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Density estimation via cross-validation:

Model selection point of view

Alain Celisse

April 14, 2009

Abstract

The problem of model selection by cross-validation is addressed in the density esti-
mation framework. Extensively used in practice, cross-validation (CV) remains poorly
understood, especially in the non-asymptotic setting which is the main concern of this
work.
A recurrent problem with CV is the computation time it involves. This drawback is
overcome here thanks to closed-form expressions for the CV estimator of the risk for
a broad class of widespread estimators: projection estimators.
In order to shed new lights on CV procedures with respect to the cardinality p of
the test set, the CV estimator is interpreted as a penalized criterion with a random
penalty. For instance, the amount of penalization is shown to increase with p.
A theoretical assessment of the CV performance is carried out thanks to two oracle
inequalities applying to respectively bounded or square-integrable densities. For sev-
eral collections of models, adaptivity results with respect to Hölder and Besov spaces
are derived as well.

Keywords: Density estimation, cross-validation, model selection, leave-p-out, random
penalty, oracle inequality, projection estimators, adaptivity in the minimax sense, Hölder,
Besov.

1 Introduction

The main concern of this paper is the analysis of cross-validation procedures when em-
ployed to perform model selection in the density estimation context. This analysis results
in a new understanding of CV behaviour as well as in several optimality results. Before
entering into details, let us briefly describe related works in the model selection area.

1.1 Model selection

Model selection via penalization has been introduced by the seminal papers of Mallows
(1973) on Cp, and Akaike (1973) about AIC, and also by Schwarz (1978) who proposed the
BIC criterion. AIC and BIC have an asymptotic flavour, which makes their performance
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depend on the model collection in hand as well as on the sample size (see Baraud et al.,
2009).

More recently, Birgé and Massart (1997, 2001, 2006) have developed a non-asymptotic
approach, inspired from the pioneering work of Barron and Cover (1991). It aims at
choosing a model among a countable family {Sm}m∈Mn

where Mn is allowed to depend
on the sample size n. From this point of view, an estimator ŝm is associated with each
model Sm, and a penalized criterion is designed and then minimized to provide a final
estimator s̃ = ŝ

bm. The goal of this approach is efficiency, that is the risk of s̃ is as
small as the smallest achievable risk by any of the estimators in the collection. Actually,
this cannot be reached in the non-asymptotic setting and the quality assessment of the
procedure is made through an oracle inequality. Such an inequality instead asserts that
the risk of s̃ is almost the same as that of the smallest achievable one up to a multiplicative
constant Cn ≥ 1 and a remainder term. When Cn converges to 1 as n tends to infinity,
the model selection procedure is said asymptotically efficient.

In the density estimation framework, Barron et al. (1999) developed a general ap-
proach based on deterministic penalties, leading to an oracle inequality involving Kullback-
Leibler divergence and Hellinger distance. This result has been adapted to the particular
case of histograms by Castellan (1999, 2003) and further studied in Birgé and Rozenholc
(2006). With the quadratic risk, the penalties proposed by Birgé and Massart (1997) and
Barron et al. (1999) also enjoy some optimality properties when applied to projection es-
timators. The resulting estimators exhibit some adaptivity in the minimax sense with
respect to Besov spaces for several appropriate functional bases (see Birgé and Massart,
1997).

1.2 Cross-validation

Unlike the aforementioned approaches relying on some deterministic penalties, the main
concern of the present work is the use of cross-validation (CV) as a model selection proce-
dure in the density estimation context. “Cross-validation” refers to a family of resampling-
based procedures, resulting from a heuristic argument. The cross-validation procedures
have been first studied in a regression context by Stone (1974, 1977) for the leave-one-out
(Loo) and Geisser (1974, 1975) for the V -fold cross-validation (VFCV), and by Rudemo
(1982) and Stone (1984) in the density estimation framework.
Since these algorithms can be computationally demanding or even intractable, Rudemo
(1982) and Bowman (1984) provided some closed-form expressions for the Loo estimator
of the risk of histograms or kernel estimators. These results have been recently generalized
by Celisse and Robin (2008b) to the leave-p-out cross-validation (Lpo).

Most of theoretical results about the performance of CV procedures are asymptotic and
mainly concern the regression framework. For a fixed model, Burman (1989, 1990) expands
several CV estimators of the risk of ŝm and concludes that Loo is the best one in terms
of bias and variance. Besides several comparisons are pursued between CV and various
penalized criteria: Li (1987) and Zhang (1993) in view of asymptotic efficiency, and Shao
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(1993) and Yang (2007) on model consistency, that is recover the ”true model”. Interested
readers are referred to Shao (1997) for an extensive review about asymptotic optimality
properties in terms of efficiency and model consistency of some penalized criteria as well
as CV procedures.

As for non-asymptotic results in the density setting, Birgé and Massart (1997) have
settled an oracle inequality that relies on a conjecture and may be applied to the Loo
procedure. However to the best of our knowledge, no result of this type has already
been proved for the Lpo procedure in the density estimation setup. Recently in the
regression setting, Arlot (2007b) established oracle inequalities for V -fold penalties, while
Arlot and Celisse (2009) have carried out an extensive simulation study in the change-
point detection problem with heteroscedastic data.

1.3 Main contributions

The present paper is devoted to study CV procedures as a means to perform model
selection in the density estimation framework.

A constant drawback of CV—and resampling strategies in general—is the computation
time such procedures involve. Indeed pursuing Loo with a large data set can be compu-
tationally prohibitive. Closed-form expressions are provided for the Lpo estimator of the
L2-risk of the broad class of projection estimators, demonstrating the wide applicability
of these results. More insight is given into the behaviour of CV risk estimators thanks to
these expressions, which drastically reduce the computation time.

CV estimator is then embedded into the penalized criterion framework. It emphasizes
the tight relationship between the choice of p and the amount of penalization resulting
from this choice. In the model selection setting, the interest of choosing p > 1 raises as a
way to balance overfitting phenomenon.

Several non-asymptotic optimality results are also derived in terms of oracle inequality
as well as adaptivity results in the minimax sense. To the best of our knowledge, these
are the first theoretical non-asymptotic results of this type applying to Lpo in the density
estimation setting.

The paper is organized as follows. The next section describes the statistical framework
and notation. CV is presented as a special case of resampling procedures and some exam-
ples of famous CV procedures are provided. Closed-form expressions are then derived in
Section 3 with several examples. Some bias and variance calculations are also yielded for
various CV risk estimators.

The main concern of Section 4 is model selection. The Lpo estimator of the risk is
interpreted as a penalized criterion with a random penalty. The amount of penalization
is quantified with respect to p, which stresses the interest of choosing p > 1 as a means to
overcome overfitting. Two oracle inequalities are then derived that warranty the good non-
asymptotic performance of Lpo as model selection procedure with polynomial collections
of models.
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Section 5 is devoted to adaptivity results in the minimax sense with respect to Hölder
as well as Besov spaces. Different collections of models are considered such as piecewise
and trigonometric polynomials. A discussion with some possible prospects then follows in
Section 6. Finally, proofs are collected in Section 7.

2 Leave-p-out cross-validation

Resampling-based strategies such as CV are usually time-consuming and can even be
computationally intractable. The interest of the forthcoming approach is to derive closed-
form expressions for the CV-based estimator of the risk of projection estimators, which are
widespread in the density estimation community (Rudemo (1982); Donoho et al. (1996);
Birgé and Massart (1997); Barron et al. (1999)).

First, the statistical framework is described. A definition of projection estimators is
yielded and illustrated by several examples. Second, the CV heuristics is detailed with an
emphasis on the relationship between CV and resampling procedures. Several famous CV
procedures are also recalled.

2.1 Statistical framework

Let us start with introducing the framework and some notation which are repeatedly
used throughout the paper.

2.1.1 Notation

In the sequel, X1, . . . ,Xn ∈ [0, 1] are independent and identically distributed random
variables drawn from a probability distribution P of density s ∈ L2([0, 1]) with respect to
Lebesgue’s measure on [0, 1].

Let S∗ denote the set of mesurable functions on [0, 1]. The distance between s and
any u ∈ S∗ is measured thanks to the quadratic loss denoted by ℓ(·, ·) satisfying

ℓ : (s, u) 7→ ℓ (s, u ) := ‖s− u‖2 .

Since this quantity depends on s that is unknown, let us introduce the associated contrast
function

γ : (u, x) 7→ γ(u, x) := ‖u‖2 − 2u(x).

This contrast is related to the loss function by ℓ (s, u ) = Pγ(u) − Pγ(s), where Pγ(u) =
E [ γ (u,X) ] and X ∼ P for any u ∈ S∗. The empirical risk at point u ∈ S∗, which
estimates ℓ (s, u ) up to a constant term, is defined by

γn(u) := Pnγ(u) =
1

n

n∑

i=1

γ (u,Xi) ,
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where Pn = 1/n
∑n

i=1 δXi
denotes the empirical measure. The quality assessment of an

estimator ŝ = ŝ (X1, . . . ,Xn) of s is made through the corresponding quadratic risk

Rn( ŝ ) := E [ ℓ (s, ŝ ) ] = E

[
‖s− ŝ ‖2

]
.

Let Mn denote a countable set of indices. For every m ∈ Mn, Sm is a set of candidate
functions to estimate s, called a model in the following. Since every model Sm is uniquely
determined by its index, m is also called a model.

In every model Sm, ŝm denotes an estimator of s defined as the empirical risk minimizer
over Sm

ŝm := Argminu∈Sm
Pnγ(u).

The resulting collection of estimators {ŝm}m∈Mn
corresponds to the collection of models

{Sm}m∈Mn
.

2.1.2 Projection estimators

Let Λn be a set of countable indices and {ϕλ}λ∈Λn
a family of vectors in L2([0, 1]) such

that for every m ∈ Mn, there exists Λ(m) ⊂ Λn and {ϕλ}λ∈Λ(m) is an orthonormal

family of L2([0, 1]). Then, let Sm denote the linear space spanned by {ϕλ}λ∈Λ(m) and
Dm = dim (Sm) for every m.

The orthogonal projection of s onto Sm is denoted by sm

sm := Argminu∈Sm
Pγ(u) =

∑

λ∈Λ(m)

Pϕλ ϕλ, with Pϕλ = E [ϕλ(X) ] .

Definition 2.1. An estimator ŝ ∈ L2([0, 1]) is a projection estimator if there exists a
family {ϕλ}λ∈Λ of orthonormal vectors of L2([0, 1]) such that

ŝ =
∑

λ∈Λ

αλ ϕλ, with αλ =
1

n

∑

λ∈Λ

Hλ(Xi),

where {Hλ(·)}λ∈Λ depends on the family {ϕλ}λ∈Λ.

Therefore, it turns out that for every m ∈ Mn, the empirical risk minimizer over Sm is a
projection estimator since

ŝm =
∑

λ∈Λ(m)

Pnϕλ ϕλ, with Pnϕλ =
1

n

n∑

i=1

ϕλ(Xi).
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Examples of projection estimators (see DeVore and Lorentz, 1993)

• Histograms:
For every m ∈ Mn, let {Iλ}λ∈Λ(m) be a partition of [0, 1] in Card(Λ(m)) = Dm

intervals. Set ϕλ = 1Iλ
/
√

|Iλ| for every λ ∈ Λ(m), with |Iλ| denotes the Lebesgue
measure of Iλ. Then, the empirical risk minimizer, which is a histogram, is a pro-
jection estimator

ŝm =
∑

λ∈Λ(m)

Pn1Iλ

1Iλ

|Iλ|
·

• Trigonometric polynomials:
Let {ϕλ}λ∈Z

be the orthonormal basis of L2([0, 1]) such that t 7→ ϕλ(t) = e2πiλt. For
any finite Λ(m) ⊂ Z, the trigonometric polynomial

t 7→ ŝm(t) =
∑

λ∈Λ(m)

Pnϕλ e
2πiλt

is a projection estimator.

• Wavelet basis:
Set {ϕλ}λ∈Λn

an orthonormal basis of L2([0, 1]) made of compact supported wavelets,
where Λn =

{
(j, k) | j ∈ N

∗ and 1 ≤ k ≤ 2j
}
. For every subset Λ(m) of Λn, the

empirical risk minimizer associated with {ϕλ}λ∈Λ(m) is

ŝm =
∑

λ∈Λ(m)

Pnϕλ ϕλ.

2.2 Cross-validation

First, CV is presented as a particular instance of subsampling, which enables to yield a
unified description of CV procedures. Then, several CV procedures are detailed with an
emphasis on leave-p-out cross-validation (Lpo) that will be further studied in the following
of the paper.

2.2.1 Resampling

A resampling procedure consists in generating new sets of observations—the resamples—
from the original sample according to a given scheme. Resampling corresponds to sub-
sampling when the resample cardinality is less than that of the original sample.

Among first resampling procedures, a primitive version of CV has been performed
by Larson (1931) at the early 30s, while jackknife was introduced by Quenouille (1949)
and also studied by Tukey (1958). However, resampling procedures have only emerged
as a worthwhile matter of study following the work by Efron (1979, 1982) on bootstrap.
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Interested readers are referred to (Arlot, 2007a, Introduction) and (Celisse, 2008, Intro-
duction) for a general point of view about resampling and also Giné (1997) for some more
references.

Following the heuristics described by Efron (1979), resampling approximates the un-
known distribution of a statistics by that of ”resampled statistics”, that is statistics com-
puted from the resamples, given original data (see Mason and Newton, 1992, for examples
of theoretical results).

Let X1,n = {X1, . . . ,Xn} denote original observations and X∗
1,N = {X∗

1 , . . . ,X
∗
N} for

N ≤ n, some resampled data. Then the empirical distribution of X∗
1,N is equal to

1

N

N∑

i=1

δX∗
i

=
1

n

n∑

i=1

Wn,iδXi
=: PW

n

where Wn = (Wn,1, . . . ,Wn,n) denotes a weight vector, which is specific of the resampling
scheme. Weights Wn,i are random variables drawn independently from Xis according to
a known distribution.

2.2.2 Cross-validation rationale

Unlike bootstrap, CV does not aim at recovering the distribution of a given statistics.
More precisely, CV is devoted to estimate the risk of an estimator ŝ (Pn) of s. Notation
ŝ (Pn) stresses the dependence of ŝ on original observations through empirical measure.
The risk of ŝ can be expressed as

rn( ŝ ) = EX1,n
[ EX [ γ ( ŝ (Pn) ,X ) ] ] , (1)

where X denotes a new observation, independent from X1,n and identically distributed.
EX and EX1,n

are expectations with respect to X and respectively X1,n.
The crux in the CV heuristics is the independence between X and X1,n, which arises

from (1). This point is at the core of any CV procedure and justifies the splitting of X1,n

into a training set—used to compute the estimator— and a test set—used to assess the
quality of the latter estimator.

Since the training set plays the same role as the initial sample but with cardinality
less than n, it acts as a subsample of X1,n. Therefore, this subsampling scheme can be
defined by the choice of some random weights Wn = (Wn,1, . . . ,Wn,n). Details about CV
procedures and corresponding weights are provided in Section 2.2.3.

Let PW
n and PW

n respectively denote empirical measures of data in the training set,
resp. in the test set. For a given split of the data, the CV estimate satisfies

PW
n γ

(
ŝ
(
PW

n

))
≈ EX [ γ ( ŝ (Pn),X ) ] .

The left-hand side quantity depends on the realization of the random weights, which can
be removed by integrating with respect to them:

R̂CV,W := EW

[
PW

n γ
(
ŝ
(
PW

n

)) ]
≈ EX1,n

[ EX [ γ ( ŝ (Pn) ,X ) ] ] = rn( ŝ ),
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where EW means integration is carried out with respect to the weights.
R̂CV,W denotes the CV estimate of the risk of ŝ , up to a constant. The notation points

out that it depends on the choice of the weight distribution (see Section 2.2.3).
In the sequel, rn( ŝ ) is repeatedly used and referred to as the risk of ŝ .

2.2.3 Cross-validation botany

Several CV procedures are described with their associated weights. A distinction is made
between time-consuming and computationally efficient ones. VFCV and Lpo are then
compared one another in several respects.

In the following, for any 1 ≤ p ≤ n − 1, Ep denotes the set of all possible subsets of
{1, . . . , n} with cardinality p.

Hold-out From a historical point of view, simple validation also called Hold-out (Ho)
has been introduced at the early 30s. For instance, it is employed by Larson (1931) in
his empirical analysis. Hold-out simply consists in randomly splitting observations into a
training set of cardinality n− p and a test set of cardinality p, with 1 ≤ p ≤ n− 1. Data
splitting is only made once, which results in additional variability.

Since it is easy to analyse, hold-out has been often studied: see for in-
stance Bartlett et al. (2002); Blanchard and Massart (2006) in classification, and
Lugosi and Nobel (1999); Wegkamp (2003) in regression.

For any random choice of e ∈ Ep, the hold-out estimator of rn( ŝ ) is

R̂Ho,p( ŝ ) := P e
nγ
(
ŝ (P e

n)
)

=
1

p

∑

i∈e

γ
(
ŝ (Xe

1,n),Xi

)
,

where P e
n (resp. P e

n) denotes the empirical distribution of data in the test set (resp. in
the training set). Hold-out corresponds to the random choice of Wn such that for every
i, Wn,i ∈ {0, n/p}, ∑n

i=1Wn,i = n, and Wn is drawn from a Dirac measure over the
(
n
p

)

such vectors.

Leave-one-out Leave-one-out (Loo) was the first CV procedure, since strictly speaking
CV starts when simple validation is carried out for several splits of the data. It was
first formalized by Mosteller and Tukey (1968), and then studied in the model selection
framework by Stone (1974). It consists in successively removing each observation from the
original data, using the n−1 remaining ones to compute the estimator. The performance of
the latter estimator is then assessed thanks to the removed point. The Loo risk estimator
is defined as the average performance assessment over the n possible splits:

R̂1( ŝ ) =
1

n

n∑

i=1

γ( ŝ (X
(i)
1,n),Xi),

where X
(i)
1,n represents X1,n from which Xi has been removed.
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In order to stick to the resampling formalism, Loo corresponds to the choice of a random
vector Wn, such that Wn,j ∈ {0, n}, P(Wn,j > 0) = 1/n for any j, and

∑n
j=1Wn,j = n.

Leave-p-out Leave-p-out (Lpo) generalizes Loo to the case where 1 ≤ p ≤ n− 1 obser-
vations are removed from original data at each split.

It is studied in linear regression setup by Shao (1993) and Zhang (1993), and in
the change-point detection setting by Arlot and Celisse (2009). In density estimation,
Celisse and Robin (2008b) derive closed-form expressions for the Lpo estimator with his-
tograms and kernels.

The Lpo estimator of rn( ŝ ) consists in the same procedure as Loo except that at each
one of the

(
n
p

)
possible splits, p observations are removed:

R̂p( ŝ ) =

(
n

p

)−1 ∑

e∈Ep

[
1

p

∑

i∈e

γ
(
ŝ
(
P e

n

)
,Xi

)
]
.

The corresponding weights satisfy Wn,i ∈ {0, n/p} for any i,
∑n

i=1Wn,i = n and the

probability of any such vector is
(n

p

)−1
.

Remark 1. A näıve implementation of Lpo has computational complexity of order
(n

p

)

times that of the ŝ computation, which is intractable as soon as n is large and p > 1.
Even Loo, that is Lpo with p = 1, can be time-consuming.

V -fold cross-validation Due to the high computational burden of the previous proce-
dures, Geisser (1974, 1975) has introduced an alternative procedure named V-fold cross-
validation (VFCV). For instance, it has been studied in Burman (1989, 1990) who suggests
a correction to remove some bias.

VFCV relies on a preliminary (random or not) choice of a partition of the data into
V subsets of approximately equal size n/V . Each subset is successively left out, and the
V − 1 remaining ones are used to compute the estimator while the last one is dedicated
to performance assessment. The V-fold risk estimator is the average over the V resulting
estimators.

For a given random partition of the data, the above description results in V weight
vectors Wn of respective probability 1/V , satisfying Wn,i ∈ {0, V } for any i, and∑n

i=1Wn,i = n.
Let e1, . . . , eV denote the partition of {1, . . . , n} into V blocks. Then, the VFCV

estimator of rn( ŝ ) is

R̂VFCV,V ( ŝ ) =
1

V

V∑

v=1

[
V

n

∑

i∈ev

γ
(
ŝ
(
P ev

n

)
,Xi

)
]
.
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2.2.4 Lpo versus VFCV

Nowadays, it is usual to deal with a large amount of data. For instance, biology as well
as computer vision are perfect illustrations of this statement.

As explained in Section 2.2.3, the Loo computational complexity is n times that of ŝ ,
which can be highly time-consuming. With this respect, provided V ≪ n, VFCV (Geisser,
1974, 1975) is by far less computationally demanding than Loo.

However, VFCV relies on a random partitioning of the data into V subsets. This addi-
tional randomness induces some more variability with respect to Loo and Lpo, which both
carry out exhaustive splitting of the observations. In the density estimation framework,
Celisse and Robin (2008b) has theoretically quantified the amount of randomness induced
in applying VFCV instead of Lpo.

As it does not introduce any additional variability, Lpo can be seen as a ”gold stan-
dard” among CV procedures. VFCV turns out as an approximation of the ”ideal Lpo”,
which is unachievable due to prohibitive computation-time. Indeed, the Lpo computa-
tion requires to explore

(
n
p

)
resamples, which is intractable even for not too large n when

p > 2. Therefore, with full generality, Lpo cannot be performed and one has to use
approximations.

Other approximations to Lpo exist like repeated learning-testing cross-validation
(RLT), introduced by Breiman et al. (1984) and then studied in Burman (1989) and Zhang
(1993).

The purpose of the next section is to describe a broad range of settings in which
closed-form expressions of the Lpo estimator can be derived. On the one hand, such
formulas drastically reduce the Lpo computational complexity from exponential—for a
näıve implementation of Lpo—to linear. Furthermore, such formulas make Lpo preferable
to VFCV since the latter is more variable and expensive to perform.

On the other hand, these closed-form formulas yield more insight in the general be-
haviour of CV as an estimator of the risk. The study of CV as a model selection procedure
is the main concern of Section 4.

3 Closed-form expressions

Closed-form expressions of the Lpo risk estimator are provided for the broad family of
projection estimators. First, such formulas enable the efficient computation of Lpo. Sec-
ond, they provide some information about the quality of the CV estimator as an estimator
of the risk. Indeed, closed-form expressions for bias and variance of the CV estimator are
also derived.

3.1 Leave-p-out risk estimator

Here is an elementary and essential lemma that leads to these closed-form expressions.
This result is obtained thanks to combinatorial calculations.
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Lemma 3.1. Let ŝm(Xe
1,n) denote a generic projection estimator based on model Sm and

computed from the training set Xe
1,n. Then,

∑

e∈Ep

∥∥ŝm(Xe
1,n)
∥∥2

2
=

1

(n− p)2



(
n− 1

p

) n∑

k=1

∑

λ∈Λ(m)

ϕ2
λ(Xk)

+

(
n− 2

p

)∑

k 6=ℓ

∑

λ∈Λ(m)

ϕλ(Xk)ϕλ(Xℓ)


 , (2)

∑

e∈Ep

∑

i∈e

ŝ (Xe
1,n)(Xi) =

1

n− p

(
n− 2

p− 1

)∑

i6=j

∑

λ∈Λ(m)

ϕλ(Xi)ϕλ(Xj). (3)

The proof of Lemma 3.1 is deferred to Section 7.
From the previous lemma, the closed-form expression for the Lpo estimator of the risk

is derived. This expression holds with the quadratic loss and projection estimators.

Proposition 3.1. For any m ∈ Mn, let ŝm denote the projection estimator onto the model
Sm, spanned by the orthonormal basis {ϕλ}λ∈Λ(m). Then for any p ∈ {1, . . . , n− 1},

R̂p(m) =
1

n(n− p)

∑

λ∈Λ(m)



∑

j

ϕ2
λ(Xj) −

n− p+ 1

n− 1

∑

j 6=k

ϕλ(Xj)ϕλ(Xk)


 . (4)

The computation cost of (4) is of order O (n).

Proof. In the density estimation framework, the contrast associated with the L2-loss is
γ(t,X) = ‖t‖2 − 2t(X). Subsequently, the Lpo estimator is

R̂p(m) =

(
n

p

)−1 ∑

e∈Ep

∥∥ŝm(Xe
1,n)
∥∥2 − 2

p

(
n

p

)−1 ∑

e∈Ep

∑

i∈e

ŝm(Xe
1,n)(Xi).

Besides, the general projection estimator is

ŝm =
∑

λ∈Λ(m)

Pnϕλ ϕλ.

The simple application of (2) and (3) provides the expected conclusion.

Examples We are now in position to specify the expression of the Lpo risk estimator in
Proposition 3.1 for several projection estimators.

1. Histograms:
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Corollary 3.1. Let us assume that ŝm denotes the histogram estimator built from
the partition I(m) = (I1, . . . , IDm) of [0, 1] in Dm intervals of respective length |Iλ|.
Then for p ∈ {1, . . . , n− 1},

R̂p(m) =
1

(n− 1)(n − p)

Dm∑

λ=1

1

|Iλ|

[
(2n− p)

nλ

n
− n(n− p+ 1)

(nλ

n

)2
]
, (5)

where nλ = ♯ {i |Xi ∈ Iλ}.

Proof. (5) comes simply from the application of (4) with ϕλ = 1Iλ
/
√

|Iλ|.

2. Trigonometric polynomials:

Corollary 3.2. Let ϕλ denote either t 7→ cos(2πkt), if λ ∈ 2N or t 7→ sin(2πkt), if
λ ∈ 2N + 1.
Let us further assume that Λ(m) = {0, . . . , 2K} for an integer K > 0. Then,

R̂p(m) =
(p− 2)(K + 1)

(n− 1)(n − p)

− n− p+ 1

n(n− 1)(n − p)

K∑

k=0








n∑

j=1

cos(2πkXj)





2

+





n∑

j=1

sin(2πkXj)





2
 .

3. Haar basis:

Corollary 3.3. Set ϕ : t 7→ 1[0,1] and ϕj,k(t) = 2j/2ϕ(2j · −k), where j ∈ N and
0 ≤ k ≤ 2j − 1.
For any m ∈ Mn, let us define Λ(m) ⊂

{
(j, k) | j ∈ N, 0 ≤ k ≤ 2j − 1

}
. Then,

R̂p(m) =
1

(n− 1)(n − p)

∑

(j,k)∈Λ(m)

2j

[
(2n− p)

nj,k

n
− n(n− p+ 1)

(nj,k

n

)2
]
,

where nj,k = Card
({
i | Xi ∈ [k/2j , (k + 1)/2j ]

})
.

3.2 Moment calculations

As a consequence of the closed-form expressions settled in the previous section, similar
expressions are also available for expectation and variance. A precise assessment of the
performance of the Lpo estimator as an estimator of the risk is thus available thanks to
these closed-form expressions.
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Proposition 3.2. With the same notations as in Proposition 3.1, we have for any 1 ≤
p ≤ n− 1,

ER̂p(m) =
1

n− p

∑

λ∈Λ(m)

[
Eϕ2

λ(X) − (Eϕλ(X))2
]
−

∑

λ∈Λ(m)

(Eϕλ(X))2 ,

Var
[
R̂p(m)

]
=


2β2t1

∑

λ

(
Pϕ2

λ

)2
+ 4αβt1

∑

λ

Pϕ3
λPϕλ + nα2

E

(
∑

λ

ϕ2
λ

)2

−nα2

(
∑

λ

Pϕ2
λ

)2

+ 2β2t1
∑

λ6=λ′
(Pϕλϕλ′)2 + 4β2t2E

(
∑

λ

ϕλPϕλ

)2

+(−4n+ 6)t1β
2

(
∑

λ

(Pϕλ)2
)2

+ 4αβt1
∑

λ6=λ′
Pϕ2

λϕλ′Pϕλ′

−4t1αβ
∑

λ

Pϕ2
λ

∑

λ′
(Pϕλ′)2

]
(n(n− 1)(n − p))−2 ,

where Pϕλ = Eϕλ(X), α = n− 1, β = n− p+ 1, t1 = n(n− 1), and t2 = t1(n− 2).

The technical proof is given in Section 7. Note that these formulas may be derived provided
P |ϕλ|3 < +∞ for any λ ∈ Λ(m), which is satisfied if s is assumed to be bounded and∫
|ϕλ|3 < +∞ (ϕλ continuous and compact supported for instance).

The bias of the Lpo risk estimator may be a more interesting quantity to work with.
Its expression straightforwardly results from Proposition 3.2.

Corollary 3.4. For any projection estimator, the bias of the Lpo estimator is equal to

B

[
R̂p(m)

]
:= ER̂p(m) − rn(m) =

p

n(n− p)

∑

λ∈m

[
Eϕ2

λ(X) − (Eϕλ(X))2
]
,

=
p

n(n− p)

∑

λ∈Λ(m)

Var [ϕλ(X) ] ≥ 0,

where rn(m) = E

[
‖ŝm‖2 − 2

∫
[0,1] s ŝm

]
.

Illustration By application of Proposition 3.2 to histogram estimators, the follow-
ing expressions are derived for expectation and variance of the Lpo risk estimator (see
Celisse and Robin, 2008b):

Corollary 3.5. For every λ ∈ Λ(m), set αλ = P(Xi ∈ Iλ). Then,

E

[
R̂p(m)

]
=

1

n− p

∑

λ∈m

1

ωλ
αλ (1 − αλ) −

∑

λ∈m

1

ωλ
α2

λ,

Var
[
R̂p(m)

]
=

p2q2(n, α, ω) + p q1(n, α, ω) + q0(n, α, ω)

[n(n− 1)(n − p)]2
,

13



where

∀(i, j) ∈ {1, . . . , 3} × {1, 2}, si,j =
D∑

k=1

αi
k/ω

j
k,

q2(n, α, ω) = n(n− 1)
[
2s2,2 + 4s3,2(n− 2) + s22,1(−4n+ 6)

]
,

q1(n, α, ω) = n(n− 1) [−8s2,2 − 8s3,2(n− 2)(n + 1) − 4s1,1s2,1(n − 1)−
2s22,1(−4n2 + 2n+ 6)

]
,

q0(n, α, ω) = n(n− 1)
[
s1,2(n− 1) − 2s2,2(n

2 − 2n− 3)+

4s3,2(n− 2)(n + 1)2 − s21,1(n − 1)+

4s1,1s2,1(n
2 − 1) + s22,1(−4n + 6)(n + 1)2

]
.

4 Model selection

Although CV is extensively used in practice, very few is known about its non-asymptotic
behaviour as a model selection procedure. In particular, there is no theoretical and non-
asymptotic guideline about the optimal choice of p with respect to the model selection
goal one pursue.

The purpose of the present section is first to analyze CV as a penalized criterion, which
enables a new interpretation of the choice of p. Second, the performance of CV in terms
of model selection procedure is quantified by non-asymptotic optimality results. To the
best of our knowledge, these oracle inequalities are the first results of this type.

4.1 Random penalty

This section sheds new lights on the behaviour of CV as model selection procedure with
respect to the choice of p. On the one hand, CV is embedded in the framework of model
selection via penalized criteria. It is shown that the choice of p determines the amount of
penalization.

On the other hand, several conclusions are drawn about the appropriate—non-
asymptotic—use of CV, depending on the value of p. For instance, since it behaves like
Mallows’Cp, Loo must not be employed as a model selection procedure with exponential
collections of models.

4.1.1 Ideal and Lpo penalties

Given the a priori knowledge of the target s, a countable collection {Sm}m∈Mn
is chosen

so that the Sms are assumed to be close to s. The purpose of model selection is to design
a procedure providing a candidate model m̂ such that the final estimator ŝ

bm is as close
as possible to the target s.

14



For instance, the choice of m̂ is made by minimizing a penalized criterion crit(·)
(Barron et al., 1999) defined by

∀m ∈ Mn, crit(m) = Pnγ (ŝm) + pen(m), (6)

where Pnγ (ŝm) is the empirical risk of ŝm. pen(·) : Mn → R+ denotes the penalty term,
which takes into account the complexity of model Sm.

On the one hand, the optimal criterion to minimize over Mn is the ideal random
quantity

critid(m) = Pγ(ŝm) := Eγ (ŝm,X) (7)

where the expectation is taken with respect to X ∼ P , which is independent from the
original data. The minimization of the ideal criterion critid over Mn would systematically
yield the best estimator one can achieve among {ŝm}m∈Mn

, that is the oracle. The link
between (6) and (7) can be clarified by rewriting

critid(m) = Pnγ(ŝm) + [Pγ(ŝm) − Pnγ(ŝm) ] ,

so that the ideal penalty is defined by

∀m ∈ Mn, penid(m) := Pγ(ŝm) − Pnγ(ŝm).

The ideal penalty is what must be added to the empirical risk to recover the ideal criterion.
On the other hand following the CV strategy, we perform model selection by minimizing

the Lpo risk estimator over Mn. Thus for a given 1 ≤ p ≤ n−1, the candidate m̂ satisfies

m̂ = Argminm∈Mn
R̂p(m).

The existence of a strong relationship between penalized criteria and CV procedures is
strongly supported by the large amount of literature about (asymptotic) comparisons
of these two model selection procedures (see for instance Stone, 1977; Li, 1987; Zhang,
1993). Therefore, the CV strategy can be embedded into penalized criterion minimization
procedures:

m̂ = Argminm∈Mn

{
Pnγ(ŝm) + penp(m)

}
,

where penp(m) is called the Lpo penalty of model m and satisfies for every m penp(m) :=

R̂p(m) − Pnγ(ŝm). A somewhat related approach applied to Loo can be found in
Birgé and Massart (1997).

4.1.2 Lpo overpenalization

This embedding of CV into penalized criteria provides more insight in the behaviour of CV
procedures with respect to parameter p. In particular, some features in the behaviour of
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penp as function of p arise from the comparison between penid and penp. This comparison
is carried out through expectations of these penalties. The next results hold with general
projection estimators.

Let us start with a preliminary lemma:

Lemma 4.1. With any projection estimator ŝm onto Sm, we obtain

E [ penid(m) ] =
2

n

∑

λ∈Λ(m)

Var (ϕλ(X)) ,

E
[
penp(m)

]
=

2n − p

n(n− p)

∑

λ∈Λ(m)

Var (ϕλ(X)) .

This enables to precisely evaluate, the discrepancy between Lpo and ideal penalties:

Proposition 4.1. For every m ∈ Mn, let {ϕλ}λ∈Λ(m) denote an orthonormal basis of Sm

and ŝm, the projection estimator onto Sm. Then, for every m ∈ Mn and 1 ≤ p ≤ n− 1,

E
[
penp(m) − penid(m)

]
=

p

n(n− p)

∑

λ∈Λ(m)

Var (ϕλ(X)) ≥ 0. (8)

Whatever 1 ≤ p ≤ n − 1, the Lpo penalty remains larger than the ideal one by an
amount that increases with p. Furthermore, this amount of penalization can vary within
a wide range of values. Indeed, (8) yields

E
[
penp(m)

]
= Cover(p) E [ penid(m) ] ,

where Cover(p) = (2n− p) /(2n − 2p). Therefore with p = 1, Cover(1) = 1 + 1/(2n − 2)
leads to a nearly unbiased estimator of the ideal penalty, while Cover(n/2) = 3/2 indicates
that the Lpo penalty overpenalizes by an amount of the same order as the ideal penalty.
A log n factor can even be achieved by Cover(p) provided p ≈ (1 − 1/ (2 log n− 1))n.

At this stage, an important distinction must be made between risk estimation and
model selection. On the one hand, if the purpose is the estimation of the risk of a given
estimator, for instance, an unbiased (or nearly unbiased) estimator of this risk can be
desirable. Therefore, the choice p = 1 seems the most appropriate one, provided the
variance of the resulting estimator remains at a reasonable level. As for ”optimal” risk
estimation, Celisse and Robin (2008b) has developed a strategy aiming at providing the
Lpo risk estimator with the smallest mean square error. In Celisse and Robin (2008a), it is
shown that the proposed estimator asymptotically amounts to Loo as n tends to infinity.
This is also consistent with the results of Burman (1989) who shows in the regression
setting that Loo is asymptotically the best risk estimator among CV ones in terms of bias
and variance.

On the other hand, model selection requires to choose the closest model to the tar-
get, even at the price of a worse estimation of the risk for some models in the collection.
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For instance, minimizing a penalized criterion over Mn leads to misleading models with a
probability increasing with Mn, provided the oracle remains the same. This results in ran-
dom downwards deviations of the minimized criterion for some ”bad models”. A classical
way to balance these unwanted deviations is to overpenalize by an amount that depends
on the structure of the considered collection of models. Subsequently, choosing p = 1
is not necessary desirable in model selection as already noticed in Breiman and Spector
(1992) and recently in (Celisse, 2008, Chap. 6) where Loo has been empirically shown to
suffer from overfitting with polynomial collections of models.

Several conclusions can be drawn from Proposition 4.1 about the CV performance as
a model selection procedure. First, Loo is a nearly unbiased risk estimator, which results
in similar behaviour to that of Mallows’Cp. This is consistent with asymptotic results
established by Li (1987) and Zhang (1993). As a consequence, Loo only aims at yielding
a reliable estimation of the target in order to perform (asymptotically) efficient model
selection (see Section 1 and Li (1987)). In particular, Loo cannot be employed—with an
identification purpose—to recover the ”true model” with probability converging to 1 as n
tends to infinity, which is the goal of BIC.

Second, with Loo—and Lpo for small values of p—only model selection over polyno-
mial collections of models can be carried out. For instance, using Loo with exponential
collections of models would systematically lead to overly large models.

Third, identification can however be pursued by CV, provided p has been chosen of
the appropriate order. Indeed, p ≈ (1 − 1/ (2 log n− 1))n yields a log n term like the one
in BIC penalty. This also confirms the previous asymptotic result settled by Shao (1993)
in the regression setting.

4.2 Oracle inequalities

In the following, the quality of the Lpo-based model selection procedure is assessed through
the statement of oracle inequalities. These results are settled in the polynomial complexity
framework and hold for any projection estimator. To our knowledge, it is the first non-
asymptotic results about the performance of Lpo in this framework.

Unlike the usual approach in model selection via penalized criterion, the purpose here
is not to design a penalty function. Indeed, the Lpo estimator itself can be understood as
a penalized criterion (see Section 4.1).

4.2.1 Preliminaries

The main results rely on several assumptions detailed and discussed in the following.
Set X ∼ s and for every index m,

φm =
∑

λ∈Λ(m)

ϕ2
λ and Vm = Eφm(X).

Then, let us define the following assumptions:
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(Reg) ∃Φ > 0/ supm∈Mn
‖φm‖∞ ≤ Φ n/ (log n)2.

Since φm =
∑

λ∈Λ(m) ϕ
2
λ, ‖φm‖∞ may be understood as a regularity measure of the

basis {ϕλ}λ∈Λ(m). Thus, (Reg) relates the regularity of the considered basis to the amount
of data. This assumption has already been used by Castellan (2003) for instance. Let us
assume we use histogram estimators based on a partition {I1, . . . , IDm} of [0, 1] in Dm

intervals, and that ϕλ = 1Iλ
/
√

|Iλ|, where |Iλ| is the length of Iλ. Then, (Reg) gives
a lower bound on the minimal length of any interval Iλ of the partition with respect to
the number of observations. In other words, partitions made of intervals with less than
n/(log n)2 observations are prohibited.

(Reg2) ∃Φ > 0 | ∀m ∈ Mn, sup|a|∞=1 ‖
∑

λ aλϕλ‖∞ ≤
√

Φ n/ (log n)2.

(Reg2) is another regularity assumption about {ϕλ}λ∈Λ(m). In the specific case of a
basis defined from a partition of [0, 1] (like histograms or piecewise polynomials), (Reg)
implies (Reg2) . Besides, the constant Φ is assumed to be the same in (Reg) and (Reg2)
, which holds up to replacing one of them by their maximum. A similar requirement to
(Reg2) can be found in Massart (2007).

(Ad) ∃ξ > 0/ ∀m ∈ Mn with Dm ≥ 2, nE

[
‖sm − ŝm‖2

2

]
≥ ξDm.

Let us first notice that

E ‖sm − ŝm‖2 =
∑

λ∈Λ(m)

E
[
ν2

n (ϕλ)
]

=
∑

λ∈Λ(m)

1

n
Var [ϕλ(X) ] .

With histograms, Var [ϕλ(X) ] vanishes if and only if the support of s is included in Iλ.
(Ad) therefore requires that for anym, there are always “enough” informative basis vectors,
if an informative vector is a vector such that Var [ϕλ(X) ] 6= 0. For instance a sufficient
condition for (Ad) to hold with histograms is s ≥ ρ > 0 on [0, 1]. This assumption can
also be found in Massart (2007).

(Pol) ∃δ ≥ 0/ ∀D ≥ 1, |{m ∈ Mn | Dm = D}| ≤ Dδ.

A model collection is said to have a polynomial complexity if (Pol) holds, that is
if the cardinality of the set of models with dimension D is polynomial in D. Such an
assumption is satisfied with nested models for instance (Birgé and Massart (1997)). It
straightforwardly implies that Card (Mn) ≤ nδ+1.
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4.2.2 Main results

In the following, two oracle inequalities are settled, which warranty the ability of the
Lpo procedure to select an efficient density estimator. The first result holds with bounded
densities, while the second one concerns the more general case of square integrable densities
at the price of an additional assumption. Several instances of bases for which the latter
assumption holds are provided at the end of this section.

Bounded density

Theorem 4.1. Let s denote a bounded density on [0,1] and X1, . . . ,Xn be n i.i.d. random
variables drawn from s. Set {ϕλ}λ∈Λn

a finite family of bounded functions on [0, 1] such
that for any m ∈ Mn, Sm denotes the vector space of dimension Dm, spanned by the
orthonormal family {ϕλ}λ∈Λ(m). Let us assume that (Reg) , (Reg2) , (Ad) and (Pol)
hold.
For n ≥ 29, set 0 < ǫ < 1 such that

4ζ(ǫ)

1 + 3ζ(ǫ)
+

2

n
< 1 − 2

ζ(ǫ)(n− 1) − 2
< 1 , (9)

where ζ(ǫ) =
[
1 − (1 + ǫ)−8

]
. Then for any 1 ≤ p ≤ n− 1 satisfying

(Ran)
4ζ(ǫ)

1 + 3ζ(ǫ)
+

2

n

1 + ζ(ǫ)

1 + 3ζ(ǫ)
+ α ≤ p

n
≤ 1 − 2

ζ(ǫ)(n− 1) − 2
− β

with 0 < α, β < 1, we have

E

[
‖s− ŝ

bm‖2
]
≤ Γ(ǫ, α, β) inf

m∈Mn

E

[
‖s− ŝm‖2

]
+
κ(ǫ, s,Φ, α, β, δ)

n
,

where Γ(ǫ, α, β) ≥ 1 is a constant (with respect to n) independent from s and
κ(ǫ, s,Φ, α, β, δ) ≥ 0 is another constant.

The proof of this result is deferred to Section 7.
Remarks:

• (Ran) is a sufficient condition for the oracle inequality to hold. In this assumption,
α and β can be chosen as small as we want, but cannot vanish.

• The existence of ǫ satisfying the inequality (9) stems from a technical lemma given
in the proof of Theorem 4.1.

• As it is made clear from the proof of the aforementioned technical lemma, the choice
of ǫ is constrained. For instance, ǫ cannot be too much close to 0. This explains
why the nonintuitive bounds in (Ran) cannot be easily simplified. Furthermore,
this enlightens that “small values” of p could be excluded from the range of values
described in (Ran) , to which the oracle inequality applies.
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• The independence of Γ(ǫ, α, β) from s is essential in our framework since we have in
mind the use of this result to derive adaptivity in the minimax sense properties.

Square-integrable density

The second result is derived following the same idea as the previous one, thanks to
an additional mild assumption on the considered bases. This requirement turns out to be
non restrictive at all, since it is met by a broad class of orthonormal bases.

Theorem 4.2. Let s denote a density in L2([0, 1]) and X1, . . . ,Xn be n i.i.d. random
variables drawn from s. We set {ϕλ}λ∈Λn

a finite family of bounded functions on [0, 1]
such that for any m ∈ Mn, Sm denotes the vector space of dimension Dm, spanned by
the orthonormal family {ϕλ}λ∈Λ(m). Let us assume that (Reg) , (Reg2) , (Ad) and (Pol)
hold, and moreover that

(Reg3) ∃Φ > 0/ ∀m ∈ Mn, ‖φm‖∞ ≤ ΦDm.

For n ≥ 29, set 0 < ǫ < 1 such that

4ζ(ǫ)

1 + 3ζ(ǫ)
+

2

n
< 1 − 2

ζ(ǫ)(n− 1) − 2
< 1 ,

where ζ(ǫ) =
[
1 − (1 + ǫ)−8

]
. Then for any 1 ≤ p ≤ n− 1 satisfying

(Ran)
4ζ(ǫ)

1 + 3ζ(ǫ)
+

2

n

1 + ζ(ǫ)

1 + 3ζ(ǫ)
+ α ≤ p

n
≤ 1 − 2

ζ(ǫ)(n− 1) − 2
− β

with 0 < α, β < 1, we have

E

[
‖s− ŝ

bm‖2
]
≤ Γ(ǫ, α, β) inf

m∈Mn

E

[
‖s− ŝm‖2

]
+
κ(ǫ, s,Φ, α, β, δ)

n
,

where Γ(ǫ, α, β) ≥ 1 is a constant (with respect to n) independent from s and
κ(ǫ, s,Φ, α, β, δ) ≥ 0 is another constant.

For the sake of clarity, the proof is also deferred to Section 7. Since it is very similar to
that of Theorem 4.1, only the main differences are detailed.

Remark 2. Assumption (Reg3) is quite different from (Reg) . Whereas the latter relates
the “regularity” of any basis to the number of observations uniformly over Mn, (Reg3)
rather controls ‖φm‖∞ for every model by means of its dimension. All models with the
same dimension must be somehow alike since their associated sup-norm ‖φm‖∞ remains
upper bounded by ΦDm. This assumption can be found in Birgé and Massart (1997) as
well.
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Examples Several examples of widespread functional bases are now detailed to illustrate
the high generality level of assumption (Reg3) .

• It is easy to check that (Reg3) applies to regular histograms with Φ = 1 (Section
5.3).

• A typical example of basis satisfying (Reg3) is the trigonometric basis. Form ∈ N, let
Λ(m) = {0, . . . , 2m} denote a set of indices where ϕ0 = 1[0,1], ϕλ(t) =

√
2 sin(2kπt)

if λ = 2k − 1 and ϕλ(t) =
√

2 cos(2kπt) if λ = 2k.
Then,

∀t ∈ [0, 1],
∑

λ∈Λ(m)

ϕ2
λ(t) = 1 + 2

m∑

k=1

(
cos2(2kπt) + sin2(2kπt)

)
,

= 2m+ 1.

Since Dm = 2m+ 1, it comes that ‖φm‖∞ = Dm and (Reg3) holds with Φ = 1.

• Barron et al. (1999) (Lemma 7.13) proved that with piecewise polynomials on a
regular partition of [0, 1] with degree not larger than r on each element of this
partition,

‖φm‖∞ ≤ (r + 1)(2r + 1)Dm.

The resulting constant Φ = (r + 1)(2r + 1) is subsequently independent from m.

• Haar basis: For any positive integer j, we introduce Λ(j) =
{
(j, k) | 0 ≤ k ≤ 2j − 1

}
.

Furthermore, set ϕ = 1[0,1/2) − 1[1/2,1] and for any λ = (j, k), let us define ϕj,k(t) =

2j/2ϕ
(
2jt− k + 1

)
on [0, 1]. For a positive integer m ∈ Mn, let us consider Sm as

the linear space spanned by {ϕλ}λ∈∪j≤mΛ(j). Then, it can be seen that

‖φm‖∞ = Dm

since for each j, there is only one 0 ≤ k ≤ 2j − 1, which contributes to the sum in
φm.
For more general wavelet bases, an upper bound—uniform with respect to m—can
be established (see Birgé and Massart, 1997, for instance).

5 Adaptivity

In this section, the idea is to apply theorems of Section 4.2 to derive several adaptivity
results in the minimax sense with respect to Hölder as well as Besov functional spaces.
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5.1 Adaptivity in the minimax sense

Let us assume that s belongs to a set of functions T (θ), indexed by a parameter θ ∈ Θ,
and define an estimator ŝ of s.

An estimator ŝ is said to be adaptive for θ if, without knowing θ, it “works as well
as” any estimator which would exploit this knowledge.

Definition 5.1. An estimator ŝ is said to be adaptive for θ if its risk is nearly the same
as the minimax risk with respect to T (θ), that is if there exists C ≥ 1 satisfying:

inf
bs

sup
s∈T (θ)

E

[
‖s− ŝ ‖2

]
≤ sup

s∈T (θ)
E

[
‖s− ŝ

bm‖2
]
≤ C inf

bs
sup

s∈T (θ)
E

[
‖s− ŝ ‖2

]
,

where the infimum is taken over all possible estimators.
Furthermore if this property holds for every parameters θ in a set Θ, then ŝ is said to be
adaptive in the minimax sense with respect to the family {T (θ)}θ∈Θ.

Interested readers are referred to Barron et al. (1999) for a unified presentation about
various notions of adaptivity.

Remark 3. Very often, C ≥ 1 depends on the unknown parameters θ, but neither from s
nor from n.

5.2 Description of the collections of models

Since such optimality results depend on the approximation properties of the considered
models, three different model collections are described in the following, each one being
defined from a specific family of vectors {ϕλ}λ∈Λn

.

5.2.1 Piecewise constant functions (Pc)

For a given partition of [0, 1] in D regular intervals (Iλ)λ∈Λ(m) of length 1/D and m ∈ Mn,
let us define the model

Sm =



t | t =

∑

λ∈Λ(m)

aλϕλ, (αλ)λ ∈ R



 ,

where ϕλ = 1Iλ
/
√

|Iλ| and |Iλ| denotes the length of Iλ. Sm is the vector space of
dimension Dm = D spanned by the orthonormal family {ϕλ}λ∈Λ(m). It is made of all
piecewise constant functions defined on the partition I = (I1, . . . , IDm).
Thus with each index m ∈ Mn, we associate the linear space Sm of piecewise constant
functions defined on a regular partition of [0, 1] in Dm intervals of length 1/Dm. Moreover,
let Nn = maxm∈Mn Dm be the maximal dimension of a model belonging to the collection.
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5.2.2 Piecewise dyadic polynomials (Pp)

Set Mn = {0, . . . , Jn} and for any m ∈ Mn, Sm denotes the linear space of functions

t =

2m−1∑

k=0

Pk 1[k2−m,(k+1)2−m),

where the Pks denote polynomials of degree less than r. The dimension of Sm is subse-
quently defined by

Dm = r 2m and Nn = max
m∈Mn

Dm = r 2Jn .

With this collection of models, (Pol) is satisfied since there is at most one model for each
dimension.

5.2.3 Trigonometric polynomials (Tp)

Set Mn = {0, . . . , Jn}, where Jn is a positive integer. For any m ∈ Mn, let Λ(m) =
{0, . . . , 2m} denote a set of indices such that ϕ0(t) = 1[0,1], ϕλ(t) =

√
2 sin(2kπt) if

λ = 2k − 1 and ϕλ(t) =
√

2 cos(2kπt) if λ = 2k.
Then, Sm is the linear space spanned by {ϕλ}λ∈Λ(m), of dimension Dm = 2m + 1. Any
t ∈ Sm can be expressed as

∀x ∈ [0, 1], t(x) = a0 +
m∑

k=1

[
ak

√
2 cos(2πkx) + bk

√
2 sin(2πkx)

]
,

the aks and bks belong to R.
Moreover, Jn and Nn are related by the following relationship Nn = 2Jn + 1.

5.3 Hölder functional space

The purpose is to show that the Lpo-based approach enjoys some adaptivity when s
belongs to an unknown Hölder space H(L,α) for L > 0 and α ∈ (0, 1]. Let us recall that
a function f : [0, 1] → R belongs to H(L,α) with L > 0 and 0 < α ≤ 1 if

∀x, y ∈ [0, 1], |f(x) − f(y)| ≤ L |x− y|α .

For an extensive study of functional spaces, (see DeVore and Lorentz, 1993).

In order to achieve this goal, s is approximated by piecewise constant functions, using
the model collection (Pc) described in Section 5.2.1. The histogram estimator built from
model Sm is defined by

ŝm =
∑

λ∈Λ(m)

Pnϕλ ϕλ =
∑

λ∈Λ(m)

nλ

n

1Iλ

|Iλ|
,
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where nλ = Card ({i | Xi ∈ Iλ}).

In the sequel, the assumptions of Theorem 4.1 are checked in order to derive the desired
adaptivity property.

• With the collection (Pc), m 7→ Dm is a one-to-one mapping from Mn towards
D = {Dm | m ∈ Mn}, which entails that (Pol) is satisfied since the collection is
made of only one model for each dimension.

• Since ϕλ = 1Iλ
/
√

|Iλ|,

‖φm‖∞ =
∑

t∈[0,1]



∑

λ∈Λ(m)

ϕ2
λ(t)


 = max

λ∈Λ(m)

1

|Iλ|
= Dm.

Thus, (Reg) amounts to require that

max
m

Dm = Nn ≤ Φn/ (log n)2 ,

which means that on average, there are at least about (log n)2 /n points in each
interval of any partition we consider.

• We therefore assume that (Reg) , (Ad) and (Ran) hold.

As for the problem of density estimation on [0, 1] when s belongs to some Hölder
space, it is known since the early 80s, thanks to Ibragimov and Khas’minskij
Ibragimov and Khas’minskij (1981), that the minimax rate with respect to H (L,α)

for the quadratic risk is of order L
2

2α+1n−
2α

2α+1 , with any L > 0 and α > 0.

The following result settles that, applied to the collection of models (Pc), the Lpo-
based procedure yields an adaptive in the minimax sense estimator of the density on [0, 1].

Theorem 5.1. Let us assume that (Reg) , (Ad) and (Ran) hold and that the collection
of models is that one denoted by (Pc). Furthermore, assume that the target density s ∈
H (L,α) for L > 0 and α ∈ (0, 1]. Then,

sup
s∈H(L,α)

E

[
‖s− ŝ

bm‖2
]
≤ Kα L

2
1+2α n−

2α
1+2α +O

(
1

n

)
, (10)

for a given constant Kα independent from n and s. m̂ derives from the Lpo risk mini-
mization over Mn.

Since the minimax risk is of order L
2

2α+1n−
2α

2α+1 , ŝ
bm is adaptive in the minimax sense

with respect to {H (L,α)}L>0,α∈(0,1].
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Remark 4. This result still holds with any polynomial collection of models satisfying
the requirements of Theorem 4.1, and including models with dimension of the order of

L
1

1+2α n
1

1+2α .

Proof. The idea is simply to use Theorem 4.1 and derive the upper bound from

E

[
‖s− ŝm‖2

]
= ‖s− sm‖2 + E

[
‖sm − ŝm‖2

]
.

For the bias term, we have

‖s− sm‖2 =
∑

λ∈Λ(m)

1

|Iλ|2
∫

Iλ

(∫

Iλ

[ s(t) − s(x) ] dx

)2

dt,

≤
∑

λ∈Λ(m)

L2D2
m

∫

Iλ

(∫

Iλ

|t− x|α dx

)2

dt (s ∈ H (L,α)) ,

≤ Cα L
2D−2α

m (after integration) ,

where Cα = 4 (α+ 2)
[
(1 + α)2 (2α+ 3)

]−1
.

On the other hand,

E

[
‖sm − ŝm‖2

]
=

Vm − ‖sm‖2

n
≤ Vm

n

≤ ‖φm‖∞
n

=
supx∈[0,1]

∑
λ∈Λ(m) ϕ

2
λ(x)

n
=

Dm

n
·

Hence under the same assumptions as Theorem 4.1, we get that there exists C ≥ 1 and
κ > 0 such that

E

[
‖s− ŝ

bm‖2
]
≤ C

(
Cα inf

m∈Mn

{
L2D−2α

m +
Dm

n

})
+
κ

n
·

Now, let us define the sequence {Dmn}n such that for each n,

1

2
L

1
1+2α n

1
1+2α ≤ Dmn ≤ 2L

1
1+2α n

1
1+2α .

Then, we derive that it exists K ′
α > 0 such that

inf
m∈Mn

E

[
‖s− ŝm‖2

]
≤ Cα L

2D−2α
mn

+
Dmn

n
≤ K ′

α L
2

1+2α n−
2α

1+2α ,

hence the expected result.

5.4 Besov functional spaces

The present section aims at deriving adaptivity in the minimax sense with respect to Besov
spaces. This goal is reached thanks to results of Section 4.2 as well.
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5.4.1 Overview of Besov spaces

Let us start by briefly recalling in what Besov spaces and balls consist in (see
DeVore and Lorentz, 1993, for an extensive presentation on this matter).

For α > 0 and 0 < p ≤ +∞, a function f in Lp ([0, 1]) belongs to the Besov space
Bα
∞,p = Bα

∞ (Lp([0, 1])) if |f |Bα∞,p
< +∞, where

|f |Bα∞,p
:= sup

t>0

{
t−αωr (f, t)p

}
, r = [α] + 1,

with

ωr (f, t)p := sup
|h|≤t

‖∆r
h (f, ·) ‖p, and ∆r

h (f, x) :=
r∑

k=1

(
k

r

)
(−1)r−kf (x+ kh) .

| · |Bα∞,p
is a semi-norm, while the metric is provided by the following Besov norm

‖f‖Bα∞,p
:= |f |Bα∞,p

+ ‖f‖p.

Moreover for a given real R > 0, let us define the Besov ball of radius R by

Bα
∞,p(R) =

{
f ∈ Lp | ‖f‖Bα∞,p

≤ R
}
.

In the sequel, the particular case where p = 2, that is Bα
∞,2 for α > 0 is considered.

5.4.2 Piecewise and trigonometric polynomials

In the same way as in Section 5.3, the strategy consists in deriving adaptivity results from
the oracle inequalities of Section 4.2. Adaptivity heavily relies on the involved model
collection through its approximation properties.
The following results therefore state adaptivity in the minimax sense for both (Pp) and
(Tp) collections, with respect to respectively different Besov spaces.

The next theorem settles adaptivity with respect to Besov balls Bα
∞,2(R) for 0 < α < r,

where r denotes the smallest integer larger than the degree of polynomials in (Pp).

Theorem 5.2. Let us consider the collection of models (Pp) made of piecewise polyno-
mials of degree less than r and assume that (Reg) , (Reg3) , (Ad) , and (Ran) hold.
Then for R > 0 and 0 < α < r,

sup
s∈Bα

∞,2(R)
E

[
‖s− ŝ

bm‖2
]
≤ CαR

2
1+2α n−

2α
1+2α +O

(
1

n

)
, (11)

where Cα denotes a given constant independent from n and s.
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Proof. The proof follows the same strategy as that of Theorem 5.1 in that it essentially
relies on approximation properties of models in (Pp).

If Sm denotes a model of dyadic piecewise polynomials of degree less than r on each
one of the 2m regular dyadic intervals, the result in page 359 of DeVore and Lorentz
DeVore and Lorentz (1993) states that provided r > α,

inf
u∈Sm

‖s− u‖2 ≤ Kα,r|s|2Bα
∞,2

(Dm)2α ,

for a positive constant Kα,r.
Since s ∈ Bα

∞,2(R), it comes

‖s− sm‖2 ≤ Kα,rR
2 (Dm)2α .

As for the variance term,

E

[
‖sm − ŝm‖2

]
≤ ‖φm‖∞

n
≤ ΦDm

n
(by (Reg3) ).

Under (Reg) , (Reg3) , (Ad) and (Ran) we apply Theorem 4.2 to derive

E

[
‖s− ŝ

bm‖2
]
≤ Γ

(
K ′

α,r inf
m∈Mn

{
R2D−2α

m +
Dm

n

})
+
κ

n
,

where K ′
α,r is a positive constant.

The conclusion results from the same calculation as in the proof of Theorem 5.1 with

1

2
R

1
1+2α n

1
1+2α ≤ Dmn ≤ 2R

1
1+2α n

1
1+2α .

Unlike the previous result, we now turn to Besov balls Bα
∞,2(R) for any value of α > 0,

which is enabled by the use of trigonometric polynomials, that is (Tp).

Theorem 5.3. Let us consider the collection (Tp) made of trigonometric polynomials
and assume that (Reg) , (Reg2) , (Reg3) , (Ad) and (Ran) hold.
Then for R > 0 and α > 0,

sup
s∈Bα

∞,2(R)
E

[
‖s− ŝ

bm‖2
]
≤ C ′

αR
2

1+2α n−
2α

1+2α +O

(
1

n

)
, (12)

for a given constant C ′
α independent from n and s.

Proof. The same scheme of proof is used, except we need for an approximation result
applying to trigonometric polynomials, which is also provided in page 205 of the book by
DeVore and Lorentz (1993). Indeed considering models in (Tp) for any α > 0, it comes

inf
u∈Sm

‖s− u‖2 ≤ Kα|s|2Bα
∞,2

(Dm)2α ,

for a constant Kα > 0. Assumption (Reg3) enables to conclude as in the previous theorem.
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6 Conclusion

6.1 Summary of main contributions

In this work, CV has been studied as a model selection procedure in the density estimation
setup. First, closed-form expressions have been derived for the leave-p-out (Lpo) estimator
of the risk of projection estimators. These expressions drastically reduce computation time,
which is a crucial issue, and also make V -fold cross-validation (VFCV) completely useless
since it is more variable and expensive to carry out than Lpo. As an estimator of the risk,
closed-form expressions for bias and variance of the Lpo estimate are provided as well.

Second, the Lpo estimator is embedded in the model selection via penalized criterion
framework, which enables to shed new lights on the choice of p, the cardinality of the
test set, with respect to the amount of penalization. It is shown that a wide range of
penalization is available from the smallest one when p = 1, to penalties of the same order
as BIC. Loo is definitely inappropriate to recover the true model as well as to perform
model selection with too rich collections of models, especially exponential ones. The
conclusions drawn here are all consistent with previous empirical results such as those of
Breiman and Spector (1992) for instance.

Finally, two oracle inequalities are settled in density estimation with polynomial col-
lections of models. These optimality results hold provided the ratio 0 < p/n < 1 is neither
too small, nor too large. To the best of our knowledge, these oracle inequalities are the
first non-asymptotic results applying to Lpo in the density estimation setting. Further-
more with an appropriate choice of model collections, it is shown that CV procedure leads
to estimators that are adaptive in the minimax sense with respect to Hölder as well as
Besov spaces.

6.2 Discussion

On the one hand, the closed-form expressions settled on the present paper address the
crucial issue of resampling procedures, that is their high computational complexity. More-
over, the broad class of projection estimators for which such formulas are obtained allows
extensive applications of Lpo to wavelets, piecewise polynomials, and so on. . .

Besides, empirical evidence has been given in Celisse (2008) of an intricate relationship
between the behaviour of Lpo with respect to p as model selection procedure and the size
of the polynomial collection of models. In particular, it has been shown that Loo may
suffer from overfitting with a polynomial collection of models provided the latter is ”large
enough”. The analysis of this relationship deserves further investigations in order to
describe the precise settings in which such troubles can occur. For instance, specifying the
minimal value from which overfitting can be avoided seems highly desirable.
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7 Proofs

7.1 Closed-form Lpo estimator

7.1.1 Proof of Lemma 3.1

The first remark is that for each e ∈ Ep, we have ∀t ∈ [0, 1],

ŝm(Xe
1,n)(t) =

1

n− p

∑

j∈e

∑

λ

ϕλ(Xj)ϕλ(t) =
1

n− p

n∑

j=1

∑

λ

ϕλ(Xj)ϕλ(t)1(j∈e),

∑

i∈e

ŝm(Xe
1,n)(Xi) =

1

n− p

n∑

i=1

∑

j∈e

∑

λ

ϕλ(Xj)ϕλ(Xi)1(i∈e)

=
1

n− p

∑

i6=j

∑

λ

ϕλ(Xj)ϕλ(Xi)1(j∈e)1(i∈e).

Then, the Lemma follows from the following combinatorial results

Lemma 7.1. For any i 6= j 6= k ∈ {1, . . . , n},
∑

e∈Ep

1(j∈e) =

(
n− 1

p

)
and

∑

e∈Ep

1(j∈e)1(k∈e) =

(
n− 2

p− 1

)
,

∑

e∈Ep

1(i∈e)1(j∈e)1(k∈e) =

(
n− 3

p− 1

)
and

∑

e∈Ep

1(i∈e)1(j∈e) =

(
n− 2

p− 1

)
,

where the sum is computed over the resamples: Indices i, j, and k are kept fixed.

Proof.
∑

e∈Ep
1(j∈e) may be interpreted as the number of subsets of {1, . . . , n} of size p

(denoted by e) which do not contain j, since j ∈ e. Thus, it is the number of possible
choices of p non ordered and different elements among n− 1.
The other equalities follow from a similar argument.

7.2 Moments calculations

7.2.1 Proof of Proposition 3.2

The expectation is a straightforward consequence of (4).

The variance calculation is not difficult, but very technical: Only the main steps of
this proof are yielded.

First, let us define Aλ =
∑n

j=1 ϕ
2
λ(Xj) and Bλ =

∑
j 6=k ϕλ(Xj)ϕλ(Xk). Set α = n− 1

and β = n− p+ 1, such that

n(n− 1)(n − p)R̂p(m) =
∑

λ

(αAλ + βBλ) .
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Then,

[
∑

λ

(αAλ + βBλ)

]2

=
∑

λ

(
α2A2

λ + β2B2
λ + 2αβAλBλ

)

+
∑

λ6=λ′

(
α2AλAλ′ + β2BλBλ′ + 2αβAλ Bλ′

)
.

After some calculation, the different terms are respectively equal to

E

∑

λ

A2
λ =

∑

λ

[
nPϕ4

λ + t1
(
Pϕ2

λ

)2 ]
,

E

∑

λ

B2
λ =

∑

λ

[
4t2Pϕ

2
λ (Pϕλ)2 + 2t1

(
Pϕ2

λ

)2
+ t3 (Pϕλ)4

]
,

E

∑

λ

AλBλ =
∑

λ

[
2t1Pϕ

3
λPϕλ + t2Pϕ

2
λ (Pϕλ)2

]
,

E

∑

λ6=λ′
AλAλ′ = n


E

(
∑

λ

ϕ2
λ(X)

)2

−
∑

λ

Pϕ4
λ


+ t1



(
∑

λ

Pϕ2
λ

)2

−
∑

λ

(
Pϕ2

λ

)2

 ,

E

∑

λ6=λ′
BλBλ′ = 2t1

∑

λ6=λ′
(Pϕλϕλ′)2 + 4t2


E

(
∑

λ

ϕλ(X)Pϕλ

)2

−
∑

λ

Pϕ2
λ (Pϕλ)2


+

t3



(
∑

λ

(Pϕλ)2

)2

−
∑

λ

(Pϕλ)4


 ,

E

∑

λ6=λ′
AλBλ′ = 2t1

∑

λ6=λ′
Pϕ2

λϕλ′Pϕλ′ + t2

[
E

(
∑

λ

ϕ2
λ(X)

)
∑

λ′
(Pϕλ′)2 − E

(
∑

λ

ϕ2
λ(X) (Pϕλ)2

)]
.

On the other hand,

(
n(n− 1)(n − p)E

[
R̂p(m)

])2
= n2α2

(
∑

λ

Pϕ2
λ

)2

+ t21β
2

(
∑

λ

[Pϕλ ]2

)2

+ 2nαβt1

(
∑

λ

Pϕ2
λ

)
∑

λ′
(Pϕλ′)2 .

Combining these two expressions yields the variance after some simplifications.
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7.2.2 Proof of Corollary 3.4

For every model m ∈ Mn,

rn(m) := E

[
‖ŝm‖2

]
− 2E

[ ∫

[0,1]
sŝm

]
=
∑

λ

E (Pnϕλ)2 − 2
∑

λ

(Pϕλ)2 ,

=
1

n

∑

λ

Var (ϕλ(X)) −
∑

λ

(Pϕλ)2 .

7.3 Theorem 4.1

At the beginning of this section, several preliminary results are enumerated, which are
useful in the proof of Theorem 4.1. Then, the main steps of the strategy are briefly exposed,
and the complete proof of the main result is finally provided. Proofs of preliminary results
are given in the sections following the proof of Theorem 4.1.

7.3.1 Preliminaries

Notation First of all, let us define some notation that will be useful in the sequel.
For every 1 ≤ p ≤ n − 1 the Lpo risk estimator associated with the estimator ŝm is

denoted by R̂p(m). For every m, set

Lp(m) = ER̂p(m)

such that Lp(m̂) := E

[
R̂p(m)

]
|m= bm

. For each m, {ϕλ}λ∈Λ(m) denotes an orthonormal

basis of Sm. Moreover, we set

φm =
∑

λ∈Λ(m)

ϕ2
λ and Vm = E [φm(X) ] ,

χ2(m) = ‖sm − ŝm‖2 =
∑

λ

ν2
n (ϕλ) ,

Em = E
[
χ2(m)

]
and θn,p =

2n− p

(n − 1)(n − p)
·

Remark 5. χ2(m) is not a true χ2 statistic, but is only somewhat similar to it.

Two elementary but useful properties are repeatedly used in the sequel: For any a, b ≥
0,

(Roo)
√
a+ b ≤ √

a+
√
b,

(Squ) 2ab ≤ ηa2 + η−1b2, ∀η > 0.
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Preliminary results Several preliminary results are then provided. They will be re-
peatedly referred to within the proof of Theorem 4.1.

The first result deals with the relationship between R̂p and its expectation for each
model.

Lemma 7.2. For any m ∈ Mn,

Lp(m) − Lp(m̂) =
n

n− p
[Em − E

bm ] −
(
‖s− s

bm‖2 − ‖s− sm‖2
)
,

R̂p(m) − Lp(m) = θn,p νn(φm) − (1 + θn,p)
[
χ2(m) − Em

]
− 2(1 + θn,p)νn(sm).

In Lemma 7.2, we see that νn (φm) appears in the expressions. The next Proposition
enables to upper bound the deviation of this quantity. It is a consequence of Bernstein’s
inequality (see Massart, 2007).

Proposition 7.1. With the above notations, let z > 0 and C > 0 be any positive constants
and for each m, let us define ym = z +C nEm. Then, we have

∀m ∈ Mn, P

[
|νn (φm)| ≥

√
2Vm

‖φm‖∞
n

ym +
‖φm‖∞
n

ym

]
≤ 2e−ym .

Moreover if (Ad) holds, we have

P

[
∃m ∈ Mn | |νn (φm)| ≥

√
2Vm

‖φm‖∞
n

ym +
‖φm‖∞
n

ym

]
≤ Σ1e

−z,

where Σ1 is a positive constant independent from n.

Besides, since χ2(m) =
∑

λ ν
2
n (ϕλ), a handy way to study this χ2-like statistic is to

introduce an event of large probability on which we are able to get some control of νn(ϕλ).
The event Ωn (ǫ) is therefore introduced:

Ωn(ǫ) =

{
∀m ∈ Mn, ∀λ ∈ Λ(m), |νn (ϕλ)| ≤ 2ǫ ‖s‖∞ log n

κ(ǫ)
√

Φn

}
,

where κ(t) = 2(t−1 + 1/3).
Another use of Bernstein’s inequality provides the following Lemma.

Lemma 7.3. Set ǫ > 0 and assume that (Reg) , (Reg2) and (Pol) hold. Then,

∀α > 0, P [ Ωc
n(ǫ) ] ≤ 2n2+δ e−

‖s‖∞η(ǫ)

Φ
(log n)2,

where η(t) = 2ǫ2

κ(t)(κ(t)+2t/3) ·
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This Lemma turns out to be useful in order to assess the concentration of χ2(m)
around its expectation. This result may be found in Massart (2007) and is a consequence
of Talagrand’s inequality.

Proposition 7.2. Set ǫ > 0 and for any C ′, z > 0, xm = z + C ′ nEm. Let us assume
that (Reg) , (Reg2) and (Pol) are fulfilled. Then,

∀m ∈ Mn, P

[√
nχ(m)1Ωn(ǫ) ≥ (1 + ǫ)

(√
nEm +

√
2 ‖s‖∞ xm

)]
≤ e−xm .

Furthermore if (Ad) holds,

P

[
∃m ∈ Mn |

√
nχ(m)1Ωn(ǫ) ≥ (1 + ǫ)

(√
nEm +

√
2 ‖s‖∞ xm

)]
≤ Σ2 e

−z,

where Σ2 > 0 denotes a positive constant independent from n.

Finally, in Lemma 7.2, it remains νn(sm) for which nothing has already been made.
The control of this quantity results from the following lemma.

Lemma 7.4. Set m, m′ ∈ Mn. Then for any ρ > 0,

sup
t∈Sm+Sm′

ν2
n

(
t

‖t‖

)
≤ (1 + ρ)χ2(m) + (1 + ρ−1)χ2(m′).

7.3.2 Outline of the strategy

Let us now describe the outlines of the strategy.
Since m̂ = Argminm∈Mn

R̂p(m), it comes that for every m ∈ Mn, R̂p(m̂) ≤ R̂p(m),
which implies

[
R̂p(m̂) − Lp(m̂)

]
≤
[
R̂p(m) − Lp(m)

]
+ [Lp(m) − Lp(m̂) ] . (13)

Then, Lemma 7.2 applied to (13) yields

‖s− s
bm‖2 + nθn,pE

bm − (1 + θn,p)χ
2(m̂) ≤ ‖s− sm‖2 + nθn,pEm − (1 + θn,p)χ

2(m)

+ θn,pνn (φm − φ
bm)

+ 2(1 + θn,p)νn (s
bm − sm) . (14)

Main steps

• In the oracle inequality one has in mind, the left-hand side of the final inequality

is something like E

[
‖s− ŝ

bm‖2
]
, which is equal to E

[
‖s− s

bm‖2
]

+ E
[
χ2(m̂)

]

with the present notations. However in (14), the left-hand side is E

[
‖s− s

bm‖2
]

+

E [E
bm ]. In order to relate E [E

bm ] to E
[
χ2(m̂)

]
, the discrepancy Em − χ2(m) will

be uniformly controlled over Mn thanks to both Lemma 7.3 and Proposition 7.2.
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• An upper bound of νn (φm − φ
bm) is obtained thanks to Proposition 7.1, so that

νn (φ
bm) is related to E

bm.

• Finally, νn (s
bm − sm) may be upper bounded thanks to Lemma 7.4, independently

from E
bm and will therefore be dealt with later.

• Combining these different steps, the desired inequality is derived except on a set of
small probability (18). The conclusion results from the following lemma:

Lemma 7.5. Let X and Y be two random variables such that ∀z >
0, P (X ≥ Y +K1z +K2) ≤ Σe−z, where K1, K2, Σ > 0. Then, we have

EX ≤ EY +K1 Σ +K2.

Proof. With Z = X − Y −K2, one gets P (Z ≥ K1z) ≤ Σe−z. Then,

EZ ≤ E

[∫ +∞

0
1(t≤Z) dt

]
=

∫ +∞

0
P [ t ≤ Z ] dt

≤ K1

∫ +∞

0
Σe−z dz = K1Σ.

7.3.3 Proof of Theorem 4.1

Proof. According to the previous remarks, Proposition 7.1 is applied to νn (φm − φ
bm).

The successive use of (Reg) , (Squ) with any η > 0, and (Roo) provides

√
2Vm

‖φm‖∞
n

ym ≤
√

2VmΦym ≤ ηΦVm + η−1ym.

Moreover, note that

Vm =
∑

λ

E
[
ϕ2

λ(X)
]

= nEm + ‖sm‖2 ≤ nEm + ‖s‖2 .

Hence with ym = z + C nEm,

√
2Vm

‖φm‖∞
n

ym ≤
[
ηΦ + η−1C

]
nEm + ηΦ ‖s‖2 + η−1z.

Similarly, (Reg) entails that

‖φm‖∞
3n

ym ≤ ΦC

3
nEm +

Φ

3
z,
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which leads to

|νn (φm − φ
bm)| ≤ nEm

[
ηΦ + Cη−1 + Φ

C

3

]
+ nE

bm

[
ηΦ + Cη−1 + Φ

C

3

]

+ 2z

[
Φ

3
+ η−1

]
+ 2ηΦ ‖s‖2 ,

except on an event of probability less than Σ1e
−z.

Set ǫ′′ > 0 and let us choose η = ǫ′′/(3Φ) and C = 2ǫ′′/
(
η−1 + Φ/3

)
. Then it comes that

|νn (φm − φ
bm)| ≤ nEmǫ

′′ + nE
bmǫ

′′ + 2zΦ

[
1

3
+

3

ǫ′′

]
+ 2

ǫ′′

3
‖s‖2 ,

Plugging this into (14) provides

‖s− s
bm‖2 + nθn,p(1 − ǫ′′)E

bm − (1 + θn,p)χ
2(m̂)

≤‖s− sm‖2 + nθn,p(1 + ǫ′′)Em − (1 + θn,p)χ
2(m) + 2(1 + θn,p)νn (s

bm − sm)

+ θn,p

(
2zΦ

[
1

3
+

3

ǫ′′

]
+ 2

ǫ′′

3
‖s‖2

)
, (15)

except on an event of probability less than Σ1e
−z.

On the other hand, Proposition 7.2 implies that for a given ǫ > 0, except on a set of
probability less than Σ2e

−z, we have

∀m ∈ Mn,
√
nχ(m)1Ωn(ǫ) ≤ (1 + ǫ)

(√
nEm +

√
2 ‖s‖∞ xm

)
.

Using xm = z + C ′nEm and (Roo) , we get

√
nχ(m)1Ωn(ǫ) ≤ (1 + ǫ)

(√
nEm

[
1 +

√
2 ‖s‖∞C ′

]
+
√

2 ‖s‖∞ z

)
,

which in turn, combined with (Squ) , implies for any x > 0

χ2(m)1Ωn(ǫ) ≤ (1 + ǫ)2

(
(1 + x)Em

[
1 +

√
2 ‖s‖∞C ′

]2

+ (1 + x−1)
2 ‖s‖∞
n

z

)
. (16)

It holds for the particular choices x = ǫ and C ′ =
(
1 −

√
1 + ǫ

)2
/ (2 ‖s‖∞), which results

in

1 − ǫ′′

(1 + ǫ)4
χ2(m̂)1Ωn(ǫ) ≤ (1 − ǫ′′)E

bm +
1 − ǫ′′

ǫ(1 + ǫ)

2 ‖s‖∞
n

z ,
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with probability larger than 1 − Σ2e
−z.

From the above result and (15), it comes that on Ωn(ǫ), with probability larger than
1 − (Σ1 + Σ2) e

−z, we have

‖s− s
bm‖2 +

(
nθn,p

1 − ǫ′′

(1 + ǫ)4
− (1 + θn,p)

)
χ2(m̂)

≤‖s− sm‖2 + nθn,p(1 + ǫ′′)Em − (1 + θn,p)χ
2(m) + 2(1 + θn,p)νn (s

bm − sm)

+ θn,pz

(
1 − ǫ′′

ǫ(1 + ǫ)
2 ‖s‖∞ + 2Φ

[
1

3
+

3

ǫ′′

])

+ 2θn,p
ǫ′′

3
‖s‖2 .

Now for any ǫ > 0, we define ǫ′ > 0 such that
√

1 − ǫ′ = (1 + ǫ)−4 and let us take ǫ′′

satisfying 1 − ǫ′′ =
√

1 − ǫ′. Then, the above inequality becomes

‖s− s
bm‖2 +

[
nθn,p

(
1 − ǫ′

)
− (1 + θn,p)

]
χ2(m̂)

≤‖s− sm‖2 + nθn,p

[
2 −

√
1 − ǫ′

]
Em − (1 + θn,p)χ

2(m) + 2(1 + θn,p)νn (s
bm − sm)

+ θn,pz

(√
1 − ǫ′

ǫ(1 + ǫ)
2 ‖s‖∞ + 2Φ

[
1

3
+

3

1 −
√

1 − ǫ′

])
+ 2θn,p

1 −
√

1 − ǫ′

3
‖s‖2 .

(17)

The following point consists in deriving an upper bound for νn (s
bm − sm). It results

from the following inequalities and Lemma 7.4. Indeed, we have

2νn (s
bm − sm) ≤ 2νn

(
s

bm − sm

‖s
bm − sm‖

)
‖s

bm − sm‖ ≤ 2 sup
t∈S bm+Sm

νn

(
t

‖t‖

)
‖s

bm − sm‖ .

Moreover, ‖s
bm − sm‖ ≤ ‖s

bm − s‖+‖s− sm‖ and a double use of (Squ) give for any x > 0:

2νn (s
bm − sm) ≤ (1 + x) sup

t∈S bm+Sm

ν2
n

(
t

‖t‖

)
+

2

2 + x
‖s

bm − s‖2 +
2

x
‖sm − s‖2 .

Finally, Lemma 7.4 yields that for any ρ > 0, we have

2νn (s
bm − sm) ≤ (1 + x)

[
(1 + ρ)χ2(m̂) + (1 + ρ−1)χ2(m)

]

+
2

2 + x
‖s

bm − s‖2 +
2

x
‖sm − s‖2 .

With x = ǫ′ and ρ = ǫ′(1 + ǫ′)−1, we get

2νn (s
bm − sm) ≤

(
1 + 2ǫ′

)
χ2(m̂) + (1 + ǫ′)

1 + 2ǫ′

ǫ′
χ2(m)

+
2

2 + ǫ′
‖s

bm − s‖2 +
2

ǫ′
‖sm − s‖2 .
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Plugging this in (17) yields:
On the event Ωn(ǫ), with probability larger than 1 − (Σ1 + Σ2) e

−z, we have for any
m ∈ Mn

[
ǫ′ − 2θn,p

2 + ǫ′

]
‖s− s

bm‖2 +
[
nθn,p

(
1 − ǫ′

)
− 2(1 + θn,p)(1 + ǫ′)

]
χ2(m̂)

≤
[

1 +
2

ǫ′
(1 + θn,p)

]
‖s− sm‖2 + nθn,p

[
2 −

√
1 − ǫ′

]
Em

+

[
1 + 2ǫ′ + 2ǫ′2

ǫ′

]
(1 + θn,p)χ

2(m) + θn,p(Az +B), (18)

where A =
(√

1−ǫ′
ǫ(1+ǫ)2 ‖s‖∞ + 2Φ

[
1
3 + 3

1−
√

1−ǫ′

])
and B = 21−

√
1−ǫ′
3 ‖s‖2.

Then, Lemma 7.5 allows us to take the expectation and get the following result.

(ψ1 ∧ ψ2) E

[
1Ωn(ǫ) ‖s− ŝ

bm‖2
]
≤ (ψ3 ∨ ψ4) E

[
‖s− ŝm‖2

]

+ θn,p [A (Σ1 + Σ2) +B ] , (19)

where ψ1 = (ǫ′ − 2θn,p) (2 + ǫ′)−1, ψ2 = nθn,p (1 − ǫ′) − 2(1 + θn,p)(1 + ǫ′), ψ3 = 1 +
2/ǫ′ (1 + θn,p), and ψ4 = nθn,p

[
2 −

√
1 − ǫ′

]
+ (1 + θn,p)

[
1 + 2ǫ′ + 2ǫ′2

]
/ǫ′.

In order to obtain a meaningful inequality, a necessary requirement is ψ1, ψ2, ψ3, ψ4 ≥
0. This is already satisfied for ψ3 and ψ4. We have only to check it for both ψ1 and ψ2.
It turns out that if ǫ′ > 2/(n − 1), then p must satisfy

4ǫ′

1 + 3ǫ′
+

2

n

1 + ǫ′

1 + 3ǫ′
≤ p

n
≤ 1 − 2

ǫ′(n− 1) − 2
, (20)

provided
4ǫ′

1 + 3ǫ′
+

2

n

1 + ǫ′

1 + 3ǫ′
≤ 1 − 2

ǫ′(n− 1) − 2
,

which is established by Lemma 7.6 for n ≥ 29.

Remark 6. In (20) since 0 < ǫ′ ≤ 1 by definition, we have 4ǫ′
1+3ǫ′ ≤ 1.

Finally to assert the existence of the constant Γ in Theorem 4.1, the ratio
(ψ3 ∨ ψ4) / (ψ1 ∧ ψ2) has to be bounded. One can easily check that all ψks can be re-
shaped as

ψk =
F (p, n)

1 − p/n
,

where F is a bounded quantity. Moreover by construction, the bounds in (20) lead to
ψ1 = 0 and ψ2 = 0, which should be prohibited since we would like to consider the ratio
(ψ3 ∨ ψ4) / (ψ1 ∨ ψ2). That is the reason why p/n must be slightly larger (resp. lower)
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than each one of the above bounds, hence (Ran) . Furthermore since no bound depend on
s, (Ran) gives the required constant Γ. A similar reasoning shows that it exists a constant
κ > 0 depending on s and the constants of the problem but independent from n, such that

θn,p

ψ1 ∧ ψ2
≤ κ

n
,

which yields

E

[
1Ωn(ǫ) ‖s− ŝ

bm‖2
]
≤ Γ(ǫ, α, β) inf

m∈Mn

E

[
‖s− ŝm‖2

]
+
κ(ǫ, s,Φ, α, β, δ)

n
·

We now simply add the missing term E

[
1Ωn(ǫ)c ‖s− ŝ

bm‖2
]

to both sides of the above

inequality. It only remains to show that this term is of the right order:

E

[
1Ωc

n(ǫ) ‖s− ŝ
bm‖2

]
≤ E

[
1Ωc

n(ǫ) ‖s− s
bm‖2

]
+ E

[
1Ωc

n(ǫ) ‖s bm − ŝ
bm‖2

]
,

≤ ‖s‖2
P [ Ωc

n(ǫ) ] + E

[
1Ωc

n(ǫ)

∑

λ∈bm

[
νn(ϕλ)2

]
]
.

Lemma 7.3 then enables to deduce that the first term in the right-hand side inequality
satisfies

∀n, ‖s‖2
P [ Ωc

n(ǫ) ] ≤ ‖s‖2 n0

n
,

for an appropriate choice of n0 > 0, depending on ǫ, δ and Φ.
For the second one, Jensen’s inequality yields

E

[
∑

λ∈bm

ν2
n (ϕλ)1Ωc

n(ǫ)

]
≤ E

[
∑

λ∈ bm

(ϕλ(X) − Pϕλ)2 1Ωc
n(ǫ)

]
.

Moreover, (Squ) with any η > 0 provides

(ϕλ(X) − Pϕλ)2 ≤ (1 + η)ϕ2
λ(X) + (1 + η−1)Pϕ2

λ.

Finally,
∑

λ∈Λ(m) ϕ
2
λ = φm and Pφ

bm ≤ ‖φ
bm‖∞ lead to

E

[
∑

λ∈bm

ν2
n (ϕλ)1Ωc

n(ǫ)

]
≤
(
2 + η + η−1

)
E
[
‖φ

bm‖∞ 1Ωc
n(ǫ)

]

≤
(
2 + η + η−1

) Φn

(log n)2
P [ Ωc

n(ǫ) ]

thanks to (Reg) , and Lemma 7.3 enables to conclude.
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7.3.4 Proof of Proposition 7.1

Proof. Bernstein’s inequality Massart (2007) states

∀x > 0, P

[
|νn (φm)| ≥ 1

n

√
2v x+

b

3n
x

]
≤ e−x,

with b ≥ |φm(Xi) − Eφm(Xi)| and v =
∑n

i=1 Var [φm(Xi) ].
Since Xi are i.i.d. and φm ≥ 0, we have

b = ‖φm‖∞ and v ≤ nVm ‖φm‖∞ ,

hence the first part of the proposition.
For the second part of the result, the union bound combined with ym = z+C nEm provide

P

[
∃m ∈ Mn | |νn (φm)| ≥

√
2Vm

‖φm‖∞
n

ym +
‖φm‖∞
n

ym

]

≤ e−z
∑

m∈Mn

e−C nEm ≤ Σ1 e
−z (Ad) and (Pol).

7.3.5 Proof of Lemma 7.3

Proof. We recall that

Ωn(ǫ) =

{
∀m ∈ Mn, ∀λ ∈ Λ(m), |νn (ϕλ)| ≤ 2ǫ ‖s‖∞ log n

κ(ǫ)
√

Φn

}
.

Then, we deduce that

P [ Ωc
n(ǫ) ] = P

[{
∃m ∈ Mn, ∃λ ∈ Λ(m) | |νn (ϕλ)| ≥ 2ǫ ‖s‖∞ log n

κ(ǫ)
√

Φn

}]
,

≤
∑

m∈Mn

Dm e−
‖s‖∞η(ǫ)

Φ
(log n)2 (Bernstein)

≤
∑

D≥1

Dδ+1e−
‖s‖∞η(ǫ)

Φ
(log n)2 (Pol)

≤ nδ+2e−
‖s‖∞η(ǫ)

Φ
(log n)2 (D ≤ n)

where η(t) = 2ǫ2

κ(t)(κ(t)+2t/3) ·
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7.3.6 Proof of Proposition 7.2

Proof. First, we notice that χ(m) =
√
χ2(m) may be also expressed as

χ(m) = sup
a/

P

λ∈Λ(m) α2
λ
=1

∣∣∣∣∣∣
νn



∑

λ∈Λ(m)

aλϕλ




∣∣∣∣∣∣
≥ sup

a∈A

∣∣∣∣∣∣
νn



∑

λ∈Λ(m)

aλϕλ




∣∣∣∣∣∣
,

where A is dense subset of


a = (a1, . . . , aDm) ∈ R

Dm |
∑

λ∈Λ(m)

α2
λ = 1 and

∑

λ∈Λ(m)

|αλ| ≤
t

z



 .

Moreover, if we define the event

Ω =

{
sup

λ∈Λ(m)
νn (ϕλ) ≤ t

}

for t > 0, then we deduce that

χ(m) ≤ sup
a∈A

∣∣∣∣∣∣
νn



∑

λ∈Λ(m)

aλϕλ




∣∣∣∣∣∣
(21)

on Ω ∩ {χ(m) ≥ z}.
Then, Talagrand’s inequality applied to supa∈A

∣∣∣νn

(∑
λ∈Λ(m) aλϕλ

)∣∣∣ gives for ǫ, x > 0,

P


1Ω sup

a∈A

∣∣∣∣∣∣
νn



∑

λ∈Λ(m)

aλϕλ




∣∣∣∣∣∣
≥ (1 + ǫ)

(
√
χ2(m) +

√
2 ‖s‖∞
n

x

)
 ≤ e−x,

with z =
√

2 ‖s‖∞ /n and t = 2ǫ ‖s‖∞
[
κ(ǫ)Φn/(log n)2

]−1
.

Finally, the first result comes from both (21) and Ωn(ǫ) = Ω.

As for the second inequality, the choice xm = C ′ξ Dm + z leads to

P

[
∃m ∈ Mn |

√
nχ(m)1Ωn(ǫ) ≥ (1 + ǫ)

(√
nEm +

√
2 ‖s‖∞ xm

)]

≤e−z
∑

m∈Mn

e−C′ nEm ≤ e−z
∑

D≥1

e−C′ ξD+δ log D (Ad) and (Pol)

≤Σ2 e
−z.

40



7.3.7 Proof of Lemma 7.6

Lemma 7.6. For n ≥ 29, there exists 0 < ǫ < 1 such that

ζ(ǫ) >
2

n− 1
and

4ζ(ǫ)

1 + 3ζ(ǫ)
+

2

n
< 1 − 2

ζ(ǫ)(n − 1) − 2
,

where ζ(ǫ) =
[
1 − (1 + ǫ)−8

]
.

Proof. The first part is obvious since for a given n, we can choose 0 < ǫ < 1 such that
ζ(ǫ) > 2/(n − 1). Then with δ = ζ(ǫ) − 2/(n − 1), we have

δ(n − 1) = ζ(ǫ)(n − 1) − 2.

After some calculations, it is easy to see that

4ζ(ǫ)

1 + 3ζ(ǫ)
+

2

n
< 1 − 2

ζ(ǫ)(n− 1) − 2
,

⇔ δ2
n+ 6

n
− δ

n− 10

n
+

2n+ 10

(n− 1)2
< 0,

which is a polynomial of degree 2 in δ.
For n ≥ 29, the discriminant is positive and any δ between the two distinct zeros yields a
value for ζ(ǫ) such that

4ζ(ǫ)

1 + 3ζ(ǫ)
+

2

n
< 1 − 2

ζ(ǫ)(n− 1) − 2
,

which enables to conclude.

7.4 Theorem 4.2

7.4.1 Intermediate results

The proof of Theorem 4.2 follows the same structure as that of Theorem 4.1. Only the
main differences are reported here. These differences essentially occur in the control of the
χ2-type statistic. Since they are nearly the same, the following results are given (without
or) with only short proofs.

Let us start by introducing another event of large probability on which we are able to
get the desired control. For any ǫ > 0,

Ωn(ǫ) =

{
∀m ∈ Mn, ∀λ ∈ Λ(m), |νn (ϕλ)| ≤ 2ǫ‖s‖2

√
Φ/ξ nEm log n

κ(ǫ)
√

Φn

}
,

where κ(t) = 2(t−1 + 1/3).

The following lemma is the counterpart of Lemma 7.3 and is devoted to control the
remainder terms. It heavily relies on Bernstein’s inequality.
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Lemma 7.7. Set ǫ > 0 and assume that (Reg) , (Reg2) , (Reg3) (Ad) and (Pol) hold.
Then,

∀α > 0, P [ Ωc
n(ǫ) ] ≤ 2n2+δ e

− η(ǫ)√
Φ

(‖s‖∨1)(log n)2
,

where η(t) = 2ǫ2

κ(t)(κ(t)+2t/3) ·

Now, we are in position to give the main result providing the desired control on the χ2-type
statistic.

Proposition 7.3. Set ǫ > 0 and for any C ′, z > 0, xm = z + C ′√nEm. Assume that
(Reg) , (Reg2) , (Reg3) , (Ad) and (Pol) are fulfilled. Then, for every m ∈ Mn,

P

[√
nχ(m)1Ωn(ǫ) ≥ (1 + ǫ)

(√
nEm +

√
2(‖s‖ ∨ 1)

√
Φ/ξ nEm xm

)]
≤ e−xm ,

and furthermore,

P

[
∃m |

√
nχ(m)1Ωn(ǫ) ≥ (1 + ǫ)

(√
nEm +

√
2(‖s‖ ∨ 1)

√
Φ/ξ nEm xm

)]
≤ Σ2 e

−z,

where Σ2 > 0 denotes a positive constant independent from n.

Proof. (sketch of proof) It relies on Talagrand’s inequality as well as of the following
straightforward upper bound.

∀m, sup
t∈Sm, ‖t‖2=1

Var [ t(X) ] ≤ ‖s‖ ‖t‖2

√
‖φm‖∞ = ‖s‖

√
‖φm‖∞ ≤ (‖s‖ ∨ 1)

√
‖φm‖∞.

7.4.2 Outline of the proof of Theorem 4.2

The first main difference comes from the use of Proposition 16, which yields

√
nχ(m)1Ωn(ǫ) ≥ (1 + ǫ)

(√
nEm +

√
2(‖s‖ ∨ 1)

√
Φ/ξ nEm xm

)

on an event of high probability.
From several applications of (Squ) and (Roo) , with ρ,C ′ > 0, it comes

√
2(‖s‖ ∨ 1)

√
Φ/ξ nEm xm

≤
√

2(‖s‖ ∨ 1)
√

Φ/ξ
√
nEm z +

√
2(‖s‖ ∨ 1)

√
Φ/ξC ′nEm ,

≤ ρ
√
nEm + ρ−1(‖s‖ ∨ 1)

√
Φ/ξ z + C

√
nEm,

≤ (ρ+ C)
√
nEm + ρ−1(‖s‖ ∨ 1)

√
Φ/ξ z,

42



with C ′ = C
[
2(‖s‖ ∨ 1)

√
Φ/ξ

]−1
.

Thus in the same way as (16), for every x > 0, we derive

χ2(m)1Ωn(ǫ) ≤(1 + ǫ)2
[
(1 + x)Em [ 1 + (ρ+C) ]2

+(1 + x−1)
(
ρ−1(‖s‖ ∨ 1)

√
Φ/ξ

)2 z2

n

]
.

The following remains essentially the same and concludes the proof.
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