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The non-symmetric operad pre-Lie is free

Nantel Bergeron, Muriel Livernet

Introduction

Operads are a specific tool for encoding type of algebras. For instance there are operads encoding associative algebras, commutative and associative algebras, Lie algebras, pre-Lie algebras, dendriform algebras, Poisson algebras and so on. A usual way of describing a type of algebras is by giving the generating operations and the relations among them. For instance a Lie algebra L is a vector space together with a bilinear product, the bracket (the generating operation) satisfying the relations [x, y] = -[y, x] and [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L. The vector space of all operations one can perform on n distinct variables in a Lie algebra is Lie(n), the building block of the symmetric operad Lie. Composition in the operad corresponds to composition of operations. The vector space Lie(n) has a natural action of the symmetric group, so it is a symmetric operad. The case of associative algebras can be considered in two different ways. An associative algebra A is a vector space together with a product satisfying the relation (xy)z = x(yz). The vector space of all operations one can perform on n distinct variables in an associative algebra is As(n), the building block of the symmetric operad As. The vector space As(n) has for basis the symmetric group S n . But, in view of the relation, one can look also at the vector space of all order-preserving operations one can perform on n distinct ordered variables in an associative algebra: this is a vector space of dimension 1 generated by the only operation x 1 • • • x n . So the non-symmetric operad As describing associative algebras is 1-dimensional for each n: this is the terminal object in the category of non-symmetric operads.

Here is the connection between symmetric and non-symmetric operads. A symmetric operad P starts with a graded vector space (P(n)) n≥0 together with an action of the symmetric group S n on P(n) for each n. This data is called a symmetric sequence or an S-module or a vector species. There is a forgetful functor from the category of vector species to the category of graded vector spaces, forgetting the action of the symmetric group. This functor has a left adjoint S which corresponds to tensoring by the regular representation of the symmetric group. A symmetric (non-symmetric) operad is a monoid in the category of vector species (graded vector spaces). Again there is a forgetful functor from the category of symmetric operads to the category of non-symmetric operads admitting a left adjoint S. The symmetric operad As is the image of the non-symmteric operad As by S. It is clear that Lie is not in the image of S since the Jacobi relation does not respect the order of the variables x < y < z nor the anti-symmetry relation. Still one can regard Lie as a non-symmetric operad applying the forgetful functor. Salvatore and Tauraso proved in [START_REF] Salvatore | The operad Lie is free[END_REF] that the operad Lie is a free non-symmetric operad.

A free non-symmetric operad describes type of algebras which have a set of generating operations and no relations between them. For instance, magmatic algebras are vector spaces together with a bilinear product. There is a well known free nonsymmetric operad, the Stasheff operad, built on Stasheff polytopes, see e.g. [START_REF] Dillon | Homotopy associativity of H-spaces. I[END_REF]. An algebra over the Stasheff operad is a vector space V together with an n-linear product: V ⊗n → V for each n. From the point of view of homotopy theory, the category of operads is a Quillen category and free operads play an essential role in the homotopy category. One wants to replace an operad P by a quasi-free resolution, that is, a morphism of operads Q → P where Q is a free operad endowed with a differential realizing an isomorphism in homology. For instance, a quasi-free resolution of As, in the category of non-symmetric operads, is given by the Stasheff operad. Algebras over this operad are A ∞ -algebras (associative algebras up to homotopy). This gives us the motivation for studying whether a given symmetric operad is free as a non-symmetric operad or not.

In this paper we prove that the operad pre-Lie is a free non-symmetric operad. Pre-Lie algebras are vector spaces together with a bilinear product satisfying the relation (x * y) * zx * (y * z) = (x * z) * yx * (z * y). The operad pre-Lie is based on labelled rooted trees which are of combinatorial interest. In the process of proving the main result, we describe another operad denoted T Max also based on rooted trees and having the advantage of being the linearization of an operad in the category of sets. We prove that it is a free non-symmetric operad. The link between the two operads is made via a gradation on labelled rooted trees.

The pre-Lie operad and rooted trees

We first recall the definition of the pre-Lie operad based on labelled rooted trees as in [START_REF] Chapoton | Pre-Lie algebras and the rooted trees operad[END_REF]. For n ∈ N * , the set {1, . . . , n} is denoted by [n] and [0] denotes the empty set. The symmetric group on k letters is denoted by S k . There are many equivalent definitions of operads and we refer to [START_REF] Markl | Operads in algebra, topology and physics[END_REF] for basics on operads. We work over the ground field k and vector spaces are considered over k. Here are the definitions needed for the sequel. Definition 1.1. A (reduced) non-symmetric operad is a graded vector space (P(n)) n≥1 , with a unit 1 ∈ P(1) = k, together with composition maps • i : P(n) ⊗ P(m) → P(n + m -1) for 1 ≤ i ≤ n satisfying the following relations: for a ∈ P(n), b ∈ P(m) and c ∈ P(ℓ)

(a • i b) • j+i-1 c = a • i (b • j c), for 1 ≤ j ≤ m, (a • i b) • j c = (a • j c) • i+ℓ-1 b, for j < i, 1 • 1 a = a, a • i 1 = a, A non-trivial composition is a composition a • i b with a ∈ P(n), b ∈ P(m) and n, m > 1.
If in addition each P (n) is acted on the right by the symmetric group S n and the composition maps are equivariant with respect to this action, then the collection (P(n)) n forms a symmetric operad. An algebra over an operad P is a vector space X endowed with evaluation maps

ev n : P(n) ⊗ X ⊗n → X p ⊗ x 1 ⊗ . . . ⊗ x n → p(x 1 , . . . , x n )
compatible with the composition maps • i : for p ∈ P(n), q ∈ P(m), x ′ i s ∈ X one has (p • i q)(x 1 , . . . , x n+m-1 ) = p(x 1 . . . , x i-1 , q(x i , . . . , x i+m-1 ), x i+m , . . . , x n+m-1 ).

If the operad is symmetric the evaluation maps are required to be equivariant with respect to the action of the symmetric group as follows:

(p • σ)(x 1 , . . . , x n ) = p(x σ -1 (1) , . . . , x σ -1 (n) ).
In the sequel an operad will always mean a reduced operad. Definition 1.2. In this paper we will consider two type of trees: planar rooted trees will represent the composition maps in a non-symmetric operad (see 1.3) and rooted trees will be the objects of our study (see 1.4). Here are the definitions we will use in the sequel.

By a (planar) tree we mean a non empty finite connected contractible (planar) graph. All the trees considered are rooted.

In the planar case some edges (external edges or legs) will have only one adjacent vertex; the other edges are called internal edges. There is a distinguished leg called the root leg. The other legs are called the leaves. The choice of a root induces a natural orientation of the graph from the leaves to the root. Any vertex has incoming edges and only one outgoing edge. The arity of a vertex is the number of incoming edges. A tree with no vertices of arity one is called reduced. A planar rooted tree induces a structure of poset on the vertices, where x < y if and only if there is an oriented path in the tree from y to x. Let x be a vertex of a planar rooted tree T . The full subtree T (x) of T at x is the subtree of T containing all the vertices y > x and all their adjacent edges. The root leg of T (x) is the half edge with adjacent vertex x induced by the unique outgoing edge of x. One represents a planar rooted tree like this: .. .. ..

.. ..

In the abstract case (non-planar trees) every edge is an internal edge. The root vertex will be a distinguished vertex. The choice of a root induces a natural orientation of the graph towards the root. Any vertex has incoming edges and at most one outgoing edge. The other extremity of an incoming (outgoing) edge of the vertex v is called an incoming (outgoing) vertex of the vertex v. The root vertex has no outgoing vertex. A rooted tree induces a structure of poset on the vertices, where x < y if and only if there is an oriented path in the tree from y to x. A leave is a maximal vertex for this order. The root is the only minimal vertex for this order. Let x be a vertex of a rooted tree T . The full subtree T (x) of T derived from the vertex x is the subtree of T containing all the vertices y > x. The root of T (x) is x. One represents a rooted tree like this: Each relation is obtained by writing down the two ways of interpreting the tree as a composition of operations. In general a planar tree T(a 1 , a 2 , . . . , a k ) with k vertices labelled by elements a i ∈ P(n i ) where n i is the number of incoming edges at the ith vertex, corresponds to a unique composition of operations in P independent of any relations.

The two last relations in Definition 1.1 say that one can consider reduced trees (no vertices of arity 1) for reduced operads to represent non-trivial composition maps.

Any full subtree of T(a 1 , a 2 , . . . , a k ) is completely determined by the position of its leaves; they form an interval [p, q] where 1

≤ p ≤ q ≤ n 1 + n 2 + • • • n k -k + 1.
A tree in position [p, q] will mean the full subtree determined by the position [p, q] of its leaves. If a full subtree in position [p, q] has a single vertex labelled by a ∈ P(n) we identify this tree with the element a ∈ P(n). It is clear that n = qp + 1.

Two trees of operations T(a 1 , a 2 , . . . In general T (n) has n n-1 elements (see [START_REF] Bergeron | of Encyclopedia of Mathematics and its Applications[END_REF] for more details).

We denote by kT (n) the k-vector space spanned by T (n).

Theorem 1.5. [2, theorem 1.9] The collection (kT (n)) n≥1 forms a symmetric operad, the operad pre-Lie denoted by PL. Algebras over this operad are pre-Lie algebras, that is, vector spaces L together with a product * satisfying the relation

(x * y) * z -x * (y * z) = (x * z) * y -x * (z * y), ∀x, y, z ∈ L.
We recall the operad structure of PL as explained in [START_REF] Chapoton | Pre-Lie algebras and the rooted trees operad[END_REF]. A rooted tree is naturally oriented from the leaves to the root. The set In(T, i) of incoming vertices of a vertex i is the set of all vertices j such that (j, i) is an edge oriented from j to i. There is also at most one outgoing vertex of a vertex i, i.e. a vertex r such that (i, r) is an oriented edge from i to r, depending whether i is the root of T or not. For T ∈ T (n) and S ∈ T (m), we define

T • i S = f :In(T,i)→[m] T • f i S,
where T • f i S is the rooted tree obtained by substituting the tree S for the vertex i in T . The outgoing vertex of i, if it exists, becomes the outgoing vertex of the root of S, whereas the incoming vertices of i are grafted on the vertices of S according to the map f . The root of T • f i S is the root of T if i is not the root of T , and it is the root of S if i is the root of T . There is also a relabelling of the vertices of T and S in T • f i S: we add i -1 to the labels of S and m -1 to the ones of T which are greater than i. Here is an example: 

(1.2)

A gradation on labelled rooted trees

We introduce a gradation on labelled rooted trees. We prove that in the expansion of the composition of two rooted trees in the operad pre-Lie there is a unique rooted tree of maximal degree and a unique tree of minimal degree, yielding new non-symmetric operad structures on labelled rooted trees. Proposition 2.2. In the expansion of T • i S in the operad pre-Lie, there is a unique tree of minimal degree and a unique tree of maximal degree.

For instance, in the equation (1.2) the rooted tree of minimal degree 3 is r . The other ones are of degree 4.

Proof-Any tree in the expansion of T

• i S writes U f := T • f i S for some f : In(T, i) → [m].
To compute the degree of U f , we compute the degree of a pair of two adjacent vertices {a, b} in U f . There are 4 cases to consider: a) the pair was previously in S or b) it was previously in T and each vertex was different from i, or c) it was in T of the form {i, j} for j ∈ In(T, i) or d) if i is not the root of T it was of the form {i, k} where k is the outgoing vertex of i.

In case a) the degree of the pair in U f is the same as it was in S. In case b), let {a ′ , b ′ } be the corresponding pair in T before relabelling. The degree d of the pair {a, b} in U f is the same as the degree

d ′ of {a ′ , b ′ } except if a ′ < i < b ′ or b ′ < i < a ′ , where d = d ′ + m -1.
Let gap(T, i) be the number of adjacent pairs of vertices in T satisfying the latter condition.

In case c), let {i, j} be the pair in T which gives the pair {a, b} in U f . Let d ′ be the degree of {i, j}. If j < i then {a, b} = {f (j) + i -1, j}. Its degree d is minimal and

equals d ′ if f (j) = 1. It is maximal and equals d ′ + m -1 if f (j) = m. If j > i then {a, b} = {f (j) + i -1, j + m -1}. Its degree d is minimal and equals d ′ if f (j) = m.

It is maximal and equals

d ′ + m -1 if f (j) = 1.
In case d), let d ′ be the degree of {i, k}. If k < i then {a, b} = {s + i -1, k} where s is the label of the root of S. It has degree d ′ + s -1. If k > i, then {a, b} = {s + i -1, k + m -1} and has degree (ms) + d ′ . Let ǫ(T, i, s) be 0, s -1, ms according to the different situations, 0 correponding to the one where i is the root of T .

As a conclusion

(2.1) deg(T ) + deg(S) + gap(T, i)(m -1) + ǫ(T, i, s) ≤ deg(U f ) ≤ deg(T ) + deg(S) + gap(T, i)(m -1) + ǫ(T, i, s) + |In(T, i)|(m -1).
There is a unique f Min such that deg(U f Min ) is minimal and there is a unique

f Max such that deg(U f Max ) is maximal: (2.2) f Min (k) = 1 if k < i, m if k > i, (2.3) f Max (k) = m if k < i, 1 if k > i,
which ends the proof. 

3).

Proof-A rooted tree T is naturally oriented from its leaves to its root. Any edge is oriented and we denote by (a, b) an edge oriented from the vertex a to the vertex b. Let E T be the set of the oriented edges of the tree T . For an integer a = i we denote by ãm i the integer

a if a < i or a + m -1 if a > i. Given a map f : In(T, i) → [m], the set E T • f i S has different type of elements: • (a + i -1, b + i -1) for (a, b) ∈ E S ; • (ã m i , bm i ) for (a, b) ∈ E T and a, b = i; • (ã m i , f (a) + i -1) for (a, i) ∈ E T ; • (i + s -1, bm i ) for (i, b) ∈ E T .
Let T ∈ T (n), S ∈ T (m) and U ∈ T (p). In order to avoid confusion, we denote by f i,p

Max the map sending k < i to p and l > i to 1. We would like to compare the trees

V 1 = (T • f i,m Max i S) • f j+i-1,p Max j+i-1 U and V 2 = T • f i,m+p-1 Max i (S • f j,p Max j U) : • In V 1 and V 2 , any (a, b) ∈ E U converts to (a + j + i -2, b + j + i -2). • In V 1 and V 2 , any (a, b) ∈ E S converts to (ã p j + i -1, bp j + i -1) if a, b = j, or converts to (ã p j + i -1, f j,p Max (a) + i + j -2) if b = j or converts to (j + i -1 + u -1, bp j + i -1) if a = j. • In V 1 and V 2 , any (a, b) ∈ E T with a, b = i converts to (ã p+m-1 i , bp+m-1 i ). • In V 1 and V 2 , any (a, i) ∈ E T converts to (ã p+m-1 i , f i,m+p-1 Max (a) + i -1). • In V 1 and V 2 , any (i, b) ∈ E T converts to (i -1 + root(S • j U), bm+p-1 i ), where root(S • j U) is the root of S • j U. More precisely root(S • j U) =      s if s < j u + j -1 if s = j s + p -1 if s > j. The proof of (T • f i,m Max i S) • f j,p Max j U = (T • f j,p Max j U) • f i+p-1,m Max i+p-1 S, for j < i
is similar and left to the reader. So is the proof with f Min instead of f Max .

The two operads on labelled rooted trees defined by the theorem are denoted by T Max and T Min . Note that they are linearization of operads in the category of sets. Actually the composition maps are defined at the level of the sets T (n) and not only at the level of the vector spaces kT (n). There is another operad built on rooted trees which has this property: the operad NAP encoding non-asociative permutative algebras in [START_REF] Livernet | A rigidity theorem for pre-Lie algebras[END_REF], in which f NAP is the constant map with value the root of S. This operad has the advantage of being a symmetric operad.

The operad pre-Lie is free as a non-symmetric operad

We show that T Max is a free non-symmetric operad. Using Proposition 2.2, we conclude that the operad pre-Lie is free as a non-symmetric operad. To this end we need to introduce some notation on rooted trees. Definition 3.1. Given two ordered sets S and T , an order-preserving bijection φ : S → T induces a natural bijection between the set of S-labelled rooted trees and the set of T -labelled rooted trees also denoted by φ. A T -labelled rooted tree X is isomorphic to an S-labelled rooted tree Y if X = φ(Y ).

Given a rooted tree T ∈ T (n) and a subset K ⊆ [n], we denote by T K the graph obtained from T by keeping only the vertices of T that are labelled by elements of K and only the edges of T that have two vertices labelled in K. Remark that each connected component of T K is a rooted tree itself where the root is given by the unique vertex closest to the root of T in the component. Also . Remark that X (c) is obtained from X [a,b] by grafting subtrees of X at the vertices a and b only. We can then characterize trees X that are obtained from a non-trivial composition T • a S as follows: It is clear from the discussion above and the definition of the operad T Max that X is decomposable if and only if it is the result of a non-trivial composition. Consequently, we say that X is indecomposable if it is not decomposable. That is there is no 1 ≤ a < b ≤ n such that (i)-(iv) are satisfied. For example let , This tree X is decomposable since for 1 ≤ 3 < 5 ≤ 8 we have that X [START_REF] Livernet | A rigidity theorem for pre-Lie algebras[END_REF][START_REF] Salvatore | The operad Lie is free[END_REF] is a single tree and the subtrees of X (5) -X [START_REF] Livernet | A rigidity theorem for pre-Lie algebras[END_REF][START_REF] Salvatore | The operad Lie is free[END_REF] .

Definition 3.2. A tree X ∈ T Max (n) is called decomposable if there exists 1 ≤ a < b ≤ n with (a, b) = (1, n) such that (i) X [
X =
The reader may check that the following are all the indecomposable trees of T Max up to arity 3: The case where X (e) is fully contained in X (f ) is argued similarly, using condition (iv) of Definition 3.2, and leads to a contradiction as well.

The same argument holds in case we can find a < c ≤ b < d.

The only case remaining is that the interval [p, q] associated to any full subtree

Y(S 1 , . . . , S k ) (S j ) of Y(S 1 , . . . , S k ), satisfies [a, b] ∩ [p, q] = ∅ or [a, b] ⊂ [p, q].
There is at least one interval satisfying [a, b] ⊂ [p, q] (take the full tree Y(S 1 , . . . , S k ) and [p, q] = [1, n]). Let [p, q] be the smallest interval such that [a, b] ⊂ [p, q] and let Y(S 1 , . . . , S k ) (S j ) = Y ′ (S i 1 , . . . , S i l ) be the full subtree it determines. Its root is labelled by S j . The interval [u, v] associated to any proper full subtree of Y

′ (S i 1 , . . . , S i l ) satisfies [a, b] ∩ [u, v] = ∅. Consequently X| [a,b] is isomorphic to S j | [α,β] for some in- terval [α, β] isomorphic to [a, b]
. This is impossible since X satisfies the conditions of Definition 3.2 and S j is indecomposable.

We must conclude that T Max is free.

Remark 3.4. The non-symmetric operads T Min and NAP are not free. Indeed, in the operad T Min one has the following relation: Remark 3.5. Let kT 0 Max (n) denote the k-vector space spanned by the indecomposables of T Max (n) (n > 1) and let β n be its dimension. Let α(x) = n≥1 α n x n be the Hilbert series associated to the free non-symmetric operad generated by the vector spaces kT 0 Max (n). It is well known (see e.g. [START_REF] Salvatore | The operad Lie is free[END_REF]) that one has the identity β(α(x)) + x = α(x),

where β(x) = n≥2 β n x n . Theorem 3.3 implies that α n = n n-1 . As a consequence, we get that the Hilbert series for indecomposable of T Max is

H T 0 Max (x) = n≥2 dim kT 0 Max (n)
x n = 2x 2 + x 3 + 14x 4 + 146x 5 + +1994x 6 + 32853x 7 + 630320x 8 + 13759430x 9 + • • • .

Corollary 3.6. The non-symmetric operad pre-Lie is a free non-symmetric operad.

Proof. Let F be the free non-symmetric operad on indecomposable trees. By the universal property of F , there is a unique morphism of operads φ : F → PL extending the inclusion of indecomposable trees in PL. We prove that this map is surjective by induction on the degree of a tree. Trees of degree 1 are indecomposables (see Definition 3.2). Let t ∈ PL(n) be a tree of degree k ≥ n -1. If t is indecomposable then t = φ(t). If t is decomposable there are trees u ∈ PL(r), v ∈ PL(s), with r, s < n such that t = u • f Max i v in T Max . By Proposition 2.2 one has in PL

u • i v = t + j t j
where t j ∈ PL(n) has degree k j < k. From equation (2.1) we deduce that the degrees of u and v are also lower than k. By induction, the trees u, v and t ′ j s are in the image of φ, so is t. Thus, the operad morphism φ is surjective. Theorem 3.3 implies that the vector spaces F (n) and PL(n) have the same dimension, thus the operad morphism φ is an isomorphism.

Remark 3.7. The Hilbert Series for the free non-symmetric operad on indecomposables and the operad PL are the same as in Remark 3.5.

Remark 1 . 3 ...

 13 Reduced planar tree of operations: a convenient way to uniquely represent composition of operations in a non-symmetric operad P is to use a planar rooted tree as in Definition 1.2. An element a ∈ P(n) is represented by a planar rooted tree with a single vertex labelled by a with n incoming legs and a single outgoing leg: a .. The n leaves are counted from left to right as 1, 2, . . . , n. Now if we have a ∈ P(n), b ∈ P(m) and 1 ≤ i ≤ n we represent the composition a • i b by the planar tree The resulting tree has n + m -1 leaves (counted from left to right) and represents an element of P(n + m -1). The two first relations in Definition 1.1 corresponds to the following two trees: for a ∈ P(n), b ∈ P(m) and c ∈ P(ℓ) we can have

  , a k ) and Y(b 1 , b 2 , . . . , b s ) are distinct if and only if T = Y or there exists i such that a i = b i . Definition 1.4. Let S be a set. An S-labelled rooted tree is a non planar rooted tree as in Definition 1.2 whose vertices are in bijection with S. If S = [n], then we talk about n-labelled rooted trees and denote by T (n) the set of those trees. It is acted on by the symmetric group by permuting the labels.The set T (3) has for elements:

Definition 2 . 1 .

 21 Let T be an n-labelled rooted tree. Let {a, b} denote a pair of two adjacent vertices labelled by a and b. The degree of {a, b} is |a -b|. The degree of T denoted by deg(T ) is the sum of the degrees of its pairs of adjacent vertices. For instance deg(

Theorem 2 . 3 .

 23 There are two different non-symmetric operad structures on the collection (kT (n)) n≥1 given by the composition maps T • f Min i S on the one hand and T • f Max i S on the other hand where f Min and f Max were defined in equations (2.2) and (2.

.For 1

 1 , for c ∈ [n] we denote by T (c) the full subtree of T derived from the vertex labelled by c (see Definition 1.2). For example if K = {2, 3, 4, 5, 6} ⊂ [7] and ≤ a < b ≤ n, T ∈ T Max (nb + a) and S ∈ T Max (ba + 1), let X = T • a S. Consider the interval [a, b] = {a, a + 1, . . . , b}, clearly X [a,b] is isomorphic to S under the unique order-preserving bijection [1, ba + 1] → [a, b]. Let a ≤ c ≤ b be the label of the root of X [a,b]

  a,b] is a rooted tree. Let c be the label of its root. One has a ≤ c ≤ b.(ii) One has X (c) | [a,b] = X [a,b] and X (c) is obtained from X [a,b] by grafting subtrees of X at the vertices a and b only. (iii) All subtrees in X (c) -X [a,b] attached at a have their root labelled in [b + 1, n]. (iv) All subtrees in X (c) -X [a,b] attached at b have their root labelled in [1, a -1].

  are attached at 3 and 5 only. Moreover, the subtree attached at 3 has root labelled by 7 ∈ [6, 8] and the subtrees attached at 5 have roots labelled by 1, 2 ∈ [1, 2]. Indeed, in T Max we have

2 . 3 . 3 .

 233 Theorem The non-symmetric operad T Max is a free non-symmetric operad. the vertices b and d and any path from d to b so there is a path d → f → b in X| [a,b] . Hence f = a for f ∈ ]a, b]. As a conclusion c is part of a subtree attached to a. By (iii) of Definition 3.2 applied to the tree X [a,b] , the subtree must have a root r ∈ [b + 1, n]. This is a contradiction, the root r is part of any path joining a and c and r ∈ [c, d], hence not in X [c,d] .

Proof. If T Max is not free, then for some n there is a tree X ∈ T Max (n) with two distinct constructions from indecomposables. In Remark 1.3, a non-trivial composition of operations is completely determined by a unique reduced planar rooted tree. We then have that X = T(T 1 , T 2 , . . . , T r ) = Y(S 1 , S 2 , . . . , S k ) where T 1 , . . . , T r , S 1 , . . . , S k are indecomposables and T(T 1 , T 2 , . . . , T r ) and Y(S 1 , S 2 , . . . , S k ) are two distinct trees of operations in T Max with r, k > 1.

The tree X = T(T 1 , T 2 , . . . , T r ) is decomposable (by assumption r ≥ 2). We can

If X [a,b] is also isomorphic to a tree S j in position [a, b] in Y(S 1 , S 2 , . . . , S k ), then we replace X by the smaller tree in T Max (nb + a) that we obtain by removing T i in T(T 1 , T 2 , . . . , T r ) and removing S j in Y(S 1 , S 2 , . . . , S k ). Clearly, this new smaller X has two distinct constructions from indecomposables. We can thus assume that

We now study how

Remark first that since all S j are indecomposables, the interval [a, b] cannot be part of a single S j of Y(S 1 , S 2 , . . . , S k ). Indeed, that would imply that S j would contain a subtree satisfying Definition 3.2 which would be a contradiction.

We may assume that a > 1. To see this, assume that the only sub

Since S j is indecomposable, we must have b > b ′ . Similarly, since T i is indecomposable, we must have b < b ′ . This implies that b = b ′ and T i = S j . This possibility was excluded above. So we must have a > 1 or a ′ > 1. In the case where a = 1 and a ′ > 1 we could just interchange the role of T(T 1 , T 2 , . . . , T r ) and Y(S 1 , S 2 , . . . , S k ) and assume that we have a > 1.

Now, since

The graph X [a,d] is contained in the trees X [a,b] and X [c,d] . Let e be the label of the root of X [a,b] and f be the label of the root of X [c,d] . The two full subtrees X (e) and X (f ) both contain X [a,d] . This implies that either X (f ) is fully contained in X (e) , or X (e) is fully contained in X (f ) .

Let us assume that X (f ) is fully contained in X (e) , that means X