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Abstract

In this report, we address several aspects of the approximation of the
MHD equations by a Galerkin Discontinuous finite volume schemes. This
work has been initiated during a CEMRACS project in july and august
2008 in Luminy. The project was entitled GADMHD (for GAlerkin Dis-
continuous approximation for the Magneto-Hydro-Dynamics). It has been
supported by the INRIA CALVI project.

1 Some properties of the MHD system

1.1 Equations

The Magneto-Hydro-Dynamics (MHD) equation are a useful model for describ-
ing the behavior of a compressible conductive fluid. The unknowns are the fluid
density ρ, the velocity u ∈ R

3, the internal energy e, the pressure p and the
magnetic field B ∈ R

3. All the unknowns depend on the space variable x ∈ R
3

and the time variable t.
The equations read




ρ
ρu
B

Q




t

+∇ ·




ρu
ρu⊗ u + (p+ B·B

2 )I − B ⊗ B

u⊗ B− B ⊗ u

(Q+ p+ B·B
2 )u − (B · u)B


 = 0, Q = e+

u · u
2

. (1)

The pressure is related to the internal energy e and the density ρ by a
pressure law. In this document, we shall only consider the perfect gas law with
a constant polytropic exponent γ. It reads

p = P (ρ, e) = (γ − 1)ρe, γ > 1. (2)

The previous equations are supplemented by the following divergence con-
dition on the magnetic field

∇ ·B = 0. (3)

The divergence free condition on the magnetic field is very important for
physical reasons: it ensures that there is no magnetic charge. This condition is
difficult to express on the numerical side. Therefore some authors [7], [4] have
suggested to extend the ideal MHD system in the following way




ρ
ρu
B

Q

ψ




t

+∇ ·




ρu
ρu⊗ u + (p+ B·B

2 )I − B ⊗ B

u⊗ B − B⊗ u + ∇ψ
(Q+ p+

B · B
2

)u − (B · u)B

c2h∇ · B




= 0, Q = e+
u · u

2
. (4)

We have added a new unknown ψ whose role is to ”clean” the divergence
of the solution. Actually, the divergence perturbations are convected in the
computational domain at the constant velocity ch. With adequate boundary
conditions, the perturbation will be damped. The velocity ch can be chosen
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arbitrarily. In practice, it has to be higher than the highest wave speed of the
original MHD system.

We observe that if ∇ · B = 0 and ψ =Cst, then the modified system (1) is
equivalent to the MHD system (4).

The two above systems can be put in a conservative form

wt +

d∑

i=1

f i(w)xi
= 0 (5)

We shall make use of the Einstein summation convention on the repeated indices
and also write

wt + f i∂iw = 0 (6)

For any vector n = (n1, n2, n3) ∈ (R3), the vector

f(w,n) =

d∑

i=1

f i(w)ni (7)

is called the flux vector.

1.2 Hyperbolicity

In order to study the hyperbolicity of the system, we first write its 1D form by
supposing that all the data do not depend on y and z. The magnetic field vector
can then be split into a normal component and a tangential one

B3D = (Bx, By, Bz), b = Bx, B2D = (By, Bz). (8)

Due to the divergence free condition, its normal component b > 0 is a constant
parameter. Only the tangential part B is varying.

In the same way, the velocity has a normal and a tangential part

u = (ux, uy, uz), u = ux, v = (uy, uz). (9)

With a slight abuse of notations, the 1D system reads

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p+
1

2
B2)x = 0,

(ρv)t + (ρuv − bB)x = 0,

Bt + (uB − bv)x = 0,

Et + ((E + p+
1

2
B2)u − bB · v)x = 0,

E =
p

γ − 1
+

1

2
ρ(u2 + v2) +

1

2
B2.

(10)

The 1D conservative variables are

w = (ρ, ρu, ρv,B, E), (11)

and the primitive variables are

Y = (ρ, u, p,v,B). (12)
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In the primitive variables, the system becomes

∂tY + C(Y)∂xY = 0,

C(Y) =




u ρ
u 1

ρ
B2

ρ
B3

ρ

γp u
u − b

ρ

u − b
ρ

B2 −b u
B3 −b u




.
(13)

We note a the sound speed, cA the Alfvèn speed, cf,s the fast and slow
magnetoacoustic speeds and λi the eigenvalues sorted by increasing order.

cA =
b√
ρ
,

a =

√
γp

ρ
,

cf,s =

√√√√1

2

(
b2 +B2

ρ
+ a2

)
±

√
1

4

(
b2 +B2

ρ
+ a2

)2

− a2b2

ρ
,

λ1 = u− cf λ2 = u− cA λ3 = u− cs

λ4 = u

λ5 = u+ cs λ6 = u+ cA λ7 = u+ cf

(14)

The eigenvalues are all real and thus the 1D MHD system is hyperbolic. But
the MHD equation are also invariant in a rotation, thus the full MHD system is
also hyperbolic.

It is possible to compute the eigenvectors analytically:

r1 = (−ρ, cf ,−γp,
cfB2

b
(
1 − c2f/c

2
A

) , cfB3

b
(
1 − c2f/c

2
A

) , B2

c2A/c
2
f − 1

,
B3

c2A/c
2
f − 1

)

r2 = (0, 0, 0, B3,−B2,
√
ρB3,−

√
ρB2),

r3 = (−ρ, cs,−γp,
csB2

b (1 − c2s/c
2
A)
,

csB3

b (1 − c2s/c
2
A)
,

B2

c2A/c
2
s − 1

,
B3

c2A/c
2
s − 1

),

r4 = (1, 0, 0, 0, 0, 0, 0),

r5 = (−ρ,−cs,−γp,
−csB2

b (1 − c2s/c
2
A)
,

−csB3

b (1 − c2s/c
2
A)
,

B2

c2A/c
2
s − 1

,
B3

c2A/c
2
s − 1

),

r6 = (0, 0, 0, B3,−B2,−
√
ρB3,

√
ρB2),

r7 = (−ρ,−cf ,−γp,
−cfB2

b
(
1 − c2f/c

2
A

) , −cfB3

b
(
1 − c2f/c

2
A

) , B2

c2A/c
2
f − 1

,
B3

c2A/c
2
f − 1

).

(15)

1.3 Entropy and Mocke theory

The construction of the Discontinuous Galerkin approximation for the MHD
system enjoys nice entropy properties. In order to state this entropy dissipation
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property, we first recall some notions on entropy and hyperbolic systems of
conservation laws.

1.3.1 Shocks, entropy

It is well known that the solutions of the system

wt + ∂if
i(w) = 0 (16)

can become discontinuous in a finite time even if the initial condition is very
smooth. We thus have to define a notion of weak solution. Let v be a test
vector function in D(R+ ×R

d) (v is not necessarily zero at time t = 0). Let w0

be the initial condition. A weak solution w in L∞(R+ × R
d) satisfies

∫

t>0,x

−wvt − f i(w)∂iv +

∫

t=0,x

w0v = 0. (17)

If w is of class C1 in R
+×R

d but on space-time surfaces, then w is a classical
solution where it is smooth. On a surface of discontinuity with a normal vector
n = (nx, nt), we note [w] the jump of w. A weak solution w satisfies the
Rankine-Hugoniot conditions

[w]nt +
[
f i(w)

]
nx

i = 0 (18)

The weak solutions are generally not unique. A supplementary criterion
helps to select a solution. A classical criterion is the Lax entropy criterion. To
write it, we need first a supplementary conservation law that we write

∂tS
0(w) + ∂iS

i(w) = 0. (19)

This supplementary PDE holds true when

∇S0 · ∇f i = ∇Si (20)

If S0 is also strictly convex then it is called a Lax entropy of the system of
conservation laws. The function Si are the components of the entropy flux. We
require that the weak solutions satisfies the supplementary inequality

S0(w)t + ∂iS
i(w) 6 0. (21)

A particular role is then played by the so-called entropy variables

w = ∇S0(w). (22)

We make this role more precise in the next section.

1.3.2 Legendre transform

A convex function S being given, the Legendre transform S is defined by

S(w) = max
w

(w · w − S(w)) (23)

When everything is smooth, the maximum is reached at a point w such that

w = ∇wS(w) (24)

5



It defines indeed an admissible change of variables because the jacobian of
the transformation is invertible (it is the hessian matrix of S)

Furthermore, it can be proved that the Legendre transform is an involution.
Let us prove it in the smooth case. The gradient of S(w) is

∇wS(w) = w · w′(w) + w(w) −∇wS(w(w))w′(w) (25)

Then
∇wS(w) = w ⇔ w = ∇wS(w) (26)

In other words, the gradient of S defines the inverse change of variables. We
deduce

S(w) = w ·w − S(w) with w = ∇wS(w)

S(w) = w ·w − S(w) with ∇wS(w) = w

S(w) = w · w − S(w) with ∇wS(w) = w

(27)

In the last formula, we recognize the Legendre transform of S. Thus, we

have proved that S = S.

1.3.3 Mock theorem

A system of conservation laws is symmetrizable if it is possible to find a change a
variables, such that, in these news variables, the convection matrix is symmetric.
The Mock theorem ensures that a system is symmetrizable iff it admits an
entropy. Let us prove it.

Suppose that the system admits an entropy S0. Let us note w = ∇wS(w).
According to the previous section, the inverse change of variables is given by
the Legendre transform of S. Furthermore, we define an analog of the Legendre
transform of the flux thanks to the formula

S
k
(w) = fk(w(w)) ·w − Sk(w(w)). (28)

(with an abuse of notation) We can then verify that, as for the entropy S0, we
have

∇wS
k
(w) = fk(w(w)) (29)

We deduce that in the entropy variables w the system becomes

d∑

k=0

∇2
wS

k
∂kw = 0 (30)

and it is indeed a symmetric system.
In order to prove the reverse, we use the Poincaré lemma: the jacobian

matrices of w(w) and g(w) = f(w(w)) are symmetric and thus w(w) and g(w)

are the gradient of functions S(w) and S
k
(w). Using the same computations we

see that S = S is indeed an entropy.
The MHD system does not enter exactly this framework. We have to modify

the approach and take into account the divergence condition on the magnetic
field B. See Section 1.3.4
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1.3.4 Symmetric form of the MHD system

It is possible to symmetrize the MHD system by modifying the initial equations
with terms that contain only the divergence of B [1].

For this, we introduce the (physical) entropy of the fluid

s = ln

(
p

ργ

)
(31)

This entropy satisfies the following PDE

st + u · ∇s+ (γ − 1)
u · B
p

∇ · B = 0 (32)

Combining with the mass conservation law, we find

(ρs)t + ∇ · (ρus) + (γ − 1) ρ
u · B
p

∇ · B = 0 (33)

If the divergence of B is zero, the quantity S0 = ρs satisfies a supplementary
conservation law. It is also possible to show that S0 is convex with respect
to the conservative variables. But it is not a Lax entropy because the initial
system does contain the condition ∇·B = 0: it comes from the initial condition.
Besides, the change of variables w = ∇wS0(w) does not symmetrize the MHD
system.

In order to find a symmetrization, we write the system under the form

∂tw + ∂if
i(w) = 0,

∂iB
i = 0.

(34)

with the entropy condition

∂tS0 + ∂iSi 6 0 (35)

We can add to the MHD equations some combinations of ∇ · B. Those combi-
nations are given by a function Λ(w) where w are the symmetry variables

∂tw + ∂iFi(w) + ∂iB
i∇wΛ(w) = 0, (36)

Simple computations show that the system becomes symmetric with the change
of variables

w = ∇wS
0

(37)

The fluxes are given by

f i = ∇wS
i −Bi∇wΛ(w) (38)

and we obtain generalized duality relations

S0 = w∇wS
0 − S

0

Si = w∇wS
i − S

i
(39)

In the considered case, we find

Λ = (γ − 1)ρ
u · B
p

(40)
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This function is homogeneous of degree one with respect to w, which leads to

Λ = ∇wΛ ·w (41)

This is a constructive way to write the modified MHD system of Powell [8].
It would be also interesting to find the entropies of the modified system (4).

2 Multiple solution of a simplified MHD system

Non uniqueness is known to arise in the case of coplanar initial conditions, i.e.

when the transvere magnetic field has opposite orientation on each side of the
initial condition.
To study this phenomenon, the idea is to consider a simple 3×3 system, derived
from the MHD model.

Wt + F (W)x = 0,

W =




u
v
w


 , F (W) =




cu2 + v2 + w2

2uv
2uw


 .

(42)

This model allows us to get a qualitative description of the interactions be-
tween Alfvèn and magnetoacoustic waves. The vector (v, w) stands for the tran-
verse velocity or magnetic field and u is a thermodynamic parameter of the fluid.

2.1 Hyperbolicity

The jacobian matrix of the fluxes reads:

A(W,W) = F ′(W) =




2cu 2v 2w
2v 2u 0
2w 0 2u



 (43)

Because A is symmetric, the eigenvalues are all real and thus the system is
hyperbolic.
The computation of the eigenvectors and their associated eigenvalues gives:

λs = (c+ 1)u− r λa = 2u λf = (c+ 1)u+ r

rs =




1
2λs − u

v
w


 ra =




0
w
−v


 rf =




1
2λf − u

v
w




with r =
√

(c− 1)2u2 + 4(v2 + w2).

Assuming c = 1, it leads to

λs = 2u− 2r λa = 2u λf = 2u+ ur

rs =




−r
v
w



 ra =




0
w
−v



 rf =




r
v
w



 (44)

We recall now some definitions:
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The ith characteristic field is said to be genuinely nonlinear if

∀y ∈ Ω ⊂ R
3,∇yλi(y) · ri(y) 6= 0.

The ith characteristic field is said to be linearely degenerate if

∀y ∈ Ω ⊂ R
3, ,∇yλi(y) · ri(y) = 0.

The field 2, linked to the eigenvalue λa is linearely degenerate, while fields 1
and 3, linked to eigenvalues λs and λf , are genuinely nonlinear.

To study the entropy of the system, we can easily notice that the system is
symmetrizable with the variables:

w =




u
v
w




Thanks to Mock theorem (see 1.3.3) the entropic variables are thus the conser-
vative set of variables.

We are now interesting in the determination of the entropy and the entropy
fluxes associated.
Using previous properties,

w = ∇wS0(w)
F (w) = ∇wS1(w)
S1(w) = F (w) ·w − S1(w)

we get:

S0 =
1

2

(
u2 + v2 + w2

)
(45)

S∗
1 = c

u3

3
+ uv2 + uw2 (46)

that is,

S1 = 2u

(
cu2

3
+ v2 + w2

)
(47)

(S0, S1) stands for the entropy couple of the system.

2.2 Riemann problem solution

To study the Riemann problem of the system 42, it is easier to use polar coor-
dinates.

Y =




u
r
θ





The system becomes:

Yt + B(Y)Yx

Y =




u
r
θ


 B(Y) =




2cu 2r 0
2r 2u 0
0 0 2u


 (48)
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The eigenvalues of the system are unchanged and the eigenvectors associated
are:

r′a =




0
0
1


 r′f,s =




±1
1
0


 (49)

Ri is an i-Riemann invariant if and only if:

∇Ri · ri = 0

In particular an i-Riemann invariant is constant along rarefaction wave.
Remarques:

The rarefaction waves can be computed solving the ODE:

V ′(ξ) = ri(ξ) with ξ =
x

t
(50)

Deriving the Riemann invariant, we get:

d

dt
ri(w(ξ)) = ∇wRiw

′(ξ) = ∇wRi · ri(ξ) = 0

In a lineraly degenerate field, the eigenvalue is a Riemann invariant and this
property doesn’t depend on the set of coordinates we use.

For the field 1, using the associated eigenvectors, we determine:

R1
s = θ R2

s = u+ r (51)

In the same way, for fields 2 and 3, we get:

R1
a = u R2

a = r

R1
f = θ R2

f = u− r
(52)

A rarefaction wave corresponds to λ1(wL) < λ1(W1), while a shock or a con-
tact discontinuity happends when λ1(wL) > λ1(W1). In this case, the solution
is discontinue.
For shocks we can write the Rankine-Hugoniot relations:

nt[w] + nx[F (w)] = 0, (53)

where n stands for the normal vector, that is :

nt(w1 − wL) + nx(F (w1) − F (wL)) = 0 (54)

The tangential and normal vectors are respectively given by:

−→σ =

(
σ1

1

)
and −→n =

(
1

−σ1

)

The Rankine Hugoniot relation reads thus:

σ1(w1 − wL) = F (w1) − F (wL) (55)
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t

x

WL WR

W1

W2
λ−1

λ1 +

λ2

λ−3

λ+
3

V1(
x
t )

V3(
x
t )−→n

−→
t

Figure 1: Schematic structure of the Riemann fan with four intermediate state

Developping the first term, we get:

σ(u1 − uL) = cu2
1 + v2

1 + w2
1 − (cu2

L + v2
L + w2

L)

= c(u2
1 − u2

L) + (v2
1 − v2

L) + (w2
1 − w2

L)

= c(u1 − uL)(u1 + uL) + (v1 − vL)(v1 + vL)

+ (w1 − wL)(w1 + wL)

= 2cu(u1 − uL) + 2v(v1 − vL) + 2w(w1 − wL)

Setting ã = 1
2 (a1 − aL), the relation becomes:

σ(u1 − uL) = 2ũ(u1 − uL) + 2u(u1 − uL) (56)

And, in the same way, we have:

σ(v1 − vL) = 2ṽ(u1 − uL) + 2u(v1 − vL) (57)

σ(w1 − wL) = 2w̃(u1 − uL) + 2u(w1 − wL) (58)

Using the fluxes expression, we finally obtain:

σ(w1 − wL) = F ′(w̃)(w1 − wL) (59)

The Riemann invariants are also shocks invariants. Indeed, concerning the
first wave, the Riemann invariant is given by:

R1
s = θ R2

s = u+ r (60)

Using the two last Rankine-Hugoniot relations 57,58, it becomes:
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w

wR

wL

VvL vR

( v
w )

θ

Figure 2: Representation of the ratio ṽ
w̃

(σ − 2ũ)(v1 − vL) = 2ṽ(u1 − uL) (61)

(σ − 2ũ)(w1 − wL) = 2w̃(u1 − uL) (62)

(63)

If σ 6= 2ũ, we finally get:

v1 − vL =
ṽ

w̃
(w1 − wL)

that is:
v1 − vL

w1 − wL
=
ṽ

w̃
(64)

Because the ratio is constant the 1-Riemann invariant θ is still constant
across the shock wave.
To study the other invariants we use polar coordinates. The state

wL =




uL

vL

wL





becomes:

wL =




uL

rL cos θL

rL sin θL





Because theta is constant along rarefaction and across shock waves, we have
that:

w1 =




u1

r1 cos θL

r1 sin θL




The averaged state is given thus by:

w̃ =




1
2 (u1 + uL)

1
2 (r1 + rL) cos θL
1
2 (r1 + rL) sin θL





12



Writing the Rankine-hugoniot relations in polar coordinates:

σ1(u1 − uL) = 2u(u1 − uL) + 2
rL + r1

2
cos θ((r1 − rL) cos θL)

+ 2
rL + r1

2
sin θ((r1 − rL) sin θL)

= 2u(u1 − uL) + 2r(r1 − rL) (65)

σ1(r1 − rL) = 2u(r1 − rL) + 2r(u1 − uL) (66)

with σ1 = 2u− 2r.

Rewritting 65, we deduce that:

(2u− 2r)(u1 − uL) = 2u(u1 − uL) + 2r(r1 − rL)

That is:
u1 = uL − r1 + rL (67)

In the same way, the second equation 66 gives a similar result:

uR = uL + rR + rL (68)

The Riemann invariants are thus constant across shocks. We can then deduce
the parametrization of waves curves:

Ms(r) =




uL − r + rL

r

θL


 , Ma(θ) =




uL

rL

θ


 , Mf (r) =




uL + r − rL

r

θL




(69)

Let us write the Lax condition for shocks 1 and 3. According to Lax, the
speed of a shock connecting a left and a right state verify:

λL > σ > λR (70)

In a 1-shock: σ = 2uL − 2r. So

rL < rR et uL > uR (71)

In a 3-shock: σ = 2uL + 2r, i.e.

rL > rR et uL < uR (72)

Lax condition reads:
σ [S0] ≥ S1 (73)

Using previous results the inequality becomes:

(2uL − 2r1)
1

2
[u2 + v2 + w2] − [2u(

cu2

3
+ v2 + w2)] ≥ 0

(uL − r1)[u
2 + r2] − [2u(

cu2

3
+ v2 + w2)] ≥ 0

13



Thanks to relation (67), we compute :

(uL−r1)(u2
1−u2

L+r21−r2L)−(2u1(
cu2

1

3
+v2

1+w2
1)−2uL(

cu2
L

3
+v2

L+w2
L))) ≥ 0 (74)

Finally thanks to (S0, S1) definition and relation (67), the inequality be-
comes:

σ[S0] − [S1] =
2

3
(uL − uR)3 ≥ 0 (75)

The characteristic condition uL > uR is recovered. The same inequality is
obtained for the 3-wave up to sign.

To solve the Riemann problem we still have to determine the functions V1(
x
t )

and V3(
x
t ) in the 1 and 3 rarefaction waves.

In the 1-rarefaction, the Riemann invariants are constants i.e.:

uL + rL = u+ r

θ = θL

Using this property and solving the EDO (50), we get a set of equations:






u = 1
4 (x

t + 2(uL + rL))
θ = θL

r = − 1
4 (x

t − 2(uL + rL))
(76)

The same kind of parametrization is obtained for the 3-wave:





u = 1
4 (x

t + 2(uR + rR))
θ = θL

r = − 1
4 (x

t − 2(uR − rR))
(77)

The following graphs present the results obtained for the intial condition
above:

WL =




1
1
0


 , WR =




1/2
1
0


 . (78)

As we can see for MHD system, non uniqueness of the Riemann problem
solution can occure. The intial condition above leads to such phenomenon:

WL =




1
1
0


 , WR =




1/2
−1
0


 . (79)

The left state can be linked to ight state by an entropy qatisfying shock wave.
Indeed for a shock speed σ = 3/2 Rankine Hugoniot conditions hold. In addi-
tion:

σ [S0] − [S1] =
49

48
> 0, (80)
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The shock statisfies entropy condition. But using previous results and classical
techniques we can also point out an other entropy satisfaying shock. The Rie-
mann problem allows thus several solutions.

The numerical results obtained for this initial state exemplify the property.
For MHD non uniqueness arises when the initial conditions are coplanar, that

is to say when the tranverse magnetic field has a different orientation frome right
to left.
For the simplified system the phenomenon is the same and the numerical scheme
seems to converge toward an entropy staisfying solution different from the exact
solution.
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3 Numerical resolution of the Riemann problem

of the MHD

3.1 General resolution

In this section, we describe the resolution of the Riemann problem for the MHD.
We chose an approach that does not use particular properties of the MHD system
and thus can be extended to other systems of conservations laws. We have first
to recall some basic notions on the Riemann problem. A field i is linearly
degenerated (LD) iff

∇λi(Y ) · ri(Y ) = 0 (81)

A field is genuinely non-linear (GNL) iff at all vector Y

∇λi(Y ) · ri(Y ) 6= 0. (82)

It is also possible to suppose

∇λi(Y ) · ri(Y ) > 0 (83)

16



(if it is not the case, change ri in −ri). For the MHD system, the fields 2, 4 and
6 are LD while the other fields are GNL. the field 4 is a contact discontinuity, in
which only the density ρ jumps. For the fields 2 and 4, the Riemann invariants
are ρ, u, p, B2 and the two components of ∓B +

√
ρv. An important fact is

that if B = 0 then the eigenvalues 1, 2 and 3 merge as the eigenvalues 5,6
and 7. The system is still diagonalizable. On the other hand, it is possible
that ∇λi(Y ) · ri(Y ) = 0 for some vector Y (non-convexity, defect of Genuine
Non-Linearity). Thus, the Lax theorem does not apply for all data and the
uniqueness of the solution to the Riemann problem is no more ensured.

To each GNL field, we can generally associate particular solutions: the shocks
and the simple waves. Let us start to recall how to construct a i−simple wave.
We take a left state WL and we want to join it to a state W depending on
one single parameter η. For this, we consider the following ordinary differential
equation

Y ′(η) = ri(Y (η)), (84)

with the initial condition
Y ′(η) = ri(Y (η)), (85)

The solution of this problem depends of course on the chosen normalization of
the eigenvector ri. It defines a curve in the phase space R

7. We can compute
the variation of the eigenvalue along the curve by solving

ξ′(η) = ∇λi(Y (η)) · Y ′(η) = ∇λi(Y (η)) · ri(Y (η)),

ξ(η0) = λi(YL).
(86)

According to the GNL hypothesis, the change of variables ξ = ξ(η) is monotone
and thus locally bijective. Let us define

Z(x, t) = Y (ξ−1(x/t)). (87)

The vector function Z is indeed a solution to Zt + A(Z)Zx = 0. We have just
constructed the i−simple wave. We shall note it

Y = Di(YL, ηi)

Di(YL, η0,i) = YL.
(88)

In practice, the choice of the parameter η is important. A bad choice would
lead to complicated computations. For example, it is not possible to chose
η = R where R is a Riemann invariant (satisfying ∇R · λi = 0). For theoretical
purposes, it is convenient to take: η = λi, the natural normalization of the
eigenvector is then ∇λi · ri = 1. For the numerical resolution, we propose to
take one component (number k) of Y (which is not a Riemann invariant). The
eigenvector ri should be normalized in such way that ri,k = 1. In the following
presentation we will suppose that ξ(η) is an increasing function and thus that
the admissible part of the simple wave curve corresponds to η > η0. In practice,
we can have to revert this condition, for example if the chosen parameter is the
density ρ: in such a case, we must exchange the left state YL and the right state
YR or decide that the admissible part of the curve is η < η0.

The shocks are more difficult to parametrize. For a shock of speed s, the
Rankine-Hugoniot relations read

s(η)(W (η) −WL) = f(W (η)) − f(WL),

W (η0) = WL.
(89)
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Deriving this relation with respect to the parameter η, we find

s(η0)W
′(Y (η0))Y

′(η0) = f ′(WL)W ′(Y (η0))Y
′(η0) (90)

multiplying by W ′(Y (η0))
−1 we obtain

s(η0)Y
′(η0) = A(YL)Y ′(η0). (91)

Thus s(η0) is an eigenvalue ofA and Y ′(η0) a corresponding eigenvector. Locally,
in the non degenerated cases, we will then find m shock curves Ci, i = 1 · · ·m
tangent to the simple wave curves Di at η = η0. In addition, if the parameter
η is a component of Y or the wave speed λi(Y ) the reunion of the shock and
simple wave curves is of class C2.

The problem is that it is difficult to order globally the shock curves because
the curves Ci maybe tangent at some point.

In the regular case, the usual criterion is to say that the shock belong to the
i-th family iff

λi(YL) > s(η) > λi(Y (η)). (92)

The interpretation is that the i-th characteristic curve coming from the left and
the i-th characteristic curve coming from the right must impinge the shock.

In this way, it is generally possible to build the shock curves

Y (η) = Ci(YL, η),

Y (η0) = YL.
(93)

We then stick those two types of solutions and introduce the mixed curves
Mi. The mixed curve Y = Mi(YL, η) permits to find all the states Y that can
be connected to a left state YL by a shock or a simple wave of the familly i

Mi(YL, η) =

∣∣∣∣
Di(YL, η) si η > ηi

0,
Ci(YL, η) si η < ηi

0.
(94)

The curves are of class C2 with an adequate choice of the parameter ηi.
In the situation where the field is LD there is no more distinction between

the shocks and the simple waves. It is no more possible to take the wave speed
as a parameter. But the method of construction is very similar. For a LD wave,
we write

Y ′(η) = ri(Y (η)),

Y (0) = YL,

Y (η) = Mi(YL, η).

(95)

We are now in a position to solve the Riemann problem. Starting from two
states YL and YR. The numerical problem is to find m parameters η1, · · · , ηm

such that
Mm(· · ·M2(M1(YL, η1), η2) · · · , ηm) = YR. (96)

Let us note that it is not a numerical trivial problem because in some cases
it is possible to find several solutions satisfying the Lax criterion. See [10] for
the theory and [9] for the numerical consequences.
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3.2 Shock curves construction

The Rankine-Hugoniot relations for the MHD can be written

m2 [τ ] +

[
p+

1

2
B2

]
= 0,

m [v] − b [B] = 0,

m2 [τB] − b2 [B] = 0,
[

γ

γ − 1
pτ +

1

2
m2τ2 +

(
τ − b2

2m2

)
B2

]
= 0,

τ = 1/ρ.

(97)

The Rankine-Hugoniot relations can also be rewritten

m2

(
1

ρ
− 1

ρL

)
+

(
p− pL +

B2 −B2
L

2

)
= 0,

m

(
1

ρ
− 1

ρL

)
− b (B2 −B2,L) = 0,

m

(
1

ρ
− 1

ρL

)
− b (B3 −B3,L) = 0,

m2

(
B2

ρ
− B2,L

ρL

)
− b2 (B2 −B2,L) = 0,

m2

(
B3

ρ
− B3,L

ρL

)
− b2 (B3 −B3,L) = 0,

γ

γ − 1

(
p

ρ
− pL

ρL

)
+

1

2
m2

(
1

ρ2
− 1

ρ2
L

)
+

(
B2

ρ
− B2

L

ρL

)
− b2

2m2

(
B2 −B2

L

)
= 0,

m = ρ(u − s) = ρL(uL − s).

(98)

In order to construct the shock curve i, we suppose that we know the left
state YL and the density ρ of the right state Y = (ρ, u, p, v2, v3, B2, B3). The
unknowns are then the 6 remaining components of Y and (m, s) which gives
8 unknowns. Solving the eight equations in (98) should permit to express the
unknowns as functions of ρ and YL. It appears that the system can be put in
a polynomial form. Recently, new algorithms have been designed to rigorously
solve this kind of system in a formal way [5]. They are implemented for example
in Maple. Using this formal resolution, we find that the shock speed s is a root
of a polynomial P (s) of degree 6 whose coefficients depend on the components of
YL. We do not give their expressions here because they are rather complicated.
The other unknowns can be expressed as explicit (but complicated) functions
of s. The method of resolution is then the following

• Let YL and ρ be given;

• Compute all the real roots of P (s);

• For each real root, compute the full vector Y ;
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• Compute the ith wave speed associated to YL and Y ;

• Check if the constructed shock satisfies the Lax characteristic condition
for the field i, i.e. if λi(YL) > s > λi(Y ).

• If it is the case, return the corresponding Y .

It might happen that several solutions are found...
The parametrization of the simple waves or the LD waves is simply obtained

by solving (85) with a classical fourth order Runge-Kutta algorithm. We could
have also used a more algebraical approach based on the Riemann invariants.
Depending on the chosen parameter ηi for the ith wave, we have to normalize
accordingly the eigenvector. For practical reasons, our chosen parameters are

η = (ρ1, α2, ρ3, ρ4, ρ5, α6, ρ7) (99)

The parameters α2 and α6 correspond to the Alfvèn waves. Recall that through
these waves, the transverse magnetic field has a constant norm and only rotates
around the x axis. It is thus natural that the two parameters α2 and α6 are the
angle of the rotation of the magnetic field around this axis. Consequently, the
eigenvectors 1,3,4,5,7 are normalized in such way that that their first component
is one (their expressions are given in (15)). The eigenvectors 2 and 6 have to be
divided by −√

ρ.

3.3 Numerical resolution of the non-linear system

The non-linear system (96) has to be solved by a fixed-point algorithm. It is
not easy to find the good guess that ensures convergence. In order to improve
the robustness, we first write a fixed point method that approaches the Newton
algorithm when the two states YL and YR are close to each other. For this, we
define

F (η) = Mm(· · ·M2(M1(YL, η1), η2) · · · , ηm) − YR,

η = (η1 · · · ηm).
(100)

in such a way that the non-linear system becomes

F (η) = 0. (101)

In order to implement a quasi-Newton method, we have to find an approximation
of the jacobian matrix of F . If we suppose that YL ≃ YR, it is reasonnable to
suppose also that η ≃ η0. We then find

F ′(η) ≃ J(η) = (
dM1(YL, η1)

dη1
· · · dMm(YL, ηm)

dηm
) (102)

because
DMi(Y, ηi)

DY
≃ I (103)

where I denotes the m×m identity matrix.
If ηi < η0

i is on the side of a simple wave, we find

dMi(Y, ηi)

dηi
= ri(Y ). (104)
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We could use the same formula in the case of a shock wave ηi > η0
i because

the left and right states are close and thus η is close to η0. But for more

generality, we also describe the way to compute dMi(Y,ηi)
dηi

in the case of a shock
wave. For this, we differentiate the Rankine-Hugoniot relations

s(η)(w(Y (η)) − wL) = f(w(Y (η))) − f(wL). (105)

We find
s′(w − wL) + sw′Y ′ = f ′w′Y ′ (106)

But we also know that one component of Y is equal to η (we can suppose that
it is the first). We can then rewrite the previous linear system in the form

(
sw′(Y ) − f ′(w)w′(Y ) w − wL

10 · · · 0 0

) (
Y ′

s′

)
=




0
...
0
1


 (107)

Its resolution by a standard LU method provides Y ′(η) and s′(η). We are
now able to compute the approximation of the jacobian matrix of F given in
(102). The quasi-Newton algorithm is

η(n+1) = η(n) − J(η(n))−1J(η(n)). (108)

In practice, the initial vector guess η(0) has to be chosen carefully or the iterative
method does not converge. One way to improve the robustness would be to
enrich the method by a continuation method.

3.4 Numerical application

We verify that our rough method can reproduce the results found in [10]. We
first fix the physical constants to

γ =
5

3
, b = 1.5. (109)

We consider the following Riemann problem

YL =




3
0
3
0
0
1
0




, YR =




1
0
1
0
0

cos(1.5)
sin(1.5)




(110)

The initial guess is

η(0) = (ρ1, α2, ρ3, ρ4, ρ5, α6, ρ7) = (2.2, 0.7, 2.1, 1.5, 1.1, 0.5, 1) (111)

We obtain a convergence of the algorithm towards the correct parameter vector
found in [10].
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-----------------------------------------------

Calculation finished after 44 iterations!

rho1 = 1.4903369982451140

alpha2 = 0.30049231790237352

rho3 = 1.6342995009673826

rho4 = 1.4734531568823088

rho5 = 1.3089507071662621

alpha6 = 0.46364760917716169

rho7 = 1.0000000016469754

-----------------------------------------------

Error: 8.68676031519186201E-010

Let us emphasize that more sophisticated approaches exist but they are nec-
essarily based on fine properties of the MHD system. Our numerical approach
can be extended to many systems of conservation laws where the Rankine-
Hugoniot relations can be written under a polynomial form.

4 Discontinuous Galerkin approximation

The Discontinuous Galerkin (DG) approximation technique is a generalization
of the finite volume approach in order to achieve higher order. It is well suited
to hyperbolic systems of conservation laws. Its application to the MHD equa-
tions is studied for example by Barth in [1]. In order to make the presentation
simpler, we first present the space semi-discrete version of the scheme. The time
integration will be studied later on.

4.1 Space approximation

We are interesting in an approximation of the following system

∂tw + ∂if
i = 0. (112)

stated in the whole space R
d (the boundary conditions problematic will be

adressed later on). Let us consider a mesh T of R
d made of cells K satisfying

1. ∀K ∈ T , K is an open set;

2. ∀(K,L) ∈ T × T K ∩ L = ∅;

3.
⋃

K∈T

K = R
d.

The thickness of the mesh can be measured by the following parameter

h = sup
K∈T

|K|
|∂K| , (113)

where |K| denoted the volume of the cell K and |∂K| the surface of the cell
boundary ∂K.

We are looking for an approximation of the solution w that is polynomial in
each cell K. More precisely, let P k(K) be a linear space of polynomials of degree
≤ k defined on the cell K. We denote by Pk(K) = (P k(K))m the corresponding
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vector space. The approximation is thus discontinuous at the cell boundaries
∂K (and it justifies the name of the method). The approximation space is then

Eh =
{
w ∈

(
L2(Rd)

)m
, ∀K ∈ T , w|K ∈ Pk(K)

}
(114)

The test functions v are taken in this vector space Eh. We multiply the
conservation laws by v, integrate on a cell K and sum over all the cells. This
leads naturally to the introduction of the following form

B(w,v) =
∑

K∈T

∫

∂K

f(wL,wR,n)vL −
∫

K

f i∂iv. (115)

The form is linear with respect to v and would be bilinear if the conservation
system were linear.

It is necessary to introduce the numerical flux f(wL,wR,n)vL because the
solution w and the test function v may be discontinuous at the cell interfaces
∂K.

The approximation consists then in finding an element w in C1([0, T ], Eh)
such that for all elements v in Eh

∫

x∈R3

∂tw · v +B(w,v) = 0. (116)

The numerical flux has to satisfy

f(w,w,n) = f · n = f ini (consistence)

f(wL,wR,n) = −f(wR,wL,−n) (conservation)
(117)

The simplest example is the centered flux

f(wL,wR,n) =
1

2

(
f i(wL) + f i(wR)

)
ni (118)

But this choice leads to oscillations in discontinuous solutions, even if a proper
time integration gives a linearly stable scheme. In the next section, we propose
other numerical fluxes that lead to better approximation. The approximation
can be stated in a more precise way. For this, we consider a basis (eK,i) of the
space Pk(K). As a convention, we extend these functions by zero outside K.
We then take v = eK,i in the weak form (116). We obtain that for all the cells
L

w′
L,j(t)

∫

L

eL,j · eL,i +
∑

R∈V (L)

∫

∂L∩∂R

f(wL,jeL,j, wR,jeR,j ,nL,R) · eL,i

−
∫

L

fk · ∂keL,i = 0.

(119)

Is this formula, we have used the Einstein summation convention. We also
denote by nL,R the normal vector oriented from cell L to cell R along the
boundary ∂L of the cell L (we take as a convention that the Left cell is on the
side of −nL,R and the Right cell on the side of nL,R). The set of the neighboring
cells R to the cell L is V (L).
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The term
∫

L
eL,j · eL,i corresponds to a mass matrix term that can be in-

verted once at the beginning of the computation. If the chosen basis on Pk(K) is
orthonormal, the mass matrix is diagonal. All the integrals on the cells or their
boundaries are computed with a Gauss integration, which we do not describe
here in order to avoid heavy notations.

Then, the approximation system is transformed into a first order differential
equations system and can be solved by any standard integration algorithm (as
Runge-Kutta, Adams, etc.)

4.2 Numerical flux

4.2.1 Rusanov flux

A more stable but still very simple numerical flux is the Rusanov flux, which
reads

λmax = max
06ξ61

max
16j6m

|λj(w(w(ξ)))|

w(ξ) = ξwL + (1 − ξ)wR

f(wL,wR,n) =
f(wL) + f(wR)

2
· n− λmax

2
(wR − wL)

(120)

where we have noted the entropy variables w and the wave speeds at the state w

λj(w). By taking all the components of v to 1 in the Galerkin weak formulation,
we see that the integral of w over the whole space is constant with respect to
time, thanks to the conservation property of the flux. It is also possible to
state a discrete entropy dissipation property of the scheme. Thanks to the Lax-
Wendroff theorem, this property ensures that the scheme converges to entropy
solution (when it converges). We would like that

d

dt

∫

K

S0 +

∫

∂K

S(wL,wR,n) 6 0 (121)

where S(wL,wR,n) is a numerical entropy flux consistant with the entropy flux
Sini. But taking v = w in the Galerkin formulation, we find

d

dt

∫

K

∇wS0 · ∂tw +

∫

∂K

f(wL,wR,n)wL −
∫

K

∇wSi∂iw = 0

d

dt

∫

K

∂tS0 +

∫

∂K

f(wL,wR,n)wL −
∫

K

∂iSi = 0

d

dt

∫

K

∂tS0 +

∫

∂K

f(wL,wR,n)wL − Si(wL)ni = 0

(122)

It is then natural to split the entropy flux into a conservative part and a non-
conservative part

f(wL,wR,n)wL − Si(wL)ni = S(wL,wR,n) +D(wL,wR,n)

S(wL,wR,n) = f(wL,wR,n)
wL + wR

2
− Si(wL) + Si(wR)

2
· ni

D(wL,wR,n) = −1

2

(
f(wL,wR,n)(wR − wL) −

(
Si(wR)ni − Si(wL)ni

))

(123)
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Using the fact that
f i = ∇wSi (124)

we have also the following expression for the numerical entropy dissipation

D(wL,wR,n) = −1

2

∫ ξmax

ξmin

w′(ξ) · (f(wL,wR,n) − f(w(w(ξ))))dξ (125)

where ξ → w(ξ) is an arbitrary parametric curve joining wL and wR

w(ξmin) = wL

w(ξmax) = wR

(126)

A sufficient condition for the scheme to satisfy an entropy condition is thus

∫ 1

0

w′(ξ) · (f(wL,wR,n) − f(w(w(ξ))))dξ 6 0 (127)

It can be verified that the Rusanov flux is entropy dissipative (the parametric
curve can be here a straight line).

4.2.2 HLLD flux

The HLLD approximate Riemann solver, described in [6], is less dissipative than
Rusanov scheme.
It is based on the same assumption as for HLLC scheme, that is the normal
velocity is constant across the Riemann fan.
This scheme resolves exactly not only contact discontinuities, as HLLC scheme,
but also all isolated discontinuities formed in the MHD system.

Because the HLLD scheme corresponds to the HLLC one when the magnetic
field vanishes, all properties of HLLC scheme are preserved and in particular
the conservation of positivity.

To construct a more accurate HLL Riemann solver, the Riemann fan is
divided into four intermediate states, separated by an entropy wave SM et two
Alfvèn waves S∗

L and S∗
R.

t

x

vL vR

v∗L
v∗R

v∗∗

SL SR
S∗

L S∗
R

SL and SR are estimated by :
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SL = min(uL, uR) − max(cfL, cfR)
SR = max(uL, uR) + max(cfL, cfR)

where cfL and cfR denote the fast magnetoacoustic speeds for left and right
states respectively.

SM is computed as the average normal velocity from the HLL average.

SM =
(SR − uR)ρRuR − (SL − uL)ρLuL − pTR + pTL

(SR − uR)ρR − (SL − uL)ρL
(128)

Assuming the normal velocity and the total pressure are constant accross
the Riemann fan, we get :

u∗L = u∗∗L = u∗∗R = u∗R = SM

p∗TL = p∗∗TL = p∗∗TR = p∗TR = p∗T

Using these equalities and (128), the average total pressure is thus given by:

p∗T =
(SR − uR)ρRpTL − (SL − uL)ρLpTR + ρLρR(SR − uR)(SR − uR)(uR − uL)

(SR − uR)ρR − (SL − uL)ρL

Then applying the jump condition across SL and SR, the first intermediate
states can be evaluated:

ρ∗α = ρα
Sα − uα

Sα − SM

v∗α = vα −BxByα

SM − uα

ρα(Sα − uα)(Sα − SM ) −B2
x

w∗
α = wα −BxBzα

SM − uα

ρα(Sα − uα)(Sα − SM ) −B2
x

B∗
yα

= Byα

ρα(Sα − uα) −B2
x

ρα(Sα − uα)(Sα − SM ) −B2
x

B∗
zα

= Bzα

ρα(Sα − uα) −B2
x

ρα(Sα − uα)(Sα − SM ) −B2
x

e∗α =
eα(Sα − uα) − pTαuα + p∗TSM +Bx(vαBα − v∗αB

∗
α)

Sα − SM

We are now considering the inner states. Because of the jump conditions for
the continuity equation and for the normal momentum,

ρ∗∗α = ρ∗α p∗∗Tα = p∗Tα

The appropriate speed of Alfvèn waves are thus given by :

S∗
L = SM − |Bx|√

ρ∗

L

S∗
L = SM + |Bx|√

ρ∗

R

Because of the jump conditions across s∗L and S∗
R waves, the inner states can

be determined:

v∗∗L = v∗∗R =

√
ρ∗Lv

∗
L +

√
ρ∗Rv

∗
R + (B∗

yR −B∗
yL)sgn(Bx)

√
ρ∗L +

√
ρ∗R
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w∗∗
L = w∗∗

R =

√
ρ∗Lw

∗
L +

√
ρ∗Rw

∗
R + (B∗

zR −B∗
zL)sgn(Bx)

√
ρ∗L +

√
ρ∗R

B∗∗
yL = B∗∗

yR =

√
ρ∗LBy

∗
R +

√
ρ∗RB

∗
yL +

√
ρ∗Lρ

∗
R(v∗R − v∗L)sgn(Bx)

√
ρ∗L +

√
ρ∗R

B∗∗
zL = B∗∗

zR =

√
ρ∗LBy

∗
z +

√
ρ∗RB

∗
zL +

√
ρ∗Lρ

∗
R(w∗

R − w∗
L)sgn(Bx)

√
ρ∗L +

√
ρ∗R

e∗∗α = e∗α ∓
√
ρ∗α (v∗αB

∗
α − v∗∗B∗∗) sgn(Bx)

Finally the numerical fluxes of the solver are deduced from the integral of
conservation lws over the Riemann fan, in the same waey as Rusanov or HLL
schemes.

FHLLD =






FLif SL > 0
F ∗

L if SL ≤ 0 ≤ S∗
L

F ∗∗
L if S∗

L ≤ 0 ≤ SM

F ∗∗
R if SM ≤ 0 ≤ S∗

R

F ∗
R if S∗

R ≤ 0 ≤ SR

FR if SR < 0

where :
F ∗

α = Fα + SαU
∗
α − SαUα

F ∗∗
α = Fα + S∗

αU
∗∗
α − (S∗

α − Sα)U∗
α − SLUL

4.2.3 Multiwave approxiamte Riemann soler using relaxation

In [2], an approximate Riemann solver for one-dimensional ideal MHD is de-
scribed derived from a relaxation system.
This solver satisfies entropy inequality, preserves positivity of density and in-
ternal energy. For more simplicity we present only the 3-wave solver that well
resolves fast waves and material contacts.

ρt + (ρu)x = 0
(ρu)t + (ρu2 + π)x = 0
(ρu⊥)t + (ρuu⊥ + π⊥)x = 0
El + [(E + π)u + π⊥ · u⊥]x = 0
(B⊥)t + (B⊥u−Bxu⊥)x = 0

where the relaxation pressures π and π⊥ evolve according to

(ρπ)t + (ρπu)x + (|b|2 + c2b)ux − cab · (u⊥)x = 0
(ρπ⊥)t + (ρπ⊥u)x − cabux + c2a(u⊥)x = 0

Initially the Riemann problem starts with the relaxation pressures at equilibrium

π = p+
1

2
|B⊥|2 −

1

2
B2

xπ⊥ = −BxB⊥

The parameters ca, cb and b read
√
ρ|Bx|,ρ

√
p′ and sgn(Bx)

√
ρB⊥ respectively.

Assuming b = 0 and ca = cb = c, the solver is reduced to 3 waves and 2
intermediate states.
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t

x

vL vR

v∗L v∗R

u+ c
ρ

u− c
ρ

u

The 2 intermediate states read:

w∗
α = (ρα, u

∗, u∗⊥, eα, B⊥α, π
∗, π∗

⊥)

where α denotes the l or R and we have:

u∗ =
cL ∗ uL + cR ∗ uR + πL − πR

cL + cR

u∗⊥ =
cL ∗ u⊥L + cR ∗ u⊥R + π⊥L − π⊥R

cL + cR

π∗ =
cR ∗ πL + cL ∗ πR − cLc−R(uR − uL)

cL + cR

π∗
⊥ =

cR ∗ π⊥L + cL ∗ π⊥R − cLc− R(u⊥R − u⊥L)

cL + cR

4.3 Time integration

We now address the problem of the time approximation. The Runge-Kutta
method is a standard approach that is not described here. We will concentrate
on an Adams-Bashforth approach, which has some advantages (the possibility
to use very easily different time steps) and some drawbacks (a sometimes more
limiting CFL condition).

4.3.1 Adams-Bashforth time integration

In order to obtain the Adams scheme, we suppose that the solution is approxi-
mated at some times

t0 < t1 < · · · < tn < · · · (129)

by a sequence of elements
wn ∈ Eh (130)
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We integrate now the weak formulation with respect to time on the interval
[tn, tn+1] and find

(
wL,j(t

n+1) − wL,j(t
n)

) ∫

L

eL,j · eL,i+

∫ tn+1

t=tn

∑

R∈V (L)

∫

∂L∩∂R

f(wL,jeL,j, wR,jeR,j ,nL,R) · eL,i

−
∫ t=tn+1

t=tn

∫

L

fk · ∂keL,i = 0.

(131)

In order to approximate the time integration, we first set

FL/R,i(t) =

∫

∂L∩∂R

f(wL,j(t)eL,j, wR,j(t)eR,j ,nL,R) · eL,i

SL,i(t) =

∫

L

f(wL,j(t)eL,j)
k · ∂keL,i

(132)

in such a way that the weak form can also be written

(
wL,j(t

n+1) − wL,j(t
n)

) ∫

L

eL,j · eL,i +
∑

R∈V (L)

∫ tn+1

t=tn

FL/R,i(t)

−
∫ t=tn+1

t=tn

SL,i(t) = 0.

(133)

We also define the discrete flux and source term at time tn

Fn
L/R,i =

∫

∂L∩∂R

f(wn
L,jeL,j, w

n
R,jeR,j ,nL,R) · eL,i

Sn
L,i =

∫

L

f(wn
L,jeL,j)

k · ∂keL,i

(134)

We then construct the time interpolation polynomials F̃L/R,i(t) and S̃L,i(t)
by using r + 1 interpolation points

F̃L/R,i(t
n−l) = Fn−l

L/R,i and S̃L,i(t
n−l) = Sn−l

L,i , l = 0 · · · r (135)

The time integration of the boundary terms and the source terms are then
obtained by an exact integration of F̃L/R,i(t) and S̃L,i(t) on the interval [tn, tn+1]

∫ tn+1

t=tn

∫

∂L∩∂R

f(wL,jeL,j, wR,jeR,j ,nL,R) · eL,i ≃
∫ tn+1

t=tn

F̃L/R,i(t)dt,

∫ t=tn+1

t=tn

∫

L

fk · ∂keL,i ≃
∫ t=tn+1

t=tn

S̃L,i(t)dt.

(136)

The method requires to store the flux terms on the cell edges and the source
terms in the cell at the r+1 previous times. It is also necessary to initialize the
scheme, for example by r steps of a Runge-Kutta algorithm.
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4.3.2 Multi time steps approach

An advantage of the Adams approach is that it is quite easy to adapt it to the
case where the time step are different from one cell to one another. This is useful
when small cells are mixed with big cells in order to reduce the computational
cost. The first step is to attribute to each cell what we call a CFL level, which
is only based on a geometric criterion. We define

hK =
|K|
|∂K|

hmin = min
K∈T

hK

hmax = max
K∈T

hK

(137)

With a standard one-step time method, the time step is fixed by the smallest
cell

∆t = CFL × hmin

λmax
(138)

where λmax is the highest wave speed in the mesh. We shall say that a cell K
is of level n (and we note level(K) = n) if

2nhmin 6 hK < 2n+1hmin (139)

In this way, the smallest cells are of level n = 0 and the biggest cells are of level

N =

[
log2

(
hmax

hmin

)]
(140)

We also define a level for the edge L/R = ∂L ∩ ∂R

level(L/R) = min(level(L), level(R)). (141)

Let ∆t be the time step associated to the biggest cells (we call it the macro time
step)

∆t = CFL× hmin

λmax
× 2N (142)

According to the previous definitions, this time step satisfies

∆t 6 CFL × hmax

λmax
(143)

The time loop algorithm is then the following

for i =1 to 2N do

let j be the biggest integer such that 2j divides i
for all the edges L/R of level ≤ j do

compute the integral of the flux term FL/R on a time interval of length
∆tj−N and distribute it to the two neighboring cells

end for

for all the cells L of level ≤ j do

compute the integral of the source term SL on a time interval of length
∆tj−N and distribute it to the corresponding cell.

end for
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Update only the cells of level ≤ j
end for

With this algorithm the fluxes are computed more times on the small edges
than on the big edges but are always distributed on the two sides of the edge in
order to keep a conservative scheme. The time integration is always performed
by the Adams approach: the interpolation polynomial is calculated from the r
more recent fluxes or sources evaluations. At the end of a macro time step of
size ∆t (when i = 2N in the algorithm) all the cells are updated together.

If the number of small cells is small and if the other cells have almost the
same size, the gain is almost of 2N .

4.3.3 Theoretical stability study

5 Numerical results

5.1 Simplified MHD

The system is solved using a Galerkin Discontinuous approximation technique
(see section 4 ) and a standard Godunov scheme is employed for fluxes approx-
imation.
For all test cases the domain is [0, 1] discretized in 1000 cells. The compution
time is t = 0.2s and CFL = 0.45.

The following graphs present the results obtained for the intial condition
above:

WL =




1
1
0



 , WR =




1/2
1
0



 . (144)
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As we can see for MHD system, non uniqueness of the Riemann problem
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solution can occure. The intial condition above leads to such phenomenon:

WL =




1
1
0


 , WR =




1/2
−1
0


 . (145)

The left state can be linked to ight state by an entropy qatisfying shock wave.
Indeed for a shock speed σ = 3/2 Rankine Hugoniot conditions hold. In addi-
tion:

σ [S0] − [S1] =
49

48
> 0, (146)

The shock statisfies entropy condition. But using previous results and classical
techniques we can also point out an other entropy satisfaying shock. The Rie-
mann problem allows thus several solutions.

The numerical results obtained for this initial state exemplify the property.
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For MHD non uniqueness arises when the initial conditions are coplanar, that
is to say when the tranverse magnetic field has a different orientation frome right
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to left.
For the simplified system the phenomenon is the same and the numerical scheme
seems to converge toward an entropy staisfying solution different from the exact
solution.

5.2 1D test cases

The MHD equations possess seven eigenvalues, some of which may coincide de-
pending on the direction and the strength of the magnetic field. As pointed out
in [3] the MHD system is thus non-strictly hyperbolic and possess non-convexity.
As a consequence a solution of the Riemann problem may be composed not
only of ordinary shock and rarefaction waves but also other waves as compound
waves.

Thanks to Torrilhon’s Riemann solver, available on http://wwwmath.ethz.

ch/~matorril/mhdsolver, exact solution can be computed in most cases.

For all 1D test cases γ = 5
3 , Bx is constant and x0 = 0 denotes the position

where the discontinuity is applied.

5.2.1 Compound shocks

We propose to study first a compound shocks test case. This problem shows
the formation of a left-going slow compound wave with a weak right-going slow
shock and a contact discontinuity.

Left state ρL = 1. uL = 0. vL = 0. wL = 0. p = 1. Bx = 0.75 By = 1. Bz = 0.
Right state ρR = 0.125 uR = 0. vR = 0. wR = 0. p = 0.1 Bx = 0.75 By = −1. Bz = 0.

5.2.2 Fast rarefactions

The second test case presents two fast magnetosonic rarefactions. The exact
solution cannot be computed because of the stiff value of Bx.
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Figure 3: Compound shocks : ρ, By and p at time t = 0.1 with a resolution
∆x = 0.001.
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Left state ρL = 1. uL = −1. vL = 0. wL = 0. p = 1. Bx = 0. By = 1. Bz = 0.
Right state ρR = 1. uR = 1. vR = 0. wR = 0. p = 1. Bx = 0. By = 1. Bz = 0.

5.2.3 All seven waves

This problem shows the formation of all seven possible MHD waves. All mag-
netosonic shock are weak shocks.

Left ρL = 1.08 uL = 1.2 vL = 0. wL = 0. p = 0.95 Bx = 2./
√

4π By = 3.6
√

4π Bz = 2.
√

4

Right ρR = 1. uR = 0. vR = 0. wR = 0. p = 1. Bx = 2.
√

4π By = 4.
√

4π Bz = 2.
√

4

5.3 2D academic test cases

5.4 2D Tokamak
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Figure 4: Fast rarefactions : (zoom on [−0.1, 0.1]) ρ, By and p at time t = 0.1
with a resolution ∆x = 0.001.
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Figure 5: All seven waves : ρ, By and p at time t = 0.1 with a resolution
∆x = 0.001.
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