
HAL Id: hal-00337068
https://hal.science/hal-00337068v2

Preprint submitted on 15 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The non-symmetric operad pre-Lie is free
Nantel Bergeron, Muriel Livernet

To cite this version:

Nantel Bergeron, Muriel Livernet. The non-symmetric operad pre-Lie is free. 2008. �hal-00337068v2�

https://hal.science/hal-00337068v2
https://hal.archives-ouvertes.fr


THE NON-SYMMETRIC OPERAD PRE-LIE IS FREE

NANTEL BERGERON AND MURIEL LIVERNET

Abstract. We prove that the pre-Lie operad is a free non-symmetric operad.
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Introduction

Operads are a specific tool for encoding type of algebras. For instance there are
operads encoding associative algebras, commutative and associative algebras, Lie
algebras, pre-Lie algebras, dendriform algebras, Poisson algebras and so on. A usual
way of describing a type of algebras is by giving the generating operations and the
relations among them. For instance a Lie algebra L is a vector space together with
a bilinear product, the bracket (the generating operation) satisfying the relations
[x, y] = −[y, x] and [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L. The vector
space of all operations one can perform on n distinct variables in a Lie algebra is
Lie(n), the building block of the symmetric operad Lie. Composition in the operad
corresponds to composition of operations. The vector space Lie(n) has a natural
action of the symmetric group, so it is a symmetric operad. The case of associative
algebras can be considered in two different ways. An associative algebra A is a vector
space together with a product satisfying the relation (xy)z = x(yz). The vector space
of all operations one can perform on n distinct variables in an associative algebra is
As(n), the building block of the symmetric operad As. The vector space As(n) has
for basis the symmetric group Sn. But, in view of the relation, one can look also at the
vector space of all order-preserving operations one can perform on n distinct ordered
variables in an associative algebra: this is a vector space of dimension 1 generated by

the only operation x1 · · ·xn. So the non-symmetric operad Ãs describing associative
algebras is 1-dimensional for each n: this is the terminal object in the category of
non-symmetric operads.
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2 N. BERGERON AND M. LIVERNET

Here is the connection between symmetric and non-symmetric operads. A symmet-
ric operad P starts with a graded vector space (P(n))n≥0 together with an action of
the symmetric group Sn on P(n) for each n. This data is called a symmetric sequence
or an S-module or a vector species. There is a forgetful functor from the category
of vector species to the category of graded vector spaces, forgetting the action of the
symmetric group. This functor has a left adjoint S which corresponds to tensoring
by the regular representation of the symmetric group. A symmetric (non-symmetric)
operad is a monoid in the category of vector species (graded vector spaces). Again
there is a forgetful functor from the category of symmetric operads to the category of
non-symmetric operads admitting a left adjoint S. The symmetric operad As is the

image of the non-symmteric operad Ãs by S. It is clear that Lie is not in the image
of S since the Jacobi relation does not respect the order of the variables x < y < z

nor the anti-symmetry relation. Still one can regard Lie as a non-symmetric operad
applying the forgetful functor. Salvatore and Tauraso proved in [5] that the operad
Lie is a free non-symmetric operad.

A free non-symmetric operad describes type of algebras which have a set of gen-
erating operations and no relations between them. For instance, magmatic algebras
are vector spaces together with a bilinear product. There is a well known free non-
symmetric operad, the Stasheff operad, built on Stasheff polytopes, see e.g. [6]. An
algebra over the Stasheff operad is a vector space V together with an n-linear prod-
uct: V ⊗n → V for each n. From the point of view of homotopy theory, the category
of operads is a Quillen category and free operads play an essential role in the homo-
topy category. One wants to replace an operad P by a quasi-free resolution, that is,
a morphism of operads Q → P where Q is a free operad endowed with a differential

realizing an isomorphism in homology. For instance, a quasi-free resolution of Ãs,
in the category of non-symmetric operads, is given by the Stasheff operad. Alge-
bras over this operad are A∞-algebras (associative algebras up to homotopy). This
gives us the motivation for studying whether a given symmetric operad is free as a
non-symmetric operad or not.

In this paper we prove that the operad pre-Lie is a free non-symmetric operad.
Pre-Lie algebras are vector spaces together with a bilinear product satisfying the
relation (x∗y)∗z−x∗ (y ∗z) = (x∗z)∗y−x∗ (z ∗y). The operad pre-Lie is based on
labelled rooted trees which are of combinatorial interest. In the process of proving
the main result, we describe another operad denoted TMax also based on rooted trees
and having the advantage of being the linearization of an operad in the category of
sets. We prove that it is a free non-symmetric operad. The link between the two
operads is made via a gradation on labelled rooted trees.

1. The pre-Lie operad and rooted trees

We first recall the definition of the pre-Lie operad based on labelled rooted trees
as in [2]. For n ∈ N∗, the set {1, . . . , n} is denoted by [n] and [0] denotes the empty
set. The symmetric group on k letters is denoted by Sk. There are many equivalent
definitions of operads and we refer to [4] for basics on operads. We work over the
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ground field k and vector spaces are considered over k. Here are the definitions
needed for the sequel.

Definition 1.1. A (reduced) non-symmetric operad is a graded vector space (P(n))n≥1,
with a unit 1 ∈ P(1) = k, together with composition maps ◦i : P(n) ⊗ P(m) →
P(n+m−1) for 1 ≤ i ≤ n satisfying the following relations: for a ∈ P(n), b ∈ P(m)
and c ∈ P(ℓ)

(a ◦i b) ◦j+i−1 c = a ◦i (b ◦j c), for 1 ≤ j ≤ m,
(a ◦i b) ◦j c = (a ◦j c) ◦i+ℓ−1 b, for j < i,

1 ◦1 a = a,

a ◦i 1 = a,

A non-trivial composition is a composition a ◦i b with a ∈ P(n), b ∈ P(m) and
n, m > 1.

If in addition each P (n) is acted on the right by the symmetric group Sn and
the composition maps are equivariant with respect to this action, then the collection
(P(n))n forms a symmetric operad. An algebra over an operad P is a vector space
X endowed with evaluation maps

evn : P(n) ⊗ X⊗n → X

p ⊗ x1 ⊗ . . . ⊗ xn 7→ p(x1, . . . , xn)

compatible with the composition maps ◦i: for p ∈ P(n), q ∈ P(m), x′
is ∈ X one has

(p ◦i q)(x1, . . . , xn+m−1) = p(x1 . . . , xi−1, q(xi, . . . , xi+m−1), xi+m, . . . , xn+m−1).

If the operad is symmetric the evaluation maps are required to be equivariant with
respect to the action of the symmetric group as follows:

(p · σ)(x1, . . . , xn) = p(xσ−1(1), . . . , xσ−1(n)).

In the sequel an operad will always mean a reduced operad.

Definition 1.2. In this paper we will consider two type of trees: planar rooted trees
will represent the composition maps in a non-symmetric operad (see 1.3) and rooted
trees will be the objects of our study (see 1.4). Here are the definitions we will use
in the sequel.

By a (planar) tree we mean a non empty finite connected contractible (planar)
graph. All the trees considered are rooted.

In the planar case some edges (external edges or legs) will have only one adjacent
vertex; the other edges are called internal edges. There is a distinguished leg called
the root leg. The other legs are called the leaves. The choice of a root induces a
natural orientation of the graph from the leaves to the root. Any vertex has incoming
edges and only one outgoing edge. The arity of a vertex is the number of incoming
edges. A tree with no vertices of arity one is called reduced. A planar rooted tree
induces a structure of poset on the vertices, where x < y if and only if there is an
oriented path in the tree from y to x. Let x be a vertex of a planar rooted tree T .
The full subtree T (x) of T at x is the subtree of T containing all the vertices y > x

and all their adjacent edges. The root leg of T (x) is the half edge with adjacent vertex
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x induced by the unique outgoing edge of x. One represents a planar rooted tree like
this:

..

.. ..

....

In the abstract case (non-planar trees) every edge is an internal edge. The root
vertex will be a distinguished vertex. The choice of a root induces a natural orien-
tation of the graph towards the root. Any vertex has incoming edges and at most
one outgoing edge. The other extremity of an incoming (outgoing) edge of the vertex
v is called an incoming (outgoing) vertex of the vertex v. The root vertex has no
outgoing vertex. A rooted tree induces a structure of poset on the vertices, where
x < y if and only if there is an oriented path in the tree from y to x. A leave is a
maximal vertex for this order. The root is the only minimal vertex for this order.
Let x be a vertex of a rooted tree T . The full subtree T (x) of T derived from the
vertex x is the subtree of T containing all the vertices y > x. The root of T (x) is x.
One represents a rooted tree like this:

b

r r

@�
x

y z

Remark 1.3. Reduced planar tree of operations: a convenient way to uniquely
represent composition of operations in a non-symmetric operad P is to use a planar
rooted tree as in Definition 1.2. An element a ∈ P(n) is represented by a planar
rooted tree with a single vertex labelled by a with n incoming legs and a single
outgoing leg:

a

..

.

The n leaves are counted from left to right as 1, 2, . . . , n. Now if we have a ∈ P(n),
b ∈ P(m) and 1 ≤ i ≤ n we represent the composition a ◦i b by the planar tree

a

b

....

..

i

.

The resulting tree has n + m − 1 leaves (counted from left to right) and represents
an element of P(n + m− 1). The two first relations in Definition 1.1 corresponds to
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the following two trees: for a ∈ P(n), b ∈ P(m) and c ∈ P(ℓ) we can have

a

b

c

....

..

i

..

j

or

a

c b

..

.. ..

....

j i

Each relation is obtained by writing down the two ways of interpreting the tree as a
composition of operations. In general a planar tree T(a1, a2, . . . , ak) with k vertices
labelled by elements ai ∈ P(ni) where ni is the number of incoming edges at the ith
vertex, corresponds to a unique composition of operations in P independent of any
relations.

The two last relations in Definition 1.1 say that one can consider reduced trees (no
vertices of arity 1) for reduced operads to represent non-trivial composition maps.

Any full subtree of T(a1, a2, . . . , ak) is completely determined by the position of its
leaves; they form an interval [p, q] where 1 ≤ p ≤ q ≤ n1 + n2 + · · ·nk − k + 1. A
tree in position [p, q] will mean the full subtree determined by the position [p, q] of
its leaves. If a full subtree in position [p, q] has a single vertex labelled by a ∈ P(n)
we identify this tree with the element a ∈ P(n). It is clear that n = q − p + 1.

Two trees of operations T(a1, a2, . . . , ak) and Y(b1, b2, . . . , bs) are distinct if and
only if T 6= Y or there exists i such that ai 6= bi.

Definition 1.4. Let S be a set. An S-labelled rooted tree is a non planar rooted
tree as in Definition 1.2 whose vertices are in bijection with S. If S = [n], then we
talk about n-labelled rooted trees and denote by T (n) the set of those trees. It is
acted on by the symmetric group by permuting the labels.

The set T (3) has for elements:

(1.1)
b

r r

@�
1

2 3

b

r r

@�
2

1 3

b

r r

@�
3

1 2

b

r

r

1

2

3

b

r

r

1

3

2

b

r

r

2

3

1

b

r

r

2

1

3

b

r

r

3

1

2

b

r

r

3

2

1

In general T (n) has nn−1 elements (see [1] for more details).

We denote by kT (n) the k-vector space spanned by T (n).

Theorem 1.5. [2, theorem 1.9] The collection (kT (n))n≥1 forms a symmetric operad,
the operad pre-Lie denoted by PL. Algebras over this operad are pre-Lie algebras,
that is, vector spaces L together with a product ∗ satisfying the relation

(x ∗ y) ∗ z − x ∗ (y ∗ z) = (x ∗ z) ∗ y − x ∗ (z ∗ y), ∀x, y, z ∈ L.

We recall the operad structure of PL as explained in [2]. A rooted tree is naturally
oriented from the leaves to the root. The set In(T, i) of incoming vertices of a vertex
i is the set of all vertices j such that (j, i) is an edge oriented from j to i. There is
also at most one outgoing vertex of a vertex i, i.e. a vertex r such that (i, r) is an
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oriented edge from i to r, depending whether i is the root of T or not. For T ∈ T (n)
and S ∈ T (m), we define

T ◦i S =
∑

f :In(T,i)→[m]

T ◦f
i S,

where T ◦f
i S is the rooted tree obtained by substituting the tree S for the vertex i

in T . The outgoing vertex of i, if it exists, becomes the outgoing vertex of the root
of S, whereas the incoming vertices of i are grafted on the vertices of S according to
the map f . The root of T ◦f

i S is the root of T if i is not the root of T , and it is the
root of S if i is the root of T . There is also a relabelling of the vertices of T and S in
T ◦f

i S: we add i− 1 to the labels of S and m− 1 to the ones of T which are greater
than i. Here is an example:

(1.2)
r r

b@�

1 3

2

◦2
r

b

1

2

=
r r

b@�

1 4

2

◦2
r

b

2

3

=
r

r r

b

@�
2

1 4

3

+
r

r

r

b�
2

1

4

3

+
r

r

r

b�
2

4

1

3

+
r r r

b@�

21 4

3

2. A gradation on labelled rooted trees

We introduce a gradation on labelled rooted trees. We prove that in the expan-
sion of the composition of two rooted trees in the operad pre-Lie there is a unique
rooted tree of maximal degree and a unique tree of minimal degree, yielding new
non-symmetric operad structures on labelled rooted trees.

Definition 2.1. Let T be an n-labelled rooted tree. Let {a, b} denote a pair of two
adjacent vertices labelled by a and b. The degree of {a, b} is |a − b|. The degree of
T denoted by deg(T ) is the sum of the degrees of its pairs of adjacent vertices. For
instance

deg(r r

b@�

1 3

2

) = 2, deg( r

r r

b

@�
2

1 4

3

) = 4, deg( r

r

r

b�
2

4

1

3

) = 5, deg( r

r

r

b�
2

1

4

3

) = 3

Proposition 2.2. In the expansion of T ◦i S in the operad pre-Lie, there is a unique
tree of minimal degree and a unique tree of maximal degree.

For instance, in the equation (1.2) the rooted tree of minimal degree 3 is r

r

r

b�
2

1

4

3

and

the one of maximal degree 5 is
r

r

r

b�
2

4

1

3

. The other ones are of degree 4.

Proof– Any tree in the expansion of T ◦i S writes Uf := T ◦f
i S for some f : In(T, i) →

[m]. To compute the degree of Uf , we compute the degree of a pair of two adjacent
vertices {a, b} in Uf . There are 4 cases to consider: a) the pair was previously in S

or b) it was previously in T and each vertex was different from i, or c) it was in T of
the form {i, j} for j ∈ In(T, i) or d) if i is not the root of T it was of the form {i, k}
where k is the outgoing vertex of i.
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In case a) the degree of the pair in Uf is the same as it was in S.
In case b), let {a′, b′} be the corresponding pair in T before relabelling. The degree

d of the pair {a, b} in Uf is the same as the degree d′ of {a′, b′} except if a′ < i < b′

or b′ < i < a′, where d = d′ + m − 1. Let gap(T, i) be the number of adjacent pairs
of vertices in T satisfying the latter condition.

In case c), let {i, j} be the pair in T which gives the pair {a, b} in Uf . Let d′ be the
degree of {i, j}. If j < i then {a, b} = {f(j) + i − 1, j}. Its degree d is minimal and
equals d′ if f(j) = 1. It is maximal and equals d′ + m − 1 if f(j) = m. If j > i then
{a, b} = {f(j) + i− 1, j + m− 1}. Its degree d is minimal and equals d′ if f(j) = m.
It is maximal and equals d′ + m − 1 if f(j) = 1.

In case d), let d′ be the degree of {i, k}. If k < i then {a, b} = {s + i − 1, k}
where s is the label of the root of S. It has degree d′ + s − 1. If k > i, then
{a, b} = {s + i − 1, k + m − 1} and has degree (m − s) + d′. Let ǫ(T, i, s) be
0, s− 1, m− s according to the different situations, 0 correponding to the one where
i is the root of T .

As a conclusion

(2.1) deg(T ) + deg(S) + gap(T, i)(m − 1) + ǫ(T, i, s) ≤ deg(Uf ) ≤

deg(T ) + deg(S) + gap(T, i)(m − 1) + ǫ(T, i, s) + |In(T, i)|(m − 1).

There is a unique fMin such that deg(UfMin
) is minimal and there is a unique fMax

such that deg(UfMax
) is maximal:

(2.2) fMin(k) =

{
1 if k < i,

m if k > i,

(2.3) fMax(k) =

{
m if k < i,

1 if k > i,

which ends the proof. �

Theorem 2.3. There are two different non-symmetric operad structures on the col-
lection (kT (n))n≥1 given by the composition maps T ◦fMin

i S on the one hand and

T ◦fMax

i S on the other hand where fMin and fMax were defined in equations (2.2) and
(2.3).

Proof– A rooted tree T is naturally oriented from its leaves to its root. Any edge is
oriented and we denote by (a, b) an edge oriented from the vertex a to the vertex b.
Let ET be the set of the oriented edges of the tree T . For an integer a 6= i we denote
by ãm

i the integer a if a < i or a + m − 1 if a > i. Given a map f : In(T, i) → [m],
the set E

T◦
f
i S

has different type of elements:

• (a + i − 1, b + i − 1) for (a, b) ∈ ES;

• (ãm
i , b̃m

i ) for (a, b) ∈ ET and a, b 6= i;
• (ãm

i , f(a) + i − 1) for (a, i) ∈ ET ;

• (i + s − 1, b̃m
i ) for (i, b) ∈ ET .
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Let T ∈ T (n), S ∈ T (m) and U ∈ T (p). In order to avoid confusion, we denote by
f

i,p
Max the map sending k < i to p and l > i to 1. We would like to compare the trees

V1 = (T ◦
f

i,m
Max

i S) ◦
f

j+i−1,p
Max

j+i−1 U and V2 = T ◦
f

i,m+p−1

Max

i (S ◦
f

j,p
Max

j U) :

• In V1 and V2, any (a, b) ∈ EU converts to (a + j + i − 2, b + j + i − 2).

• In V1 and V2, any (a, b) ∈ ES converts to (ãp
j + i − 1, b̃p

j + i − 1) if a, b 6=

j, or converts to (ãp
j + i − 1, f j,p

Max(a) + i + j − 2) if b = j or converts to

(j + i − 1 + u − 1, b̃p
j + i − 1) if a = j.

• In V1 and V2, any (a, b) ∈ ET with a, b 6= i converts to (ãp+m−1
i , b̃

p+m−1
i ).

• In V1 and V2, any (a, i) ∈ ET converts to (ãp+m−1
i , f

i,m+p−1
Max (a) + i − 1).

• In V1 and V2, any (i, b) ∈ ET converts to (i− 1 + root(S ◦j U), b̃m+p−1
i ), where

root(S ◦j U) is the root of S ◦j U . More precisely

root(S ◦j U) =





s if s < j

u + j − 1 if s = j

s + p − 1 if s > j.

The proof of

(T ◦
f

i,m
Max

i S) ◦
f

j,p
Max

j U = (T ◦
f

j,p
Max

j U) ◦
f

i+p−1,m
Max

i+p−1 S, for j < i

is similar and left to the reader. So is the proof with fMin instead of fMax. �

The two operads on labelled rooted trees defined by the theorem are denoted by
TMax and TMin. Note that they are linearization of operads in the category of sets.
Actually the composition maps are defined at the level of the sets T (n) and not only
at the level of the vector spaces kT (n). There is another operad built on rooted
trees which has this property: the operad NAP encoding non-asociative permutative
algebras in [3], in which fNAP is the constant map with value the root of S. This
operad has the advantage of being a symmetric operad.

3. The operad pre-Lie is free as a non-symmetric operad

We show that TMax is a free non-symmetric operad. Using Proposition 2.2, we
conclude that the operad pre-Lie is free as a non-symmetric operad. To this end we
need to introduce some notation on rooted trees.

Definition 3.1. Given two ordered sets S and T , an order-preserving bijection φ :
S → T induces a natural bijection between the set of S-labelled rooted trees and
the set of T -labelled rooted trees also denoted by φ. A T -labelled rooted tree X is
isomorphic to an S-labelled rooted tree Y if X = φ(Y ).

Given a rooted tree T ∈ T (n) and a subset K ⊆ [n], we denote by T
∣∣
K

the graph
obtained from T by keeping only the vertices of T that are labelled by elements of
K and only the edges of T that have two vertices labelled in K. Remark that each
connected component of T

∣∣
K

is a rooted tree itself where the root is given by the
unique vertex closest to the root of T in the component. Also, for c ∈ [n] we denote
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by T (c) the full subtree of T derived from the vertex labelled by c (see Definition 1.2).
For example if K = {2, 3, 4, 5, 6} ⊂ [7] and

T =
r

r

r

b

r

r r

�@

�@
1

6

4

3

5

72

, we have T
∣∣
K

=

b

r

b

r

r

�@

@6

4

3

5

2

and T (1) =
b

r

r r

�@
1

6

72

.

For 1 ≤ a < b ≤ n, T ∈ TMax(n − b + a) and S ∈ TMax(b − a + 1), let X = T ◦a S.
Consider the interval [a, b] = {a, a+1, . . . , b}, clearly X

∣∣
[a,b]

is isomorphic to S under

the unique order-preserving bijection [1, b−a+1] → [a, b]. Let a ≤ c ≤ b be the label
of the root of X

∣∣
[a,b]

. Remark that X(c) is obtained from X
∣∣
[a,b]

by grafting subtrees

of X at the vertices a and b only. We can then characterize trees X that are obtained
from a non-trivial composition T ◦a S as follows:

Definition 3.2. A tree X ∈ TMax(n) is called decomposable if there exists 1 ≤ a <

b ≤ n with (a, b) 6= (1, n) such that

(i) X
∣∣
[a,b]

is a rooted tree. Let c be the label of its root. One has a ≤ c ≤ b.

(ii) One has X(c)|[a,b] = X
∣∣
[a,b]

and X(c) is obtained from X
∣∣
[a,b]

by grafting sub-

trees of X at the vertices a and b only.
(iii) All subtrees in X(c)−X

∣∣
[a,b]

attached at a have their root labelled in [b+1, n].

(iv) All subtrees in X(c)−X
∣∣
[a,b]

attached at b have their root labelled in [1, a−1].

It is clear from the discussion above and the definition of the operad TMax that X is
decomposable if and only if it is the result of a non-trivial composition. Consequently,
we say that X is indecomposable if it is not decomposable. That is there is no
1 ≤ a < b ≤ n such that (i)–(iv) are satisfied. For example let

X =
r

r r

b

r

r r

r

@

1

�
@

�@

5

3 2

6

8

47

, X
∣∣
[3,5]

=
b

r

r

�

5

3

4

and X(5) =
b

r r

r r

�
�@r

@

1

5

3 2

47

,

This tree X is decomposable since for 1 ≤ 3 < 5 ≤ 8 we have that X
∣∣
[3,5]

is a single

tree and the subtrees of X(5) − X
∣∣
[3,5]

are attached at 3 and 5 only. Moreover, the

subtree attached at 3 has root labelled by 7 ∈ [6, 8] and the subtrees attached at 5
have roots labelled by 1, 2 ∈ [1, 2]. Indeed, in TMax we have

X =
r

r r

b

r

r

@

1

�
@

3

5 2

4

6

◦3
r

r

b

1

2

3

.

The reader may check that the following are all the indecomposable trees of TMax up
to arity 3:

r

b

2

1

,
r

b

1

2

and
rr

b@�
1 3

2

.

Theorem 3.3. The non-symmetric operad TMax is a free non-symmetric operad.
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Proof. If TMax is not free, then for some n there is a tree X ∈ TMax(n) with two distinct
constructions from indecomposables. In Remark 1.3, a non-trivial composition of
operations is completely determined by a unique reduced planar rooted tree. We
then have that X = T(T1, T2, . . . , Tr) = Y(S1, S2, . . . , Sk) where T1, . . . , Tr, S1, . . . , Sk

are indecomposables and T(T1, T2, . . . , Tr) and Y(S1, S2, . . . , Sk) are two distinct trees
of operations in TMax with r, k > 1.

The tree X = T(T1, T2, . . . , Tr) is decomposable (by assumption r ≥ 2). We can
find 1 ≤ a < b ≤ n, such that X

∣∣
[a,b]

is isomorphic to a single Ti in position [a, b] in

T(T1, T2, . . . , Tr). Moreover X
∣∣
[a,b]

satisfies (i)–(iv) of Definition 3.2.

If X
∣∣
[a,b]

is also isomorphic to a tree Sj in position [a, b] in Y(S1, S2, . . . , Sk), then

we replace X by the smaller tree in TMax(n − b + a) that we obtain by removing Ti

in T(T1, T2, . . . , Tr) and removing Sj in Y(S1, S2, . . . , Sk). Clearly, this new smaller
X has two distinct constructions from indecomposables. We can thus assume that
X

∣∣
[a,b]

is not isomorphic to a single Sj in position [a, b] in Y(S1, S2, . . . , Sk).

We now study how X
∣∣
[a,b]

overlaps in the position [a, b] of Y(S1, S2, . . . , Sk). Re-

mark first that since all Sj are indecomposables, the interval [a, b] cannot be part of
a single Sj of Y(S1, S2, . . . , Sk). Indeed, that would imply that Sj would contain a
subtree satisfying Definition 3.2 which would be a contradiction.

We may assume that a > 1. To see this, assume that the only sub-interval [a, b] ⊂
[1, n] such that X

∣∣
[a,b]

is isomorphic to a single Ti in position [a, b] in T(T1, T2, . . . , Tr)

is such that a = 1. Assume moreover that the only sub-interval [a′, b′] ⊂ [1, n] such
that X

∣∣
[a′,b′]

is isomorphic to a single Sj in position [a′, b′] in Y(S1, S2, . . . , Sk) is such

that a′ = 1. Since Sj is indecomposable, we must have b > b′. Similarly, since Ti

is indecomposable, we must have b < b′. This implies that b = b′ and Ti = Sj .
This possibility was excluded above. So we must have a > 1 or a′ > 1. In the case
where a = 1 and a′ > 1 we could just interchange the role of T(T1, T2, . . . , Tr) and
Y(S1, S2, . . . , Sk) and assume that we have a > 1.

Now, since Ti is indecomposable, there is no subinterval [c, d] ⊆ [a, b] such that
X

∣∣
[c,d]

is isomorphic to a full subtree of operations Y′(Sj1, Sj2, . . . , Sjℓ
). Assume we can

find c < a ≤ d < b such that X
∣∣
[c,d]

∼= Y
′(Sj1, Sj2, . . . , Sjℓ

) satisfies the Definition 3.2.

The graph X
∣∣
[a,d]

is contained in the trees X
∣∣
[a,b]

and X
∣∣
[c,d]

. Let e be the label

of the root of X
∣∣
[a,b]

and f be the label of the root of X
∣∣
[c,d]

. The two full subtrees

X(e) and X(f) both contain X
∣∣
[a,d]

. This implies that either X(f) is fully contained

in X(e), or X(e) is fully contained in X(f).
Let us assume that X(f) is fully contained in X(e), that means X

∣∣
[a,b]

and X
∣∣
[c,d]

are both subtrees of X(e). From Definition 3.2, we know that X(e) is obtained from
X

∣∣
[a,b]

by graphting subtrees of X at the vertices a and b only. The vertex c is in

X(e) but not in X
∣∣
[a,b]

. It is part of a subtree attached to a or b. Since c is part of a

subtree with root f one has f 6∈]a, b[. The vertex f is a (can not be b since f ≤ d) or
is attached to a or b. If f is attached to b then there is a path c → f → b. The tree
X|[c,d] has its root labelled by f so there is a path d → f . The tree X|[a,b] contains
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the vertices b and d and any path from d to b so there is a path d → f → b in
X|[a,b]. Hence f = a for f 6∈ ]a, b]. As a conclusion c is part of a subtree attached to

a. By (iii) of Definition 3.2 applied to the tree X
∣∣
[a,b]

, the subtree must have a root

r ∈ [b + 1, n]. This is a contradiction, the root r is part of any path joining a and c

and r 6∈ [c, d], hence not in X
∣∣
[c,d]

. The case where X(e) is fully contained in X(f) is

argued similarly, using condition (iv) of Definition 3.2, and leads to a contradiction
as well.

The same argument holds in case we can find a < c ≤ b < d.
The only case remaining is that the interval [p, q] associated to any full subtree

Y(S1, . . . , Sk)
(Sj) of Y(S1, . . . , Sk), satisfies [a, b] ∩ [p, q] = ∅ or [a, b] ⊂ [p, q]. There

is at least one interval satisfying [a, b] ⊂ [p, q] (take the full tree Y(S1, . . . , Sk) and
[p, q] = [1, n]). Let [p, q] be the smallest interval such that [a, b] ⊂ [p, q] and let
Y(S1, . . . , Sk)

(Sj) = Y′(Si1 , . . . , Sil) be the full subtree it determines. Its root is la-
belled by Sj . The interval [u, v] associated to any proper full subtree of Y′(Si1, . . . , Sil)
satisfies [a, b] ∩ [u, v] = ∅. Consequently X|[a,b] is isomorphic to Sj |[α,β] for some in-
terval [α, β] isomorphic to [a, b]. This is impossible since X satisfies the conditions of
Definition 3.2 and Sj is indecomposable.

We must conclude that TMax is free. �

Remark 3.4. The non-symmetric operads TMin and NAP are not free. Indeed, in
the operad TMin one has the following relation:

r

b

2

1

◦1
r

b

2

1

=
r

b

2

1

◦2
r

b

2

1

=
r

r

b

2

3

1

And in the operad NAP one has the following relation

r

b

2

1

◦1
r

b

1

2

= r

b

1

2

◦2
r

b

2

1

= r r

b@�

1 3

2

Remark 3.5. Let kT 0
Max(n) denote the k-vector space spanned by the indecompos-

ables of TMax(n) (n > 1) and let βn be its dimension. Let α(x) =
∑

n≥1 αnx
n be the

Hilbert series associated to the free non-symmetric operad generated by the vector
spaces kT 0

Max(n). It is well known (see e.g. [5]) that one has the identity

β(α(x)) + x = α(x),

where β(x) =
∑

n≥2 βnxn. Theorem 3.3 implies that αn = nn−1. As a consequence,
we get that the Hilbert series for indecomposable of TMax is

HT 0
Max

(x) =
∑

n≥2

dim
(
kT 0

Max(n)
)
xn = 2x2 + x3 + 14x4 + 146x5+

+1994x6 + 32853x7 + 630320x8 + 13759430x9 + · · · .

Corollary 3.6. The non-symmetric operad pre-Lie is a free non-symmetric operad.
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Proof. Let F be the free non-symmetric operad on indecomposable trees. By the
universal property of F , there is a unique morphism of operads

φ : F → PL

extending the inclusion of indecomposable trees in PL. We prove that this map is
surjective by induction on the degree of a tree. Trees of degree 1 are indecomposables
(see Definition 3.2). Let t ∈ PL(n) be a tree of degree k ≥ n− 1. If t is indecompos-
able then t = φ(t). If t is decomposable there are trees u ∈ PL(r), v ∈ PL(s), with

r, s < n such that t = u ◦fMax

i v in TMax. By Proposition 2.2 one has in PL

u ◦i v = t +
∑

j

tj

where tj ∈ PL(n) has degree kj < k. From equation (2.1) we deduce that the degrees
of u and v are also lower than k. By induction, the trees u, v and t′js are in the image
of φ, so is t. Thus, the operad morphism φ is surjective. Theorem 3.3 implies that the
vector spaces F(n) and PL(n) have the same dimension, thus the operad morphism
φ is an isomorphism. �

Remark 3.7. The Hilbert Series for the free non-symmetric operad on indecompos-
ables and the operad PL are the same as in Remark 3.5.
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