A test suite for inference involving adjectives
Marilisa Amoia, Claire Gardent

To cite this version:
A Test Suite for Inference Involving Adjectives

Marilisa Amoia∗, Claire Gardent†

∗ University of Saarland
Saarbrücken, Germany
amoia@coli.uni-saarland.de

† CNRS/Loria
Campus Scientifique BP 239, Vandoeuvre-les-Nancy, France
gardent@loria.fr

Abstract

Recently, most of the research in NLP has concentrated on the creation of applications coping with textual entailment. However, there still exist very few resources for the evaluation of such applications. We argue that the reason for this resides not only in the novelty of the research field but also and mainly in the difficulty of defining the linguistic phenomena which are responsible for inference. As the TSNLP project has shown test suites provide an optimal diagnostic and evaluation tools for NLP applications, as contrary to text corpora they provide a deep insight in the linguistic phenomena allowing control over the data. Thus in this paper, we present a test suite specifically developed for studying inference problems shown by English adjectives. The construction of the test suite is based on the deep linguistic analysis and following classification of entailment patterns of adjectives and follows the TSNLP guidelines on linguistic databases providing a clear coverage, systematic annotation of inference tasks, large reusability and simple maintenance. With the design of this test suite we aim at creating a resource supporting the evaluation of computational systems handling natural language inference and in particular at providing a benchmark against which to evaluate and compare existing semantic analysers.

1. Introduction

In the last years, due to the fact that the web has become the major source of information, research in question answering, information retrieval and information extraction has focused on developing systems which can handle natural language inference. Such applications should indeed be able to recognize that some text H contains information which is implicitly given in another text T (entailment recognition task) and/or that two texts convey the same information (paraphrase recognition task).

(1) a. The bones fossilised
b. The bones got preserved in stone

(2) a. Janet broke the window
b. The window is broken

Given the great economic importance of information extraction and recognition techniques, most systems focus on providing wide coverage and robustness thus relying on statistical methods.

As the Pascal Recognizing Textual Entailment RTE Challenge (Dagan et al., 2006) has shown, semantic construction and reasoning are two crucial components in enhancing the quality and accuracy of such NLP systems. However, there exist still very scarce resources which provide test data focusing on entailment problems. The collections of test data appeared till now (see RTE data sets, the Microsoft Paraphrase Research Corpus (Dolan et al., 2004), Text Retrieval Conference TREC data), created to evaluate systems for wide coverage and robustness, do not satisfy, in our opinion, other important requirements necessary to test systems handling inference. First, none of these collections is annotated for inference tasks, so that it is not clear what their linguistic coverage is. Second, the examples are often taken from newspapers articles so that they present a quite big syntactic complexity and are often difficult to be used for the evaluation of symbolic based semantic analysers. Third, they use a quite loose notion of semantic equivalence and entailment so that the examples are often difficult to judge.

On the contrary, we think that resources which give a deeper insight in the linguistic phenomena which are responsible for inference may help in enhancing the ability of applications to cope with it. Thus, in this paper, we address the entailment problem from a linguistic based perspective and present a test suite which focuses on a specific linguistic task, namely adjectival inference and address this issue deeply. Moreover, we use a well defined notion of entailment as we aim at providing a resource for also evaluating deep semantic analysers based on symbolic methods.

Thus, the test suite presented in this paper includes a systematic classification of adjectival inferential tasks and semantic annotations for adjectives based on WordNet and on the semantic classification of English adjectives proposed by (Amoia and Gardent, 2006).

This paper is structured as follows, we first define the notion of entailment we presuppose, then we describe the linguistic task we focus on and finally give some details of the realisation of the test suite.

2. Developing a Test Suite for Adjectival Inference Problems

In collecting the test data, we have followed the TSNLP (Balkan et al., 1994) guidelines for the development of linguistic test suites, so that this work meets the requirements of systematicity, neutral vocabulary and well-founded approach to test positive and negative cases. In the following
we first define the notion of entailment we presuppose, then we describe linguistic task, lexical coverage and implementation of the test suite.

2.1. The Entailment Recognition Task

The idea behind the construction of this test suite is to illustrate the semantic and syntactic behavior of adjectives and their morphologically related verbs and nouns with respect to textual entailment. Thus, the test suite is a collection of sentence pairs (S1/S2) each illustrating a particular entailment problem: the first sentence in the pair (S1) can be recognized as entailing the second one (S2) if and only if the right type of inference (i.e. syntactic, semantic, lexical semantic or morphoderivational) is performed. The notion of textual entailment we use corresponds to the notion of logic entailment between the representations of the two texts:

Given two texts T_1 and T_2, it holds that T_1 entails T_2 iff: $\Phi(T_1) \models \Phi(T_2)$,

where $\Phi(T_i)$ corresponds to the logic representation of the text T_i.

2.2. Linguistic task

The construction of the test suite focuses on collecting specific classes of inference problems for English adjectives. In order to define the set of such inference problems, we build on (Amoia and Gardent, 2006; Amoia and Gardent, 2007) who have shown that in order to correctly predict adjectival inferential patterns it is important to consider the fine interplay between the different properties of adjectives which range from syntax and semantic to lexical semantics and morphoderivational properties. Thus, we have first individuated a set of general properties of adjectives by relying on linguistic works on adjectives. Namely, we have merged together the syntactic properties of adjectives proposed by (Quirk et al., 1985), (Huddleston, 1984) and (Vendler, 1963) with the semantic properties proposed in (Chierchia and Connell-Ginet, 1990) and the model theoretic properties proposed by (Kamp and Partee, 1995) and (Keenan, 1987). Then, we have extracted the inferential patterns which originate from these properties, by obtaining a set of about 40 inferential patterns of adjectives originating from different sources such as syntax, model theoretic semantics, lexical semantics and derivational morphology. In the following, we describe in detail the patterns considered in the test suite.

2.2.1. Syntactic patterns

The set of inference patterns with syntactic source we consider in the test suite includes the following syntactic alternations describing paraphrastic patterns:

P1: Predicative/Attributive Construction

N is Adj \leftrightarrow This is Adj N

(3) This is a red table \leftrightarrow This table is red

P2: For-Construction

This is Adj N \leftrightarrow This is Adj for an N

(4) Jerry is a big mouse \leftrightarrow Jerry is big for a mouse

P3: As-Construction

This is Adj N \leftrightarrow This is Adj as an N

(5) John is a good cook \leftrightarrow John is good as a cook

Furthermore, we consider adjectival constructions with clausal complement (SC) such as object embedding, subject embedding, easy/tough constructions and the inferential patterns they originate. All adjectives allowing subject embedding, for example, participate in the It-extraposition paraphrastic pattern.

P4: It-Extraposition

It is Adj SC \leftrightarrow SC is Adj

(6) It is possible that it will rain tomorrow \leftrightarrow That it will rain tomorrow is possible

As shown in (Arnold, 1989), some adjectives which allow subject embedding partecipate in the Of-PP paraphrastic pattern some others in the For-PP paraphrastic pattern, i.e. constructions in which the noun modified appears as a PP argument of the adjective.

P5: Of-Construction

N is Adj SC \leftrightarrow It is Adj of N SC

(7) John is stupid to take this job \leftrightarrow It is stupid of John to take this job

P6: For-Construction

N is Adj SC \leftrightarrow SC is Adj for N

(8) I’m sad to leave \leftrightarrow To leave is sad for me

As shown in (Flickinger and Nerbonne, 1992), some adjective which allow subject embedding can partecipate in paraphrastic patterns called Easy/Though constructions, i.e. constructions in which the modified noun appears as a non-subject complement of the SC verb.

P7: Easy-Construction I

N is Adj SC \leftrightarrow It is Adj SC

(9) John is easy to talk to \leftrightarrow It is easy to talk to John

P8: Easy-Construction II

N is Adj for-PP SC \leftrightarrow It is Adj of N SC

(10) John is easy for Mary to talk to \leftrightarrow It is easy for Mary to talk to John

2.2.2. Lexical Semantic

By considering lexical semantics properties, other entailment patterns can be generated. For example, the different behaviour shown by adjectives with respect to their antonyms (Cruse, 1986) originates different entailment relations.

P9: Binary antonymic relations

N is not A \leftrightarrow N is AntonymOf(A)

(11) The dishcloth is not wet \leftrightarrow The dishcloth is dry
Contrary antonymic relations I

N is A \rightarrow N is not AntonymOf(A)

(12) The mouse is small \rightarrow The mouse is not big

Contrary antonymic relations II

N is not A $\not\rightarrow$ N is AntonymOf(A)

(13) The mouse is not small $\not\rightarrow$ The mouse is big

Hyponymy between adjectival items is also a productive source of inference.

Adjective Hyponymy

N is Hypo(A) \rightarrow N is A

(14) He is minuscule \rightarrow He is small

Other interesting inferential patterns can be captured by analysing whether the property expressed by the adjective is inherited by the hyponyms of the modified noun or not. Such patterns are applied by Kennedy (1998) to gradable adjectives to individuate logical polarity.

Noun Hyponymy I

This is Adj HypoOf(N) \rightarrow This is Adj N

(15) X is a red table \rightarrow X is a red object

(16) John is a civil lawyer $\not\rightarrow$ John is a civil man

(17) This is a counterfeit diamond $\not\rightarrow$ This is a counterfeit object

(18) He is a fictitious hero \rightarrow He is a fictitious person

(19) John is the alleged strangler \rightarrow John is the alleged murderer

Noun Hyponymy II

This is Adj N \rightarrow This is Adj HypoOf(N)

(20) John is a dangerous man \rightarrow John is a dangerous husband

SC Hyponymy I

It is Adj SC \rightarrow It is Adj Hypo(SC)

(21) It is dangerous to drive in Rome \rightarrow It is dangerous to drive fast in Rome

(22) It is safe to drive in Rome $\not\rightarrow$ It is safe to drive fast in Rome

SC Hyponymy II

It is Adj Hypo(SC) \rightarrow It is Adj SC

(23) It is dangerous to drive fast in Rome $\not\rightarrow$ It is dangerous to drive in Rome

(24) It is safe to drive fast in Rome \rightarrow It is safe to drive in Rome

By considering the taxonomical category of the adjective (that often can be extracted from WordNet) we obtain the following pattern.

Taxonomical Category

N is Adj \leftrightarrow N has a Adj TaxoCat(Adj)

(25) This table is red \leftrightarrow This table has a red color

(26) This mouse is big \leftrightarrow This mouse has a big size

(27) This man is happy \leftrightarrow This man is in a happy mental state

(28) This book is good \leftrightarrow This book has a good quality

2.2.3. Derivational Morphology

Building on (Vendler, 1963; Vendler, 1968) and (Quirk et al., 1985), we have collected entailment patterns which have derivational morphology as source. We use the following notational convention:

N the noun modified by the adjective

Av represents an adjective A which is morphologically related to the verb V.

An represents an adjective A which is morphologically related to the noun N.

$Aadv$ represents an adjective A which is morphologically related to the adverb ADV.

Va represents a verb V which is morphologically related to the adjective A.

$ADVa$ represents an adverb ADV which is morphologically related to the adjective A.

The adjective-verb alternations describe constructions in which a noun N modified by an adjective become the subject or the object of the morphologically related verb.

Adjective-Verb Alternation I

N is Av \leftrightarrow N V

(29) John is asleep \leftrightarrow John sleeps

Adjective-Verb Alternation II

N is Av \leftrightarrow It is possible to V N

(30) This fungus is edible \leftrightarrow It is possible to eat this fungus

Adjective-Verb Alternation III

N is Av Prep $N1$ \leftrightarrow N V $N1$

(31) This film is interesting for me \leftrightarrow This film interests me

Adjective-Verb Alternation IV

$N1$ Va N \rightarrow N is A

(32) John has opened the door \rightarrow The door is open

Adjective-Verb Alternation V

$N1$ is $An2$ Nv \leftrightarrow $N1$ V $N2$

(33) He is the provincial governor \leftrightarrow He governs the province
P23: Adjective-Verb Alternation VI
N is ADV Av ↔ N V ADV

(34) John is deeply asleep ↔ John sleeps deeply

Adjective-noun alternations describe constructions in which the adjective is substituted with a morphologically related noun.

P24: Adjective-ThetaRole_Noun Alternation
N is Anl ↔ N is N1

(35) John is absent ↔ John is the absentee

P25: Adjective-Event_Noun Alternation
N is ADVa2 Anl ↔ N’s N1 is A2

(36) John is deeply asleep ↔ John’s sleep is deep

P26: Adjective-NonEvent_Noun Alternation I
N is Anl ↔ N’s N1

(37) John is polite ↔ John’s politeness

P27: Adjective-NonEvent_Noun Alternation II
N is Anl ↔ N’s N1 is Anl

(38) John is tall ↔ John’s height is tall

The relational adjective-noun alternations represent a set of inferential patterns which, as described in (Levi, 1978), differ for the particular relation Rel denoted by the adjective and syntactically realised as a different preposition in the paraphrase.

P28: Relational Adjective-Noun Alternation I
This is Anl N ↔ This N is Rel(made about) N

(39) This is a gastronomical dictionary ↔ This is a dictionary about gastronomy

P29: Relational Adjective-Noun Alternation II
This is Anl N ↔ This N is Rel(from) N

(40) They are rural visitors ↔ They are visitors from the country

P30: Relational Adjective-Noun Alternation III
This is Anl N ↔ This N is Rel(made of) N

(41) This is a wooden table ↔ This table is made of wood

P31: Adjective-Adverb Alternation
N1’s Nv is Aadv ↔ N1 V ADV

(42) John’s smile was cruel ↔ John smiled cruelly

Constructions in which the modified noun is substituted with a prepositional phrase containing the verb implied by the noun. Different prepositions will generate different inferential patterns.

P32: (43) N is A Nv ↔ N is A at V-ing
He is a good cook ↔ He is good at cooking

P33: (44) N is A Nv ↔ N is good for V-ing
It is a good meal ↔ It is good for eating

Figure 1: Taxonomy of Adjectives

2.2.4. Model Theoretic Semantic

For model theoretic properties of adjectives, we rely on (Kamp and Partee, 1995) and (Keenan, 1987) which describe the semantics of adjective-noun combinations, i.e. the semantics of the attributive use of adjectives. Thus, we take the notion of inherence from (Keenan, 1987), to describe inferential patterns in which the individual denoting the modified noun has the property expressed by the adjective. We use the notion of subsectivity and privativity described in (Kamp and Partee, 1995) respectively to describe patterns in which the adjective-noun combination allow to infer the noun property or its negation. The described properties originate the following inferential patterns.

P34: Inherence
This is Adj N ↔ This is Adj

(45) X is a red table ↔ X is red

(46) John is a mechanical engineer ↔ John is mechanical

(47) John is stupid to take this job ↔ John is stupid

P35: Subsectivity
This is Adj N ↔ This is N
(48) X is a red table → X is a table

(49) This is a counterfeit diamond ↔ This is a diamond

(50) John is an alleged murderer ↔ John is a murderer

P36: Privativity
This is Adj N → This is ¬N

(51) This is a counterfeit diamond → This is not a diamond

(52) This is an oval table ↔ This is not a table

(53) John is an alleged murderer ↔ John is not a murderer

2.3. Lexical Coverage

One feature of adjectives which makes their analysis and classification difficult is their polysemy. Adjectives, in fact, can have different interpretations depending on the particular context in which they are uttered. As an example, consider the sentences below which show the polysemy of the adjective heavy.

(54) a. This bag is heavy

b. John is a heavy smoker

It is clear that heavy in (54a) has a dimensional meaning, while heavy in (54b) is a quality adjective. In order to cope with this problem, we define an adjectival item as corresponding to a WordNet (Fellbaum, 1998) sense of an adjective, i.e. to the WordNet reading corresponding to the interpretation of the adjective in the given example sentence. This choice is also motivated by the possibility to access the linguistic knowledge encoded in WordNet (antonyms, hyponyms, hyperonyms, etc.) and by the wide usage of this resource in NLP applications.

In order to collect a domain independent set of adjectival items we have proceeded as follows. Starting by the taxonomy of adjectives based on (Dixon, 1991) shown in Figure 1, we have chosen for each ontological category a set of items so to obtain a sample containing adjectives displaying all different syntactic (e.g. adjectives which can be used predicatively and attributively, adjectives which allow only postnominal or attributive or predicative use), semantic (e.g. intersective, subsective, privative, plain nonsubsective adjectives), morphoderviational (e.g. denominal, deverbal, numeral adjectives) properties considered in the linguistic task. This initial sample was further expanded with synonyms, similar words, hyponyms and antonyms taken from WordNet. Thus, the final sample includes about 500 adjectival items.
2.4. Implementation

The test suite\(^1\) contains a set of about 3000 sentence pairs which illustrate particular inference problems of adjectives, i.e. show inference patterns in which semantic, syntactic and morphoderivational criteria are the source of inference. In order to limit the problem, the sentence pairs contain texts with little syntactic complexity. So for example, many sentences follow the pattern \(NP \text{ V } NP\), where the verb is often the copula. These sentences were taken in some part from the literature on adjectives, in some part are hand coded, but mostly come from texts found on the Web and simplified at need. The example sentences have been created by generating for each adjectival item sentences representing all inferential patterns possible for that adjective. We have tried to consider an equal number of positive and negative cases of entailment.

Figure 2 shows an example of annotation. The test suite is encoded as an XML file. Each item in the test suite describes a sentence pair \(S1/S2\) and include

- a judgment about the truth of the entailment between the sentences in the pair. Thus, the attribute \textit{entailment} has values \texttt{TRUE} and \texttt{FALSE}, to respectively tag true and false entailment between the sentences \(S1\) and \(S2\) and \texttt{TRUE}Double and \texttt{FALSE}Double to signalise true and false cases of paraphrases

- a description of the type of inference problem shown in the sentence pair. The attribute \textit{inferencePattern} has as a value the name of one of the patterns described in this paper. So for example, subsective patterns are annotated with \texttt{inferencePattern=P35}.

Moreover, each adjective is annotated with the WordNet sense (\texttt{wns}) and with the semantic class (\texttt{adjClass}) to which it corresponds. For the semantic class assignment, we use a refined version of the semantic classification of adjectives presented in (Amoia and Gardent, 2006), which includes about 30 semantic adjectival classes. We would like to stress that the information with which the adjectival items are tagged, i.e. WordNet sense and adjectival class, are semantic information which can help reconstruct the meaning of the sentences thus enabling the automatic judgment of whether the entailment between the sentences in a given pair holds or not. The adjectival class assignment infact, points to a semantic representation of the adjective which is first order and compositional as described in (Amoia and Gardent, 2007).

3. Conclusion

In this paper we presented a test suite specifically created to study the inferential behavior of English adjectives. We hope it may serve as a resource for the evaluation of systems handling with natural language inference. With the construction of this test suite we want to open the way for the creation of resources which give a deeper insight in the linguistic phenomena which are responsible for inference.

We are aware of the limits of the test items included in our test suite, as we have considered only base cases of entailment. In the future we want to concentrate on the extension of the test sample by increasing the complexity of the test items to include cases which results from the combination of simpler ones.

4. Acknowledgements

5. References

\(^1\)The test suite presented in this paper is available at http://www.coli.uni-sb.de/~amoia/project/adj-TS