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The performance of cross-validation (CV) is analyzed in two contexts: (i) risk estimation and (ii) model selection in the density estimation framework. The main focus is given to one CV algorithm called leave-p-out (Lpo), where p denotes the cardinality of the test set. Closed-form expressions are settled for the Lpo estimator of the risk of projection estimators, which makes V-fold cross-validation completely useless.

From a theoretical point of view, these closed-form expressions enable to study the Lpo performances in terms of risk estimation. For instance, the optimality of leave-one-out (Loo), that is Lpo with p = 1, is proved among CV procedures. Two model selection frameworks are also considered: estimation, as opposed to identification.

Unlike risk estimation, Loo is proved to be suboptimal as a model selection procedure. In the estimation framework with finite sample size n, optimality is achieved for p large enough (with p/n = o(1)) to balance overfitting. A link is also identified between the optimal p and the structure of the model collection. These theoretical results are strongly supported by simulation experiments. When performing identification, model consistency is also proved for Lpo with p/n → 1 as n → +∞.

Introduction

Model selection

For estimating a target quantity denoted by s, let {S m } m∈M denote a collection of sets of candidate parameters and M denote a set of index. From each S m called a model, an estimator s m of s is computed. The goal of model selection is to design a criterion crit : M → R + such that minimizing crit(•) over M provides a final estimator s m that is "optimal". Among various strategies of model selection, model selection via penalization has been introduced in the seminal papers by [START_REF] Mallows | Some comments on C p[END_REF]; [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF]; [START_REF] Schwarz | Estimating the dimension of a model[END_REF] on respectively AIC, C p , and BIC criteria. However since AIC and BIC are derived from asymptotic arguments, their performances crucially depend on model collection and sample size (see [START_REF] Baraud | Gaussian model selection with unknown variance[END_REF].

More recently [START_REF] Birgé | From model selection to adaptive estimation[END_REF][START_REF] Ledoux | The concentration of measure phenomenon[END_REF], 2006) have developed a non-asymptotic approach inspired from the pioneering work of [START_REF] Barron | Minimum Complexity Density Estimation[END_REF]. It relies on concentration inequalities [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF][START_REF] Ledoux | The concentration of measure phenomenon[END_REF] and aims at deriving oracle inequalities such as ℓ (s, s m ) ≤ C inf m∈M {ℓ (s, s m )} + r n with probability larger than 1c/n 2 , where c > 0 is a constant, ℓ(s, t) is a measure of the gap between parameters s and t, r n is a remainder term with respect to inf m ℓ (s, s m ), and C ≥ 1 denotes a constant independent of s. The closer C to 1 and the smaller r n , the better the model selection procedure. If C = C n → 1 and r n → 0 as n → +∞, the model selection procedure is said asymptotically optimal (or efficient) (see Arlot and Celisse, 2010, for instance). Note that other asymptotic optimality properties have been studied in the literature. For instance, a model selection procedure satisfying

P [ m = m 0 ] -----→ n→+∞ 1 ,
where m 0 denotes a fixed given model is said model consistent (see [START_REF] Shao | An asymptotic theory for linear model selection[END_REF], for a study of various model selection procedures in terms of model consistency).

In the density estimation framework, model selection with deterministic penalties has been developed: (i) for Kullback-Leibler divergence and histograms by [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]; [START_REF] Castellan | Modified Akaike's criterion for histogram density estimation[END_REF][START_REF] Castellan | Density estimation via exponential model selection[END_REF] and further studied in [START_REF] Birgé | How many bins should be put in a regular histogram?[END_REF], and (ii) for quadratic risk and projection estimators by [START_REF] Birgé | From model selection to adaptive estimation[END_REF] and [START_REF] Barron | Risk bounds for model selection via penalization[END_REF].

Cross-validation

The aforementioned approaches rely on some deterministic penalties such as AIC or BIC. These penalties are derived in some specific settings (for instance [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF], assume a Gaussian noise ), which makes their performances setting dependent.

Conversely, cross-validation (CV) is a resampling procedure based on a universal heuristics which makes it applicable in a wide range of settings. CV algorithms have been first studied in a regression context by [START_REF] Stone | Cross-validatory choice and assessment of statistical predictions[END_REF][START_REF] With Discussion By | An Asymptotic Equivalence of Choice of Model by Cross-validation and Akaike's Criterion[END_REF] for the leave-one-out (Loo) and [START_REF] Geisser | A predictive approach to the random effect model[END_REF][START_REF] Geisser | The predictive sample reuse method with applications[END_REF] for the V -fold crossvalidation (VFCV), and in the density estimation framework by [START_REF] Rudemo | Empirical Choice of Histograms and Kernel Density Estimators[END_REF]; [START_REF] Stone | An asymptotically optimal window selection rule for kernel density estimates[END_REF]. Since these algorithms can be computationally demanding or even intractable, [START_REF] Rudemo | Empirical Choice of Histograms and Kernel Density Estimators[END_REF]; [START_REF] Bowman | An alternative method of cross-validation for the smoothing of density estimates[END_REF] derived closed-form formulas for the Loo estimator of the risk of histograms or kernel estimators. These results have been recently extended to the leave-p-out cross-validation (Lpo) by [START_REF] Robin | Nonparametric density estimation by exact leave-p-out cross-validation[END_REF].

Although CV algorithms are extensively used in practice, only few theoretical results exist on their performances, most of them being of asymptotic nature. For instance in the regression framework, [START_REF] Burman | Comparative study of Ordinary Cross-Validation, v-Fold Cross-Validation and the repeated Learning-Testing Methods[END_REF][START_REF] Burman | Estimation of optimal transformation using v-fold cross-validation and repeated learning-testing methods[END_REF] proves Loo is asymptotically the best CV algorithm in terms of risk estimation. Several papers are dedicated to show the equivalence between some CV algorithms and penalized criteria in terms of asymptotic optimality properties: (i) efficiency in [START_REF] Li | Asymptotic Optimality for C p , C L , Cross-Validation and Generalized Cross-Validation: Discrete Index Set[END_REF]; [START_REF] Zhang | Model selection via multifold cross-validation[END_REF], and (ii) model consistency in [START_REF] Shao | Model Selection by Cross-Validation[END_REF]; [START_REF] Yang | Consistency of cross-validation for comparing regression procedures[END_REF]. We refer interested readers to [START_REF] Shao | An asymptotic theory for linear model selection[END_REF] for an extensive review about asymptotic optimality properties in terms of efficiency and model consistency of some penalized criteria as well as CV algorithms.

As for non-asymptotic results in the density framework, [START_REF] Birgé | From model selection to adaptive estimation[END_REF] have settled an oracle inequality that relies on a conjecture and may be applied to Loo. However to the best of our knowledge, no result of this type has already been proved for Lpo in the density estimation framework. Recently in the regression setting, [START_REF] Arlot | V-fold penalization: an alternative to v-fold cross-validation[END_REF] established oracle inequalities for V -fold penalties, while [START_REF] Arlot | Segmentation of the mean of heteroscedastic data via cross-validation[END_REF] have carried out an extensive simulation study in the change-point detection problem with heteroscedastic observations.

Main contributions

In the present paper, we derive closed-form expressions for the Lpo risk estimator of the broad class of projection estimators (Section 2). Such closed-form expressions make V -FCV completely useless since it is more variable and computationally demanding than Lpo (Section 2.3). They also enable to study the theoretical performance of CV in two respects: (i) for risk estimation (Section 2.4), and (ii) for model selection (Section 3). For instance, it is proved that Loo is the best CV algorithm for risk estimation (Theorem 2.1), while it is suboptimal for model selection (Corollary 3.1 and Theorem 3.3).

Moreover, two aspects of model selection via CV have been explored. In Section 3.1, the estimation point of view is described where it is shown that Lpo is optimal as long as p/n = o(1) and p is large enough to balance the influence of the model collection structure. All these new theoretical results are supported imsart-generic ver. 2009/02/27 file: cvhistoAOS_HAL.tex date: April 2, 2012 by simulation experiments detailed in Section 3.1.4. Conversely, identification is studied in Section 3.2, where the optimal performance is obtained for p/n -----→ n→+∞ 1, which is consistent with previous results settled in the regression framework for instance by [START_REF] Shao | Model Selection by Cross-Validation[END_REF]. However, our result is more precise since we were able to localize the optimal rate of convergence of 1p/n toward 0 between 1/n and 1/ √ n as n tends to +∞. Finally, proofs and technical lemmas have been collected in Appendix A.

Cross-validation and risk estimation

Statistical framework

Notation

Throughout the paper, X 1 , . . . , X n ∈ [0, 1] are independent and identically distributed (i.i.d. ) random variables drawn from a probability distribution P of density s ∈ L 2 ([0, 1]) with respect to Lebesgue's measure on [0, 1], and X 1,n = (X 1 , . . . , X n ).

Let S * denote the set of mesurable functions on [0, 1]. The distance between s and any u ∈ S * is measured thanks to the quadratic loss denoted by

ℓ : (s, u) → ℓ (s, u ) := s -u 2 = [0,1] [ s(t) -u(t) ] 2 dt .
It is related to the contrast function

γ : (u, x) → γ(u; x) := u 2 -2u(x) , with ℓ (s, u ) = P γ(u) -P γ(s) (1) 
where P γ(u) = P (γ(u; •)) and

P f := E [ f (X 1 ) ] for every f ∈ S * . The performance of every estimator s = s (X 1 , . . . , X n ) of s is assessed thanks to the quadratic risk R n ( s ) := E [ ℓ (s, s ) ] = E s -s 2 .
Estimating P γ(u) is made through the empirical contrast defined by

P n γ(u) := 1 n n i=1 γ (u; X i ) , where P n = 1/n n i=1
δ Xi denotes the empirical measure and P n f := 1/n n i=1 f (X i ) for every f ∈ S * . Let us further introduce M n a countable set of indices and for every m ∈ M n , S m denote a set of functions, called model, used to estimate s. To each S m , an estimator s m corresponds that is defined as the empirical contrast minimizer s m := Argmin u∈Sm P n γ(u) .

(2)

It results a collection { s m } m∈Mn of estimators of s depending on the choice of models S m s. Instances of such models and estimators are described in Section 2.1.2.

Projection estimators

Let Λ n be a set of countable indices and {ϕ λ } λ∈Λn a family of vectors in L 2 ([0, 1]) such that for every 

m ∈ M n , {ϕ λ } λ∈Λ(m) denotes an orthonormal family of L 2 ([0, 1]) with Λ(m) ⊂ Λ n . For every m ∈ M n ,
P ϕ λ ϕ λ , with P ϕ λ = E [ ϕ λ (X) ] . Definition 2.1. An estimator s ∈ L 2 ([0, 1]) is a projection estimator if there exists a family {ϕ λ } λ∈Λ of orthonormal vectors of L 2 ([0, 1]) such that s = λ∈Λ α λ ϕ λ , with α λ = 1 n n i=1 H λ (X i ),
where {H λ (•)} λ∈Λ depends on the family {ϕ λ } λ∈Λ .

As a consequence, it is straightforward to check that the empirical contrast minimizer defined by Eq. ( 2) over S m = Span (ϕ λ , λ ∈ Λ(m)) is a projection estimator since

s m = λ∈Λ(m) P n ϕ λ ϕ λ , with P n ϕ λ = 1 n n i=1 ϕ λ (X i ) . (3) 
Here are a few examples of projection estimators (see [START_REF] Devore | Constructive Approximation[END_REF]:

• Histograms: For every m ∈ M n , let {I λ } λ∈Λ(m) be a partition of [0, 1] in D m = Card(Λ(m)) intervals. Set ϕ λ = 1 I λ / |I λ | for every λ ∈ Λ(m), with |I λ | the Lebesgue measure of I λ , and 
1 I λ (x) = 1 if x ∈ I λ and 0 otherwise. Then, s m = λ∈Λ(m) P n 1 I λ 1 I λ |I λ | • (4) 
• Trigonometric polynomials: For every λ ∈ Z, let ϕ λ : t → ϕ λ (t) = e 2πiλt . Then for any finite

Λ(m) ⊂ Z, s m (t) = λ∈Λ(m) P n ϕ λ e 2πiλt , ∀t ∈ [0, 1] (5) 
is a trigonometric polynomial. • Wavelet basis: Let {ϕ λ } λ∈Λn be an orthonormal basis of L 2 ([0, 1]) made of compact supported wavelets, where

Λ n = (j, k) | j ∈ N * and 1 ≤ k ≤ 2 j . Then for every subset Λ(m) of Λ n , s m = λ∈Λ(m) P n ϕ λ ϕ λ . (6) 
Some of these estimators can take negative values for finite sample size. The same phenomenon arises with kernel estimators [START_REF] Tsybakov | Introduction à l'estimation non-paramétrique[END_REF]. A possible solution to avoid negative values is truncating and normalizing the preliminary projection estimator

s m = s m 1 sm≥0 [0,1] 1 sm≥0 (t) s m (t) dt -1 . Note that if s(x 0 ) > 0 at a given x 0 ∈ [0, 1] and s m (x) P -----→ n→+∞ s(x) for every x ∈ [0, 1], then s m (x 0 ) ≥ 0
for large enough values of n. 

Leave-p-out cross-validation

In the literature, several cross-validation (CV) algorithms have been successively introduced to overcome the defects of already existing ones. The purpose of the present section is to briefly describe the main CV algorithms that will be used throughout the paper with some emphasis to computational aspects.

Cross-validation

For every 1 ≤ p ≤ n -1, let us define E p = {e ⊂ {1, . . . , n} , Card(e) = p} and for any such e ∈ E p , set X e = {X i , i ∈ e} (test set) and X (e) = {X i , i ∈ {1, . . . , n} \ e} (training set). Let also P e n := 1/p i∈e δ Xi and P (e) n := 1/(np) i∈(e) δ Xi denote the empirical measures defined respectively from the test set X e and the training set X (e) .

Hold-out Simple validation also called Hold-out has been introduced at the early 30s [START_REF] Larson | The shrinkage of the coefficient of multiple correlation[END_REF]. For every 1 ≤ p ≤ n-1, it consists in randomly splitting observations into a training set X (e) of cardinality n-p and a test set X e of cardinality p. Random data splitting is only made once and introduces additional variability. For every e ∈ E p (randomly chosen), the hold-out estimator of R n ( s ) is

R Ho,p ( s ) := P e n γ s (X (e) ) = 1 p i∈e γ s (X (e) ); X i . (7) 
Hold-out has been studied for instance by [START_REF] Bartlett | Model selection and error estimation[END_REF]; [START_REF] Blanchard | Discussion: Local Rademacher complexities and oracle inequalities in risk minimization[END_REF] in classification and by [START_REF] Lugosi | Adaptive model selection using empirical complexities[END_REF]; [START_REF] Wegkamp | Model selection in nonparametric regression[END_REF] in regression.

Leave-p-out Unlike Eq. ( 7) where a single split e of the data is randomly chosen, which introduces additional unwanted variability, leave-p-out (Lpo) considers all the n p = Card (E p ) splits. The Lpo estimator of R n ( s ) is defined by

R p ( s ) = n p -1 e∈Ep P e n γ s (X (e) ) . (8) 
For instance, it has been studied by [START_REF] Shao | Model Selection by Cross-Validation[END_REF], [START_REF] Zhang | Model selection via multifold cross-validation[END_REF], and [START_REF] Arlot | Segmentation of the mean of heteroscedastic data via cross-validation[END_REF] in the regression framework. With p = 1, Lpo reduces to the celebrated leave-one-out (Loo) cross-validation introduced by [START_REF] Mosteller | Data analysis, including statistics[END_REF] and further studied by [START_REF] Stone | Cross-validatory choice and assessment of statistical predictions[END_REF]. Note that computing the Lpo estimator requires a computational complexity of order n p times that of computing s , which quickly becomes intractable as n grows.

V -fold cross-validation To overcome the high computational burden of Lpo (Eq. ( 8)), [START_REF] Geisser | A predictive approach to the random effect model[END_REF][START_REF] Geisser | The predictive sample reuse method with applications[END_REF] introduced the V-fold cross-validation (V-FCV). Instead of considering all the n p possible splits, one (randomly or not) chooses a partition of X 1 , . . . , X n into V subsets X e1 , . . . , X eV of approximately equal size p = n/V = Card(e i ), i = 1, . . . , V . Every X ei , i = 1, . . . , V is successively used as a test set leading to the V-fold risk estimator of R n ( s )

R V-FCV ( s ) = 1 V V v=1 P ev n γ s (X (ev) ) . (9) 
V-FCV has been studied in the regression framework by [START_REF] Burman | Comparative study of Ordinary Cross-Validation, v-Fold Cross-Validation and the repeated Learning-Testing Methods[END_REF][START_REF] Burman | Estimation of optimal transformation using v-fold cross-validation and repeated learning-testing methods[END_REF] who suggests a correction to remove its bias. 

Lpo versus V-FCV

As explained in Section 2.2.1, the Lpo computational complexity is roughly n p times that of computing s , which can be highly time-consuming. Unlike Lpo (and even Loo when p = 1), V-FCV involves only V such computations, which is less demanding as long as V ≪ n. Note that usual values for V are 3, 5, and 10 (except V = n where V-FCV and Loo coincide).

However, V-FCV relies on a preliminary (possibly random) partitioning of X 1 , . . . , X n into V subsets. Unlike Lpo where an exhaustive splitting is performed, this preliminary partitioning induces some additional variability, which could be misleading. For instance, [START_REF] Robin | Nonparametric density estimation by exact leave-p-out cross-validation[END_REF] have theoretically quantified the amount of additional variability induced by V-FCV with respect to Lpo.

On the one hand, Lpo can be seen as a "gold standard" among CV algorithms since it relies on exhaustive splitting and does not introduce any additional variability. On the other hand, V-FCV appears as an approximation to the "ideal Lpo" that cannot be achieved due to a prohibitive computational cost. Note that other approximations to Lpo have been proposed such as the repeated learning-testing crossvalidation [START_REF] Breiman | Classification and regression trees[END_REF][START_REF] Burman | Comparative study of Ordinary Cross-Validation, v-Fold Cross-Validation and the repeated Learning-Testing Methods[END_REF][START_REF] Zhang | Model selection via multifold cross-validation[END_REF].

Closed-form expressions for the Lpo risk estimator

In Section 2.2.2 it is claimed that as long as Lpo cannot be computed V-FCV is preferable. Closedform formulas for the Lpo estimator are proved in the present section, which makes Lpo fully effective in practice and always better than V-FCV. Besides, closed-form formulas also enable a more accurate theoretical analysis of CV algorithms both in terms of risk estimation (Section 2.4) and model selection (Section 3).

With the notation introduced at the beginning of Section 2.2.1, let us consider projection estimators s m defined by Eq. (3). Closed-form formulas for the Lpo risk estimator are derived exploiting the "linearity" of projection estimators. Sums over E p (which cannot be computed in general) then reduce to binomial coefficients. Recalling the expression of the contrast γ(• ; •) (Eq. ( 1)), one has to compute both quadratic and linear terms.

Lemma 2.1. For every m ∈ M n , let s m = s m (X 1,n ) denote a projection estimator defined by Eq. (3) and set X e = {X i , i ∈ e} for every e ∈ E p . Then for every p ∈ {1, . . . , n -1},

e∈Ep s m (X (e) ) 2 = 1 (n -p) 2 λ∈Λ(m)   n -1 p n k=1 ϕ 2 λ (X k ) + n -2 p k =ℓ ϕ λ (X k )ϕ λ (X ℓ )   , e∈Ep i∈e s (X (e) )(X i ) = 1 n -p λ∈Λ(m) n -2 p -1 i =j ϕ λ (X i )ϕ λ (X j ) .
Proof of Lemma 2.1. For every e ∈ E p , and t ∈ [0, 1], It remains to sum over e ∈ E p , which is made thanks to Lemma A.1.

s m (X (e) )(t) = λ (P (e) n ϕ λ )ϕ λ (t) = 1 n -p n j=1 λ ϕ λ (X j )ϕ λ (t)1 (j∈(e)) , which implies i∈e s m (X (e) )(X i ) = 1 n -p i =j λ ϕ λ (X j )ϕ λ (X i )1 (j∈(e)) 1 (i∈e
Lemma 2.1 enables to derive closed-form formulas for the Lpo risk estimator, which makes Lpo algorithm fully efficient in practice.

Proposition 2.1. For every m ∈ M n , let s m = s m (X 1,n ) denote a projection estimator defined by Eq. (3). Then for every p ∈ {1, . . . , n -1},

R p (m) = R p ( s m ) = 1 n(n -p) λ∈Λ(m)   n j=1 ϕ 2 λ (X j ) - n -p + 1 n -1 j =k ϕ λ (X j )ϕ λ (X k )   . ( 10 
)
Proposition 2.1 enjoys a great interest. First it applies to the broad family of projection estimators. Second, it allows to reduce the computation time from an exponential to a linear complexity since computing (10) is of order O (n). Note that in the more specific setting of histograms and kernel estimators, such closed-form formulas have been derived by [START_REF] Robin | Nonparametric density estimation by exact leave-p-out cross-validation[END_REF].

Proof of Proposition 2.1. From definitions of the contrast (Eq. ( 1)) and the Lpo estimator Eq. ( 8), it comes

R p (m) = n p -1 e∈Ep s m (X (e) 1,n ) 2 - 2 p n p -1 e∈Ep i∈e s m (X (e) 1,n )(X i ) .
Then, Lemma 2.1 provides the expected conclusion.

Let us now specify the Lpo estimator expressions for the three examples of projection estimators in Section 2.1.2.

1.

Corollary 2.1 (Histograms). For s m given by Eq. (4) and for p ∈ {1, . . . , n -1},

R p (m) = 1 (n -1)(n -p) Dm λ=1 1 |I λ | (2n -p) n λ n -n(n -p + 1) n λ n 2 ,
where

n λ = Card ({i | X i ∈ I λ }). 2.
Corollary 2.2 (Trigonometric polynomials). For every k ∈ N, let ϕ λ denote either t → cos(2πkt), if λ = 2k or t → sin(2πkt), if λ = 2k + 1. Let us further assume Λ(m) = {0, . . . , 2K} for K ∈ N * . Then for every p ∈ {1, . . . , n -1},

R p (m) = α(n, p) -β(n, p) K k=0       n j=1 cos(2πkX j )    2 +    n j=1 sin(2πkX j )    2    , where α(n, p) = (p -2)(K + 1) [ (n -1)(n -p) ] -1 and β(n, p) = (n -p + 1) [ n(n -1)(n -p) ] -1 . 3.
Corollary 2.3 (Haar basis). Let us define ϕ : t → 1 [0,1] and ϕ j,k (t) = 2 j/2 ϕ(2 j • -k), where j ∈ N and 0 ≤ k ≤ 2 j -1, and assume

Λ(m) ⊂ (j, k) | j ∈ N, 0 ≤ k ≤ 2 j -1 for every m ∈ M n . Then, R p (m) = 1 (n -1)(n -p) (j,k)∈Λ(m) 2 j (2n -p) n j,k n -n(n -p + 1) n j,k n 2 , where n j,k = Card i | X i ∈ [k/2 j , (k + 1)/2 j ] .

Risk estimation: Leave-one-out optimality

From the general closed-form formula given by Eq. ( 10), one derives closed-form expressions for the expectation and variance of the Lpo risk as well. These expressions will be useful to analyze the theoretical behavior of CV in terms of risk estimation and model selection (see Section 3). In the present section for instance, they are used to prove the optimality of Loo for estimating the risk of any projection estimator (Theorem 2.1).

Proposition 2.2. For every m ∈ M n , let s m = s m (X 1,n ) denote a projection estimator defined by Eq. (3). Then for every

1 ≤ p ≤ n -1, E R p (m) = 1 n -p λ∈Λ(m) Eϕ 2 λ (X) -(Eϕ λ (X)) 2 - λ∈Λ(m) (Eϕ λ (X)) 2 ,
and

Var R p (m) = 1 (n -1) 2 a n + b n (n -p) + c n (n -p) 2 , ( 11 
)
where

a n = Var λ∈Λ(m) n(P n ϕ λ ) 2 -P n ϕ 2 λ , c n = Var n λ∈Λ(m) P n ϕ 2 λ -(P n ϕ λ ) 2 , and b n = -2 Cov λ∈Λ(m) n(P n ϕ λ ) 2 -P n ϕ 2 λ , λ∈Λ(m) n P n ϕ 2 λ -(P n ϕ λ ) 2 .
The proof is a straightforward application of Proposition 2.1 and has been omitted. Note that the above quantities do exist as long as P |ϕ λ | 3 < +∞ for any λ ∈ Λ(m), which holds true if s is bounded for instance and |ϕ λ | 3 < +∞ (ϕ λ continuous and compact supported for instance). In the variance expression, a n , b n , and c n do not depend on p. Then knowing the behavior of the variance with respect to p only depends on the magnitude of a n , b n , and c n , which is clarified by Corollary 2.5.

Let us first focus on the bias

B R p (m) := E R p (m) -E s m 2 -2 [0,1] s s m of the Lpo estimator.
Corollary 2.4 (Bias). For every m ∈ M n , let s m = s m (X 1,n ) denote a projection estimator defined by Eq. (3). Then for every m ∈ M n and 1

≤ p ≤ n -1, B R p (m) = p n(n -p) λ∈Λ(m) Var [ ϕ λ (X 1 ) ] ≥ 0 .
The bias is nonnegative and increases with p, which means Loo (p = 1) has the smallest bias among CV algorithms.

Besides if p = p n satisfies p n /n -----→ n→+∞ q ∈ [0, 1), then B R p (m) -----→ n→+∞ 0. Thus, Loo is asymptotically unbiased.
Let us now describe the behavior of the variance with respect to p. 

≤ p ≤ n -1, Var R p (m) = n (n -1) 2 A + B n -p + C (n -p) 2 + O 1 n ,
where

A = 4Cov λ ϕ λ (X 1 )ϕ λ (X 2 ), λ ϕ λ (X 1 )ϕ λ (X 3 ) ≥ 0 , B = 8Cov λ ϕ λ (X 1 )ϕ λ (X 2 ), λ ϕ λ (X 1 )ϕ λ (X 3 ) -4Cov λ ϕ 2 λ (X 1 ), λ ϕ λ (X 1 )ϕ λ (X 3 ) , C = 4Cov λ ϕ λ (X 1 )ϕ λ (X 2 ), λ ϕ λ (X 1 )ϕ λ (X 3 ) -4Cov λ ϕ 2 λ (X 1 ), λ ϕ λ (X 1 )ϕ λ (X 3 ) + Var λ ϕ 2 λ (X 1 ) ≥ 0 .
In the more specific case of histogram and kernel density estimators, Celisse and Robin ( 2008) derived a similar (non asymptotic) result for the variance. Note that the monotonicity of the variance with respect to p depends on the sign of B since x → f (x) = Ax 2 + Bx + C has for derivative x → f ′ (x) = 2Ax + B and A ≥ 0. However in full generality, the sign of B is unknown.

Proof of Corollary 2.5. Combining Proposition 2.2, Lemmas A.2 and A.3, and Proposition A.1, it comes

a n = 4nβ + O(1) , b n = 8nβ -4nγ + O(1) , c n = 4nβ -4nγ + nδ + O(1) , where β = Cov [ λ ϕ λ (X 1 )ϕ λ (X 2 ), λ ϕ λ (X 1 )ϕ λ (X 3 ) ], γ = Cov λ ϕ 2 λ (X 1 ), λ ϕ λ (X 1 )ϕ λ (X 3 ) , and δ = Var λ ϕ 2 λ (X 1
) . This provides the expected conclusion with A = 4β, B = 8β -4γ, and

C = 4β -4γ + δ.
The purpose of the following proposition is to describe the monotonicity of the variance depending on the sign of B Proposition 2.3. Let us define p 0,n = Argmin 1≤p≤n-1 Var R p (m) in Eq. (11). Then, Eq. ( 12) is related to the sign of B in Corollary 2.5 and to the minimum location value p 0,n . In particular if it holds true, then p 0,n ∈ {2, . . . , n -1}, which means Loo has the smallest variance among CV algorithms.

p 0,n = n + 1 - Cov λ ϕ 2 λ (X 1 ), λ ϕ λ (X 1 )ϕ λ (X 3 ) 2Cov [ λ ϕ λ (X 1 )ϕ λ (X 2 ), λ ϕ λ (X 1 )ϕ λ (X 3 ) ] (1 + o(1)) . Furthermore, 1. if 2Cov λ ϕ λ (X 1 )ϕ λ (X 2 ), λ ϕ λ (X 1 )ϕ λ (X 3 ) ≥ Cov λ ϕ 2 λ (X 1 ), λ ϕ λ (X 1 )ϕ λ (X 3 ) , (12) p ∈ {1, . . . , n -1} → Var R p (m) is increasing. imsart-
Theorem 2.1. For every m ∈ M n , let us define the mean-square error

(MSE) of s m by MSE(m; p) = B R p (m) 2 + Var R p (m) , for every p ∈ {1, . . . , n -1}. 1. If (12) holds true, then for every m ∈ M n , p → MSE(m; p) is minimum for p = 1. 2. Otherwise, for every p = p n ∈ {1, . . . , n -1} such that p n /n -----→ n→+∞ q ∈ [0, 1), then MSE(m; p) = A n + O 1 n 2 , as n → +∞ .
If (12) holds true, Loo is the best CV algorithm in terms of MSE when estimating the risk of an estimator. Otherwise as long as p n /n → 1 as n → +∞, choosing a value of p = 1 is useless since any value in {1, . . . , n -1} asymptotically leads to the same performance in terms of MSE. But since Loo has a minimum bias (Corollary 2.4), one concludes Loo is optimal among CV algorithms for estimating the risk of an estimator. This result confirms what has been previously stated by [START_REF] Burman | Comparative study of Ordinary Cross-Validation, v-Fold Cross-Validation and the repeated Learning-Testing Methods[END_REF] in the regression framework.

Optimal cross-validation for model selection

In Section 2.4, the optimality of Loo among CV algorithms has been proved in the context of risk estimation. However, the best possible algorithm for risk estimation is not necessarily the best one for model selection. For instance, empirical contrast minimization ( 2) is used to design an estimator s m ∈ S m . But using empirical contrast minimization to choose one m ∈ M n (without penalizing) would systematically lead to overfitting. The purpose of the present section is to study the performance of CV for model selection with respect to the cardinality p of the test set.

In model selection, two (contradictory) purposes can be pursued: Estimation and Identification (see [START_REF] Shao | An asymptotic theory for linear model selection[END_REF][START_REF] Yang | Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation[END_REF], for an extensive presentation). With the Estimation point of view, one focuses on minimizing the risk over a collection of models without assuming the targeted s belongs to one of them. Conversely in Identification, one assumes s belongs to at least one model of the collection and the goal is to recover the smallest model containing s.

Optimal cross-validation for Estimation

Model selection by CV pursuing Estimation is our main concern here. First, the performance of CV with respect to p is characterized through a sharp oracle inequality (Theorem 3.1) where constants are related to the difficulty of the estimation problem. In particular, a leading constant converging to 1 as n → +∞ is achieved for given values of p. Second, Loo is theoretically shown to be suboptimal for model selection (Corollary 3.1), which is also empirically supported by simulation experiments (Section 3.1.4).

Estimation point of view

With the notation of Section 2.1, let us consider a family of projection estimators { s m } m∈Mn , where M n denotes an (at most countable) index set allowed to depend on n. The best possible model, called the Since P γ( s m ) has to be estimated, one uses CV (Lpo) to choose a candidate model. So for every

1 ≤ p ≤ n -1, m(p) := Argmin m∈Mn R p (m) , (13) 
and the final candidate model is denoted by S m(p) . The purpose is now to study the properties of s m(p) with respect to p ∈ {1, . . . , n -1} in terms of an oracle inequality, that is an inequality such that an event of large probability exists on which

s -s m 2 ≤ C n inf m∈Mn s -s m 2 + r n , (14) 
where s m is the final estimator provided by the considered model selection procedure, the constant C n ≥ 1 does not depend on s, and r n is a remainder term. When C n -----→ n→+∞ 1 on an event of probability larger than 1 -K/n 2 (for some K > 0), the model selection procedure is said efficient (Arlot and Celisse, 2010).

Main oracle inequality

Let us first introduce some notation and detail the main assumptions used along the following sections.

Square-integrable density:

s ∈ L 2 ([0, 1]) . (SqI) 
Unlike [START_REF] Castellan | Density estimation via exponential model selection[END_REF] for instance, it is not assumed that s ≥ ρ for a constant ρ > 0.

Polynomial collection: There exists a M ≥ 0 such that

Card(M n ) ≤ n aM . (Pol)
In particular, this holds true if there exists α ≥ 0 such that Card ({m

∈ M n , D m = D}) ≤ D α , for every 1 ≤ D ≤ n.
Model regularity:

∃Φ > 0, sup m∈Mn φ m ∞ D m ≤ Φ , with φ m = λ∈Λ(m) ϕ 2 λ . (RegD)
It relates the regularity of the orthonormal basis (measured in terms of sup-norm) to the dimension of the model. For instance using ( 4), (RegD) requires |I λ | ≥ (ΦD m ) -1 for every λ ∈ Λ(m). Thus, the length of intervals I λ cannot be too different from one another.

Maximal dimension:

∃Γ > 0, sup m∈Mn D m ≤ Γ n (log n) 2 .
(Dmax)

In the sequel, we always use Γ = 1 to simplify the notation. Note that proofs and conclusions are not changed by this particular choice.

Estimation error and dimension:

∃ξ > 0, inf m∈Mn √ nE ( s m -s m ) √ D m ≥ ξ . (LoEx)
This assumption makes the estimation error E s ms m 2 and D m comparable. For instance, (LoEx)

is fulfilled if s ≥ ρ > 0.
Richness of the collection: There exist m 0 ∈ M n and c rich ≥ 1 such that,

√ n ≤ D m0 ≤ c rich √ n . (Rich)
Such an assumption only depends on our choice of model collection and can always be fulfilled.

Approximation property: There exist c ℓ , c u > 0 and ℓ > u > 0 such that, for every m ∈ M n ,

c ℓ D -ℓ m ≤ s -s m 2 ≤ c u D -u m . (Bias)
This assumption quantifies the bias (approximation error) incurred by model S m in estimating s. It therefore relies on a smoothness assumption on s. Such an upper bound is classical for α-Hölderian functions with α ∈ (0, 1] and regular histograms (4) for instance. Note that [START_REF] Stone | An asymptotically optimal histogram selection rule[END_REF] uses the same assumption (lower bound), which is the finite sample counterpart of the classical assumption ss m > 0 for every m ∈ M n usually made to prove asymptotic optimality for a model selection procedure (see [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF].

Rate of convergence for the oracle model:

nR * n (log n) -2 ----→ n→∞ +∞, with R * n = inf m∈Mn R n ( s m ) , (OrSp) 
This assumption implies the risk of the oracle model R * n does not decrease to 0 faster than (log n) 2 /n. In particular, this holds true for densities in H(L, α) with L > 0 and α ∈ (0, 1] for instance (see Section A.6).

The performance of the Lpo estimator with respect to p is described by the following oracle inequality where the leading constant C n (p) relates the complexity of the collection of models {S m } m∈Mn to p. Theorem 3.1 (Optimal CV). Let s denote a density on [0, 1] such that (SqI) holds true, set {S m } m∈Mn a collection of models defined in Section 2.1.2, and assume (Pol), (RegD), (Dmax), (Rich), (LoEx), (Bias), and (OrSp). Let m = m(p) denote the model minimizing R p (m) over M n for every p ∈ {1, . . . , n -1}. Then, there exist a sequence (δ n ) N such that δ n → +∞, and nδ n → +∞ as n → +∞, and an event Ω with P( Ω) ≥ 1 -6/n 2 on which, for large enough values of n,

s -s m(p) 2 ≤ C n (p) inf m∈Mn s -s m 2 with C n (p) = T + B ∨ T + V T - B ∧ T - V ≥ 1 ,
where

T - B = 1 -δ n K(n, p) , T - V = 1 1 -p/n (1 -δ n ) [ 1 -4δ n ] -2δ n K(n, p) [ 3 -4δ n ] , T + B = 1 + δ n K(n, p) , T + V = 1 1 -p/n (1 + δ n ) [ 1 + 4δ n ] + 2δ n K(n, p) [ 3 + 4δ n ] ,
and First if p = p n = o(n), then p/n → 0 and C n (p) → 1 as n → +∞. Then, such values of p lead to efficient (asymptotically optimal) model selection procedures. In particular, this holds true for p = 1, that is, Loo is asymptotically optimal since ss m(1)

K(n, p) = 1 + 2 n-1 + p n-p 1 n-1 • imsart-
2 inf m∈Mn s -s m 2 a.s. -----→ n→+∞ 1 .
Second, C n (p) can be optimized as a function of p at each finite sample size n. Since C n (p) also depends on δ n , which is related to the structure of {S m } m∈Mn and the probability of the event Ω, minimizing C n (p) with respect to p enables to take into account the difficulty of the estimation problem at hand.

Proof of Theorem 3.1. First let us use Proposition A.2 applied with m, m ′ ∈ M n such that R p (m ′ ) ≤ R p (m). Then, it comes n n -p E Z 2 m ′ + s -s m ′ 2 -K(n, p) Z 2 m ′ -E Z 2 m ′ ≤ n n -p E Z 2 m + s -s m 2 -K(n, p) Z 2 m -E Z 2 m -2K(n, p) ν n (s m ′ -s m ) + 1 n K(n, p) + n n -p ν n (φ m ′ -φ m ) ,
where Then,combining Propositions A.3 and A.4 to control the remainder terms, there exist a sequence (δ n ) N with δ n → 0 and nδ n → +∞ as n → +∞ and an event

K(n, p) = 1 + 2 n-1 + p n-p 1 n-1 •
Ω = Ω rem,1 ∩ Ω rem,2 of probability 1 -4/n 2 on which n n -p E Z 2 m ′ + s -s m ′ 2 -K(n, p) Z 2 m ′ -E Z 2 m ′ ≤ n n -p E Z 2 m + s -s m 2 -K(n, p) Z 2 m -E Z 2 m + δ n K(n, p) s -s m ′ 2 + E Z 2 m ′ + s -s m 2 + E Z 2 m + δ n K(n, p) + n n -p E Z 2 m ′ + E Z 2 m .
In the following, δ n always denotes such a sequence even if the precise expression of δ n can differ from line to line.

Let us now use concentration results stated in Corollaries A.1 and A.2 on the events Ω left and Ω right . The important point in this proof is given by Lemmas A.4 and A.5, where it is proved that on the event

Ω = Ω left ∩ Ω right ∩ Ω rem,1 ∩ Ω rem,1 , min D m * , D m(p) ≥ (log n) 4
for large enough values of n. Therefore, one can apply Lemma A.8 and Corollaries A.1 and A.2 with where

L m = 0 = r n (m) to get Z 2 m ′ n n -p (1 -δ n ) -2δ n K(n, p) (1 -4δ n ) -4K(n, p)δ n + [ 1 -δ n K(n, p) ] s -s m ′ 2 ≤ Z 2 m n n -p (1 + δ n ) + 2δ n K(n, p) (1 + 4δ n ) + 4K(n, p)δ n + [ 1 + δ n K(n, p) ] s -s m 2 . Choosing m ′ = m, it comes T - V Z 2 m + T - B s -s m 2 ≤ T + V Z 2 m + T + B s -s m 2 , imsart-
T - B = 1 -δ n K(n, p) , T - V = n n -p (1 -δ n ) [ 1 -4δ n ] -2K(n, p) 3δ n -4δ 2 n , T + B = 1 + δ n K(n, p) , T + V = n n -p (1 + δ n ) [ 1 + 4δ n ] + 2K(n, p) 3δ n + 4δ 2 n .
Finally on the event Ω, the following oracle inequality holds true for every p ∈ {1, n -1}

s -s m(p) 2 ≤ C n (p) inf m∈Mn s -s m 2 , with C n (p) = T + B ∨ T + V T - B ∧ T - V .
Moreover, on the event Ω, Lemmas A.4 and A.5 show min D m * , D m(p) ≥ (log n) 4 . Then, it is enough to apply Propositions A.6 and A.5 to models satisfying this constraint, which leads to the new event Ω (where models with dimension smaller than (log n) 4 have been omitted) of probability at least 1 -6/n 2 .

While asymptotic optimality is proved in Theorem 3.1 for any CV procedure as long as p = o(n), it is also desirable to analyze the performance of CV for finite samples. Minimizing C n (p) as a function of p for each n provides the value p * = p * n for which m(p * ) reaches the best performance among { m(p), 1 ≤ p ≤ n -1}. The following Corollary 3.1 proves Loo is suboptimal in terms of rate of convergence, which can lead to overfitted models.

Corollary 3.1 (Suboptimality of Leave-one-out). With the notation and assumptions of Theorem 3.1, the constant C n (p) is minimized over p ∈ {1, . . . , n -1} for

0 < q * n := p * n n = 1 - 1 -5δ n + 4δ 2 n -2 n-1 (3δ n -4δ 2 n ) + δn n-1 1 + 2(1 + 1 n-1 )(3δ n -4δ 2 n ) -δ n (1 + 1 n-1 ) < 1 •
Furthermore, the optimal ratio q * n = p * /n is slowly decreasing to 0 as n tends to +∞ q * n ∼ +∞ 10δ n , and

p * n ∼ +∞ 10nδ n -----→ n→+∞ +∞ .
In particular, Loo (p = 1) is suboptimal in terms of rate of convergence with respect to n.

Whereas Theorem 3.1 settles Loo (and any CV algorithm with p = o(n)) is asymptotically optimal, Corollary 3.1 proves it is nevertheless suboptimal in terms of rate of convergence. Indeed, the optimal rate is achieved when p n /n is slowly decreasing to 0 like δ n as n grows. Let us also recall that δ n is strongly related to the structure of the model collection, so that the more complex the collection, the slower δ n , and the larger p n should be to balance overfitting arising with too large models. As a consequence, Loo (p = 1) does not adapt to the model collection {S m } m∈Mn , which results in overfitting, that is, choosing too large models (see simulation experiments in Section 3.1.4).

Proof of Corollary 3.1. Let us recall the expression of the leading constant

C n (p) = T + B ∨ T + V T - B ∧ T - V , with 
T - B = 1 -δ n K(n, p) , T - V = 1 1 -p/n (1 -δ n ) [ 1 -4δ n ] -2δ n K(n, p) [ 3 -4δ n ] , T + B = 1 + δ n K(n, p) , T + V = 1 1 -p/n (1 + δ n ) [ 1 + 4δ n ] + 2δ n K(n, p) [ 3 + 4δ n ] ,
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and

K(n, p) = 1 + 2 n-1 + p n-p 1 n-1 . First as long as n is large enough, simple calculations when p = 1 show T - V (1) ≤ T - B (1). Noticing moreover that T + V (p) ≥ T + B (p)
for every p, it comes for p close to 1

C n (p) = T + V T - V = (1 + δ n ) [ 1 + 4δ n ] + 2(1 -p/n)δ n K(n, p) [ 3 + 4δ n ] (1 -δ n ) [ 1 -4δ n ] -2(1 -p/n)δ n K(n, p) [ 3 -4δ n ] •
It is then easy to show that p → C n (p) is increasing on {1, . . . , p * }, where p * denotes the value of p such that T -

V (p) = T - B (p). Hence, p * n n = 1 - 1 -5δ n + 4δ 2 n -2 n-1 (3δ n -4δ 2 n ) + δn n-1 1 + 2(1 + 1 n-1 )(3δ n -4δ 2 n ) -δ n (1 + 1 n-1 ) • It results that for every p ≥ p * C n (p) = T + V T - B ,
which is increasing with respect to p.

In the same way, it is easy to check that p * n /(10nδ n ) -----→ n→+∞ 1, which enables to conclude.

Adaptivity in the minimax sense

Adaptivity in the minimax sense is a desirable property for model selection procedures. It means the considered procedure automatically adapts to the unknown smoothness of the target function s to estimate (see [START_REF] Barron | Risk bounds for model selection via penalization[END_REF], for an extensive presentation).

Several adaptivity in the minimax sense results are provided in the present section. Deriving such results from oracle inequalities such as ( 14) is somewhat classical. However, the novelty is first that CV as model selection procedure enjoys such a desirable property, second that the leading constant C n (p) in Theorem 3.1 when converging to 1 as n tends to +∞ provides accurate results.

Let us first provide a general result from which all adaptivity results will be immediate corollaries.

Theorem 3.2. Let s denote a density on [0, 1] such that (SqI) holds true, set {S m } m∈Mn a collection of models defined in Section 2.1.2, and assume (Pol), (RegD), (Dmax), (Rich), (LoEx), (Bias), and (OrSp). Let m = m(p) denote the model minimizing R p (m) over M n for every p ∈ {1, . . . , n -1}. Then for every

1 ≤ p ≤ n -1, E s -s m(p) 2 ≤ C n (p)E inf m∈Mn s -s m 2 + (Φ + s 2 ) 12 n(log n) 2 + 6c u n 2 , ( 15 
)
where C n (p) =

T + B ∨T + V T - B ∧T - V , with 
T - B = 1 -δ n K(n, p) , T - V = 1 1 -p/n (1 -δ n ) [ 1 -4δ n ] -2δ n K(n, p) [ 3 -4δ n ] , T + B = 1 + δ n K(n, p) , T + V = 1 1 -p/n (1 + δ n ) [ 1 + 4δ n ] + 2δ n K(n, p) [ 3 + 4δ n ] ,
and The last two terms in the right-hand side of ( 15) are remainder terms. They results from Assumptions (RegD), (Dmax), and (Bias). From remarks following Theorem 3.1, one deduces p

K(n, p) = 1 + 2 n-1 + p n-p 1 n-1 • imsart-
= p n = o(n) implies C n (p) → 1 as n → +∞ and E s -s m(p) 2 E inf m∈Mn s -s m 2 -----→ n→+∞ 1 .
Proof of Theorem 3.2. Introducing the event Ω of Theorem 3.1, it comes

E s -s m(p) 2 = E s -s m(p) 2 1 Ω + E s -s m(p) 2 1 Ω c ≤ E inf m∈Mn s -s m 2 + E s -s m(p) 2 1 Ω c .
Applying (Bias), one gets

E s -s m(p) 2 1 Ω c ≤ E c u D u m(p) 1 Ω c ≤ c u P Ω ≤ 6c u n 2 ,
and (RegD) and (Dmax) provide

E s m(p) -s m(p) 2 1 Ω c = E   λ∈Λ( m(p)) (P n ϕ λ -P ϕ λ ) 2 1 Ω c   ≤ 2E   λ∈Λ( m(p)) (P n ϕ λ ) 2 1 Ω c   + 2E   λ∈Λ( m(p)) (P ϕ λ ) 2 1 Ω c   ≤ 2E   λ∈Λ( m(p)) 1 n 2 n i,j=1 ϕ λ (X i )ϕ λ (X j )1 Ω c   + 2 s 2 E D m(p) 1 Ω c ≤ 2(Φ + s 2 ) n (log n) 2 P Ω c ≤ (Φ + s 2 ) 12 n(log n) 2 •
Applying Theorem 3.2 to the collection of regular histograms defined by (4), the following corollary settles an adaptivity property with respect to Hölder balls (see [START_REF] Devore | Constructive Approximation[END_REF].

Corollary 3.2. Let us consider the model collection of Section 2.1.2 made of piecewise constant functions and the associated histograms defined by (4) such that, for every m ∈ M n and λ ∈ Λ(m), |I λ | = D -1 m (regular histograms). Let us also assume (Dmax) and (LoEx) hold true. If the target density s belongs to the Hölder ball H(L, α) for some L > 0 and α ∈ (0, 1], then for every

1 ≤ p ≤ n -1 there exist constants 0 < K - α ≤ K + α such that K - α L 2 2α+1 n -2α 2α+1 ≤ sup s∈H(L,α) E s -s m(p) 2 ≤ C n (p)K + α L 2 2α+1 n -2α 2α+1 + O 1 n(log n) 2 ,
K - α and K + α only depend on α (not on n or s). Furthermore since this property holds for every L > 0 and α ∈ (0, 1], then s m(p) n∈N * is adaptive in the minimax sense with respect to {H(L, α)} L>0,α∈(0,1] for every 1 ≤ p ≤ n -1. The proof has been deferred to Section A.6. The lower bound is not new and has been proved earlier by [START_REF] Ibragimov | Statistical Estimation. Asymptotic Theory[END_REF]. Besides, the upper bound is tight since the rate n -2α 2α+1 and the dependence on the radius L 2 2α+1 are the same as in the lower bound. Note that similar results can be easily proved for instance for Besov balls B α ∞,2 (L), with α, L > 0 (see DeVore and Lorentz, 1993) by using an appropriate collection of models such as trigonometric polynomials defined by (5).

Simulation experiments

Results of simulation experiments are provided to support the theoretical analysis developed in Section 3.1.2. Samples of size n = 100, 500, 1000, 2000, 3000, 4000, 5000, 6000, 10 000 have been generated from a mixture of Beta distributions

∀x ∈ [0, 1], s(x) = β(3, 7; x) + β(10, 5; x) 2 , ( 16 
)
which is a Hölderian density on [0, 1]. For each n, every p ∈ {1, . . . , n -1} have been considered. Note that in these experiments, (Dmax) is fulfilled with Γ = 1 (Figure 1) and Γ = 2 (Figure 2). The model collection we used is made of piecewise constant functions described in Section 2.1.2 leading to regular histogram estimators defined by (4). For every 1 ≤ p ≤ n -1, m(p) is defined by ( 13).

Let us also introduce 

C or,n (p) := E   s -s m(p) 2 inf m∈Mn s -s m 2   and p 0 := Argmin 1≤p≤n-1 C or,n (p) , (17) 
where σ denotes the empirical standard deviation. First from Figure 1, curves p/n → C or,n (p) (plain red lines) decrease to 1 uniformly with p as n grows. This confirms Theorem 3.1 where C n (p) → 1 as n → +∞ when p is kept fixed. Furthermore, p → C n (p) and p → C or,n (p) have a similar behavior since, as suggested by Corollary 3.1 when n is fixed, C or,n (p) is minimized for p > 1 but increases as p/n gets closer to 1. Recalling C or,n (p) measures the accuracy of s m(p) , previous remarks show Theorem 3.1 is accurate enough to make C n (p) a reliable measure of the performance of s m(p) with respect to p. In particular, optimizing C n (p) as a function of p actually amounts to finding the best estimator among s m(p) 1≤p≤n-1 .

Second from (a) to (c) (Figure 1), the shape of p/n → C or,n (p) changes, its minimum location becoming less clear as n grows from n = 100, to n = 10 000. According to Corollary 3.1, p is chosen large enough to balance the deviations due to δ n (model collection complexity). Since δ n → 0 as n → +∞, this requirement on p vanishes as n grows. This explanation is also supported by Figure 2 (c) where p 0 /n (see Eq. ( 17)) has been displayed for different values of n. It shows p 0 /n slowly decreases as n grows, which has been proved in Corollary 3.1 (p * /n ∼ 10δ n with δ n → 0 and nδ n → +∞ as n tends to +∞).

Finally, (a) and (b) in Figure 2 display p/n → C or,n (p) for n = 2 000 and (a) Γ = 1, (b) Γ = 2. As indicated by (Dmax), an increase of Γ results in a more complex collection of models, inducing larger deviations (δ n slower). On the one hand, the curve in (b) (Γ = 2) is above that in (a) (Γ = 1). The performance of s m(p) worsens as the collection of modes becomes more complex. On the other hand, the minimum location is also larger for Γ = 2 than for Γ = 1. Since Γ is larger, so is δ n . Then, p has to be chosen larger to balance the effect of δ n . Since the same phenomena have been observed in other simulation experiments (not reported here), one concludes the optimal p is strongly linked with the model collection structure: the more complex the model collection, the larger the optimal p.

Optimal cross-validation for Identification

Identification point of view

With the notation of Section 2.1, { s m } m∈Mn denotes a collection of projection estimators (Section 2.1.2) which is allowed to depend on n. From the Identification point of view, one assumes The purpose is to find the smallest model containing s, denoted by S m and defined by

{m ∈ M n , s ∈ S m } = ∅ .
m := Argmin m∈Mn E s m -s m 2 , ( 19 
)
where s m denotes the orthogonal projection of s onto S m . Note that Assumptions (LoEx) and (RegD)

imply ξD m ≤ E s m -s m 2 ≤ s 2 ΦD m . For every m ∈ M n , E s m -s m 2
is related to D m as a measure of the size of S m . However unlike the dimension D m , E s ms m 2 measures the size of S m through s. Thus, a model S m is not simply "too large" because it depends on more parameters, but rather because the estimation error E s ms m 2 incurred by S m is too large.

Main model consistency result

In the following analysis, one further assumes m does not depend on n for large enough values of n. First, it entails m ∈ M n for large enough values of n. Second, letting M n grow with n amounts for instance to include too large models in {S m } m∈Mn without modifying m. In particular, it is not required that {S m } m∈Mn is nested.

Let us first describe the asymptotic behavior of R p as a function of 1 ≤ p ≤ n -1.

Theorem 3.3 (Asymptotic behavior of R p ). Let ∪ m∈Mn S m be a collection of models satisfying (Pol), m ∈ M be defined by ( 19) such that m does not depend on n, and assume (SqI), (RegD), (Dmax), (LoEx) hold true. Then, an event Ω n exists with P [ Ω n ] ≥ 1 -8/n 2 on which for every p = p n such that

n 1 - p n -----→ n→+∞ +∞ , (20) 
1. if s ∈ S m , R p (m) -R p ( m) = s -s m 2 + o P (1) > 0 , 2. if s ∈ S m , R p ( m) -R p (m) ≤ n n -p (1 + δ n )E Z 2 m -(1 -δ n )E Z 2 m + 4L n E Z 2 m + E Z 2 m (21) R p ( m) -R p (m) ≥ n n -p (1 -δ n )E Z 2 m -(1 + δ n )E Z 2 m -4L n E Z 2 m + E Z 2 m , ( 22 
)
where δ n → 0 with nδ n → +∞ as n → +∞, and

L n = 4 √ 2Φn -1/2 .
On the one hand, the constraint (20) ensures R p (m) is a consistent estimator of R n ( s m ). It only requires 1-p/n converges to 0 slower than 1/n. Any p = p n satisfying (20) enables to discard too small models S m such that s ∈ S m since R p (m) > R p ( m). On the other hand when s ∈ S m , upper and lower bounds ( 21) and ( 22) give possible deviations of R p (m)-R p ( m) with high probability for large models. These bounds relate p to δ n and L n which are determined by the structure of the model collection {S m } m∈Mn at hand and the probability of the event Ω n . Proof of Theorem 3.3. From Proposition A.2, for every m, m ′ ∈ M,

R p (m ′ ) -R p (m) = E s -s m ′ 2 -E s -s m 2 + p n -p E Z 2 m ′ -E Z 2 m + K(n, p) Z 2 m -E Z 2 m -K(n, p) Z 2 m ′ -E Z 2 m ′ -2K(n, p) ν n (s m ′ -s m ) + 1 n K(n, p) + n n -p ν n (φ m ′ -φ m ) , where K(n, p) = 1 + 2/(n -1) + p/ [ (n -1)(n -p) ] • Setting ∆(m) = R p (m) -E s -s m 2 -p n-p E Z 2 m , it results |∆(m ′ ) -∆(m)| ≤ K(n, p) Z 2 m -E Z 2 m -Z 2 m ′ -E Z 2 m ′ + 2K(n, p) |ν n (s m ′ -s m )| + 1 n K(n, p) + n n -p |ν n (φ m ′ -φ m )| .
First, Propositions A.5 and A.6 imply there exist an event

Ω right ∩ Ω left of probability at least 1 - 2/n 2 -β 1 -β 2 on which K(n, p) Z 2 m -E Z 2 m -Z 2 m ′ -E Z 2 m ′ ≤ K(n, p) (δ n + L m ′ )E Z 2 m + (δ n + L m )E Z 2 m . (23) 
Let us notice that since D m does not depend from n, L m > 0 for large enough values of n. Furthermore choosing

β 1 = β 2 = β n with β n → 0 as n → +∞, it comes L m = L m ′ = L n = 4 √ 2Φβ -1/4 n → +∞ as n tends to +∞. Subsequently, choosing β n such that n 4 β n → +∞ as n → +∞ results in L n /n → 0 as n → +∞.
Second, Proposition A.3 entails there exists an event Ω rem,1 with probability at least 1 -2/n 2 on which

1 n K(n, p) + n n -p |ν n (φ m ′ -φ m )| ≤ δ n K(n, p) + n n -p E(Z 2 m ) + E(Z 2 m ′ ) ≤ δ n 3 + n n -p E(Z 2 m ) + E(Z 2 m ′ ) , (24) 
since K(n, p) ≤ 3 for n ≥ 4.

Third for m ′ = m, Proposition A.8 entails there exists an event Ω rem,3 with probability at least 1-2/n 2 on which

2K(n, p) |ν n (s m -s m )| ≤ 3δ n s m -s m 2 + 3δ n s √ Φ D m + D m n + 3δ n Φ D m + D m n . (25) 
Combining ( 23), (24), and (25), there exist an event Ω n := Ω right ∩Ω left ∩Ω rem,1 ∩Ω rem,3 with probability at least 1 -6/n 2 -2β n on which two settings occur:

1. If s ∈ S m , |∆( m) -∆(m)| ≤ 3L n + 6δ n + n n -p δ n E Z 2 m + E Z 2 m + 3δ n s m -s m 2 + 3δ n s √ Φ D m + D m n + 3δ n Φ D m + D m n • (26) 
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2. If s ∈ S m , |∆( m) -∆(m)| ≤ 3L n + 6δ n + n n -p δ n E Z 2 m + E Z 2 m • (27) 
In these two settings for every m ∈ M, (RegD) and δ n -----→ n→+∞ 0 imply

|∆( m) -∆(m)| = o P (1) , hence, R p (m) -R p ( m) = E s -s m 2 -E s -s m 2 + p n -p E Z 2 m -E Z 2 m + o P (1) . Hence, requiring R p (m) -R p ( m) -E s -s m 2 -E s -s m 2 → 0 as n → +∞ implies the necessary constraint p/ [ (n -p)n ] → 0, which amounts to n 1 - p n -----→ n→+∞ +∞ . (28) 
On the one hand, it is then straightforward to check that Eq. ( 26) leads, for every m ∈ M such that s ∈ S m , to

R p (m) -R p ( m) = s -s m 2 + o P (1) .
On the other hand, for every m ∈ M such that s ∈ S m , Eq. ( 27) provides

R p ( m) -R p (m) - n n -p E Z 2 m -E Z 2 m ≤ 4L n + n n -p δ n E Z 2 m + E Z 2 m , hence R p ( m) -R p (m) ≤ n n -p (1 + δ n )E Z 2 m -(1 -δ n )E Z 2 m + 4L n E Z 2 m + E Z 2 m , (29) 
and

R p ( m) -R p (m) ≥ n n -p (1 -δ n )E Z 2 m -(1 + δ n )E Z 2 m -4L n E Z 2 m + E Z 2 m .
Using β n = 1/n 2 enables to conclude.

From the upper bound (21), one derives a sufficient condition on p to discard too large models. This condition enables to determine the minimal rate at which p/n has to decrease to 0 as n tends to +∞, which ensures model consistency for m. 

m = m(p) = Argmin m∈M R p (m) for every 1 ≤ p ≤ n -1. Then any p = p n such that n 1 - p n -----→ n→+∞ +∞, and 0 < 1 - p n < K √ n with K = 8 √ 2Φ -1
, leads to

P [ m = m * ] -----→ n→+∞ 1 .
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First the main conclusion is that model consistency results from requiring p n /n → 1 as n → +∞. One therefore recovers previous results by [START_REF] Shao | Model Selection by Cross-Validation[END_REF] and [START_REF] Yang | Consistency of cross-validation for comparing regression procedures[END_REF] established in the regression framework. However, our Corollary 3.3 is more precise than [START_REF] Shao | Model Selection by Cross-Validation[END_REF] since it localizes the optimal convergence rate of 1p/n between 1/ √ n and 1/n. In particular, Loo (and Lpo with any p = o(n)) is completely misleading for identifying the model S m. Second, p has to be chosen large enough to balance the deviations (L n ) in (30). Indeed, the rate 1/ √ n is determined by the structure of the model collection {S m } m∈Mn and the probability of the event Ω n . Another collection of models could have produced another minimal rate.

Proof of Corollary 3.3. Applying Eq. ( 29) for every m = m ∈ M such that s ∈ S m , it results a sufficient condition on p such that R p ( m) -R p (m) < 0, that is

0 < n n -p (1 + δ n ) + 4L n E Z 2 m < n n -p (1 -δ n ) -4L n E Z 2 m . (30) 
This leads to require n n-p > 4L n (1δ n ) -1 > 4L n , which can be reformulated as

1 1 -p n > 4L n = 8 √ 2Φβ -1/4 n ⇔ 0 < 1 - p n < β 1/4 n 8 √ 2Φ •
The conclusion results from choosing

β n = 1/n 2 and P [ Ω n ] -----→ n→+∞ 1.

Discussion

From the present analysis of CV algorithms in te density estimation framework, we were able to prove the optimality of leave-one-out cross-validation for risk estimation. Besides when CV is used as model selection procedure, the optimal p strongly depends on the structure of the model collection and on our goal (estimation or identification). However this characterization of the behavior of the optimal p provides some guidelines, but does not result in a data-driven choice of p.

A possible way to design such a data-driven choice is to follow the same idea as [START_REF] Shao | An asymptotic theory for linear model selection[END_REF] exploiting the deep connection between CV and penalized criteria. Let us describe the heuristic argument leading to this choice. [START_REF] Arlot | Model selection by resampling penalization[END_REF] introduced the ideal penalty defined for every m ∈ M n by pen id (m) = P γ( s m ) -P n γ( s m ) , with the notation of Section 2.1. It enables to rephrase ℓ(s, s m ) in terms of a penalized criterion ℓ(s, s m ) = P γ( s m ) -P γ(s) = P n γ( s m ) + pen id (m) -P γ(s) .

Similarly for the Lpo risk estimator,

R p ( s m ) = P n γ( s m ) + pen Lpo (m) ,
where pen Lpo (m) = R p ( s m ) -P n γ( s m ) is called the Lpo-penalty (see [START_REF] Celisse | Model selection via cross-validation in density estimation, regression and change-points detection[END_REF]. Then in our setting, some simple algebra provides

E pen Lpo (m) = 2n -p 2(n -p) E [ pen id (m) ] ,
showing that on average pen Lpo is equal to pen id up to a multiplicative constant. Thus, using the socalled slope heuristics [START_REF] Arlot | Data-driven calibration of penalties for least-squares regression[END_REF], in the regression framework) could serve to calibrate the optimal p of CV algorithms. Lemma A.2. With the same notation as Proposition 2.2, it comes

a n = n 2 Var   λ∈Λ(m) (P n ϕ λ ) 2   + Var λ P n ϕ 2 λ -2nCov   λ P n ϕ 2 λ , λ∈Λ(m) (P n ϕ λ ) 2   , b n = 2n 2   Var   λ∈Λ(m) (P n ϕ λ ) 2   -Cov   λ P n ϕ 2 λ , λ∈Λ(m) (P n ϕ λ ) 2   1 + 1 n + 1 n Var λ P n ϕ 2 λ   , c n = n 2 Var λ P n ϕ 2 λ + n 2 Var   λ∈Λ(m) (P n ϕ λ ) 2   -2n 2 Cov   λ P n ϕ 2 λ , λ∈Λ(m) (P n ϕ λ ) 2   .
Lemma A.3. With the notation of Section 2.3, simple algebra leads to

Var λ P n ϕ 2 λ = 1 n Var λ ϕ 2 λ (X 1 ) , Cov λ P n ϕ 2 λ , λ (P n ϕ λ ) 2 = 1 n 2 Var λ ϕ 2 λ (X 1 ) + 2 n -1 n 2 Cov λ ϕ 2 λ (X 1 ), λ ϕ λ (X 1 )ϕ λ (X 2 ) Var λ (P n ϕ λ ) 2 = Var λ ϕ 2 λ (X 1 ) n 3 + 4 n -1 n 3 Var λ ϕ λ (X 1 )ϕ λ (X 2 ) + 4 (n -1)(n -2) n 3 Cov λ ϕ λ (X 1 )ϕ λ (X 2 ), λ ϕ λ (X 1 )ϕ λ (X 3 ) + 4 n -1 n 3 Cov λ ϕ 2 λ (X 1 ), λ ϕ λ (X 1 )ϕ λ (X 3 ) .
Proposition A.1. With the notation of Lemma A.2, 

a n = 4 n -1 n α + 4 (n -1)(n -2) n β b n = 8 n -1 n α + 8 (n -1)(n -2) n β -4(n -1) 1 - 1 n γ c n = 4 n -1 n α + 4 (n -1)(n -2) n β -4 (n -1) 1 - 1 n γ + n -2 + 1 n δ .
where α = Var [ λ ϕ λ (X 1 )ϕ λ (X 2 ) ], β = Cov [ λ ϕ λ (X 1 )ϕ λ (X 2 ), λ ϕ λ (X 1 )ϕ λ (X 3 ) ], γ = Cov λ ϕ 2 λ (X 1
), λ ϕ λ (X 1 )ϕ λ (X 3 ) , and δ = Var λ ϕ 2 λ (X 1 ) .

Proof of Proposition A.1. Using Lemmas A.2 and A.3, it comes

a n = n 2 Var λ ϕ 2 λ (X 1 ) n 3 + 4 n -1 n 3 Var λ ϕ λ (X 1 )ϕ λ (X 2 ) +4 (n -1)(n -2) n 3 Cov λ ϕ λ (X 1 )ϕ λ (X 2 ), λ ϕ λ (X 1 )ϕ λ (X 3 ) +4 n -1 n 3 Cov λ ϕ 2 λ (X 1 ), λ ϕ λ (X 1 )ϕ λ (X 3 ) + 1 n Var λ ϕ 2 λ (X 1 ) -2n 1 n 2 Var λ ϕ 2 λ (X 1 ) + 2 n -1 n 2 Cov λ ϕ 2 λ (X 1 ), λ ϕ λ (X 1 )ϕ λ (X 2 ) = 4 n -1 n Var λ ϕ λ (X 1 )ϕ λ (X 2 ) + 4 (n -1)(n -2) n Cov λ ϕ λ (X 1 )ϕ λ (X 2 ), λ ϕ λ (X 1 )ϕ λ (X 3 ) .
In the same way,

b n = 2n 2   Var   λ∈Λ(m) (P n ϕ λ ) 2   -Cov   λ P n ϕ 2 λ , λ∈Λ (m) 
(P n ϕ λ ) 2   1 + 1 n + 1 n Var λ P n ϕ 2 λ   = 8 n -1 n Var λ ϕ λ (X 1 )ϕ λ (X 2 ) + 8 (n -1)(n -2) n Cov λ ϕ λ (X 1 )ϕ λ (X 2 ), λ ϕ λ (X 1 )ϕ λ (X 3 ) -4(n -1) 1 - 1 n Cov λ ϕ 2 λ (X 1 ), λ ϕ λ (X 1 )ϕ λ (X 3 ) .
Finally, Thanks to (42) where t = t m,m ′ , it comes

c n = n 2 Var λ P n ϕ 2 λ + n 2 Var   λ∈Λ(m) (P n ϕ λ ) 2   -2n 2 Cov   λ P n ϕ 2 λ , λ∈Λ(m) (P n ϕ λ ) 2   = n -2 + 1 n Var λ ϕ 2 λ (X 1 ) + 4 n -1 n Var λ ϕ λ (X 1 )ϕ λ (X 2 ) + 4 (n -1)(n -2) n Cov λ ϕ λ (X 1 )ϕ λ (X 2 ), λ ϕ λ (X 1 )ϕ λ (X 3 ) -4 (n -1) 1 - 1 n Cov λ ϕ 2 λ (X 1 ), λ ϕ λ (X 1 )ϕ λ (X 3
|ν n (t m,m ′ )| > 2 Var (t m,m ′ (X 1 )) n x + t m,m ′ ∞ 3n x ,
with probability not larger than 2 exp (-x), x > 0. Hence with (SqI), one has

2ν n (s m -s m ′ ) ≤ η s m -s m ′ 2 + 4η -1 Var (t m,m ′ (X 1 )) n x + 2η -1 t m,m ′ ∞ 3n x 2 (31) ≤ 2η s -s m 2 + s -s m ′ 2 + 4η -1 s t m,m ′ ∞ n x + 2η -1 t m,m ′ ∞ 3n x 2 .
Moreover assuming (RegD), it comes

t m,m ′ ∞ ≤ Φ (D m + D m ′ ) .
Then,

Var (t m,m ′ (X 1 )) n x ≤ s √ Φ (D m + D m ′ ) n x , t m,m ′ ∞ 3n x 2 ≤ Φ (D m + D m ′ ) x 2 9n 2 •
Let us take x = (2a M + 2) log n. Then,

Var (t m,m ′ (X 1 )) n x ≤ s √ Φ (D m + D m ′ ) n (2a M + 2) log n , t m,m ′ ∞ 3n x 2 ≤ Φ (D m + D m ′ ) ((2a M + 2) log n) 2 9n 2 • Then, 2 ν n (s m -s m ′ ) E s -s m 2 + E s -s m ′ 2 ≤ 2η + 4η -1 s √ Φ (D m + D m ′ ) n E s -s m 2 + E s -s m ′ 2 (2a M + 2) log n + 2η -1 Φ D m + D m ′ n E s -s m 2 + E s -s m ′ 2 ((2a M + 2) log n) 2 9n ≤ 2η + 4η -1 s Φ ξ n E s -s m 2 + E s -s m ′ 2 (2a M + 2) log n + 2η -1 Φ ξ ((2a M + 2) log n) 2 9n ,
thanks to (LoEx). Moreover using that it comes

n E s -s m 2 + E s -s m ′ 2 ≥ 2n inf m E s -s m 2 =: 2nR
2 ν n (s m -s m ′ ) E s -s m 2 + E s -s m ′ 2 ≤ 2η + 4η -1 s Φ 2ξ (2a M + 2) 1 nR * n (log n) -2 + 2η -1 Φ ξ (2a M + 2) 2 (log n) 2 9n .
Then, (OrSp) entails there exists a sequence δ n → 0, nδ n → +∞ as n → +∞ (0 < δ n < 1 for n large enough) such that

2ν n (s m -s m ′ ) ≤ δ n E s -s m 2 + E s -s m ′ 2 .
Finally, let us notice that m,m ′ ∈M 2n 

m ∈ M, √ nZ m ≤ √ nE(Z m )    1 + δ n + 4 Φ ξ C s 1 ( √ Dm<(log n) 2 )    on an event Ω right with P [ Ω right ] ≥ 1 -1/n 2 -β 1 , for any β 1 ∈ (0, 1) and C ≥ 2ξ/β 1 .
Proof of Proposition A.5.

Let us use Eq. ( 43) and upper bound the deviation terms. Assuming (SqI) and (RegD), Lemma A.6 leads to

σ 2 m ≤ s √ Φ D m , b m ≤ √ Φ D m .
Furthermore, (LoEx) entails

σ 2 m ≤ s Φ ξ √ nE(Z m ) , b m ≤ Φ ξ √ nE(Z m ) . Let us first upperbound 2 (σ 2 m + 2b m E(Z m )) x m : 1. If √ D m ≥ (log n) 2 : Then choosing x m = (a M + 2) log n, there exists a sequence δ n decreasing to 0, nδ n → +∞ as n → +∞ such that 2 (σ 2 m + 2b m E(Z m )) x m ≤ √ nE(Z m )δ n .
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2. Otherwise √ D m < (log n) 2 : Then, 2 (σ 2 m + 2b m E(Z m )) x m is no longer negligible with respect to √ nE(Z m ). So, choosing x m = C √ nE(Z m ) (C > 0) leads to 2 (σ 2 m + 2b m E(Z m )) x m ≤ √ nE(Z m ) 2 Φ ξ C ( s + 2E(Z m )) ≤ √ nE(Z m ) 4 Φ ξ C s ,
as long as n is large enough.

Let us now upperbound bmxm 3

√ n : b m x m 3 √ n ≤ √ nE(Z m ) Φ ξ (a M+2 ) log n ∨ C(log n) 2 3 √ n • Finally, we can remark that m∈M e -xm = Dm≥(log n) 4 n -(aM+2) + Dm<(log n) 4 e -C √ nE(Zm) ≤ 1 n 2 + 2 ξ c 2 • Corollary A.1. For Z m = sup t∈Sm ν n (t), set L m = 4 Φ ξ C s 1 ( √ Dm<(log n) 2 ) . Then on the event Ω right defined in Proposition A.5, Z 2 m ≤ E(Z 2 m ) (1 + δ n + L m ) 2 .

A.3.2. Left deviation

Proposition A.6 (Left deviation of √ nZ m ). Let us assume (Pol), (SqI), (RegD), and (LoEx) hold true, and set Z m = sup t∈Sm ν n (t), σ 2 m = sup t∈Sm Var [ t(X 1 ) ] and b m = sup t∈Sm t ∞ . Then, there exists a sequence (δ n ) n≥1 with δ n → 0 and nδ n → +∞ as n → +∞ such that for every m ∈ M,

√ nZ m ≥ √ nE(Z m )    1 -δ n -4 Φ ξ C s 1 ( √ Dm<(log n) 2 )    , (32) 
on an event Ω left with P [ Ω left ] ≥ 1 -1/n 2β 2 for any β 2 ∈ (0, 1) and C ≥ 2ξ/β 2 .

Proof of Proposition A.6. Similar to that of Proposition A.5 with the use of Eq. ( 44) and the additional Proposition A.7 which provides an upper bound of E(Z m ) 2 depending on E(Z 2 m ).

Proposition A.7 (Upper bound on Var(Z)). Let X 1 , . . . , X n be i.i.d. random variables defined on a mesurable space (X , T ). Let S denote a set of real valued functions such that sup t∈S t ∞ ≤ b, sup t∈S Var (t(X 1 )) = σ 2 , and set Z = sup t∈S ν n (t). Then,

Var(Z) ≤ 2σ 2 + 32bE(Z) n . (33) 
Let us assume (SqI), (RegD), and (LoEx). If S denotes a linear space of dimension D, then there exists a positive sequence (δ n ) n≥1 with δ n → 0 and nδ n → +∞ as n → +∞ (0 < δ n < 1 for n large enough), and every constant θ > 0 such that

E(Z 2 ) ≤ (E(Z)) 2 1 + δ n + θ Φ ξ 1 ( √ Dm<(log n) 2 ) + r n ,
where

r n = θ -1 Φ ξ 2 s 2 n 1 ( √ D<(log n) 2 ) .
Proof of Proposition A.7. Assumptions (SqI), (RegD), and (LoEx) provide

E(Z 2 ) -(E(Z)) 2 ≤ 2 Φ ξ (E(Z)) 2 s √ nE(Z) + 16 √ n . 1. If √ nE(Z) ≥ √ ξD ≥ √ ξ(log n) 2 : E(Z 2 ) -(E(Z)) 2 ≤ 2 Φ ξ (E(Z)) 2 s √ ξ(log n) 2 + 16 √ n ≤ δ 1,n (E(Z)) 2 , with δ 1,n = 2 Φ ξ s √ ξ(log n) 2 + 16 √ n . 2. Otherwise √ nE(Z) ≤ √ ΦD < √ Φ(log n) 2 : E(Z 2 ) -(E(Z)) 2 ≤ 2 Φ ξ E(Z) s √ n + 16E(Z) √ n ≤ θ Φ ξ (E(Z)) 2 + θ -1 Φ ξ 1 n ( s + 16E(Z)) 2 ≤ θ Φ ξ (E(Z)) 2 + θ -1 Φ ξ 1 n 2 s 2 + 32 (E(Z)) 2 ≤ δ 2,n + θ Φ ξ (E(Z)) 2 + r n for every θ > 0, with δ 2,n = θ -1 Φ ξ 32 n and r n = θ -1 Φ ξ 2 s 2 n .
Then, there exists a positive sequence (δ n ) n≥1 with δ n = max {δ 1,n , δ 2,n } decreasing to 0 with nδ n → +∞ as n → +∞, such that 

E(Z 2 ) -r n 1 + δ n + θ Φ ξ 1 ( √ D<(log n) 2 ) ≤ (E(Z)) 2 . imsart-
= sup t∈Sm ν n (t), set L m = 4 Φ ξ C s 1 ( √ Dm<(log n) 2 ) and r n (m) = θ -1 Φ ξ 2 s 2 n 1 ( √ Dm<(log n) 2 ) . Then on the event Ω left defined in Proposition A.6, E(Z 2 m ) ≤ Z 2 m (1 -δ n -L m ) -3 + r n (m) .
Proof of Corollary A.2. From Propositions A.6 and A.7, it comes that

E(Z 2 m ) ≤ Z 2 m 1 + δ n + θ Φ ξ 1 ( √ Dm<(log n) 2 ) (1 -δ n -L m ) 2 + r n (m) .
Then, Lemma A.9 enables to conclude.

A.4. Dimension behavior with respect to n

Lemma A.4 (Oracle dimension). Let us assume (Bias), (Rich), and (RegD) hold true. Then, on the event Ω ′ = Ω left ∩Ω right , where Ω left and Ω right are respectively defined in Corollary A.1 and Corollary A.2, it comes

D m * ≥ (log n) 4 , (34) 
for large enough values of n.

Proof of Lemma

A.4. Since m * = Argmin m s -s m 2 , it comes s -s m * 2 ≤ s -s m0 2 + s m0 -s m0 2 ,
with m 0 defined by (Rich). First on the event Ω ′ , using E Z 2 m0 ≤ ΦD m0 /n by (RegD) and Corollaries A.1 and A.2, there exists δ n such that

Z 2 m0 -E Z 2 m0 ≤ δ n E Z 2 m0 ≤ δ n Φ D m0 n •
Then by use of (Bias) and (Rich) on Ω ′ ,

c ℓ D -ℓ m * ≤ s -s m * 2 ≤ s -s m * 2 ≤ c u n -u/2 + c rich (1 + δ n )Φn -1/2 ,
which is contradictory with assuming D m * < (log n) 4 as long as n is large enough. 

D m ≥ (log n) 4 , (35) 
for large enough values of n. 

1 -K(n, p)δ n ] s -s m 2 + n n -p -K(n, p)δ n -K(n, p) + n n -p δ n E Z 2 m -K(n, p) Z 2 m -E Z 2 m ≤ [ 1 + K(n, p)δ n ] s -s m0 2 + n n -p + K(n, p)δ n + K(n, p) + n n -p δ n E Z 2 m0 -K(n, p) Z 2 m0 -E Z 2 m0 .
First, assuming D m < (log n) 4 on Ω and combining (LoEx) and (RegD) entail for m = m that there exists a constant C > 0 such that

n n -p -K(n, p)δ n -K(n, p) + n n -p δ n E Z 2 m -K(n, p) Z 2 m -E Z 2 m ≤ C (log n) 4 n • Second, using (Bias) provides [ 1 -K(n, p)δ n ] s -s m 2 ≥ [ 1 -K(n, p)δ n ] c ℓ (log n) -4ℓ , which is larger than C (log n) 4 n
for large enough values of n. Using the same arguments as in Lemma A.4 for upper bounding the terms depending on m 0 , it results that D m ≥ (log n) 4 on Ω.

A.5. Technical results

Lemma A.6. Let X 1 , . . . , X n be i.i.d. random variables defined on a mesurable space (X , T ). Let S denote a set of real valued functions such that sup t∈S t ∞ ≤ b and sup t∈S Var (t(X 1 )) = σ 2 . Let us assume (SqI). Then σ 2 ≤ s b .

(36)

Furthermore, (RegD) leads to

σ 2 ≤ s √ ΦD , (37) 
where D denotes the dimension of the vector space S.

Lemma A.7. (Dmax) implies Proof.

φ m ∞ ≤ Φ n (log n) 2 , Var (φ m (X 1 )) ≤ nE(Z 2 ) + s 2 Φ n (log n) 2 .

Var (φ

m (X 1 )) ≤ E φ 2 m (X 1 ) ≤ φ m ∞ E [ φ m (X 1 ) ] = φ m ∞ nE(Z 2 ) + s m 2 ≤ φ m ∞ nE(Z 2 ) + s 2 ≤ nE(Z 2 ) + s 2 Φ n (log n) 2 .
Lemma A.8. Let us assume that 0 ≤ δ n + L m for every m ∈ M. Then on the event Ω left ∩ Ω right (with Ω left and Ω right defined in Proposition A.6 and Proposition A.5 respectively), for every m, m ′ ∈ M,

Z 2 m ′ (1 -4(δ n + L m ′ )) ≤ E(Z 2 m ′ ), Z 2 m ′ -E(Z 2 m ′ ) ≤ 4Z 2 m ′ (δ n + L m ′ ) . ( 38 
)
and

E(Z 2 m ) ≤ Z 2 m (1 + 4(δ n + L m )) + r n , E(Z 2 m ) -Z 2 m ≤ 4Z 2 m (δ n + L m ) + r n . ( 39 
)
Proof of Lemma A.8. Proof of (38) From Corollary A.1, on the event Ω right , it comes

Z 2 m ≤ (E(Z m )) 2 (1 + δ n + L m ) 2 .
Then assuming moreover 0 ≤ δ n + L m < 1, Jensen's inequality and (1x) -2 < (1 + x 2 ) for x ∈ [0, 1[ lead to Second, since the model collection is built from regular partitions of [0, 1], (RegD) is clearly satisfied, and (Dmax) entails (Rich) is fulfilled.

Z 2 m ≤ E(Z 2 m ) (1 + δ n + L m ) 2 ≤ E(Z 2 m ) 1 (1 -δ n -L m ) 2 • Finally if 0 ≤ δ n + L m < 1/4, then E(Z 2 m ) ≥ Z 2 m (1 -δ n -L m ) 2 ≥ Z 2 m [ 1 -2(δ n + L m ) ] ≥ Z 2 m [

A.6.2. Technical Lemma

Lemma A.11. Let s be a density such that s ∈ H(L, α) for some α ∈ (0, 1] and L > 0. For every D ∈ N * , let s D denote the orthogonal projection of s defined in Section 2.1.2 onto piecewise constant functions built from a given regular partition of [0, 1] in D intervals. Then,

c ℓ D ℓ ≤ s -s D 2 ≤ c u D u , (41) 
where u = 2α, c u = L 2 , ℓ = 1 + 1/α and c ℓ = ǫ 2+1/α 2 -(5+2/α) L -1/α , for some ǫ > 0.

Proof of Lemma A.11. 2 dt ≥ ∆ 2+1/α 2 4+1/α L 1/α , where ∆ = sup I sinf I s.

Proof of Lemma A.12. First, let us notice s -= inf I s ≤ s I ≤ sup I s = s + , which implies max s +s I , s Is -≥ ∆/2 . Without loss of generality, let us assume max (s +s I , s Is -) = s +s I . Then s +s I ≥ ∆/2.

Second, let us introduce x + ∈ I such that s + = s(x + ). By continuity of s, there exists an interval J ⊂ I such that x + ∈ J and ∀x ∈ J, 0 ≤ s(x + )s(x) ≤ ∆/4 . x 2 9n 2 . with probability not larger than 2 exp (-x), for any x > 0.

Let us further assume that (Pol) holds true. Then with x = x m = (a M + 2) log n, it comes

2ν n (s m -s m) ≤ η s m -s m 2 + 4η -1 s √ Φ (D m + D m) √ n (a M + 2) log n √ n + 2η -1 Φ D m + D m n ((a M + 2) log n) 2 9n •
Let us choose η = 1/ log n, then there exists a sequence (δ n ) N with δ n → 0 and nδ n → +∞ as n → +∞ such that.

2ν n (s m -s m) ≤ δ n s m -s m 2 + δ n s √ Φ D m + D m n + δ n Φ D m + D m n •
Finally, let us notice that m∈M 2e -xm = m∈M 2n -(aM+2) ≤ 2n aM n -(aM+2) = 2/n 2 .
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Fig 1 .

 1 Fig 1.From (a) to (c), p/n → Cor,n(p) (plain red line) is plotted for Γ = 1 (see (Dmax)) and different values of n: (a) n = 100, (b) n = 1000, (c) and n = 10 000. p/n → C + oracle,n (p) (blue dashed line) and p/n → C - oracle,n (p) (black dot-dashed line) have been plotted on the same graph as well (see (18)). In each setting, N = 1000 samples have been drawn from the mixture of Beta distributions defined by (16).

Fig 2 .

 2 Fig 2. For (a) and (b), p/n → Cor,n(p) (plain red line) is plotted for n = 2000 and different values of Γ(see (Dmax)): (a) Γ = 1 , (b) Γ = 2. p/n → C + oracle,n (p) (blue dashed line) and p/n → C - oracle,n (p) (black dot-dashed line) have been plotted on the same graph as well (see (18)). In each setting, N = 1000 samples have been drawn from the mixture of Beta distributions defined by (16). For (c), n → p 0 /n is displayed, where p 0 denotes the minimizer of Cor,n(p) as a function of p.
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  Corollary 3.3 (Model consistency). With the same notation and assumptions as Theorem 3.3, let us define

  With the notation of Section 2.2.1, for any i = j = k ∈ {1, . . . , n},

Lemma A. 5 (

 5 Chosen model dimension). Let us assume (Bias), (Rich), (LoEx), and (RegD) hold true. Then with the notation of Lemma A.4, on the event Ω = Ω ′ ∩ (Ω rem,1 ∩ Ω rem,2 ), where Ω rem,1 and Ω rem,2 are respectively defined inProposition A.3 and Proposition A.4, it comes 
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  1 -4(δ n + L m ) ] .Proof of (39) Assuming δ n + L m < 1/4, Corollary A.2 and Lemma A.10 provideE(Z 2 m ) ≤ Z 2 m (1 + 4(δ n + L m )) + r n (m) .Lemma A.9. For every a, b ∈ (0, 1)such that a < b(1b) -1 , Moreover if 0 < a = b < 1, then a < a(1a) -1and Eq. (40) holds true.Lemma A.10. For every interval I ⊂ [0, 1[ such that 0 ∈ I, there exists a constant ∆ > 3 such that∀x ∈ I, (1x) -3 ≤ 1 + ∆x .In particular for I = [0, 1/4], this property holds true with ∆ = 4. Furthermore for everyx ∈]1, +∞[, (1x) -3 ≤ 1.imsart-generic ver. 2009/02/27 file: cvhistoAOS_HAL.tex date: April 2, 2012 A.6. Adaptivity in the minimax sense A.6.1. Proof of Corollary 3.2 The proof simply consists in combining Theorems 3.1 and 3.2 by checking their assumptions. First, s ∈ H(L, α) implies (SqI). Combined with Lemma A.11, it shows (Bias) is fulfilled. Besides, n) -2 , where a ≈ b means there exist constants 0 < c 1 ≤ c 2 such that c 1 b ≤ a ≤ c 2 b.

≥

  First, let us notice (41) excludes s = 1 [0,1] . Then, there exist x < y ∈ [0, 1] such that |x -y| ≤ η and |s(x)s(y)| ≥ ǫ for some η, ǫ > 0. Besides for a regular partition of[0, 1] in intervals I 1 , . . . , I D of Lebesgue measure |I k | = 1/D, it comes st)s I k ] 2 dt ,where s I k denotes the mean of s on intervalI k . Second, let K(η) = {1 ≤ k ≤ D, I k ∩ [x, y]= ∅} and N (η) denote the cardinality of K(η). Then, N (η) ≤ 2 + ηD. Combined with Lemma A.12, it leads toss D 2 ≥ k∈K(η) I k [ s(t)s I k ] 2 dt ≥ 1 2 4+1/α L 1/α k∈K(η) ∆ 2+1/α k , where ∆ k := sup I k sinf I k s, for every 1 ≤ k ≤ D. Applying Hölder's inequality, it comes N (η) -(1+1/α) ǫ 2+1/α , imsart-generic ver. 2009/02/27 file: cvhistoAOS_HAL.tex date: April 2, 2012since k∈K(η) ∆ k ≥ ǫ. Hence, α L 1/α N (η) -(1+1/α) ǫ 2+1/α ≥ 1 2 4+1/α L 1/α (1 + η) -(1+1/α) D -(1+1/α) ǫ 2+1/α ≥ ǫ 2+1/α 2 5+2/α L 1/α D -(1+1/α) •Lemma A.12. Let s denote a density defined on [0, 1] such that s ∈ H(L, α), for some L > 0 and α ∈ (0, 1]. Let us define an interval I ⊂ [0, 1] and s I = |I| -1 I s(t) dt denotes the mean of s on I. Then, I (s(t)s I )

  , s(x)s I ≥ ∆/2 -∆/4 = ∆/4 . ver. 2009/02/27 file: cvhistoAOS_HAL.tex date: April 2, 2012A.7. Identification point of viewProposition A.8 (Bound on ν n (s ms m)). Let us assume (Pol),(SqI), (RegD) hold true. Then, there exists a sequence (δ n ) N and an event Ω rem,3 with P [ Ω rem,3 ] ≥ 1 -2/n 2 , on which for every m ∈ M,2 |ν n (s ms m)| ≤ δ n s ms m 2 + δ n s √ Φ D m + D m n + δ n Φ D m + D m n ,with δ n → 0 and nδ n → +∞ as n → +∞, and 0 ≤ δ n ≤ 1 for n large enough.Proof of Proposition A.8. Combining Eq. (31), (SqI), and (RegD) it comes for every η > 0,2ν n (s ms m) ≤ η s ms m 2 4η -1 s √ Φ (D m + D m) n x + 2η -1 Φ (D m + D m)

  m denotes the linear space spanned by {ϕ λ } λ∈Λ(m) , D m = dim (S m ), and s m is the orthogonal projection of s onto S m s
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S m := Argmin u∈Sm P γ(u) = λ∈Λ(m)

  ) .
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  -(2aM+2) ≤ 2n 2aM n -(2aM+2) = 2/n 2 . Let us assume (Pol), (SqI), (RegD), and (LoEx) hold true, and set Z m = sup t∈Sm ν n (t), σ 2 m = sup t∈Sm Var [ t(X 1 ) ] and b m = sup t∈Sm t ∞ . Then, there exists a sequence (δ n ) n≥1 with δ n → 0 and nδ n → +∞ as n → +∞ such that for every

	A.3. Deviations of	√ nZ m
	A.3.1. Right deviation	
	Proposition A.5 (Right deviation of	√ nZ m ).

  generic ver. 2009/02/27 file: cvhistoAOS_HAL.tex date: April 2, 2012 Corollary A.2. For Z m

  Proof of Lemma A.4. For any model m such that R p (m) ≤ R p (m 0 ), Proposition A.3, Proposition A.4, and Proposition A.2 lead to [
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Proposition A.2. For every m, m ′ ∈ M and p ∈ {1, . . . , n -1}, it comes

Let us assume (RegD) and apply (42

where Z m = sup t∈Sm ν n (t) for every m.

Proof of Proposition A.3. A straightforward use of ( 42) leads to the expected conclusion.

Proposition A.4 (Bound on ν n (s ms m ′ )). Let us assume (Pol),(SqI), (RegD), (LoEx), and (OrSp) hold true. Then, there exists a sequence (δ n ) N such that for every m, m ′ ∈ M,

with δ n → 0 and nδ n → +∞ as n → +∞, and 0 ≤ δ n ≤ 1 for n large enough. Furthermore, an event Ω rem,2 exists with P [ Ω rem,2 ] ≥ 1 -2/n 2 , on which for every m, m ′ ∈ M

Proof of Proposition A.4. For every η > 0,
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Appendix B: Key concentration inequalities Theorem B.1 (Bernstein's inequality). Let X 1 , . . . , X n be i.i.d. random variables defined on a mesurable space (X , T ), and let t denote a mesurable bounded real valued function. Then for every x > 0,

Theorem B.2 (Bousquet's version of Talagrand's inequality [START_REF] Bousquet | A Bennett concentration inequality and its application to suprema of empirical processes[END_REF]).

Let X 1 , . . . , X n be i.i.d. random variables defined on a mesurable space (X , T ). Let S denote a set of real valued functions such that sup t∈S t ∞ ≤ b and sup t∈S Var (t(X 1 )) = σ 2 . Denoting Z = sup t∈S ν n (t), then for every x > 0

Theorem B.3 (Rio's version of Talagrand's inequality [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF]).

Let X 1 , . . . , X n be i.i.d. random variables defined on amesurable space (X , T ). Let S denote a set of real valued functions such that sup t∈S t ∞ ≤ b and sup t∈S Var (t(X 1 )) = σ 2 . Denoting Z = sup t∈S ν n (t), then for every x > 0