ 0

for all l−th derivatives φ(l) of φ, all x ∈ (0, 1). Such functions are well-known
to be probability generating functions (pgfs) of N−valued random variables, say
N , that is to say: φ (x) = E

[
xN
]
. Clearly, if q is CM on (0, 1), then so is:

qφ (x) := φ (q (x)) . Thus pφ (x) := 1 − φ (1 − p (x)) is an admissible bias mech-
anism in that qφ (x) := 1 − pφ (x) is CM. We call it a compound bias.

Example 5.3.3 The general mechanism with mutational effects is in this class. In-
deed,

q̃M (x) = 1 − p̃M (x) = 1 − pM (p (x)) = 1 − pM (1 − q (x))

and so φ (x) = 1 − pM (1 − x) = 1 − (1 − µ2) (1 − x) − µ1x = µ2 + κx which is
absolutely monotone as soon as κ = 1 − (µ1 + µ2) ≥ 0.

Example 5.3.4 With θ > 0, taking φ (x) = e−θ(1−x) or
(
eθx − 1

)
/
(
eθ − 1

)
, the

pgf of a Poisson (or shifted-Poisson) random variable, pφ (x) = 1 − φ (1 − p (x))
is admissible if p (x) is. Note that if q is of the form qφ where φ is the pgf of
a Poisson random variable, then qφ (x)

α
is admissible for all α > 0, a property

reminiscent of infinite divisibility for pgfs. Taking φ (x) = (1 − π) / (1 − πx) or
x (1 − π) / (1 − πx), π ∈ (0, 1), the pgf of a geometric (or shifted-geometric) random
variable, pφ (x) = sp (x) / (1 + sp (x)) or (s + 1) p (x) / (1 + sp (x)) is admissible if
p (x) is (with s = π/ (1 − π) > 0). In the external latter mechanism, one recognizes
the one in (5) occurring in the model with selection of example 3.1.

Example 5.3.5 Let p (x) = xγ with γ ∈ (0, 1) as in example 5.1.1. Then pφ (x) = 1−
qφ (x) where qφ (x) = e−θ(1−q(x)) = e−θxγ

, θ > 0, is admissible. Note that pφ (x) ∼
x↓0

θxγ . The reciprocal function pφ (x) = qφ (1 − x) = e−θ(1−x)γ

also interprets as an
absolutely monotone discrete-stable pgf (see Steutel, van Harn, ’1979). It is not
admissible.

Proceeding in this way, one can produce a wealth of admissible bias probabilities pφ,
the signification of which in Population Genetics remaining though to be pinpointed,
in each specific case study.
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6. Limit laws

Consider a WF model (Nr; r ∈ N) on {0, ..., n} with forward transition matrix:

Πn (k, k′) =

(
n

k′

)
p

(
k

n

)k′ (
1 − p

(
k

n

))n−k′

,

with admissible bias p (x) . Define (Ar; r ∈ N) as the dual Markov chain on {0, ..., n}
with transition probability:

Pn (i, j) =

(
n

j

) j∑

l=0

(−1)
j−l

(
j

l

)
q

(
1 − l

n

)i

.

Then, (Nr, Ar; r ∈ N) are dual with respect to Φn (m, k) := Φ2
n (m, k) =

(
n−m

k

)
/
(
n
k

)
,

to wit:

Em

[(
n − Nr

k

)
/

(
n

k

)]
= Ek

[(
n − m

Ar

)
/

(
n

Ar

)]
= Ek

[(
n − Ar

m

)
/

(
n

m

)]
.

We shall distinguish two cases.

Case 1: Assume first that

Nr
d→ N∞ as r ↑ ∞, independently of N0 = m ≥ 1.

Let π∞ (i) = P (N∞ = i) and π∞ = (π∞ (0) , ..., π∞ (n))′ . The line vector π′
∞ is

the left eigenvector of Πn associated to the eigenvalue 1 : π′
∞ = π′

∞Πn. It is the
(unique) invariant probability measure (stationary distribution) of (Nr; r ∈ N) .

If this stationary distribution exists, then, using duality formula, necessarily, Ar →
0 as r ↑ ∞ with probability Pk (A∞ = 0) =: ρ∞ (k) < 1. The numbers ρ∞ (k) are
the extinction probabilities of the dual process started at k. As is well-known, ρ∞ =
(ρ∞ (0) , ..., ρ∞ (n))′ is the unique solution to (I − Pn)ρ∞ = 0 with ρ∞ (0) = 1.

Remark: Typical situations where (Nr; r ∈ N) has an invariant measure is when
mutational effects are present, and more generally when the bias mechanism sat-
isfies p (0) > 0 and p (1) < 1. In this situation, the forward stochastic transition
matrix Πn has an algebraically simple dominant eigenvalue 1. By Perron-Frobenius
theorem:

lim
r↑∞

Πr
n = 1π′

∞,

where 1′ = (1, ..., 1) . The invariant probability measure can be approximated by
subsequent iterates of Πn, the convergence being exponentially fast, with rate gov-
erned by the second largest eigenvalue. Of course, detailed balance (stating that
πkΠn (k, k′) = πk′Πn (k′, k)) does not hold here and the forward chain in equilib-
rium is not time-reversible.

In these recurrent cases, the dual ancestral process Ar started at k gets extinct
with probability ρ∞ (k). The numbers 1 − ρ∞ (k) are the probabilities that it gets
killed before getting extinct; in other words, 1 − ρ∞ (k) are the probabilities that
Ar first hits an extra coffin state, say {∂} , before hitting {0}. �
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In terms of moments, by the duality formula, we conclude that:
(

n

k

)−1

E

[(
n − N∞

k

)]
= ρ∞ (k) = Pk (A∞ = 0) ,

relating k−factorial moments of n−N∞ to the extinction probabilities of Ar given
A0 = k. We also have

n∑

k=0

vk
E

[(
n − N∞

k

)]
= E

[
(1 + v)

n−N∞

]
=

n∑

k=0

(
n

k

)
ρ∞ (k) vk

and so, the probability generating function of N∞ can be expressed as (u ∈ [0, 1]):

E
[
uN∞

]
=

n∑

k=0

(
n

k

)
ρ∞ (k)un−k (1 − u)

k
,

in terms of the Bernstein-Bézier polynomial of (ρ∞ (n − k) ; k = 0, ..., n) .

Let ρ∞ = (ρ∞ (0) , ..., ρ∞ (n))
′
. The vector ρ∞ is the right eigenvector of Pn associ-

ated to the eigenvalue 1 : ρ∞ = Pnρ∞. In this case, the matrix Pn is sub-stochastic
and the extinction probability of (Ar; r ∈ N) given A0 = k is less than one. Thanks
to duality, we have:

ΠnΦn = ΦnP ′
n.

where the matrix Φn is symmetric whereas the matrix Φ−1
n is symmetric right-lower

triangular, with:

Φn (m, k) =

(
n − m

k

)
/

(
n

k

)
=

(
n − k

m

)
/

(
n

m

)

Φ−1
n (i, j) = (−1)i+j−n

(
i

n − j

)(
n

i

)
= (−1)i+j−n

(
j

n − i

)(
n

j

)
.

Thus,

π′
∞ΠnΦn = π′

∞Φn = π′
∞ΦnP ′

n,

showing that ρ∞ and π∞ are related through:

ρ∞ = Φnπ∞ or π∞ = Φ−1
n ρ∞.

The knowledge of the invariant measure π∞ of the forward process allows one to
compute the extinction probabilities ρ∞ of the dual backward ancestral process (and
conversely).

Example: Consider the discrete WF model with mutations of example 3.4. In this

case, Nr
d→ N∞ as r ↑ ∞, regardless of N0 = m and (Nr; r ∈ N) has an invari-

ant measure which is difficult to compute. Looking at the backward process, the
matrix Pn is sub-stochastic (if µ1 > 0) and lower-left triangular. Due to triangu-
larity, the right eigenvector ρ∞ of Pn can easily be computed explicitly in terms of
(Pn (i, j) ; j ≤ i) , i = 0, ..., n. We therefore get the following alternating expression
for the invariant measure:

π∞ (i) =

(
n

i

) i∑

j=0

(−1)
i−j

(
i

j

)
ρ∞ (n − j) .
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Concerning moments, for instance, we have ρ∞ (1) = µ2/ (µ1 + µ2) so that E [N∞] =
nµ1/ (µ1 + µ2); from (9) we also have:

ρ∞ (2) =
µ2

[
nµ2 (1 + κ) + κ2

]

[(1 − κ) (n − (n − 1)κ2)]
=

1

n (n − 1)

(
n (n − 1) − n

(2n − 1)µ1

µ1 + µ2

+ E
[
N2

∞

])

allowing to compute E
[
N2

∞

]
and then the variance of N∞. We get:

σ2 (N∞) =
n2µ1µ2

(µ1 + µ2)
2
(2n (µ1 + µ2) + 1)

+ o (n) ∼
n↑∞

µ1µ2

2 (µ1 + µ2)
3 n,

suggesting (when µ1µ2 > 0) a Central Limit Theorem for N∞ as n grows large:

1√
n

(
N∞ − n

µ1

µ1 + µ2

)
d→

n↑∞
N
(

0,
µ1µ2

2 (µ1 + µ2)
3

)
.

Case 2. Conversely, assume now that given N0 = m

Nr
d→ 0 as r ↑ ∞, with probability Pm (N∞ = 0) =: ρ∞ (m) ,

so that boundaries {0, n} are absorbing. Then, the ancestral process (Ar; r ∈ N)
possesses an invariant distribution, in that:

Ar
d→ A∞ as r ↑ ∞, independently of A0 = k ∈ [n] .

In terms of moments, the duality formula means that:

(
n

m

)−1

E

[(
n − A∞

m

)]
= ρ∞ (m) = Pm (N∞ = 0) ,

relating m−factorial moments of n−A∞ to the extinction probabilities of Nr given
N0 = m. Stated differently, the probability generating function of A∞ is (u ∈ [0, 1]):

E
[
uA∞

]
=

n∑

m=0

(
n

m

)
ρ∞ (m)un−m (1 − u)

m
.

Let π∞ (i) = P (A∞ = i), with π′
∞ = π′

∞Pn. Then, using duality, ρ∞ is the right
eigenvector of Πn associated to the eigenvalue 1 : ρ∞ = Πnρ∞. Thus, ρ∞ and π∞

are related through:

ρ∞ = Φnπ∞ or π∞ = Φ−1
n ρ∞.

The knowledge of the extinction probabilities ρ∞ of the forward process allows one
to compute the invariant measure π∞ of the dual backward ancestral process (and
conversely).

Examples : Typical situations where boundaries {0, n} are absorbing to (Nr; r ∈ N)
occur when p (0) = 0 and p (1) = 1. The simplest case is the neutral case, but the
non-neutral selection and selection with dominance mechanisms or the quadratic
mechanism (examples 3.1, 3.2 and 3.3) are also in this class. For instance:
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(i) In the neutral case, ρ∞ (m) = 1−m/n. Thus, π∞ (i) =
(
n
i

)∑i
j=0 (−1)

i−j (i
j

)
j
n =

δi,1 and Ar
d→ 1 as r ↑ ∞, the degenerate state reached when the most recent

common ancestor (MRCA) is attained.

(ii) Non-degenerate solutions of A∞ are obtained when considering bias mechanisms
with p (0) = 0 and p (1) = 1.

(iii) Consider any biased WF model with p (0) = 0 and p (1) = 1 for which p (x) ∼
x↑0

λx, λ > 1. Then, due to large sample asymptotic independence:

νn
d→ ξ∞,

where ξ∞ is an iid sequence with ξ1
d∼ Poisson(λ) (as it can easily be checked by

the Poisson limit to the binomial distribution). In this case, the limiting extinction
probability of (Nr; r ∈ N) given N0 = m is limn↑∞ ρ∞ (m) = ρm, m = 1, 2, ...,
where 0 < ρ < 1 is the smallest solution to the fixed point equation

x = e−λ(1−x).

ρ is the singleton extinction probability of a super-critical Galton-Watson process
with offspring distribution Poisson(λ). More precisely, proceeding as in Möhle
’1994, Theorem 4.5, we have

n (ρm − ρ∞ (m)) = ρm

(
1 − ρ

1 + λρ
m2 +

λ (1 − ρ) ρ

1 − (λρ)
2 m

)
,

showing that the convergence of ρ∞ (m) to ρm is of order n−1. As a result, we get
the asymptotic normality:

1√
n

(A∞ − n (1 − ρ))
d→

n↑∞
N
(

0,
ρ (1 − ρ)

1 + λρ

)
.

Intuitively, 1
nE [n − A∞] = ρ∞ (1) = P1 (N∞ = 0) → ρ, showing that E [A∞] ∼

n↑∞

n (1 − ρ) and

1

n (n − 1)
E [(n − A∞) (n − 1 − A∞)] = ρ∞ (2) = P2 (N∞ = 0) → ρ2,

showing that σ2 (A∞) ∼
n↑∞

nρ (1 − ρ) / (1 + λρ) .

For the quadratic example 3.3, p (x) = x (1 + c − cx), with c ∈ [0, 1], λ = 1 + c > 1
as soon as c > 0. When c ∈ (0, 1], we thus always have asymptotic normality.
For the example 3.1 with selection, p (x) = (1 + s)x/ (1 + sx) , with s > −1 :
p (x) ∼

x↑0
(1 + s)x and so λ = 1 + s. We have asymptotic normality only when

s > 0, i.e. when the fitness is advantageous (corresponding as required to complete
monotonicity of corresponding q = 1 − p).

Note that this asymptotic behavior does not hold for the Lipshitz-continuous admis-
sible mechanism p (x) = xγ of example 5.1.1 (or more generally for mechanisms sat-
isfying p (x) ∼

x↓0
θxγ , θ > 0 as in the compound bias example 5.3.5) with γ ∈ (0, 1)

because its behavior near 0 is not linear. This puzzling class of models seems to
deserve a special study as deviation to normality is expected. We postpone it to a
future work.



DUALITY AND DISCRETE NON-NEUTRAL WRIGHT-FISHER MODELS 19

7. Concluding remarks

In this Note, we focused on discrete non-neutral Wright-Fisher models and on the
conditions on the bias probabilities under which the forward branching dynamics
is amenable to a dual discrete ancestral coalescent. It was shown that it concerns a
large class of non-neutral models involving completely monotone bias probabilities.
Several examples were supplied, some standard, some less classical. The Wright-
Fisher model with forward binomial transition matrix is a particular instance of the
Dirichlet model with Dirichlet-binomial transition matrix. Following the same lines,
using the representation of the Dirichlet binomial distribution as a beta mixture
of the binomial distribution, it would be interesting to exhibit the corresponding
conditions on the bias mechanism, were the starting point to be a forward Dirichlet
branching process. Also of particular interest in this respect would be the discrete
non-neutral Moran models whose forward transition matrices are simpler because
of their tridiagonal Jacobi structure. We hope to be able to consider shortly these
cases (and maybe others) in a future work.
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