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Boundary Value Problem for an Oblique Paraxial Model of Light

Propagation

Marie Doumic
∗

6th November 2008

Abstract

We study the Schrödinger equation which comes from the paraxial approximation of the
Helmholtz equation in the case where the direction of propagation is tilted with respect to the
boundary of the domain. This model has been proposed in [12]. Our primary interest here is in
the boundary conditions successively in a half-plane, then in a quadrant of R2. The half-plane
problem has been used in [11] to build a numerical method, which has been introduced in the
HERA plateform of CEA.

1 Introduction

The simulation of a laser wave according to the paraxial approximation of the Maxwell equation
has been intensively studied for a long time when the simulation domain is rectangular and the
direction of propagation is parallel to one of the principal axis of simulation domain(see for instance
[16] and references therein).

We are concerned here with the case where the direction of propagation is not parallel to a
principal axis of the simulation domain, and cannot even be considered as having a small incidence
angle with it. It may be crucial for example if we want to simulate several beams with different
directions, possibly crossing each other in the same domain. This tilted frame model has been
considered some years ago by physicists for dealing with beam crossing problems (see [24]), and is
of particular interest in the framework of CEA’s Laser Megajoule experiment (see [23, 25]).

In [12, 11], a new model was proposed to deal with this case, and a numerical scheme was
introduced and coupled with a time-dependent interaction model (this scheme was then used in the
HERA plateform of CEA). We focus here on the theoretical study of this new model, of “advection-
Schrödinger” type.

This model is derived from the paraxial approximation, intensively used in optic models and
in a lot of models related to laser-plasma interaction in Inertial Confinement Fusion (cf [9, 15, 17,
20, 3, 21] and their references). According to laws of optics, the laser electromagnetic field may be
modeled by the following frequency Maxwell equation (the Helmholtz problem):

ǫ2∆ψ + ψ + i2νtǫψ = 0, −→x ∈ D (1)

where ǫ−1 is the wave number of the laser wave in a medium corresponding to the mean value
of the refractive index and νt = ν + iµ is a complex coefficient : its real part ν corresponds to a
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conveniently scaled absorption coefficient and its imaginary part µ to the variation of the refraction
index.

The first basic assumption is that the wave length 2πǫ is small compared to the size of the
simulation domain (indeed, it is in the order of 1µm and the simulation domain in in the order of
some mm for the Inertial Confinement plasmas). Assume also that the light propagates according

a fixed direction defined by the unit vector
−→
k . Let us denote the longitudinal and the transverse

coordinates by z = −→x · −→k and X = −→x − (−→x · −→k )
−→
k ; the gradient with respect to X is denoted

∇⊥ = ∇−−→
k (

−→
k .∇). Now, if we replace ψ by u exp( i

−→
k −→x
ǫ ), Equation (1) may be written as:

ǫ(2iνtu+ 2i
−→
k · −→∇u) + ǫ2∆⊥u = −ǫ2 ∂

2

∂z2
u.

where ∆⊥ is the Laplacian operator in the transverse variable. Assuming that u is slowy varying
with respect to the longitudinal variable, we can neglect the right-hand side of the previous equation
(we will check this a posteriori ; see also [10] for more details). Therefore u satisfies the classical
paraxial equation for wave propagation, which is a linear Schrödinger equation:

i
−→
k · −→∇u+

ǫ

2
∆⊥u+ iνtu = 0, −→x ∈ D. (2)

If the laser beam enters the simulation domain with a very small incidence angle that is, say, if

the vector
−→
k is normal to a boundary of the simulation domain, the boundary condition on the

entrance boundary {x = 0} is straightforward: it is simply the value of the solution, which is a

data. On the face {y = 0} of the domain parallel to the vector
−→
k , to deal correctly with the

boundary conditions one has to introduce a fractional derivative according to the x variable - see
[14, 1, 8, 6, 19] for a mathematical approach and [18] for a physical approach ; see also Appendix
A.2, or [2] for numerical treatment.

But, when the incidence angle between
−→
k and the normal vector to the entrance boundary −→ex

is not small any more, what is of particular interest for the treatment of beam-crossing for instance,
the classical approach is no more valid.

The aim of this article is to analyse Equation (2) with an arbitrary angle between
−→
k and −→ex,

first in a half-space, and then in a quadrant, and to address the issue to find proper boundary
conditions on the edges of the domain. The half-space problem has been studied and then used
numerically in [11]; see also [7] for results of numerical simulations. To solve it, we first have to
formulate the right entrance boundary condition and to show that the corresponding problem is
well-posed. For this purpose, we consider a 2D problem but most of the ideas developed here may
be extended to the 3D case. For the statement of the entrance boundary condition, one assumes

that a fixed plane wave ψin = uin exp( i
−→
k −→x
ǫ ) is coming into the domain where uin is a given function

of the variable y. Remark that for the Helmholtz problem, the boundary condition is classical and
may read as:

(ǫ
∂

∂−→n + i
−→
k · −→n )(ψ − uinei

−→
k −→x /ǫ) = 0, −→x ∈ ∂D.

where −→n is the outwards unit normal to the domain. By using the definition

ψ = u exp(
i
−→
k .−→x
ǫ

)

in this expression, the corresponding entrance boundary condition for Equation (2) may be written
in a natural way as:

(ǫ−→n · ∇⊥ + 2i
−→
k −→n )(u− uin) = 0, −→x ∈ ∂D. (3)

2



In Section 2, for the sake of completeness and clarity, we recall (see [11], Section 2) and detail how
to analyse Problem (2)(3) in the half-space

D = {(x, y) s.t. x ≥ 0},

which is the simplest case. First we recall a classical energy estimate in the space L2(R+ × R),
which implies uniqueness of the solution for any νt satisfying

inf−→x ν(
−→x ) > 0. (4)

Then, in the case where ν is a stritly positive constant, we recall in Theorem 1 the exact analytical
formulation of the solution, which is central in [11] to build a numerical scheme, based on a splitting
technique and on Fast Fourier Transform. We also develop here some corollaries on the regularity
of the solution.

We then have the tools to focus, in Section 3, on Problem (2)(3) in the quadrant

D = {(x, y) s.t. x ≥ 0, y ≥ 0},

which will make large uses of the solution on the half-space.
The most delicate point is to find a proper condition on the boundary {y = 0}, which would be

such that the restricted problem:

1. is well-posed,

2. admits for a solution the restriction to the quadrant of the solution in the half-space.

Such a condition is called a transparent boundary condition. If the solution of the quadrant is not
the exact restriction of the solution in the half plane, but is close to it in some sense, the boundary
condition is called an absorbing boundary condition.

For reasons which will appear in the sequel, the proper choice for such a condition is given by
Equation (17), which writes:

∂yU|y=0 −A+(∂x)(U|y=0) = 0 ∀x > 0,

with A+ a pseudo-differential operator defined by

A+(∂x) =
ky

kx
∂x − i

ky

ǫk2
x

(

1 +

√

1 +
2iǫkx

k2
y

∂x + 2iǫν
k2

x

k2
y

)

.

For a definition of fractional derivatives, see Appendix A.2 or [22], ch. VI.5. The derivation of
this formula is similar to the derivation of the transparent boundary condition given for instance in

[14, 1, 8, 4] for the Schrödinger equation, using Fourier-Laplace transform: here, the operator
−→
k ·−→∇

plays the role of time, and if we suppose ky = 0 we would recover a “time” fractional derivative as
in the previous references.

Theorem 2 then reformulates Problem (2)(3)(17) for functions whose derivatives may not be
defined at the boundary. The main result of this paper is then given by Theorem 3: it states
well-posedness and an explicit formulation for the solution to Problem (2)(3)(17) and analyses its

relation with the half-space solution, showing that if the ray enters in the quadrant (i.e if
−→
k ·−→n ≤ 0

) Condition (17) is a transparent one, and only an absorbing one if it goes out of it (i.e if
−→
k ·−→n ≤ 0).
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2 Recall on the Half-Space Problem

Here we address a problem where the simulation domain is the half-space

D = {−→x · −→ex ≥ 0}.

Set −→x = (x, y) and define
−→
k = (kx, ky) to be a unitary vector of the plane which indicates the

direction of the laser beam (we must of course have kx > 0). Assuming that (4) holds and that µ
is a bounded function, we rewrite Problem (2)(3) under the form

i
−→
k · −→∇u+

ǫ

2
∆⊥u− µu+ iνu = 0, (5)

(iǫD − 2
−→
k .−→n )(u− uin)|x=0 = 0, (6)

where we have denoted D = −→n · ∇⊥ = ky(kx∂y − ky∂x).
We first recall (See [11], Proposition 1.) that if u ∈ H1(R+ × R) is a solution to Problem (5)

(6) in the half-plane {x ≥ 0}, we have the two following equivalent identities :

∫∫

D

2ν|u|2 +

∫

Γ0

|−→k · −→n |
2

|(iǫD + 2
−→
k · −→n )u

2|−→k · −→n |
|2 =

∫

Γ0

|−→k · −→n |
(

|u|2 +
1

2
|(iǫD − 2

−→
k · −→n )uin

2|−→k · −→n |
|2

)

,

∫∫

D

2ν|u|2 +

∫

Γ0

|−→k · −→n ||u|2 = −Im
(

∫

Γ0

ū(ǫD + 2i
−→
k · −→n )uin

)

.

The first estimate can be interpreted as the conservation of energy, the right-hand side being the
incoming and the left-hand side the outcoming and the absorbed energy. ¿From the second estimate
we deduce the following result.

Proposition 1 Let (iǫD − 2
−→
k · −→n )uin ∈ L2(R). If u ∈ H1(R+ ×R) is a solution to the problem

(5) (6) in the half-plane, it is unique. Moreover, we have the following stability estimate, with a
constant C independent of ν, µ:

∫∫

D

2ν|u|2 +

∫

Γ0

|−→k · −→n ||u|2 ≤ C

∫

Γ0

|(iǫD − 2
−→
k · −→n )uin|2.

Remark: the stability result cannot be used to let the absorption tend to zero, since the norm on
the left-hand side depends on the coefficient ν.

In the sequel of this article, we assume that

µ = 0, and ν is a strictly positive constant (7)

and we write
2kxg = iǫky(kx∂y − ky∂x)uin + 2kxu

in.

Problem (2)(3) may be written under the form:

i(kx∂x + ky∂y)u+
ǫ

2
(k2

x∂
2
yy − 2kxky∂

2
xy + k2

y∂
2
xx)u+ iνu = 0 onR+ ×R, (8)
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iǫky(kx∂y − ky∂x)u|x=0 + 2kxu|x=0 = g. (9)

We denote the Fourier variables of the variables x and y respectively by ξ and η and the Fourier
transform in x and y by Fx and Fy. Using Fourier transformation, the following theorem gives an
explicit solution to this problem. Denote

R−(iη) = i
kxη

ky
− i

kx

ǫk2
y

(1 −
√

1 − 2
ǫkyη

k2
x

+ 2iν
ǫk2

y

k2
x

).

Here and in the sequel,
√

denotes the principal determination of the square root (its real part
is positive); it is crucial that ν is strictly positive in order to define it without ambiguity.

Theorem 1 Let S ′(R) be the space of tempered distributions and g ∈ S ′. There exists a unique
tempered distribution u ∈ C∞

x (R+,S ′
y(R)) to Problem (8)(9), which is:

Fy(u;x, η) =
2Fy(g; η)

1 +

√

1 − 2
ǫkyη
k2

x
+ 2iν

ǫk2
y

k2
x

eR−(iη)x. (10)

It satisfies also:
(

∂x −R−(iη)

)

Fy(u;x, η) = 0.

¿From this theorem, we can also deduce the following corollaries.

Corollary 1 If g ∈ H− 1

2 (R) then the solution u to Problem (8)(9) is in Cb
x(R+, L

2
y(R)), and the

following stability inequality stands for some constant C not depending on the absorption factor ν:

||u||L∞

x (R+,L2
y(R)) ≤ C||g||

H−
1
2 (R)

.

On a general manner, if g ∈ Hs(R), s ∈ R, then u ∈ Cb
x(R+,H

s+ 1

2
y (R)) and we have the following

inequality:
||u||

L∞
x (R+,H

s+1
2

y (R))
≤ C||g||Hs(R).

The space chosen for the solution is the most convenient because the stability obtained does
not depend on the absorption coefficient ν. However, we can find existence and uniqueness of a
solution in other spaces, provided other conditions on the initial data g. For instance:

Corollary 2 1. If
Fy(g;η)

(1+|η|2)
1
4

√
|Re(R−(iη))|

∈ L2
η(R) then u ∈ L2(R+ ×R).

2. If
Fy(g;η)(1+|η|2)

s
2√

|Re(R−(iη))|
∈ L2

η(R) with s > 0 then u ∈ L∞
y (R, L2

x(R+)). In a general manner, if

Fy(g;η)(1+|η|2)
s
2 |R−(iη)|m√

|Re(R−(iη))|
∈ L2

η(R) then u ∈ L∞
y (R,Hm

x (R+)).

5



Notice that when ν → 0, Re(R−(iη)ν=0) values zero in a half-line, then with these assumptions u
is not uniformly bounded according to the absorption coefficient ν.

Proof. The proof is based on Fourier transforms of the problem, taken successively in y and
in x. The factorization of the equation is the essential step of the proof, and will also provide us
tools to define a proper transparent boundary condition for the quadrant problem.

Let u be a solution of Problem (8)(9) and v the extension of u by zero in the whole space:
v(x, y) = u(x, y)1x≥0. By introducing formally the function v in Equation (8) we get:

i
−→
k · −→∇v +

ǫ

2
∆⊥v + iνv =

(

(

ikx − ǫky

2
(2kx∂y − ky∂x)

)

u(0, y)

)

δx=0 +
ǫk2

y

2
u(0, y)δ

′

x=0.

The meaning of the term ∂xu(0, y) is given by the entrance boundary condition (9) :

i
−→
k · −→∇v +

ǫ

2
∆⊥v + iνv = ikxg(y)δx=0 −

ǫky

2

(

kx∂yu(0, y)δx=0 − kyu(0, y)δ
′

x=0

)

.

Assuming that u ∈ C(R+,S ′(R)), we are allowed to take the Fourier transform of this expres-
sion. Let us define Pν(X,Y ) as the polynomial which characterizes the differential operator of the
equation, i.e:

Pν(∂x, ∂y) = i(kx∂x + ky∂y) +
ǫ

2
(k2

y∂
2
xx − 2kxky∂

2
xy + k2

x∂
2
yy) + iν.

If we write u0(y) = u(0, y), the Fourier transform in y of the equation in v reads:

Pν(∂x, iη)Fy(v;x, η) =
ǫk2

y

2

{(

2ikx

ǫk2
y

Fy(g; η) − i
kx

ky
ηFy(u0; η)

)

δx=0 + Fy(u0; η)δ
′

x=0

}

.

We can write

Pν(∂x, iη) =
ǫk2

y

2

(

∂x −R+(iη)

)(

∂x −R−(iη)

)

(11)

where we define:

R±(iη) = i
kx

ky
η − i

kx

ǫk2
y

(

1 ±
√

1 − 2
ǫkyη

k2
x

+ 2iν
ǫk2

y

k2
x

)

.

Thus:
(

∂x −R+(iη)

)(

∂x −R−(iη)

)

Fy(v;x, η) =

(

2ikx

ǫk2
y

Fy(g; η) − i
kx

ky
ηFy(u0; η)

)

δx=0 + Fy(u0; η)δ
′

x=0. (12)

We have reduced the problem in finding a unique acceptable solution for this ordinary differential
equation (12). Its Fourier transform in x reads:

(

iξ −R+(iη)

)(

iξ −R−(iη)

)

FxFy(v; ξ, η) =
2ikx

ǫk2
y

Fy(g; η) − i(
kx

ky
η − ξ)Fy(u0; η).
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Since Re
(

iξ − R±(iη)
)

6= 0, we can divide each side of Equation (12) by 2
ǫk2

y
Pν (because 1

Pν
is an

infinitely derivable function with at most polynomial growth at infinity, we can multiply it with a
tempered distribution) and write:

FxFy(v; ξ, η) =
α+

1/2(η)

iξ −R+(iη)
+

α−
1/2(η)

iξ −R−(iη)
,

where:

α+
1/2(η) =

R+(iη) − ikx

ky
η

R+(iη) −R−(iη)
Fy(u0; η) +

2ikx

ǫk2
y

Fy(g; η)

R+(iη) −R−(iη)
,

α−
1/2(η) = −

R−(iη) − ikx

ky
η

R+(iη) −R−(iη)
Fy(u0; η) −

2ikx

ǫk2
y

Fy(g; η)

R+(iη) −R−(iη)
.

If θ ∈ C\R, we can verify immediately that:

1

iξ − θ
=

{

Fx(1x≥0e
θx; ξ) if Re(θ) < 0

−Fx(1x≤0e
θx; ξ) if Re(θ) > 0

(13)

Applied to θ = R+(iη) and θ = R−(iη), since Re(R+) = −Re(R−) > 0, we get:

Fy(v;x, η) = −α+
1/2(η)e

R+(iη)x1x≤0 + α−
1/2(η)e

R−(iη)x1x≥0,

which proves that v ∈ C
(R+,S ′(R)

)

. Since v(x < 0, y) = 0, this equality implies α+
1/2(η) = 0. We

take the limit for x
>→ 0, and find Fy(u; 0, η) = α−

1/2(η). It gives Formula (10) and ends the proof
of Theorem 1.

♦
Notice that with Formula (10), we easily calculate the value of the derivative

−→
k · ∇u. As soon

as u is regular enough to have its Fourier transform in y decreasing rapidly, we can develop it

asymptotically in ǫ and ν, and find:
−→
k ·∇u = O(ǫ+ν). It is a way to check a posteriori the validity

of our first approximation.

Proof of the Corollaries.

To show the stability result of Corollary 1, we use the following lemma:

Lemma 1 There exists a constant C > 0, depending only on the geometry of the problem ( i.e. of
ǫ, kx and ky) and not depending on ν, such that:

1 + |η|2

|1 +

√

1 − 2ǫky

k2
x
η + 2iǫν

k2
y

k2
x
|4

≤ C4

16
.

Proof. Let us denote X = 1 − 2ǫky

k2
x
η and N = 2ǫν

k2
y

k2
x
. Then:

B(η) = |1 +
√
X + iN |2 = |1 + ei

π
4

√
N − iX |2

= 1 +
√

X2 +N2 + 2(X2 +N2)
1

4 cos(
π

4
− ArctgX

N

2
).
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The cosine is nonnegative, so we get:

B(η)2 ≥ (1 +
√

X2 +N2)2 ≥ 1 +X2.

Since 1 + |η|2 = 1 + a2(1 −X)2 with a = k2
x

2ǫky
, we study the polynomial P (X) = c(1 +X2) − (1 +

a2(1 −X)2), where c = C4

16 . We look for a c > 0 such that ∀ X ∈ R, P (X) ≥ 0.

P = X2(c− a2) + 2a2X − (1 − c+ a2),

and we pick c = 2a2 + 1 (for instance). We can take any C ≥ 2
√

1 + k2
x

ǫ|ky| . ♦
We now integrate in η the square modulus of Equation (10).
Since |eR−(iη)x| = eRe(R−(iη))x < 1, we get:

||u(x, .)||2L2(R) ≤ C2

∞
∫

−∞

|Fy(g; η)|2(1 + |η|2)− 1

2dη = C2||g||2
H−

1
2 (R)

.

We have proved the stability inequality, and the fact that the solution u is in the space L∞
x (R+, L

2(R)).
The constant C is of order 1√

ǫ
. The proof is the same for g ∈ Hs(R).

In order to prove Corollary 2, we first show that if s > 0 and
Fy(g;η)(1+|η|2)

s
2√

|Re(R−(iη))|
∈ L2

η(R) then

u ∈ L∞
y (R, L2

x(R+)). We have:

∞
∫

0

|u(x, y)|2dx =

∞
∫

0

dx|
∫

eiηydη

2π

2Fy(g; η)

1 +

√

1 − 2ǫky

k2
x
η + 2iǫν

k2
y

k2
x

eR−(iη)x|2.

We can apply Cauchy-Schwartz inequality:

∞
∫

0

|u(x, y)|2dx ≤ C2

∞
∫

0

dx

(
∫

dη|Fy(g; η)|2(1 + |η|2)se2Re
(

R−(iη)
)

x

)(
∫

dη(1 + |η|2)− 1

2
−s

)

.

it gives, for some constant C > 0:

∞
∫

0

|u(x, y)|2dx ≤ A

∫

dη
|Fy(g; η)|2(1 +

√

|η|)2s

2|Re
(

R−(iη)
)

| .

This shows that u ∈ L∞
y (R, L2

x(R+)) if we suppose for instance
Fy(g;η)(1+

√
|η|)s√

|Re(R−(iη))|
∈ L2

η(R). To gener-

alize at Hm
x (R+), we replace Fy(g) by R−(iη)mFy(g; η).

3 Case of the Quadrant

We still consider Problem (2)(3) but restricted to the quadrant {x, y ≥ 0}. To find a transparent
or an absorbing boundary condition (cf. Section 1) on the boundary {y = 0}, we formally factorize
the differential operator of the advection-Schrödinger equation as follows:

Pν = i
−→
k · −→∇ +

ǫ

2
∆⊥u+ iν = 0 = ǫ

k2
x

2

(

∂y −A+(∂x)
)(

∂y −A−(∂x)
)

. (14)
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where

A−(∂x) =
ky

kx
∂x − i

ky

ǫk2
x

(

1 −
√

1 +
2iǫkx

k2
y

∂x + 2iǫν
k2

x

k2
y

)

.

It means that A+(X), A−(X) are the roots of the polynomial Pν(X,Y ) considered as a polynomial
of the variable X (see Appendix A.2 for a recall on the definition of a fractional derivative, or [22],
chapter VI.5 for a complete construction).

The aim of this section is to show that the following condition:

(

∂y −A+(∂x)
)

u|y=0 = 0 ∀ x > 0

is a transparent boundary condition if ky > 0 and an absorbing boundary condition if ky < 0. The
proofs will make appear more clearly why we were lead to such a choice for a boundary condition.

Let us consider the following problem:

i(kx∂x + ky∂y)U +
ǫ

2
(k2

x∂
2
yy − 2kxky∂

2
xy + k2

y∂
2
xx)U + iνU = 0 ∀ x > 0, y > 0, (15)

iǫky(kx∂y − ky∂x)U|x=0 + 2kxU|x=0 = 2kxg+ ∀ y > 0, (16)

∂yU|y=0 −A+(∂x)(U|y=0) = 0 ∀x > 0, (17)

where we take g+ ∈ H− 1

2 (R+), Supp(g+) ⊂ R∗
+. We can rewrite Condition (17) under the following

form:

iǫkx(ky∂x − kx∂y)U|y=0 + ky(1 +

√

1 +
2iǫkx

k2
y

∂x + 2iǫν
k2

x

k2
y

)U|y=0 = 0 ∀ x > 0.

The first step is to give an extended meaning of the boundary condition (17), for functions whose
derivatives at the boundary {y = 0} may not be defined. The second step is to show that Condi-
tion (17), considered in this extended meaning, is either a transparent or an absorbing boundary
condition for our problem, according to the sign of ky.

Let us denote u the solution of the half-space problem (8)(9) with an entrance boundary con-

dition equal to g = g+1y≥0: g ∈ H− 1

2 (R). It is given by Formula (10):

Fy(u;x, η) =
2Fy(g; η)

1 +

√

1 − 2ǫky

k2
x
η + 2iǫν

k2
y

k2
x

eR−(iη)x.

We show the two following theorems.

Theorem 2 Let g+ be a given function such that Supp(g+) ⊂ R∗
+ and g+ ∈ H− 1

2 (R+). Let

U ∈ Cb
x(R+,H

3

2
+s

y (R+)), with s > 0, a function satisfying Equations (15)(16) with ∂yU(x, 0) ∈
H

− 1

2
x (R+) and U(x, 0) ∈ H

1

2
x (R+). Then U satisfies (17) iff U satisfies:

U(x, y)1y≥0 = F−1
y

(

{

K̂(η)Fy(U1y≥0; 0, η) + Ĝ(η)
}

eR−(iη)x

)1y≥0, (18)

9



with:

K̂(η) = −
R−(iη) − ikx

ky
η

R+(iη) −R−(iη)
and Ĝ(η) = −2ikx

ǫk2
y

Fy(g; η)

R+(iη) −R−(iη)
.

With this result, we are able to extend the meaning of Equation (17) in the following way.

Definition 1 We say that a function U ∈ Cb
x(R+, L

2
y(R+)) is a solution of Problem (15)(16)(17)

iff it is a solution of Problem (15)(16)(18).

We are now able to state the main

Theorem 3 Let g+ be a given function such that Supp(g+) ⊂ R∗
+ and g+ ∈ H− 1

2 (R+).
i) Problem (15)(16)(18) admits a unique solution U ∈ Cb

x(R+, L
2
y(R+)).

ii) Let u ∈ Cb
x(R+, L

2
y(R)) be the solution of the half-space problem (8)(9) with an incoming boundary

condition g = g+1y≥0. We have an explicit formula for U in terms of u, with u0(y) = u(0, y):

U(x, y)1y≥0 = F−1
y

(

{

K̂(η)Fy(u01y≥0; η) + Ĝ(η)
}

eR−(iη)x

)1y≥0, (19)

where K̂ = −
R−−i kx

ky
η

R+−R−

and Ĝ = −2ikx

ǫk2
y

Fy(g)
R+−R−

.

iii) If ky > 0, then U = u|y≥0.

iv) If ky < 0, and if we take gA(y) = h(y − A) with A > 0, denoting uA, UA the corresponding
solutions respectively in the half-space and in the quadrant, we get:

lim
A→+∞

||(uA − UA)1y≥0||L∞(R+,L2
y(R)) = 0.

3.1 Fourier transform of the problem.

Let U be a solution of Problem (15)(16)(17), U ∈ Cb
x(R+,H

3

2
+s(R+)) and V the extension of U by

zero in the whole space: V (x, y) = U(x, y)1x≥01y≥0. We calculate what the problem means for V ,
and find:

i
−→
k · −→∇V +

ǫ

2
∆⊥V + iνV = −ǫkxkyU(0, 0)δx=0δy=0+

(

(

ikx − ǫky

2
(2kx∂y − ky∂x)

)

U(0, y)

)1y≥0δx=0 +
ǫk2

y

2
U(0, y)1y≥0δ

′

x=0+
(

(

iky − ǫkx

2
(2ky∂x − kx∂y)

)

U(x, 0)

)1x≥0δy=0 +
ǫk2

x

2
U(x, 0)1x≥0δ

′

y=0,

which gives, with the two boundary conditions (16)(17):

i
−→
k · −→∇V +

ǫ

2
∆⊥V + iνV = −ǫkxkyU(0, 0)δx=0δy=0+

(

ikxgδx=0 −
ǫky

2

(

kx∂yU|x=0δx=0 − kyU|x=0δ
′

x=0

)

)1y≥0+
(

i
ky

2

(

1 −
√

1 + 2iǫkx

k2
y
∂x + 2iǫν k2

x

k2
y

)

U|y=0δy=0 − ǫkx

2

(

ky∂xU|y=0δy=0 − kxU|y=0δ
′

y=0

)

)1x≥0.

(20)
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To take the Fourier transform of this expression, we have to proceed carefully with the derivatives
of U . Indeed, we can write:

Fx

(

(∂xU)1x≥0; ξ, 0
)

= iξFx

(

U1x≥0; ξ, 0
)

− U(0, 0),

and the equivalent formula for Fy

(

(∂yU)1y≥0; 0, η
)

. On the contrary, one directly gets:

Fx

(

(

√

1 +
2iǫkx

k2
y

∂x + 2iǫν
k2

x

k2
y

U|y=0

)1x≥0; ξ, 0

)

=

√

1 − 2ǫkx

k2
y

ξ + 2iǫν
k2

x

k2
y

Fx

(

U|y=01x≥0

)

.

We now take the Fourier transform of Formula (20). The terms depending on U(0, 0) cancel one
another, and we furthermore notice that:

i
ky

2
(1 −

√

1 − 2ǫkx

k2
y

ξ + 2iǫν
k2

x

k2
y

) − iǫkxky

2
ξ = −ǫk

2
x

2
A−(iξ).

Finally, using the polynomial Pν(X,Y ), we get

Pν(iξ, iη)FxFy(V ; ξ, η) =

ǫk2
y

2

(

2ikx

k2
y

Fy(g; η) − i(
kx

ky
η − ξ)Fy(U1y≥0; 0, η)

)

+
ǫk2

x

2

(

iη −A−(iξ)
)

Fx(U1x≥0; ξ, 0).

Dividing by Pν written in one of the form (14) or (11), the equation in V reads:

FxFy(V ; ξ, η) =
α+(η)

iξ −R+(iη)
+

α−(η)

iξ −R−(iη)
+

β+(ξ)

iη −A+(iξ)
+

β−(ξ)

iη −A−(iξ)
, (21)

where α± and β± are given by

α+(η) =
R+(iη) − ikx

ky
η

R+(iη) −R−(iη)
Fy(U1y≥0; 0, η) +

2ikx

ǫk2
y

Fy(g; η)

R+(iη) −R−(iη)
,

α−(η) = −
R−(iη) − ikx

ky
η

R+(iη) −R−(iη)
Fy(U1y≥0; 0, η) −

2ikx

ǫk2
y

Fy(g; η)

R+(iη) −R−(iη)
,

β+(ξ) = Fx(U1x≥0; ξ, 0),

β−(ξ) = 0.

(22)

3.2 Proof of Theorem 2.

Let us take the inverse Fourier transform of Equation (21), as in Section 2 for the half-space
problem:

U(x, y)1x≥01y≥0 = F−1
y

(

−α+(η)eR+(iη)x1x≤0 + α−(η)eR−(iη)x1x≥0

)

+F−1
x

(

−β+(ξ)eA+(iξ)y1y≤0 + β−(ξ)eA−(iξ)y1y≥0

)

.

11



If we multiply each side by 1x≥01y≥0 and use the fact that β− = 0, we obtain

U(x, y)1x≥01y≥0 = F−1
y

(

α−(η)eR−(iη)x

)1x≥01y≥0,

and denoting

K̂(η) = −
R−(iη) − ikx

ky
η

R+(iη) −R−(iη)
and Ĝ(η) = −2ikx

ǫk2
y

Fy(g; η)

R+(iη) −R−(iη)
,

we have α−(η) = K̂(η)Fy(U1y≥0; 0, η) + Ĝ(η), and get Formula (18).

It proves that if U ∈ Cb
x(R+,H

3

2
+s

y (R+)) is a solution of Problem (15)(16)(17), then it verifies

Equation (18). Conversely, let U ∈ Cb
x(R+,H

3

2
+s

y (R+)) be a solution of System (15)(16)(18), and

∂yU(x, 0) ∈ H
− 1

2
x and U(x, 0) ∈ H

1

2
x . Assuming no particular condition on the boundary {y = 0},

we carry out the same computation as in Section 3.1, and find:

Fx,y(U ; ξ, η) =
α+(η)

iξ −R+(iη)
+

α−(η)

iξ −R−(iη)
+

β+(ξ)

iη −A+(iξ)
+

β−(ξ)

iη −A−(iξ)
,

with the same α± than defined in (22) and with:

β−(ξ) = −
Fx

(

(

∂yU −A+(∂x)U
)1x≥0; ξ, 0

)

A+(iξ) −A−(iξ)
.

We take the inverse Fourier transform and multiply it by 1x≥01y≥0, to find:

U(x, y)1x≥01y≥0 = F−1
y

(

α−(η)eR−(iη)x1x≥0

)1y≥0 + F−1
x

(

β−(ξ)eA−(iξ)y1y≥0

)1x≥0.

Since U verifies also Equation (18), which writes:

U(x, y)1x≥01y≥0 = F−1
y

(

α−(η)eR−(iη)x

)1x≥01y≥0,

we necessarily have:

F−1
x

(

β−(ξ)eA−(iξ)y1y≥0

)1x≥0 = 0 ∀x > 0 , y > 0.

The function U being continuous in y, we can take the limit when y tends to zero and obtain
F−1

x

(

β−(ξ)
)

= 0 ∀x > 0 (see [13] and the theory of Hardy functions).
Since β− is the Fourier transform of a distribution null in R− (see Appendix A.1), it implies

that β− is the Fourier transform of a distribution whose support is included in {x = 0}. Since
β− ∈ L2(R), it implies β− = 0, which is equivalent to the Fourier transform in x of the transparent
boundary condition. We have proved Theorem 2.

Equation (17) can be defined only for functions in H
3

2
+s in the variable y. Theorem 2 allows

us now to extend it by Condition (18), with Definition 1 given at the beginning of Section 3.
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3.3 Proof of Theorem 3.

We recall Formula (18):

U(x, y)1y≥0 = F−1
y

(

{

K̂(η)Fy(U1y≥0; 0, η) + Ĝ(η)
}

eR−(iη)x

)1y≥0.

If we set U0(y) = U(0, y)1y≥0, it gives:

U0(y) = F−1
y

(

K̂(η)Fy(U0; η) + Ĝ(η)

)1y≥0. (23)

For these equations to make sense, it is sufficient to have U ∈ Cb
x(R+, L

2
y(R+)). We prove the

following lemma, from which we will easily deduce Theorem 3.

Lemma 2 i) Equation (18) admits at most one solution U ∈ Cb
x(R+, L

2
y(R+)); Equation (23)

admits at most one solution U0 ∈ L2
y(R).

ii) The solution u ∈ Cb
x(R+, L

2
y(R)) to Problem (8)(9) (with g = g+1y≥0) satisfies Equation (23).

Moreover, U = u|y>0 satisfies Equations (15)(16), and if ky > 0 it also satisfies Equation (18).

Proof.

i) Uniqueness of a solution of Equation (23) in L2(R) implies that of a solution to Equation
(18) in Cb

x(R+, L
2
y(R+)). Let us take g = 0 and suppose that a function U0 ∈ L2(R) verifies:

U0(y) = F−1
y

(

K̂(η)Fy(U0; η)

)1y≥0.

Let V0(y) = F−1
y

(

K̂(η)Fy(U0; η)

)

(y). The function V0 verifies the following equation, because

U0 = V01y≥0:

V0(y) = F−1
y

(

K̂(η)Fy(V01y≥0; η)

)

=

∞
∫

0

K(y − s)V0(s)ds.

We separate V0 into V+ = V01y≥0 and V− = V01y≤0. Since V0 ∈ L2(R), V± ∈ L2(R±) the functions
V̂± := Fy(V±; η) belong to the Hardy spaces H2± (see Appendix A.1 for a recall on Hardy spaces).
The resulting equation writes:

V̂+(η)(1 − K̂(η)) =
1

2

(

1 +
1

√

1 − 2ǫky

k2
x
η + 2iνǫ

k2
y

k2
x

)

V̂+(η) = −V̂−(η).

The idea is to find an H2− function on the left-hand side, equal to a H2+ function on the right-hand
side: since H2+ ∩H2− = 0, it will imply that both sides are null. We use the fact that the function

1
√

1− 2ǫky

k2
x

η+2iνǫ
k2
y

k2
x

can be extended analytically by a uniformally bounded function, respectively: onR2− = {η − iη, η > 0} if ky > 0, and on R2+ if ky < 0.

1. ky > 0 : 1 − K̂(η) is analytic and uniformly bounded in R2−, so (1 − K̂)V̂+ ∈ H2−, and is
equal to (−V̂−) ∈ H2+, so V± = 0, so V0 = 0.
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2. ky < 0. We write the previous equation in the following form:

V̂+(η) = −(1 − K̂(η))−1V̂−(η).

(1− K̂(η))−1 is analytic and uniformly bounded in R2+, so (1− K̂)−1V̂− ∈ H2+, and is equal
to (−V̂+) ∈ H2−, so V0 = 0.

ii) Let u ∈ Cb
x(R+, L

2
y(R)) be the solution of Problem (8)(9) in the half-space, with an entrance

boundary condition equal to g ∈ H− 1

2 (R). We have seen in Section 2 that u verifies:

u(x, y)1y≥0 = F−1
y

(

α−
1/2

(η)eR−(iη)x

)1y≥0,

with α−
1/2(η) = K̂(η)Fy(u; 0, η) + Ĝ(η).

This is almost Equation (18): we have α− = α−
1/2 − K̂Fy(u1y≤0; 0, η).

Let us distinguish the two cases, according to the sign of ky.

1. ky > 0. We have seen in Section 2 that u verifies:

Fy(u; 0, η) =
2Fy(g1y≥0; η)

1 +

√

1 − 2ǫky

k2
x
η + 2iǫν

k2
y

k2
x

.

Since the function 1

1+

√

1− 2ǫky

k2
x

η+2iǫν
k2
y

k2
x

can be extended analytically by a uniformly bounded

function in R2−, if g ∈ L2(R+) then Fy(u; 0, η) ∈ H2−, so u(0, y) = u(0, y)1y≥0. This shows
that in this case, α− = α−

1/2 so u verifies Equation (18).

2. ky < 0. Since u(0, .) ∈ L2(R), K̂(η)Fy(u1y≤0; 0, η) ∈ H2+, the function u verifies the following
equation:

u(0, y)1y≥0 = F−1
y

(

α−(η)
)1y≥0 + F−1

y

(

K̂(η)Fy(u1y≤0; 0, η)
)1y≥0.

Since K̂(η)Fy(u1y≤0; 0, η) ∈ H2+, it is the Fourier transform of a function null in R+, so the
last member of the equation values zero. This shows that u(0, y) verifies Equation (23).

♦

Let us deduce Assertions i), ii) and iii) of Theorem 3 from Lemma 2. First, Lemma 2 proves
the uniqueness of a solution to Problem (15)(16)(17). In the case where ky > 0, we have nothing
more to prove: the unique solution of Problem (15)(16)(17) is the restriction to the quadrant of
the solution of the half-space problem (8)(9).

Let us now take ky < 0. If U exists, it verifies Equation (23) and we have seen that it is also the
case of u, so U(0, y) = u(0, y)|y≥0. Replacing U(0, y)1y≥0 by u(0, y)1y≥0 in Equation (18) verified
by U , this implies necessarily that:

U(x, y)1y≥0 = F−1
y

(

eR−(iη)x
{

K̂(η)Fy(u01y≥0; η) + Ĝ(η)
}

)1y≥0.
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We now have to prove that the so-defined function U is a solution of Problem (15)(16)(17). First,
it obviously verifies Equation (18), so according to Definition 1 we have only to check Equations
(15) and (16). Let us define:

V := F−1
y

(

eR−(iη)x
{

K̂(η)Fy(u01y≥0; η) + Ĝ(η))
}

)

.

We have U = V 1y≥0, so we can check Equations (15) (16) on V as well. We notice that V = u− r,
with:

Fy(r;x, η) = K̂(η)Fy(u01y≤0; η)e
R−(iη)x.

The function u verifies obviously Equations (15)(16), so we have only to check them on the remain-
der r. Taking its global Fourier transform and multiplying it by Pν , we find:

Pν(iξ, iη)FxFy(r1x≥0; ξ, η) = (iξ −R+(iη))K̂(η)Fy(u01y≤0; η).

Since Fy(u01y≤0; η) ∈ H2+ and ky < 0, the right-hand side is the Fourier transform of a distribution
null for y > 0 (see Appendix A.1 for a proof). Thus the remainder r satisfies the Schrödinger
equation (15) in the quadrant. Furthermore, at the boundary x = 0, we have:

Fy(r; 0, η) = K̂(η)Fy(u01y≤0; η),

which is also the Fourier transform of a distribution null for y > 0. It proves that r(0, y > 0) = 0,
so r(0, .)|y>0 verifies the boundary condition (16).

Estimate of the difference between the solution in the quadrant and the solution

in the half-space

It only remains to prove Assertion iv) of Theorem 3. For the sake of notations simplicity, we
skip here the indices and denote u, U instead of uA, UA. Let us assume that ky < 0 and denote by
u the solution of the half-space problem and by U that in the quadrant. According to Equation
(19), we have:

U(x, y) = F−1
y

(

eR−(iη)x[K̂(η)Fy(u01y≥0; η) + Ĝ(η)]

)1y≥0,

and furthermore u verifies the following equation:

u(x, y)1y≥0 = F−1
y

(

eR−(iη)x[K̂(η)Fy(u0; η) + Ĝ(η)]

)1y≥0,

so by taking the difference, we obtain the relation :

(u− U)1y≥0 = F−1
y

(

eR−(iη)xK̂(η)Fy(u1y≤0; 0, η)

)1y≥0. (24)

Let us now assume that g(y) = h(y − A), A > 0, h ∈ H− 1

2 (R) and Supp(h) ⊂ R∗
+. We can

write:

Fy(u0; η) =
Fy(h; η)e

−iηA

1 +

√

1 − 2ǫ
ky

k2
x
η + 2iνǫ

k2
y

k2
x

= Fy(H; η)e−iηA,
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with a function H ∈ L2(R). We then have u0 = H(y−A), so ||u01y≤0||L2 = ||H|y≤−A||L2 , tends to
0 when A→ +∞. We use Relation (24) to estimate the difference between the half-space and the
quarter plane solutions, since Re(R−(iη)) < 0:

||(u− U)(x, y)1y≥0||L∞

x (R+,L2
y(R)) ≤ ||K̂Fy(u01y≤0)||L2(R) ≤ C||H|y≤−A||L2

y(R).

Conclusion and perspectives

A mathematical analysis has lead to an analytical form of the solution of the tilted paraxial equation
in the case where the refraction index and the absorption coefficients are constant. We have
proposed a convenient transparent/absorbing boundary condition for the problem on a quadrant,
shown the well-posedness of the so-defined problem, and estimated the difference between the
solutions on the half-space and on the quadrant.

However, this boundary condition is non-local, which implies much difficulty for its numerical
treatment (see [14] for instance); up to now, the choice made in [11] to deal numerically with this
boundary condition was to add an artificial absorption coefficient, as popularized in [5].

We have also noticed that Formula (10) allows us to check a posteriori the validity of the
formal asymptotic derivation of Equation (2) from Helmholtz equation (1). Complete estimates to
justify it rigorously is a direction for future research (see also [10] for a rigorous justification of the
time-dependent problem).

Acknowledgment. The author expresses very grateful thanks to François Golse and Rémi
Sentis for their precious help, guidance, ideas and corrections.

A Appendix

A.1 Fourier transforms of functions supported in R+

Background on Hardy classes

For more details, we refer to [13].

Definition: let h : R2− → C. The function h is said to be a Hardy function if it verifies the two
following properties:

i) h is analytic in R2− = {ω = a+ ib, b < 0}
ii) sup

b<0
||hb||22 = sup

b<0

∞
∫

−∞
|h(a+ ib)|2da <∞.

The so-defined space is called the Hardy space and written as H2−.

Theorem 4 Let h : R2− → C. h ∈ H2− iff there exists a function f ∈ L2(R+) such that:

∀ω ∈ R2−, h(ω) =

∞
∫

0

f(x)eiωxdx.

Fourier transforms of functions that are identically zero in R−
According to Theorem 4, the following kinds of tempered distribution f̂ are Fourier transforms

of tempered distributions f supported in R+:
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1. f̂ ∈ H2−(R): see Theorem 4.

2. There exists a polynomial P (iξ) such that f̂ = P (iξ)ĝ(ξ), with ĝ the Fourier transform of a
tempered distribution g, Supp(g) ⊂ R+: indeed, we then have f̂ = Fx(P (∂x)g).

3. There exists a Hardy function φ ∈ H2− and a holomorphic function Ψ, bounded on an open
neighborhood of R2−, such that f = φΨ.

Examples:

(a) the function Ψ is a rational function with no pole in R2− ∪ {∞}, i.e.

Ψ(z) =

N
∑

i=1

λi

z − αi
,

with Im(αi) > 0.

(b) There exists α > 0, β ∈ R, s > 0 such that

Ψ(z) =
1

(1 + i(αz + β))s
.

It is sufficient to prove this for Ψ(z) = 1
(1+iz)s . On the one hand, we have:

1 + iz ∈ Rm
− ≡ iz ∈ (−∞,−1)

1 + iz ∈ Rm
− ≡ z ∈ i(1,+∞).

This implies that Ψ is holomorphic on R2− (zs = esLogz where Log means the principal
determination of the Logarithm).

On the other hand, Ψ is bounded on a neighborhood of R2− : if Im(z) ≤ 0 we have

|Ψ(z)| =
1

|1 + iz|s =
1

((1 − Im(z))2 + Re(z)2)s/2
≤ 1.

4. The two previous cases imply that if ĝ ∈ H2− and f̂ = F (iξ)ĝ, with F a product of functions
of the previous types, then f̂ is the Fourier transform of a distribution whose support is inR+.

A.2 Definition of the square root of a differential operator

We recall here briefly how fractional derivatives are built, and refer to [22], chapter VI.5. for more
details. For a > 0, we define

Ya(x) =
(x+)a

Γ(1 + a)
,

where we have denoted x+ = x1x≥0. It is an homogeneous function of degree a, which generalizes
xn

n! . As for the polynomial case, one has

∀ a > 1,
dYa

dx
= Ya−1.
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Taking this property as a definition, it allows us to define Ya by analytic continuation for a ∈ C.
For the case a ∈ −N∗, we notice that the fact that the pseudo-function Pf(xa

+) is not defined is
compensated by the poles of the Γ function on −N (see also [22], chapter II.3.) In particular, one
has

Y0(x) = sgn+(x), Y−1 = δ0, Y−l = δ(l−1), l ∈ N.
Since derivation corresponds to the convolution by δ′0 = Y−2, we can define ( d

dx)a, for functions

supported in R+, by the convolution by Y−1−a. It interpolates between d
dx

0
, which is the convolution

by δ0 = Y−1, and d
dx , convolution by δ′0 = Y−2. For the case a = 1

2 , we thus have:

(

d

dx

)1/2

f = Y−3/2 ⋆ f =
d

dx
(Y−1/2 ⋆ f).

We can also have a formulation by the use of Fourier transforms:

F(Y−1/2)(ξ) =
e−i.sign(ξ)π

4

√

|ξ|
.

We obtain this formula by Γ(1
2 ) =

√
π and by passing to the limit when ǫ→ 0 in

∫ +∞

0

e−iξx

√
x
dx = 2

∫ +∞

0
e−ǫy2−iξy2

dy =

√
π√

ǫ+ iξ
.

Finally:

F(
d

dx
(Y−1/2 ⋆ f)) =

iξ√
iξ
F(f)(ξ).

These two formulations give the two following equivalent ways to define properly the square root
of the differential operator, which is, in our case, −k2

y − 2iǫkx∂x − 2iǫνk2
x.

1. Using the Fourier transformation, we have:

Fx

(

(
√

−k2
y − 2iǫkx∂x − 2iǫνk2

xu)1x≥0; ξ

)

=

e−i π
4

√

−ik2
y + 2iǫkxξ + 2ǫνk2

xFx(u1x≥0; ξ).

2. Using the expression
(

d
dx

)1/2
f = Y−3/2 ⋆ f = d

dx(Y−1/2 ⋆ f), we get:

√

−k2
y − 2iǫkx∂x − 2iǫνk2

x(u) =

√
2ǫkxe

−i π
4
+(i

k2
y

2ǫkx
−νkx)x

√
π

∂x

x
∫

0

u(s)e(−i
k2
y

2ǫkx
+νkx)s

√
x− s

ds.
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