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Density estimation via cross-validation:

Model selection point of view

Alain Celisse

5th November 2008

Abstract

The problem of density estimation by cross-validation is addressed in the model selection frame-

work. Extensively used in practice, cross-validation remains poorly understood, especially in the

non-asymptotic setting. More precisely, our analysis mainly focuses on a cross-validation based algo-

rithm named leave-p-out. Our better understanding of the leave-p-out with respect to the cardinality

p of the test set yields more insight into other cross-validation based algorithms.

From a general point of view, cross-validation is devoted to estimate the risk of an estimator. Usually

due to a prohibitive computational complexity, the leave-p-out is taken for intractable. However, we

turned it into a fully effective procedure thanks to closed-form formulas for the risk estimator of a

wide range of widespread estimators.

Embedding leave-p-out in the model selection setting enables a new interpretation of this algorithm in

terms of a penalized criterion, with a random penalty. Furthermore, the amount of overpenalization

it provides turns out to increase with p.

A theoretical assessment of the leave-p-out performance is provided thanks to two oracle inequalities

applying respectively to either bounded densities or square integrable ones.

With different sieves such as piecewise constant functions or trigonometric and dyadic polynomials,

the leave-p-out based strategy exhibits some adaptivity properties in the minimax sense with respect

to Hölder as well as Besov spaces.

Keywords: Density estimation, cross-validation, model selection, leave-p-out, random penalty, oracle
inequality, projection estimators, adaptivity in the minimax sense, Hölder, Besov.

1 Introduction

Model selection via penalization has been introduced by the seminal works of Mallows and Akaike with
respectively Cp [27] and AIC [1], and also by Schwarz [33] who proposed the BIC criterion. AIC and BIC
have an asymptotic flavour, which makes their performance depend on the model collection in hand as
well as on the sample size [2].
More recently, Birgé and Massart [6, 7, 8] have developed a non-asymptotic approach, inspired from
the pioneering work of Barron and Cover [4]. It aims at choosing a model among a countable family
{Sm}m∈Mn

where Mn is allowed to depend on the sample size n. From this point of view, an estimator
ŝm is associated with each model Sm, and a penalty-based procedure is designed and then minimized to
provide a final estimator s̃ = ŝ m̂. The goal of this approach is efficiency, that is the risk of s̃ is as small
as that of the minimizer over all the estimators in the collection. Actually, this cannot be reached and the
quality assessment of the procedure is made through an oracle inequality

E

[
‖s− ŝ m̂‖2

]
≤ C inf

m∈Mn

{
E

[
‖s− ŝm‖2

]
+R(m,n)

}
,

where C ≥ 1 is a constant independent from the density s, while R(m,n) denotes a remainder term with

respect to E

[
‖s− ŝm‖2

]
. Such an inequality quantifies how close the risk of s̃ is to the smallest one

among those of the ŝms (up to a constant C and a remainder term). Thus the closer C to 1 and R(m,n)
to 0, the better the procedure.
In the density estimation framework, Barron et al. [3] developed a general approach based on deterministic
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penalties, leading to an oracle inequality involving Kullback-Leibler divergence and Hellinger distance.
This result has been adapted to the particular case of histograms by Castellan [15, 16] and further studied
in Birgé and Rozenholc [9]. With the quadratic risk, the penalties proposed by Birgé and Massart [6, 3]
also enjoy some optimality properties when applied to projection estimators. They establish that the
resulting estimator exhibits some adaptivity in the minimax sense with respect to Besov spaces for several
appropriate functional bases [6].

Unlike the aforementioned approaches relying on some deterministic penalties, we here address
the problem of density estimation via cross-validation (CV). “Cross-validation” refers to a family of
resampling-based algorithms, resulting from a heuristic argument. The first cross-validation algorithms
have been respectively introduced in a regression context by Stone [37, 38] for the leave-one-out (Loo)
and Geisser [21, 22] for the V -fold cross-validation (VFCV), and by Stone [36] in the density estimation
framework.
Since these algorithms can be computationally demanding or even intractable, Rudemo [31] and Bowman
[11] provided some closed-form expressions for the Loo estimator of the risk of histograms or kernel
estimators. These results have been recently generalized by Celisse and Robin [17] to the leave-p-out
cross-validation (Lpo).
Most of theoretical results about the effectiveness of CV algorithms are asymptotic and mainly concern
the regression framework. For a fixed model, Burman [12, 13] expands several CV-based estimators of
the risk of ŝm and concludes that Loo is the best one in terms of bias and variance. Besides several
comparisons are pursued between Loo and various penalized criteria in Li [25] and Zhang [41] in view of
asymptotic efficiency, while [34, 40] essentially focus on the identification or consistency point of view.
We refer the interested reader to Shao [35] for an extensive review about asymptotic optimality properties
in terms of efficiency and identification of some penalized criteria as well as some CV algorithms.
As for non-asymptotic results in the density setting, Birgé and Massart [6] obtained an oracle inequality
that may be applied to the Loo procedure. However to the best of our knowledge, no result of this type
has already been proved for the Lpo algorithm in the density estimation setup.

In the literature about model selection via penalization, an important notion is that of complexity of
the collection of models {Sm}m∈Mn

[2], named in the sequel either collection complexity or richness. This
notion already arises with discrete models in the Minimum Description Length of Rissanen [30] as well as
in the work of Barron and Cover [4] about minimum complexity. It is further generalized by Barron et
al. [3] as well as in Birgé and Massart [6, 7, 8] to the case of continuous models.
This notion of richness refers to the structure of the collection of models we consider. In the same way
as the complexity of a model (model complexity) may be characterized by the dimension with finite
dimensional vector spaces for instance, Barron et al. [3] quantify the collection complexity by the number
of models with the same dimension. In this setting, two broad situations are usually distinguished: the
polynomial and the exponential complexity frameworks [8]. Baraud et al. [2] and Sauvé [32] introduce
a complexity index, which enables to distinguish different complexity levels in the exponential setup for
instance.

The main concern of this paper is to provide a new understanding of cross-validation algorithms in
terms of penalized criteria. We therefore perform the analysis of the Lpo algorithm in density estimation
with the model selection framework. Our interest lies first in closed-form expressions derived for a
wide range of widespread estimators, which turns the Lpo into a fully effective algorithm, and also in
non-asymptotic results such as oracle inequalities. Adaptivity in the minimax sense with respect to some
functional spaces is considered as well, for appropriate collection of models.

The paper is organized as follows. The following section is devoted to the description of the Lpo
algorithm. Some closed-form expressions are derived for the resulting risk estimator with the broad class
of projection estimators. Unlike the usual situation, the Lpo risk estimator is no longer intractable.
Furthermore, closed-form expressions are also derived for both the bias and variance of this risk estimator.
Besides, new highlight is given to cross-validation thanks to the relationship between the Lpo estimator
and penalized criteria. The subsequent conclusion is that Lpo systematically leads to overpenalization,
by an amount growing with p, the cardinality of the test set. The main concern in Section 3 is to derive
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two oracle inequalities, which theoretically state the optimality of the Lpo-based procedure. The first
inequality holds with bounded densities s, whereas the second one applies to densities in L2, at the price
of an additional assumption. Adaptivity in the minimax sense is at the core of Section 4, which aims
at deriving such results with respect to Hölder and Besov spaces, for appropriate collections of models.
While histograms are used with Hölder balls, dyadic as well as trigonometric polynomials enable to get
such results with Besov balls. Finally, Section 5 collects most of the proofs of this paper.

2 Leave-p-out cross-validation

In this work, we address the problem of density estimation via cross-validation (CV) in the model
selection framework. Resampling-based strategies such as CV are usually time-consuming and even
sometimes computationally intractable. The interest of the forthcoming approach is to derive closed-form
expressions for the CV-based estimator of the risk of projection estimators, which are widespread in the
density estimation community ([31, 19, 6, 3]).

2.1 Statistical framework

Let us start describe the framework and introduce some notations which are repeatedly used throughout
the paper.

2.1.1 Notations

In the sequel, we assume that X1, . . . , Xn ∈ [0, 1] are independent and identically distributed random
variables drawn from a probability distribution P of density s ∈ L2 with respect to Lebesgue’s measure.
As a distance between s and any function u, we use the quadratic loss denoted by ℓ(·, ·) such that

ℓ (s, u ) := ‖s− u‖2 .

Since this quantity depends on s , we introduce the associated contrast function

γ : (u, x) 7→ γ(u, x) := ‖u‖2 − 2u(x).

This contrast is related to the loss function via

ℓ (s, u ) = Pγ(u) − Pγ(s), where Pγ(u) = E [ γ (u,X) ] , X ∼ P,

for any function u.
The quality assessment of an estimator ŝ = ŝ (X1, . . . , Xn) of s is made through the corresponding
quadratic risk

Rn( ŝ ) := E [ ℓ (s, ŝ ) ] = E

[
‖s− ŝ ‖2

]
.

As an estimator of the above risk (up to a constant term), we use the empirical risk

γn(u) := Pnγ(u) =
1

n

n∑

i=1

γ (u,Xi) ,

where Pn = 1/n
∑n

i=1 δXi
denotes the empirical measure.

Let {Sm}m∈Mn
denote a countable family of models, which are finite dimensional linear spaces. In

each model Sm, we look for an estimator ŝm of s, defined as the empirical risk minimizer over Sm

ŝm := Argminu∈Sm
Pnγ(u).
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2.1.2 Projection estimators

Let us now describe the range of estimators to which this work applies.
Set {ϕλ}λ∈Λn

a family of vectors in L2([0, 1]), where Λn denotes a countable set of indices. For each
m ∈ Mn, let Λ(m) be a subset of Λn such that {ϕλ}λ∈Λ(m) is an orthonormal basis of Sm, of dimensionDm.

Thus, the orthogonal projection of s onto Sm is denoted by sm and is equal to

sm := Argminu∈Sm
Pγ(u) =

∑

λ∈Λ(m)

Pϕλ ϕλ, with Pϕλ = E [ϕλ(X) ] .

In this setting, it turns out that the empirical risk minimizer corresponding to model Sm is a projection
estimator since

ŝm =
∑

λ∈Λ(m)

Pnϕλ ϕλ, with Pnϕλ =
1

n

n∑

i=1

ϕλ(Xi).

Examples [18]

• Histograms:
If we use {ϕλ}λ∈Λ(m) such that ϕλ = 1Iλ

/
√
|Iλ| where {Iλ}λ∈Λ(m) denotes a partition of [0, 1] in

Card(Λ(m)) = Dm intervals and |Iλ| is the Lebesgue measure of Iλ, the least-squares estimator
coincides with the histogram

ŝm =
∑

λ∈Λ(m)

Pn1Iλ

1Iλ

|Iλ|
·

• Trigonometric polynomials:
Let {ϕλ}λ∈Z

the orthonormal basis of L2([0, 1]) such that t 7→ ϕλ(t) = e2πiλt. For any finite
Λ(m) ⊂ Z, the trigonometric polynomial defined by

t 7→ ŝm(t) =
∑

λ∈Λ(m)

Pnϕλ e
2πiλt

is a projection estimator.

• Wavelet basis:
Let us consider an orthonormal basis {ϕλ}λ∈Λn

of L2([0, 1]) made of compact supported wavelets,

where Λn =
{
(j, k) | j ∈ N

∗ and 1 ≤ k ≤ 2j
}
. The Haar system is a good example. For any subset

Λ(m) of Λn, the empirical risk minimizer associated with {ϕλ}λ∈Λ(m) is

ŝm =
∑

λ∈Λ(m)

Pnϕλ ϕλ,

which is a projection estimator as well.

2.2 Cross-validation

In this work, we perform density estimation in the model selection framework via cross-validation
instead of the usual deterministic penalized criteria. To this end, we first recall the rationale behind
cross-validation and also detail the specific leave-p-out algorithm.
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2.2.1 Cross-validation rationale

Cross-validation (CV) is a heuristics relying on some particular subsamples of the original observations.
Various CV algorithms exist, which differ one another by the way subsamples are built, that is by their
respective subsampling scheme. In order to further detail the rationale behind CV, we introduce some
additional notations.
Let us denote by X1,n = X1, . . . , Xn the n sample drawn from P , and by Pn its empirical distribution.
Each CV-based algorithm can be defined by a vector of weights Wn = (Wn,1, . . . ,Wn,n) made of random
variables, independent from X1,n. The subsamples are then defined from the original data through these
weights and denoted by XW

1,n = XW
1 , . . . , XW

n , with the empirical distribution PW
n = 1/n

∑n
i=1Wn,iXi.

Several examples of such subsampling schemes will be detailed in Section 2.2.2.
In the sequel, ŝ = ŝ (X1,n) denotes an estimator of s computed from X1,n.

The independence requirement
CV has essentially been designed to estimate the risk of any estimator ŝ of s. Actually, it intends to
estimate r = E [Pγ( ŝ ) ], which can be expressed as

r = EX1,n
[ EX [ γ ( ŝ (X1,n, X) ) ] ] ,

where EX and EX1,n
represent expectations with respect to X and respectively X1,n. We would like

to highlight that X and X1,n are independent. Thus, there are two levels of randomness in the above
expression. This is the cornerstone of the CV strategy, which heavily exploits these two randomness
levels in splitting the data into a training set and a test set. Roughly speaking, the idea is simply to
use the data in the training set to build the estimator, while the test set is devoted to the assessment
of the estimator performance. Provided X1,n is made of independent data, training and test sets are
independent by construction as well.
Remark: Independence is actually the main requirement of CV and even in the non i.i.d. case studied
by Burman et al. [14], authors exploit the order of the dependence structure in removing some data from
the sample so that they recover independence.

Strategy
Let us denote by Wn a binary vector corresponding to a particular CV scheme and associated with
observations in the training set (examples will be provided in Section 2.2.2), while Wn denotes its natural
counterpart representing the training set data.
The first step of the CV heuristics consists in “approximating” the random variable EX [ γ ( ŝ (X1,n), X ) ],
which depends on X1,n, thanks to the subsamples. Let us assume that this dependence is made through
the empirical distribution Pn. Then, we have

r̂ (Pn, P ) = EX [ γ ( ŝ (X1,n), X ) ] .

The underlying idea in CV is to replace (Pn, P ) by
(
PW

n , PW
n

)
:

r̂ (Pn, P ) ≈ r̂
(
PW

n , PW
n

)
,

where PW
n denotes the empirical distribution of the data in the training set, while PW

n states for that of
the data in the test set.
Whereas the above step remains the same for all the CV-based strategies, the second one differs from a
CV algorithm to another and depends on the way the subsamples have been generated. This subsampling
scheme is therefore determined by the distribution of the weight vector Wn. Thus integrating over the
weights Wn, it comes that

r = EX1,n
[ r̂ (Pn, P ) ] ≈ EW

[
r̂
(
PW

n , PW
n

) ]
,

where the expectation EW is taken with respect to the vector Wn. The right-hand side is actually a
random variable, which is the CV estimator of the risk of ŝ .

Remark: At each step of the process, XW
1,n and XW

1,n remain independent.
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2.2.2 Leave-p-out and other cross-validation algorithms

The CV botany
In model selection, another interest of resampling methods, especially of CV, is their ability to work with
any estimator [40] in a wide range of frameworks [10], unlike (deterministic) penalized criteria, which
require a preliminary study of this estimator to design the appropriate penalty. Indeed if we think about
AIC-like penalties [3, 16] for instance, there is no immediate warranty for them to be suited to any other
estimator than the empirical contrast minimizer. However, the price CV has to pay for such a generality
level is essentially the computation cost, which may be very high.
These two remarks as well as the high technicalities of the proofs all motivate the numerous variants of
CV algorithms (see also [20] for an extensive review about CV):

• From a historical viewpoint, the leave-one-out (Loo) was the first CV scheme that appeared in a quite
formalized version in Mosteller and Tukey [29], and then in [37]. It consists in successively removing
each observation from the original data and computing the estimator from the n−1 remaining ones.
The performance of the resulting estimator is then assessed thanks to the removed point. The final
Loo risk estimator is defined as the average over the n possible test sets. In order to stick to the
resampling formalism, Loo corresponds to the choice of a random vectorWn, such that Wn,j ∈ {0, n},
P(Wn,j > 0) = 1/n for any j, and

∑n
j=1Wn,j/n = 1. The Loo risk estimator is expressed as

R̂1(A) =
1

n

n∑

i=1

γ(A(X
(i)
1,n), Xi),

where X
(i)
1,n represents X1,n from which Xi has been removed and A denotes an estimation algorithm,

that is an application that takes as input some data and outputs an estimator. In a nutshell, A(X1,n)
is the estimator provided by algorithm A, computed from X1,n. A typical example for A is the ERM
algorithm, e.g. the empirical risk minimization.

• The leave-p-out (Lpo), with p ∈ {1, . . . , n− 1}, may be seen as a generalization of the Loo to which
it amounts when p = 1. It appears in a general setting in Burman [12], and in a linear regression
setup in [34, 41]. In density estimation, Celisse and Robin [17] derive a closed-form expression for
the Lpo estimator in the estimation of the risk of histograms. It consists in the same procedure as
that of the Loo, except that at each of the

(
n
p

)
rounds we remove p observations (instead of only

one). The corresponding weights are defined by Wn,i ∈ {0, n/p} for any i,
∑n

i=1 p/nWn,i = p and

the probability of any such vector is
(
n
p

)−1
. Thus with the same notations as before, the Lpo risk

estimator (also named Lpo estimator or Lpo risk) is finally

R̂p(A) =

(
n

p

)−1 ∑

e∈Ep

[
1

p

∑

i∈e

γ
(
A(Xe

1,n), Xi

)
]
,

where Ep = {(i1, . . . , ip) | i1 < . . . < ip, ij ∈ {1, . . . , n}}, e ∈ Ep and e = {1, . . . , n} \ e.

• Due to the high computational burden of the previous procedures, Geisser [21, 22] introduces an al-
ternative algorithm named V-fold cross-validation (VFCV). The VFCV has been studied in Burman
[12, 13] who suggests a correction in order to remove some bias. It relies on a preliminary (random
or not) choice of a partition of the data in V subsets of approximately equal size n/V . Each subset
is successively left out, and the V − 1 remaining ones are used to compute the estimator, while
the last one is dedicated to its performance assessment. The V-fold risk estimator is the average
of the V resulting estimators. For a given random partition of the data, the above description re-
sults in V weight vectors Wn of respective probability 1/V , satisfying Wn,i ∈ {0, V } for any i, and∑n

i=1Wn,i = n/V . This leads us to the following VFCV estimator:

R̂VFCV,V (A) =
1

V

V∑

v=1

[
V

n

∑

i∈ev

γ
(
A(Xev

1,n), Xi

)
]
,

where ev denotes the n/V indices of the V -th subset.
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• The Hold(-p)-out (Hpo), with p ∈ {1, . . . , n− 1}, is one of the simplest (to analyze) CV procedures,
consisting in randomly partitioning the data in a training and a test sets. But unlike the preceding
procedures, the estimator computation and its assessment are only performed once. Since there
is no averaging on several resamples, this simple procedure has been often studied (see [5, 10] in
classification, [26, 39] in regression). For a randomly chosen e ∈ Ep, its simple expression is

R̂Hpo,p(A) =
1

p

∑

i∈e

γ
(
A(Xe

1,n), Xi

)
.

Lpo and VFCV
Nowadays, the always increasing amount of data results in very large sample sizes (several thousands
and more). Since the Loo [37] requires the computation of one estimator for each successively removed
observation, it may be too computationally demanding. To overcome this problem, Geisser [22] proposed
the VFCV algorithm, which only requires the computation of V estimators (as many as we have subsets
of data). Thus provided V ≪ n, it is less expensive to use VFCV than Loo. However, the former relies
on a preliminary random partitioning of the data in V subsets. This additional randomness induces
some unwanted variability [17]. A similar remark applies to Hpo, since the common intuition about it
is that choosing only a subset of the data may be misleading if unfortunately these data are not fully
representative of the underlying phenomenon.

Keeping this additional randomness issue in mind, Lpo [34] may appear as the “gold standard”.
Indeed, it does not introduce any additional variability, since all the

(
n
p

)
resamples are taken into account.

To go further, VFCV may be understood as an approximation of the “ideal” Lpo, up to some fluctuations
due to the additional randomness the former introduces. Note that other attempts to approximate the
Lpo have been proposed such that the repeated learning-testing method [12] for instance.
Nevertheless, the price to pay for such an “optimality” is once more the computational issue. The Lpo
computation requires to explore

(
n
p

)
resamples, which is intractable even for relatively small n and p.

Fortunately in some quite general settings, closed-form expressions can be derived for the Lpo estimator
[17].

In the following, we focus on the study of the Lpo and first provide some closed-form formulas, which
make this algorithm fully tractable. Besides, this resampling scheme provides some more insight in the
general behaviour of CV-based algorithms, for which some further work should be done towards a deeper
understanding.

2.3 Closed-form expressions

The purpose of this section is to provide closed-form expressions for the Lpo risk estimator, which can be
computed very efficiently.

2.3.1 Leave-p-out risk estimator

Before providing formulas, we need the following lemma yielding the key quantities.

Lemma 2.1. Let ŝm(Xe
1,n) denote a generic projection estimator based on model Sm and computed from

the training data Xe
1,n. Then,

∑

e∈Ep

∥∥ŝm(Xe
1,n)
∥∥2

2
=

1

(n− p)2



(
n− 1

p

) n∑

k=1

∑

λ∈Λ(m)

ϕ2
λ(Xk) +

(
n− 2

p

)∑

k 6=ℓ

∑

λ∈Λ(m)

ϕλ(Xk)ϕλ(Xℓ)


 ,

(1)

∑

e∈Ep

∑

i∈e

ŝ (Xe
1,n)(Xi) =

1

n− p

(
n− 2

p− 1

)∑

i6=j

∑

λ∈Λ(m)

ϕλ(Xi)ϕλ(Xj). (2)

The proof of Lemma 2.1 is deferred to Section 5.

7



From the previous result, we deduce the following general expression for the Lpo-based estimator of
the risk with projection estimators.

Proposition 2.1. For any m ∈ Mn, let ŝm denote the projection estimator onto the model Sm, spanned
by the orthonormal basis {ϕλ}λ∈Λ(m). Then for any p ∈ {1, . . . , n− 1},

R̂p(m) =
1

n(n− p)

∑

λ∈Λ(m)



∑

j

ϕ2
λ(Xj) −

n− p+ 1

n− 1

∑

j 6=k

ϕλ(Xj)ϕλ(Xk)


 . (3)

Remark: The computation cost of (3) reduces to that of
∑

j ϕ
2
λ(Xj) as well as

(∑
j ϕλ(Xj)

)2

, which is

noticeably cheap.

Proof. In the density estimation framework, the contrast associated with the L2-loss is γ(t,X) = ‖t‖2 −
2t(X). Subsequently, the Lpo estimator is

R̂p(m) =

(
n

p

)−1 ∑

e∈Ep

∥∥ŝm(Xe
1,n)
∥∥2 − 2

p

(
n

p

)−1 ∑

e∈Ep

∑

i∈e

ŝm(Xe
1,n)(Xi).

Besides, the general projection estimator is

ŝm =
∑

λ∈Λ(m)

Pnϕλ ϕλ.

The simple application of (1) and (2) provides the expected conclusion.

Examples
We are now in position to specify the expression of the Lpo risk estimator in Proposition 2.1 with particular
projection estimators.

1. Histograms:

Corollary 2.1. With the same notations as before, assume that ŝm denotes the histogram estimator
built from the partition I(m) = (I1, . . . , IDm

) of [0, 1] in Dm intervals of respective length |Iλ|. Then
for p ∈ {1, . . . , n− 1},

R̂p(m) =
1

(n− 1)(n− p)

Dm∑

λ=1

1

|Iλ|

[
(2n− p)

nλ

n
− n(n− p+ 1)

(nλ

n

)2
]
, (4)

where nλ = ♯ {i |Xi ∈ Iλ}.

Proof. (4) comes simply from the application of (3) with ϕλ = 1Iλ
/
√
|Iλ|.

2. Trigonometric polynomials:

Corollary 2.2. Let ϕλ denote either t 7→ cos(2πkt), if λ ∈ 2N or t 7→ sin(2πkt), if λ ∈ 2N + 1.
Let us further assume that Λ(m) = {0, . . . , 2K} for an integer K > 0. Then,

R̂p(m) =
1

(n− 1)(n− p)


(p− 2)(K + 1) − n− p+ 1

n

K∑

k=0








n∑

j=1

cos(2πkXj)





2

+





n∑

j=1

sin(2πkXj)





2




 .
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3. Haar basis:

Corollary 2.3. Set ϕ : t 7→ 1[0,1] and ϕj,k(t) = 2j/2ϕ(2j · −k), where j ∈ N and 0 ≤ k ≤ 2j − 1.

For any m ∈ Mn, let us define Λ(m) ⊂
{
(j, k) | j ∈ N, 0 ≤ k ≤ 2j − 1

}
. Then,

R̂p(m) =
1

(n− 1)(n− p)

∑

(j,k)∈Λ(m)

2j

[
(2n− p)

nj,k

n
− n(n− p+ 1)

(nj,k

n

)2
]
,

where nj,k = Card
({
i | Xi ∈ [k/2j, (k + 1)/2j]

})
.

2.3.2 Moment calculations

We first deal with general projection estimators for which we provide explicit expectation and variance.

Proposition 2.2. With the same notations as in Proposition 2.1, we have for any 1 ≤ p ≤ n− 1,

ER̂p(m) =
1

n− p

∑

λ∈Λ(m)

[
Eϕ2

λ(X) − (Eϕλ(X))2
]
−

∑

λ∈Λ(m)

(Eϕλ(X))2 ,

Var
[
R̂p(m)

]
= (n(n− 1)(n− p))

−2


2β2t1

∑

λ

(
Pϕ2

λ

)2
+ 4αβt1

∑

λ

Pϕ3
λPϕλ + nα2

E

(
∑

λ

ϕ2
λ

)2

−

nα2

(
∑

λ

Pϕ2
λ

)2

+ 2β2t1
∑

λ6=λ′

(Pϕλϕλ′)
2

+ 4β2t2E

(
∑

λ

ϕλPϕλ

)2

+

(−4n+ 6)t1β
2

(
∑

λ

(Pϕλ)
2

)2

+ 4αβt1
∑

λ6=λ′

Pϕ2
λϕλ′Pϕλ′ − 4t1αβ

∑

λ

Pϕ2
λ

∑

λ′

(Pϕλ′)
2


 ,

where Pϕλ = Eϕλ(X), and

α = n− 1 β = n− p+ 1,

t1 = n(n− 1) t2 = t1(n− 2),

The technical proof is given in Section 5. Note that these formulas may be derived provided P |ϕλ|3 < +∞
for any λ ∈ Λ(m), which is satisfied if s is assumed to be bounded and

∫
|ϕλ|3 < +∞ (ϕλ continuous and

compact supported for instance).
The bias of the Lpo risk estimator may be a more interesting quantity to work with. From Proposition
2.2, we derive its expression.

Corollary 2.4. For any projection estimator, the bias of the Lpo estimator is equal to

B

[
R̂p(m)

]
:= ER̂p(m) −Rn(m) =

p

n(n− p)

∑

λ∈m

[
Eϕ2

λ(X) − (Eϕλ(X))2
]
,

=
p

n(n− p)

∑

λ∈Λ(m)

Var [ϕλ(X) ] ≥ 0,

where Rn(m) = E

[
‖ŝm‖2 − 2

∫
[0,1] s ŝm

]
.

Illustration
If we apply Proposition 2.2 to histogram estimators, we obtain the following expressions for the expectation
and the variance of the Lpo risk estimator:
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Corollary 2.5. For any λ ∈ Λ(m), set αλ = P(Xi ∈ Iλ). Then,

E

[
R̂p(m)

]
=

1

n− p

∑

λ∈m

1

ωλ
αλ (1 − αλ) −

∑

λ∈m

1

ωλ
α2

λ,

Var
[
R̂p(m)

]
=

p2q2(n, α, ω) + p q1(n, α, ω) + q0(n, α, ω)

[n(n− 1)(n− p)]2
,

where

∀(i, j) ∈ {1, . . . , 3} × {1, 2}, si,j =

D∑

k=1

αi
k/ω

j
k,

q2(n, α, ω) = n(n− 1)
[
2s2,2 + 4s3,2(n− 2) + s22,1(−4n+ 6)

]
,

q1(n, α, ω) = n(n− 1) [−8s2,2 − 8s3,2(n− 2)(n+ 1) − 4s1,1s2,1(n− 1)−
2s22,1(−4n2 + 2n+ 6)

]
,

q0(n, α, ω) = n(n− 1)
[
s1,2(n− 1) − 2s2,2(n

2 − 2n− 3)+

4s3,2(n− 2)(n+ 1)2 − s21,1(n− 1)+

4s1,1s2,1(n
2 − 1) + s22,1(−4n+ 6)(n+ 1)2

]
.

2.4 Random penalty

Ideal and Lpo penalties
From a collection of models {Sm}m∈Mn

, the purpose of model selection is to design a procedure which
provides us with the “best” candidate model. For instance, this choice is made by minimization of a
penalized criterion crit(·) [3], defined by

∀m ∈ Mn, crit(m) = Pnγ (ŝm) + pen(m), (5)

where Pnγ (ŝm) is the empirical risk of an estimator ŝm. pen(·) : Mn → R+ denotes the penalty term,
which takes into account the complexity of the model Sm.
Ideally, the optimal criterion we would like to minimize over Mn is the random quantity

critid(m) = Pγ(ŝm) := Eγ (ŝm, X) (6)

where the expectation is taken with respect to X ∼ P , which is independent from the original data. critid

quantifies the mean error incurred by the estimator ŝm computed from the observations in hand, at a new
point X .
The link between these two criteria (5) and (6) can be made by rewriting

critid(m) = Pnγ(ŝm) + [Pγ(ŝm) − Pnγ(ŝm) ] ,

so that we introduce the ideal penalty

∀m ∈ Mn, penid(m) := Pγ(ŝm) − Pnγ(ŝm).

On the other hand following the CV strategy, we perform model selection by minimizing the Lpo risk
estimator over Mn. Thus for a given 1 ≤ p ≤ n− 1, the candidate m̂ satisfies

m̂ = Argminm∈Mn
R̂p(m).

The existence of a strong relationship between penalized criteria and CV is strongly supported by the
large amount of literature about the (asymptotic) comparison of these two aspects [38, 25, 41]. Therefore,
we try to embed the CV strategy into the wider scope of penalized criterion minimization:

m̂ = Argminm∈Mn

{
Pnγ(ŝm) +

[
R̂p(m) − Pnγ(ŝm)

]}
.

10



The quantity in square brackets is a random penalty that we call Lpo penalty:

∀m ∈ Mn, penp(m) := R̂p(m) − Pnγ(ŝm).

Note that a somewhat related approach, applied to Loo, can be found in Birgé and Massart [6].

Lpo overpenalization
Thanks to this parallel between CV and penalized criteria, we intend to get more insight in the behaviour
of CV techniques, for instance with respect to the parameter p. To this end, we pursue comparison
between penid and penp, so that we characterize some features in the behaviour of penp with respect to
p. This comparison is carried out through the expectations of these penalties, which are both random
variables.

The main concern of the following result is to assess the behaviour (in expectation) of the Lpo penalty
with respect to the ideal one. This question is addressed with general projection estimators.
We start with a preliminary lemma:

Lemma 2.2. With the same notations as before with any projection estimator ŝm onto Sm, we obtain

E [ penid(m) ] =
2

n

∑

λ∈Λ(m)

Var (ϕλ(X)) ,

E
[
penp(m)

]
=

2n− p

n(n− p)

∑

λ∈Λ(m)

Var (ϕλ(X)) .

We now state the main assertion about the Lpo penalty associated with projection estimators:

Proposition 2.3. For any m ∈ Mn, let {ϕλ}λ∈Λ(m) denote an orthonormal basis of Sm and ŝm, the
projection estimator onto Sm. Then, we get

∀m ∈ Mn, 1 ≤ p ≤ n− 1, E
[
penp(m) − penid(m)

]
=

p

n(n− p)

∑

λ∈Λ(m)

Var (ϕλ(X)) ≥ 0.

Since this quantity remains nonnegative whatever p, we conclude that the Lpo penalty always overpenal-
izes, which remains true for any orthonormal basis. Moreover, the amount of overpenalization increases
with p. Thus, the Loo provides the weakest overpenalization of order O

(
1/n2

)
, whereas the Lpo with

p ≃ n/2 (which is similar to the 2-fold CV) corresponds to an overpenalization of the same order as the
expectation of the ideal penalty, that is O (1/n).

3 Oracle inequalities

In the following, we assess the quality of the Lpo-based model selection procedure through the statement
of oracle inequalities. These results are settled in the polynomial complexity framework and hold for any
projection estimator. To our knowledge, it is the first non-asymptotic results about the performance of
the Lpo algorithm in this framework.
Remark: We point out that unlike the usual approach in model selection via penalization, our purpose is
not to design a penalty function since the Lpo estimator itself can be understood as a penalized criterion
(Section 2.4).

3.1 Preliminaries

Our main results rely on several assumptions that we now detail and discuss.
Set X ∼ s and for any index m,

φm =
∑

λ∈Λ(m)

ϕ2
λ and Vm = Eφm(X).

11



Then, we define the following assumptions

(Reg) ∃Φ > 0/ supm∈Mn
‖φm‖∞ ≤ Φ n/ (logn)

2
,

(Reg2) ∃Φ > 0/ supm∈Mn

{
sup(aλ)λ, |a|∞=1 ‖

∑
λ aλϕλ‖∞

}
≤
√

Φ n/ (logn)
2
,

(Ad) ∃ξ > 0/ ∀m ∈ Mn with Dm ≥ 2, nE

[
‖sm − ŝm‖2

2

]
≥ ξDm,

(Pol) ∃δ > 0/ ∀D ≥ 1, |{m ∈ Mn | Dm = D}| ≤ Dδ.

Since φm =
∑

λ∈Λ(m) ϕ
2
λ, ‖φm‖∞ may be understood as a regularity measure of the basis {ϕλ}λ∈Λ(m).

Thus, (Reg) relates the regularity of the considered basis to the amount of data. This assumption has
already been used by Castellan [16] for instance. Let us assume we use histogram estimators based on a
partition {I1, . . . , IDm

} of [0, 1] in Dm intervals, and that ϕλ = 1Iλ
/
√
|Iλ|, where |Iλ| is the length of Iλ.

Then, (Reg) gives a lower bound on the minimal length of any interval Iλ of the partition with respect
to the number of observations. In other words, we cannot consider partitions made of intervals with less
than n/(logn)2 observations.

(Reg2) is another regularity assumption about {ϕλ}λ∈Λ(m). In the specific case of a basis defined from

a partition of [0, 1] (like histograms or piecewise polynomials), (Reg) implies (Reg2) . However, this
does no longer hold with general bases of functions. Besides, the constant Φ is not necessarily the same
in both (Reg) and (Reg2) . However replacing one of them by the maximum value provides the same
constant, which is assumed in the following. A similar requirement to (Reg2) can be found in Massart [28].

Developing E ‖sm − ŝm‖2, we observe that

E ‖sm − ŝm‖2
=

∑

λ∈Λ(m)

E
[
ν2

n (ϕλ)
]
,

=
∑

λ∈Λ(m)

1

n
Var [ϕλ(X) ] .

For instance if we use histograms, Var [ϕλ(X) ] vanishes if and only if the support of s is included in
Iλ. (Ad) therefore requires that for any m, there are always “enough” informative basis vectors, if an
informative vector is a vector such that Var [ϕλ(X) ] 6= 0. With histograms, it means that we choose
bases with mainly more and more vectors where s 6= 0. For instance, (Ad) holds with histograms if
s ≥ ρ > 0 on [0, 1]. This assumption can also be found in [28].

A model collection is said to have a polynomial complexity if (Pol) holds. At most, the cardinality of the
set of models with dimension D is polynomial in D. Such an assumption is satisfied with nested models
for instance ([6]). It straightforwardly implies that Card (Mn) ≤ nδ+1.

3.2 Main results

In the present section, we provide two oracle inequalities, which warranty the ability of the Lpo-based
procedure to select an effective density estimator. The first result applies to bounded densities, while the
second one concerns the more general case of square integrable densities, at the price of an additional
assumption. In the following, we will provide several examples of widely used bases for which the latter
assumption is satisfied.

Bounded density

12



Theorem 3.1. Let s denote a bonded density on [0,1] and X1, . . . , Xn be n i.i.d. random variables drawn
from s. Set {ϕλ}λ∈Λn

a finite family of bounded functions on [0, 1] such that for any m ∈ Mn, Sm denotes
the vector space of dimension Dm, spanned by the orthonormal family {ϕλ}λ∈Λ(m). Let us assume that

(Reg) , (Reg2) , (Ad) and (Pol) hold.
For n ≥ 29, set 0 < ǫ < 1 such that

4ζ(ǫ)

1 + 3ζ(ǫ)
+

2

n
< 1 − 2

ζ(ǫ)(n − 1) − 2
< 1 , (7)

where ζ(ǫ) =
[
1 − (1 + ǫ)

−8
]
. Then for any 1 ≤ p ≤ n− 1 satisfying

(Ran)
4ζ(ǫ)

1 + 3ζ(ǫ)
+

2

n

1 + ζ(ǫ)

1 + 3ζ(ǫ)
+ α ≤ p

n
≤ 1 − 2

ζ(ǫ)(n − 1) − 2
− β

with 0 < α, β < 1, we have

E

[
‖s− ŝ m̂‖2

]
≤ Γ(ǫ, α, β) inf

m∈Mn

E

[
‖s− ŝm‖2

]
+
κ(ǫ, s,Φ, α, β, δ)

n
,

where Γ(ǫ, α, β) ≥ 1 is a constant (with respect to n) independent from s and κ(ǫ, s,Φ, α, β, δ) ≥ 0 is
another constant.

The proof of this result is deferred to Section 5.
Remarks:

• (Ran) is a sufficient condition for the oracle inequality to hold. In this assumption, α and β can be
chosen as small as we want, but cannot vanish.

• The existence of ǫ satisfying the inequality (7) stems from a technical lemma given in the proof of
Theorem 3.1.

• As it is made clear from the proof of the aforementioned technical lemma, the choice of ǫ is con-
strained. For instance, ǫ cannot be too much close to 0. This explains why the nonintuitive bounds
in (Ran) cannot be easily simplified. Furthermore, this enlightens that “small values” of p could be
excluded from the range of values described in (Ran) , to which the oracle inequality applies.

• The independence of Γ(ǫ, α, β) from s is essential in our framework since we have in mind the use of
this result to derive some adaptivity in the minimax sense properties.

Square-integrable density

The second result is derived following the same idea as the previous one, thanks to an additional mild
assumption on the considered bases. This requirement turns out to be non restrictive at all, since it is met
by a broad class of orthonormal bases.

Theorem 3.2. Let s denote a density in L2([0, 1]) and X1, . . . , Xn be n i.i.d. random variables drawn
from s. We set {ϕλ}λ∈Λn

a finite family of bounded functions on [0, 1] such that for any m ∈ Mn, Sm

denotes the vector space of dimension Dm, spanned by the orthonormal family {ϕλ}λ∈Λ(m). Let us assume

that (Reg) , (Reg2) , (Ad) and (Pol) hold, and moreover that

(Reg3) ∃Φ > 0/ ∀m ∈ Mn, ‖φm‖∞ ≤ ΦDm.

For n ≥ 29, set 0 < ǫ < 1 such that

4ζ(ǫ)

1 + 3ζ(ǫ)
+

2

n
< 1 − 2

ζ(ǫ)(n − 1) − 2
< 1 ,

where ζ(ǫ) =
[
1 − (1 + ǫ)−8

]
. Then for any 1 ≤ p ≤ n− 1 satisfying

(Ran)
4ζ(ǫ)

1 + 3ζ(ǫ)
+

2

n

1 + ζ(ǫ)

1 + 3ζ(ǫ)
+ α ≤ p

n
≤ 1 − 2

ζ(ǫ)(n − 1) − 2
− β
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with 0 < α, β < 1, we have

E

[
‖s− ŝ m̂‖2

]
≤ Γ(ǫ, α, β) inf

m∈Mn

E

[
‖s− ŝm‖2

]
+
κ(ǫ, s,Φ, α, β, δ)

n
,

where Γ(ǫ, α, β) ≥ 1 is a constant (with respect to n) independent from s and κ(ǫ, s,Φ, α, β, δ) ≥ 0 is
another constant.

For the sake of clarity, the proof is also deferred to Section 5. Moreover, it is very similar to that of
Theorem 3.1, so that we only detail the main differences along the proof.

Remark: Assumption (Reg3) is quite different from (Reg) . Whereas the latter relates the “regularity”
of any basis to the number of observations uniformly over Mn, (Reg3) rather controls ‖φm‖∞ for each
model with respect to its dimension. Every models with the same dimension must be somehow alike in
that their associated sup-norm ‖φm‖∞ remain upper bounded by ΦDm.
This assumption can be also found in Birgé and Massart [6].

Examples
We now illustrate the high level of generality of assumption (Reg3) thanks to several examples of
widespread functional bases to which (Reg3) applies.

• It is easy to check that (Reg3) applies to regular histograms with Φ = 1 (Section 4.3).

• A typical example of basis satisfying (Reg3) is the trigonometric basis. For an integer m, let Λ(m) =
{0, . . . , 2m} denote a set of indices where ϕ0 = 1[0,1], ϕλ(t) =

√
2 sin(2kπt) if λ = 2k − 1 and

ϕλ(t) =
√

2 cos(2kπt) if λ = 2k.
Then,

∀t ∈ [0, 1],
∑

λ∈Λ(m)

ϕ2
λ(t) = 1 + 2

m∑

k=1

(
cos2(2kπt) + sin2(2kπt)

)
,

= 2m+ 1.

Since Dm = 2m+ 1, it comes that ‖φm‖∞ = Dm and (Reg3) holds with Φ = 1.

• Barron et al. [3] (Lemma 7.13) proved that with piecewise polynomials on a regular partition of [0, 1]
with degree not larger than r on each element of this partition,

‖φm‖∞ ≤ (r + 1)(2r + 1)Dm.

The resulting constant Φ = (r + 1)(2r + 1) is subsequently independent from m.

• Haar basis: For any positive integer j, we introduce Λ(j) =
{
(j, k) | 0 ≤ k ≤ 2j − 1

}
. Furthermore,

set ϕ = 1[0,1/2) − 1[1/2,1] and for any λ = (j, k), let us define ϕj,k(t) = 2j/2ϕ
(
2jt− k + 1

)
on [0, 1].

For a positive integer m ∈ Mn, let us consider Sm as the linear space spanned by {ϕλ}λ∈∪j≤mΛ(j).

Then, it can be seen that
‖φm‖∞ = Dm

since for each j, there is only one 0 ≤ k ≤ 2j − 1, which contributes to the sum in φm.
For more general wavelet bases, an upper bound, uniform with respect to m, can be established [6].

4 Adaptivity

In this section, the idea is to apply theorems of Section 3 to derive several adaptivity results in the
minimax sense with respect to Hölder as well as Besov functional spaces.
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4.1 Adaptivity in the minimax sense

Let us assume that s belongs to a set of functions T (θ) indexed by a parameter θ ∈ Θ. Moreover, let us
define an estimator ŝ of s.
An estimator ŝ is said to be adaptive for θ if, without knowing θ, it “works as well as” any estimator
which would exploit this knowledge. In the present work, the effectiveness measure is the L2-risk and we
say that an estimator enjoys such an adaptivity property provided its risk is nearly the same (up to some
constants) as the minimax risk with respect to T (θ):

inf
ŝ

sup
s∈T (θ)

E

[
‖s− ŝ ‖2

]
≤ sup

s∈T (θ)

E

[
‖s− ŝ m̂‖2

]
≤ C inf

ŝ
sup

s∈T (θ)

E

[
‖s− ŝ ‖2

]
,

where the infimum is taken over all possible estimators.
Remark: Very often, C ≥ 1 depends on the unknown parameters θ, but neither from s nor from n.
Furthermore if this property holds for every parameters θ in a set Θ, then ŝ is said to be adaptive
in the minimax sense with respect to the family {T (θ)}θ∈Θ. We refer to Barron et al. [3] for a unified
presentation about various notions of adaptivity.

4.2 Description of the collections of models

Since such optimality results depend on the approximation properties of the models we use, we describe
three different model collections, each one being defined from a specific family of vectors {ϕλ}λ∈Λn

.

4.2.1 Piecewise constant functions (Pc)

For a given partition of [0, 1] in D regular intervals (Iλ)λ∈Λ(m) of length 1/D and m ∈ Mn, let us define
the model

Sm =




t | t =
∑

λ∈Λ(m)

aλϕλ, (αλ)λ ∈ R




 ,

where ϕλ = 1Iλ
/
√
|Iλ| and |Iλ| denotes the length of Iλ. Sm is the vector space of dimension Dm = D

spanned by the orthonormal family {ϕλ}λ∈Λ(m). It is made of all piecewise constant functions defined on

the partition I = (I1, . . . , IDm
).

Thus with each index m ∈ Mn, we associate the linear space Sm of piecewise constant functions defined
on a regular partition of [0, 1] in Dm intervals of length 1/Dm. Moreover, let Nn = maxm∈Mn

Dm be the
maximal dimension of a model belonging to the collection.

4.2.2 Piecewise dyadic polynomials (Pp)

Set Mn = {0, . . . , Jn} and for any m ∈ Mn, Sm denotes the linear space of functions

t =

2m−1∑

k=0

Pk 1[k2−m,(k+1)2−m),

where the Pks denote polynomials of degree less than r. The dimension of Sm is subsequently defined by

Dm = r 2m and Nn = max
m∈Mn

Dm = r 2Jn .

Remark: With this collection of models, (Pol) is satisfied since there is at most one model for each
dimension.
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4.2.3 Trigonometric polynomials (Tp)

Set Mn = {0, . . . , Jn}, where Jn is a positive integer. For any m ∈ Mn, let Λ(m) = {0, . . . , 2m} denote
a set of indices such that ϕ0(t) = 1[0,1], ϕλ(t) =

√
2 sin(2kπt) if λ = 2k − 1 and ϕλ(t) =

√
2 cos(2kπt) if

λ = 2k.
Then, the model Sm is the linear space spanned by {ϕλ}λ∈Λ(m), of dimension Dm = 2m+ 1. Any t ∈ Sm

can be expressed as

∀x ∈ [0, 1], t(x) = a0 +

m∑

k=1

[
ak

√
2 cos(2πkx) + bk

√
2 sin(2πkx)

]
,

the aks and bks belong to R.
Moreover, Jn and Nn are related by the following relationship Nn = 2Jn + 1.

4.3 Hölder functional space

Our purpose is to show that the Lpo-based approach enjoys some adaptivity when s belongs to an unknown
Hölder space H(L,α) for L > 0 and α ∈ (0, 1]. We recall that a function f : [0, 1] → R belongs to H(L,α)
with L > 0 and 0 < α ≤ 1 if

∀x, y ∈ [0, 1], |f(x) − f(y)| ≤ L |x− y|α .

We refer to De Vore and Lorentz [18] for an extensive study of a wide range of functional spaces.

In order to reach this goal, we approximate s by piecewise constant functions, using the model collection
(Pc) described in Section 4.2.1.
The histogram estimator built from model Sm is defined by

ŝm =
∑

λ∈Λ(m)

Pnϕλ ϕλ =
∑

λ∈Λ(m)

nλ

n

1Iλ

|Iλ|
,

where nλ = Card ({i | Xi ∈ Iλ}).

Since the adaptivity property results from the oracle inequalities in Section 3, we have to check the
different assumptions it relies on.

• With the collection (Pc), m 7→ Dm is a one-to-one mapping from Mn towards D = {Dm | m ∈ Mn},
which entails that (Pol) is satisfied since our collection is made of only one model for each dimension.

• Since ϕλ = 1Iλ
/
√
|Iλ|,

‖φm‖∞ =
∑

t∈[0,1]




∑

λ∈Λ(m)

ϕ2
λ(t)


 ,

= max
λ∈Λ(m)

1

|Iλ|
= Dm.

Thus, (Reg) amounts to require that

max
m

Dm = Nn ≤ Φn/ (logn)2 ,

which means that on average, there are at least about (logn)
2
/n points in each interval of any

partition we consider.

• We therefore assume that (Reg) , (Ad) and (Ran) hold.

16



As for the problem of density estimation on [0, 1] when s belongs to some Hölder space, it is known
since the early 80s, thanks o Ibragimov and Khas’minskij [23], that the minimax rate with respect to

H (L,α) for the quadratic risk is of order L
2

2α+1n− 2α
2α+1 , with any L > 0 and α > 0.

Remark: However when the problem is the estimation over R, things turn out to be very different.
For instance, the minimax rate now depends on the value of regularity parameter α with respect to the
parameter p of the Lp-norm used for the assessment [24].

The following result settles that, applied to the collection of models (Pc), the Lpo-based procedure
yields an adaptive in the minimax sense estimator of the density on [0, 1].

Theorem 4.1. Let us assume that (Reg) , (Ad) and (Ran) hold and that the collection of models is that
one denoted by (Pc). Furthermore, assume that the target density s ∈ H (L,α) for L > 0 and α ∈ (0, 1].
Then,

sup
s∈H(L,α)

E

[
‖s− ŝ m̂‖2

]
≤ Kα L

2
1+2α n− 2α

1+2α +O

(
1

n

)
, (8)

for a given constant Kα independent from n and s.

Since the minimax risk is of order L
2

2α+1n− 2α
2α+1 , we deduce from this result that ŝ m̂ is adaptive in the

minimax sense with respect to {H (L,α)}L>0,α∈(0,1].

Remark: As we will see in the proof, this result remains true with any polynomial collection of models sat-

isfying the requirements of Theorem 3.1, and including models with dimension of the order of L
1

1+2α n
1

1+2α .

Proof. The idea is simply to use Theorem 3.1 and to derive the upper bound from

E

[
‖s− ŝm‖2

]
= ‖s− sm‖2

+ E

[
‖sm − ŝm‖2

]
.

For the bias term, we have

‖s− sm‖2 =
∑

λ∈Λ(m)

1

|Iλ|2
∫

Iλ

(∫

Iλ

[ s(t) − s(x) ] dx

)2

dt,

≤
∑

λ∈Λ(m)

L2D2
m

∫

Iλ

(∫

Iλ

|t− x|α dx

)2

dt (s ∈ H (L,α)) ,

≤ Cα L
2D−2α

m (after integration) ,

where Cα = 4 (α+ 2)
[
(1 + α)

2
(2α+ 3)

]−1

.

On the other hand,

E

[
‖sm − ŝm‖2

]
=

Vm − ‖sm‖2

n
,

≤ Vm

n
,

≤ ‖φm‖∞
n

,

=
supx∈[0,1]

∑
λ∈Λ(m) ϕ

2
λ(x)

n
=

Dm

n
·

Hence under the same assumptions as Theorem 3.1, we get that there exists C ≥ 1 and κ > 0 such that

E

[
‖s− ŝ m̂‖2

]
≤ C

(
Cα inf

m∈Mn

{
L2D−2α

m +
Dm

n

})
+
κ

n
·
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Now, let us define the sequence {Dmn
}n such that for each n,

1

2
L

1
1+2α n

1
1+2α ≤ Dmn

≤ 2L
1

1+2α n
1

1+2α .

Then, we derive that it exists K ′
α > 0 such that

inf
m∈Mn

E

[
‖s− ŝm‖2

]
≤ Cα L

2D−2α
mn

+
Dmn

n
≤ K ′

α L
2

1+2α n− 2α
1+2α ,

hence the expected result.

4.4 Besov functional spaces

Like the previous one, the present section aims at deriving adaptivity in the minimax sense, except that
we essentially focus on Besov spaces (rather than Hölder ones). This goal is reached thanks to results of
Section 3 as well.

4.4.1 Overview of Besov spaces

We start by briefly recalling in what Besov spaces and balls consist in. We refer to the book by De Vore
and Lorentz [18] for an extensive presentation on this matter.

For α > 0 and 0 < p ≤ +∞, we say that a function f in Lp ([0, 1]) belongs to the Besov space
Bα
∞,p = Bα

∞ (Lp([0, 1])) if |f |Bα
∞,p

< +∞, where

|f |Bα
∞,p

:= sup
t>0

{
t−αωr (f, t)p

}
, r = [α] + 1,

with

ωr (f, t)p := sup
|h|≤t

‖∆r
h (f, ·) ‖p, and ∆r

h (f, x) :=

r∑

k=1

(
k

r

)
(−1)r−kf (x+ kh) .

| · |Bα
∞,p

defines a semi-norm, while the metric is provided by the following Besov norm

‖f‖Bα
∞,p

:= |f |Bα
∞,p

+ ‖f‖p.

Moreover for a given real R > 0, let us define the Besov ball of radius R by

Bα
∞,p(R) =

{
f ∈ Lp | ‖f‖Bα

∞,p
≤ R

}
.

As far as we are concerned in the sequel, we restrict ourselves to the particular case where p = 2, that is
Bα
∞,2 for α > 0.

4.4.2 Piecewise and trigonometric polynomials

A desirable property for an estimator of s is the minimaxity over a set of functions with a given
smoothness. Since the amount of smoothness is unknown in advance, an “ideal” estimator ŝ should be
designed so that it automatically adapts to the unknown smoothness.
The main interest of model selection procedures, for which an oracle inequality can be stated, lies in that
the final estimator ŝ m̂ enjoys the called adaptivity property in the minimax sense.
In the same way as in Section 4.3, our strategy consists in deriving adaptivity results from the oracle
inequalities of Section 3. We point out that adaptivity heavily relies on the involved model collection
through its approximation properties.
The following results therefore state adaptivity in the minimax sense for both (Pp) and (Tp) collections,
with respect to respectively different Besov spaces.

Let us start with adaptivity with respect to Besov balls Bα
∞,2(R) for 0 < α < r, where r denotes the

smallest integer larger than the degree of polynomials in (Pp).
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Theorem 4.2. Let us consider the collection of models (Pp) made of piecewise polynomials of degree less
than r and assume that (Reg) , (Reg3) , (Ad) and (Ran) hold.
Then for R > 0 and 0 < α < r,

sup
s∈Bα

∞,2(R)

E

[
‖s− ŝ m̂‖2

]
≤ CαR

2
1+2α n− 2α

1+2α +O

(
1

n

)
, (9)

where Cα denotes a given constant independent from n and s.

Proof. The proof follows the same strategy as that of Theorem 4.1 in that it essentially relies on
approximation properties of models in (Pp).

If Sm denotes a model of dyadic piecewise polynomials of degree less than r on each one of the 2m

regular dyadic intervals, the result in page 359 of DeVore and Lorentz [18] states that provided r > α,

inf
u∈Sm

‖s− u‖2 ≤ Kα,r|s|2Bα
∞,2

(Dm)
2α
,

for a positive constant Kα,r.
Since s ∈ Bα

∞,2(R), it comes

‖s− sm‖2 ≤ Kα,rR
2 (Dm)2α .

As for the variance term,

E

[
‖sm − ŝm‖2

]
≤ ‖φm‖∞

n
≤ ΦDm

n
(by (Reg3) ).

Under (Reg) , (Reg3) , (Ad) and (Ran) we apply Theorem 3.2 to derive

E

[
‖s− ŝ m̂‖2

]
≤ Γ

(
K ′

α,r inf
m∈Mn

{
R2D−2α

m +
Dm

n

})
+
κ

n
,

where K ′
α,r is a positive constant.

The conclusion results from the same calculation as in the proof of Theorem 4.1 with

1

2
R

1
1+2α n

1
1+2α ≤ Dmn

≤ 2R
1

1+2α n
1

1+2α .

Unlike the previous result, we now turn to Besov balls Bα
∞,2(R) for any value of α > 0, which is enabled

by the use of trigonometric polynomials in (Tp).

Theorem 4.3. Let us consider the collection (Tp) made of trigonometric polynomials and assume that
(Reg) , (Reg2) , (Reg3) , (Ad) and (Ran) hold.
Then for R > 0 and α > 0,

sup
s∈Bα

∞,2(R)

E

[
‖s− ŝ m̂‖2

]
≤ C′

αR
2

1+2α n− 2α
1+2α +O

(
1

n

)
, (10)

for a given constant C′
α independent from n and s.

Proof. The same scheme of proof is used, except we need for an approximation result applying to trigono-
metric polynomials, which is also provided in page 205 of the book by DeVore and Lorentz [18]. Indeed if
we consider models in collection (Tp) for any α > 0, we get

inf
u∈Sm

‖s− u‖2 ≤ Kα|s|2Bα
∞,2

(Dm)
2α
,

for a constant Kα > 0. Assumption (Reg3) enables to conclude as in the previous theorem.
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5 Proofs

5.1 Closed-form Lpo estimator

5.1.1 Proof of Lemma 2.1

The first remark is that for each e ∈ Ep, we have ∀t ∈ [0, 1],

ŝm(Xe
1,n)(t) =

1

n− p

∑

j∈e

∑

λ

ϕλ(Xj)ϕλ(t) =
1

n− p

n∑

j=1

∑

λ

ϕλ(Xj)ϕλ(t)1(j∈e),

∑

i∈e

ŝm(Xe
1,n)(Xi) =

1

n− p

n∑

i=1

∑

j∈e

∑

λ

ϕλ(Xj)ϕλ(Xi)1(i∈e) =
1

n− p

∑

i6=j

∑

λ

ϕλ(Xj)ϕλ(Xi)1(j∈e)1(i∈e).

Then, the Lemma follows from the following combinatorial results

Lemma 5.1. For any i 6= j 6= k ∈ {1, . . . , n},
∑

e∈Ep

1(j∈e) =

(
n− 1

p

)
and

∑

e∈Ep

1(j∈e)1(k∈e) =

(
n− 2

p− 1

)
,

∑

e∈Ep

1(i∈e)1(j∈e)1(k∈e) =

(
n− 3

p− 1

)
and

∑

e∈Ep

1(i∈e)1(j∈e) =

(
n− 2

p− 1

)
,

where we stress that the sum is made over the resamples i, j and k are kept fixed.

Proof.
∑

e∈Ep
1(j∈e) may be interpreted as the number of subsets of {1, . . . , n} of size p (denoted by e)

which do not contain j, since j ∈ e. Thus, it is the number of possible choices of p non ordered and
different elements among n− 1.
The other equalities follow from a similar argument.

5.2 Moments calculations

5.2.1 Proof of Proposition

2.2 The expectation is a straightforward consequence of (3).
The variance calculation is not difficult, but very technical. We only give the main step of this proof.
First, let us define Aλ =

∑n
j=1 ϕ

2
λ(Xj) and Bλ =

∑
j 6=k ϕλ(Xj)ϕλ(Xk). Set α = n− 1 and β = n− p+ 1,

such that
n(n− 1)(n− p)R̂p(m) =

∑

λ

(αAλ + βBλ) .

Then,

[
∑

λ

(αAλ + βBλ)

]2

=
∑

λ

(
α2A2

λ + β2B2
λ + 2αβAλBλ

)
+
∑

λ6=λ′

(
α2AλAλ′ + β2BλBλ′ + 2αβAλ Bλ′

)
.
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After some calculation, the different terms are respectively equal to

E

∑

λ

A2
λ =

∑

λ

[
nPϕ4

λ + t1
(
Pϕ2

λ

)2 ]
,

E

∑

λ

B2
λ =

∑

λ

[
4t2Pϕ

2
λ (Pϕλ)

2
+ 2t1

(
Pϕ2

λ

)2
+ t3 (Pϕλ)

4
]
,

E

∑

λ

AλBλ =
∑

λ

[
2t1Pϕ

3
λPϕλ + t2Pϕ

2
λ (Pϕλ)

2
]
,

E

∑

λ6=λ′

AλAλ′ = n


E

(
∑

λ

ϕ2
λ(X)

)2

−
∑

λ

Pϕ4
λ


+ t1



(
∑

λ

Pϕ2
λ

)2

−
∑

λ

(
Pϕ2

λ

)2

 ,

E

∑

λ6=λ′

BλBλ′ = 2t1
∑

λ6=λ′

(Pϕλϕλ′)2 + 4t2


E

(
∑

λ

ϕλ(X)Pϕλ

)2

−
∑

λ

Pϕ2
λ (Pϕλ)2


+

t3



(
∑

λ

(Pϕλ)
2

)2

−
∑

λ

(Pϕλ)
4


 ,

E

∑

λ6=λ′

AλBλ′ = 2t1
∑

λ6=λ′

Pϕ2
λϕλ′Pϕλ′ + t2

[
E

(
∑

λ

ϕ2
λ(X)

)
∑

λ′

(Pϕλ′)
2 − E

(
∑

λ

ϕ2
λ(X) (Pϕλ)

2

)]
.

On the other hand,

(
n(n− 1)(n− p)E

[
R̂p(m)

])2

= n2α2

(
∑

λ

Pϕ2
λ

)2

+ t21β
2

(
∑

λ

[Pϕλ ]
2

)2

+ 2nαβt1

(
∑

λ

Pϕ2
λ

)
∑

λ′

(Pϕλ′)
2
.

Combining these two expressions yields the variance after some simplifications.

5.2.2 Proof of Corollary 2.4

We have to compute Rn(m) for any model m.

Rn(m) := E

[
‖ŝm‖2

]
− 2E

[∫

[0,1]

sŝm

]
,

=
∑

λ

E (Pnϕλ)2 − 2
∑

λ

(Pϕλ)2 ,

=
1

n

∑

λ

Var (ϕλ(X)) −
∑

λ

(Pϕλ)2 .

5.3 Theorem 3.1

5.3.1 Outline of the strategy

Let us first describe the outlines of our strategy. We start with the definition of ŝ m̂ as the minimizer of the
Lpo risk estimator, which leads to an inequality (11) written so as we stress the discrepancy between the
Lpo estimator and its expectation, for each model in the collection. Then, we show that this discrepancy
can be studied on a set of high probability (Lemma 5.4) rather than on the whole space . The gap between
the Lpo risk and its expectation is evaluated through the use of two concentration inequalities: Bernstein’s
and a version of Talagrand’s inequality (Proposition 5.1 and Proposition 5.2). By recombination of these
different results, we derive the main inequality which holds except on a set of small probability (16). The
conclusion results from the following lemma:

Lemma 5.2. Let X and Y be two random variables such that ∀z > 0, P (X ≥ Y +K1z +K2) ≤ Σe−z,
where K1, K2, Σ > 0. Then, we have

EX ≤ EY +K1 Σ +K2.
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Proof. Set Z = X − Y −K2. We have

P (Z ≥ K1z) ≤ Σe−z.

Then,

EZ ≤ E

[ ∫ +∞

0

1(t≤Z) dt

]
,

=

∫ +∞

0

E
[1(t≤Z)

]
dt,

=

∫ +∞

0

P [ t ≤ Z ] dt,

≤ K1

∫ +∞

0

Σe−z dz = K1Σ.

5.3.2 Preliminaries

Notations First of all, let us define a few notations that will be useful in the sequel.
For any p ∈ {1, . . . , n− 1} the Lpo risk estimator associated with the estimator ŝm is denoted by R̂p(m).
For the sake of clarity, we define

∀m, Lp(m) = ER̂p(m),

such that Lp(m̂) := E

[
R̂p(m)

]

|m=m̂
. For each m, {ϕλ}λ∈Λ(m) denotes an orthonormal basis of Sm.

Moreover, we set

φm =
∑

λ∈Λ(m)

ϕ2
λ and Vm = E [φm(X) ] ,

sm =
∑

λ∈Λ(m)

βλϕλ and βλ = Pϕλ,

ŝm =
∑

λ∈Λ(m)

β̂λϕλ and β̂λ = Pnϕλ,

χ2(m) = ‖sm − ŝm‖2
=
∑

λ

ν2
n (ϕλ) ,

Em = E
[
χ2(m)

]
and θn,p =

2n− p

(n− 1)(n− p)
·

Remark: χ2(m) is not a true χ2 statistic, but is only somewhat similar to it.

We also stress two elementary but useful properties. For any a, b ≥ 0,

(Roo)
√
a+ b ≤ √

a+
√
b,

(Squ) 2ab ≤ ηa2 + η−1b2, ∀η > 0.

Intermediate results The first intermediate result deals with the relationship between R̂p and its
expectation for each model.

Lemma 5.3. For any m ∈ Mn,

Lp(m) − Lp(m̂) =
n

n− p
[Em − Em̂ ] −

(
‖s− sm̂‖2 − ‖s− sm‖2

)
,

R̂p(m) − Lp(m) = θn,p νn(φm) − (1 + θn,p)
[
χ2(m) − Em

]
− 2(1 + θn,p)νn(sm).
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In Lemma 5.3, we see that νn (φm) appears in the expressions. The following Proposition enables to
upper bound the deviation of this quantity. It is a consequence of Bernstein’s inequality [28].

Proposition 5.1. With the above notations, let z > 0 and C > 0 be any positive constants and for each
m, let us define ym = z + C nEm. Then, we have

∀m ∈ Mn, P

[
|νn (φm)| ≥

√
2Vm

‖φm‖∞
n

ym +
‖φm‖∞
n

ym

]
≤ 2e−ym .

Moreover if (Ad) holds, we have

P

[
∃m ∈ Mn | |νn (φm)| ≥

√
2Vm

‖φm‖∞
n

ym +
‖φm‖∞
n

ym

]
≤ Σ1e

−z,

where Σ1 is a positive constant independent from n.

We now recall that χ2(m) =
∑

λ ν
2
n (ϕλ). A handy way to study this χ2-like statistic is to introduce an

event of large probability on which we are able to get some control. That is the reason why we introduce
the event Ωn (ǫ) for any ǫ > 0.

Ωn(ǫ) =

{
∀m ∈ Mn, ∀λ ∈ Λ(m), |νn (ϕλ)| ≤ 2ǫ ‖s‖∞ logn

κ(ǫ)
√

Φn

}
,

where κ(t) = 2(t−1 + 1/3).
Another use of Bernstein’s inequality provides the following Lemma.

Lemma 5.4. Set ǫ > 0 and assume that (Reg) , (Reg2) and (Pol) hold. Then,

∀α > 0, P [ Ωc
n(ǫ) ] ≤ 2n2+δ e−

‖s‖∞η(ǫ)

Φ (log n)2 ,

where η(t) = 2ǫ2

κ(t)(κ(t)+2t/3) ·

This Lemma turns out to be useful in order to assess the concentration of χ2(m) around its expectation.
This result may be found in Massart [28] and is a consequence of Talagrand’s inequality.

Proposition 5.2. Set ǫ > 0 and for any C′, z > 0, xm = z+C′ nEm. Let us assume that (Reg) , (Reg2)
and (Pol) are fulfilled. Then,

∀m ∈ Mn, P

[√
nχ(m)1Ωn(ǫ) ≥ (1 + ǫ)

(√
nEm +

√
2 ‖s‖∞ xm

)]
≤ e−xm .

Furthermore if (Ad) holds,

P

[
∃m ∈ Mn |

√
nχ(m)1Ωn(ǫ) ≥ (1 + ǫ)

(√
nEm +

√
2 ‖s‖∞ xm

)]
≤ Σ2 e

−z,

where Σ2 > 0 denotes a positive constant independent from n.

Finally, in Lemma 5.3, it remains νn(sm) for which nothing has already been made. The control of
this quantity comes from an upper bound, which results from the following lemma.

Lemma 5.5. Set m, m′ ∈ Mn. Then for any ρ > 0,

sup
t∈Sm+Sm′

ν2
n

(
t

‖t‖

)
≤ (1 + ρ)χ2(m) + (1 + ρ−1)χ2(m′).
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5.3.3 Proof of Theorem 3.1

Proof. (Theorem 3.1)
We are now in position to give the main inequality from which we derive Theorem 3.1.
From the definition of m̂ as m̂ = Argminm∈Mn

R̂p(m), we deduce that

∀m ∈ Mn, R̂p(m̂) ≤ R̂p(m),

which implies

[
R̂p(m̂) − Lp(m̂)

]
≤
[
R̂p(m) − Lp(m)

]
+ [Lp(m) − Lp(m̂) ] . (11)

Then, we apply Lemma 5.3 to (11) and get

‖s− sm̂‖2
+ nθn,pEm̂ − (1 + θn,p)χ

2(m̂) ≤ ‖s− sm‖2
+ nθn,pEm − (1 + θn,p)χ

2(m) +

θn,pνn (φm − φm̂) + 2(1 + θn,p)νn (sm̂ − sm) . (12)

Remarks:

• An upper bound for νn (φm − φm̂) may be obtained through Bernstein’s inequality, so that we may
relate νn (φm̂) to Em̂. This is reached thanks to Proposition 5.1.

• Ideally in the oracle inequality we have in mind, the left-hand side of the final inequality is something

like E

[
‖s− ŝ m̂‖2

]
, which is equal to E

[
‖s− sm̂‖2

]
+ E

[
χ2(m̂)

]
with the present notations.

However in (12), we observe that the left-hand side is E

[
‖s− sm̂‖2

]
+ E [Em̂ ]. In order to relate

E [Em̂ ] to E
[
χ2(m̂)

]
, we will uniformly control the discrepancy Em − χ2(m) over Mn thanks to

both Lemma 5.4 and Proposition 5.2.

• Finally, νn (sm̂ − sm) may be upper bounded thanks to Lemma 5.5, independently from Em̂ and will
therefore be dealt with later.

According to the preceding remarks, we first apply Proposition 5.1 to νn (φm − φm̂). The successive
use of (Reg) , (Squ) with any η > 0, and (Roo) provides

√
2Vm

‖φm‖∞
n

ym ≤
√

2VmΦym,

≤ ηΦVm + η−1ym.

Moreover, note that

Vm =
∑

λ

E
[
ϕ2

λ(X)
]

= nEm + ‖sm‖2 ≤ nEm + ‖s‖2
.

Hence with ym = z + C nEm,

√
2Vm

‖φm‖∞
n

ym ≤
[
ηΦ + η−1C

]
nEm + ηΦ ‖s‖2

+ η−1z.

Similarly, (Reg) entails that

‖φm‖∞
3n

ym ≤ ΦC

3
nEm +

Φ

3
z,

which leads us to

|νn (φm − φm̂)| ≤ nEm

[
ηΦ + Cη−1 + Φ

C

3

]
+ nEm̂

[
ηΦ + Cη−1 + Φ

C

3

]
+ 2z

[
Φ

3
+ η−1

]
+

2ηΦ ‖s‖2
,
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except on an event of probability less than Σ1e
−z.

Set ǫ′′ > 0 and let us choose η = ǫ′′/(3Φ) and C = 2ǫ′′/
(
η−1 + Φ/3

)
. Then it comes that

|νn (φm − φm̂)| ≤ nEmǫ
′′ + nEm̂ǫ

′′ + 2zΦ

[
1

3
+

3

ǫ′′

]
+ 2

ǫ′′

3
‖s‖2

,

Plugging this into (12) provides

‖s− sm̂‖2 + nθn,p(1 − ǫ′′)Em̂ − (1 + θn,p)χ
2(m̂) ≤ ‖s− sm‖2 + nθn,p(1 + ǫ′′)Em − (1 + θn,p)χ

2(m) +

2(1 + θn,p)νn (sm̂ − sm) + θn,p

(
2zΦ

[
1

3
+

3

ǫ′′

]
+ 2

ǫ′′

3
‖s‖2

)
, (13)

except on an event of probability less than Σ1e
−z.

On the other hand, Proposition 5.2 implies that for a given ǫ > 0, except on a set of probability less
than Σ2e

−z, we have

∀m ∈ Mn,
√
nχ(m)1Ωn(ǫ) ≤ (1 + ǫ)

(√
nEm +

√
2 ‖s‖∞ xm

)
.

Using xm = z + C′nEm and (Roo) , we get

√
nχ(m)1Ωn(ǫ) ≤ (1 + ǫ)

(√
nEm

[
1 +

√
2 ‖s‖∞C′

]
+
√

2 ‖s‖∞ z

)
,

which in turn, combined with (Squ) , implies for any x > 0

χ2(m)1Ωn(ǫ) ≤ (1 + ǫ)2

(
(1 + x)Em

[
1 +

√
2 ‖s‖∞C′

]2
+ (1 + x−1)

2 ‖s‖∞
n

z

)
. (14)

It holds for the particular choices x = ǫ and C′ =
(
1 −

√
1 + ǫ

)2
/ (2 ‖s‖∞), which results in

1 − ǫ′′

(1 + ǫ)4
χ2(m̂)1Ωn(ǫ) ≤ (1 − ǫ′′)Em̂ +

1 − ǫ′′

ǫ(1 + ǫ)

2 ‖s‖∞
n

z.

with probability larger than 1 − Σ2e
−z.

From the above result and (13), it comes that on Ωn(ǫ), with probability larger than 1 − (Σ1 + Σ2) e
−z,

we have

‖s− sm̂‖2
+

(
nθn,p

1 − ǫ′′

(1 + ǫ)4
− (1 + θn,p)

)
χ2(m̂) ≤ ‖s− sm‖2

+ nθn,p(1 + ǫ′′)Em − (1 + θn,p)χ
2(m) +

2(1 + θn,p)νn (sm̂ − sm) +

θn,pz

(
1 − ǫ′′

ǫ(1 + ǫ)
2 ‖s‖∞ + 2Φ

[
1

3
+

3

ǫ′′

])
+

2θn,p
ǫ′′

3
‖s‖2

.

Now for any ǫ > 0, we define ǫ′ > 0 such that
√

1 − ǫ′ = (1 + ǫ)
−4

and let us take ǫ′′ satisfying 1 − ǫ′′ =√
1 − ǫ′. Then, the above inequality becomes

‖s− sm̂‖2
+ [nθn,p (1 − ǫ′) − (1 + θn,p) ]χ2(m̂) ≤ ‖s− sm‖2

+ nθn,p

[
2 −

√
1 − ǫ′

]
Em − (1 + θn,p)χ

2(m) +

2(1 + θn,p)νn (sm̂ − sm) +

θn,pz

(√
1 − ǫ′

ǫ(1 + ǫ)
2 ‖s‖∞ + 2Φ

[
1

3
+

3

1 −
√

1 − ǫ′

])
+

2θn,p
1 −

√
1 − ǫ′

3
‖s‖2

. (15)
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The following point consists in deriving an upper bound for νn (sm̂ − sm). It results from the following
inequalities and Lemma 5.5. Indeed, we have

2νn (sm̂ − sm) ≤ 2νn

(
sm̂ − sm

‖sm̂ − sm‖

)
‖sm̂ − sm‖ ,

≤ 2 sup
t∈Sm̂+Sm

νn

(
t

‖t‖

)
‖sm̂ − sm‖ .

Moreover, ‖sm̂ − sm‖ ≤ ‖sm̂ − s‖ + ‖s− sm‖ and a double use of (Squ) give for any x > 0:

2νn (sm̂ − sm) ≤ (1 + x) sup
t∈Sm̂+Sm

ν2
n

(
t

‖t‖

)
+

2

2 + x
‖sm̂ − s‖2 +

2

x
‖sm − s‖2 .

Finally, Lemma 5.5 yields that for any ρ > 0, we have

2νn (sm̂ − sm) ≤ (1 + x)
[
(1 + ρ)χ2(m̂) + (1 + ρ−1)χ2(m)

]
+

2

2 + x
‖sm̂ − s‖2

+
2

x
‖sm − s‖2

.

With x = ǫ′ and ρ = ǫ′(1 + ǫ′)−1, we get

2νn (sm̂ − sm) ≤ (1 + 2ǫ′)χ2(m̂) + (1 + ǫ′)
1 + 2ǫ′

ǫ′
χ2(m) +

2

2 + ǫ′
‖sm̂ − s‖2

+
2

ǫ′
‖sm − s‖2

.

Plugging this in (15) yields:
On the event Ωn(ǫ), with probability larger than 1 − (Σ1 + Σ2) e

−z, we have for any m ∈ Mn

[
ǫ′ − 2θn,p

2 + ǫ′

]
‖s− sm̂‖2

+ [nθn,p (1 − ǫ′) − 2(1 + θn,p)(1 + ǫ′) ]χ2(m̂) ≤
[

1 +
2

ǫ′
(1 + θn,p)

]
‖s− sm‖2

+

nθn,p

[
2 −

√
1 − ǫ′

]
Em+

[
1 + 2ǫ′ + 2ǫ′2

ǫ′

]
(1 + θn,p)χ

2(m)+

θn,p(Az +B),
(16)

where A =
(√

1−ǫ′

ǫ(1+ǫ)2 ‖s‖∞ + 2Φ
[

1
3 + 3

1−
√

1−ǫ′

])
and B = 2 1−

√
1−ǫ′

3 ‖s‖2
.

Then, Lemma 5.2 allows us to take the expectation and get the following result.

(ψ1 ∧ ψ2) E

[1Ωn(ǫ) ‖s− ŝ m̂‖2
]
≤ (ψ3 ∨ ψ4) E

[
‖s− ŝm‖2

]
+ θn,p [A (Σ1 + Σ2) +B ] , (17)

where

ψ1 =
ǫ′ − 2θn,p

2 + ǫ′

ψ2 = nθn,p (1 − ǫ′) − 2(1 + θn,p)(1 + ǫ′)

ψ3 = 1 +
2

ǫ′
(1 + θn,p)

ψ4 = nθn,p

[
2 −

√
1 − ǫ′

]
+ (1 + θn,p)

[
1 + 2ǫ′ + 2ǫ′2

ǫ′

]
.

In order to obtain a meaningful inequality, a necessary requirement is ψ1, ψ2, ψ3, ψ4 ≥ 0. This is already
satisfied for ψ3 and ψ4. We have only to check it for both ψ1 and ψ2.
It turns out that if ǫ′ > 2/(n− 1), then p must satisfy

4ǫ′

1 + 3ǫ′
+

2

n

1 + ǫ′

1 + 3ǫ′
≤ p

n
≤ 1 − 2

ǫ′(n− 1) − 2
, (18)
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provided
4ǫ′

1 + 3ǫ′
+

2

n

1 + ǫ′

1 + 3ǫ′
≤ 1 − 2

ǫ′(n− 1) − 2
,

which is established by Lemma 5.6 for n ≥ 29.
Remark: In (18) since 0 < ǫ′ ≤ 1 by definition, we have 4ǫ′

1+3ǫ′ ≤ 1.

Finally to assert the existence if the constant Γ in Theorem 3.1, we need to make sure that the ratio
(ψ3 ∨ ψ4) / (ψ1 ∧ ψ2) is bounded.
It may be easily checked that all ψks may be reshaped as

ψk =
F (p, n)

1 − p/n
,

where F is a bounded quantity. Moreover by construction, the bounds in (18) lead to ψ1 = 0 and ψ2 = 0,
which should be prohibited since we would like to consider the ratio (ψ3 ∨ ψ4) / (ψ1 ∨ ψ2). That is the
reason why p/n must be slightly larger (resp. lower) than each one of the above bounds, hence (Ran) .
Furthermore since no bound depend on s, (Ran) gives the required constant Γ. A similar reasoning shows
that it exists a constant κ > 0 depending on s and the constants of the problem but independent from n,
such that

θn,p

ψ1 ∧ ψ2
≤ κ

n
,

which yields

E

[1Ωn(ǫ) ‖s− ŝ m̂‖2
]
≤ Γ(ǫ, α, β) inf

m∈Mn

E

[
‖s− ŝm‖2

]
+
κ(ǫ, s,Φ, α, β, δ)

n
·

We now simply add the missing term E

[1Ωn(ǫ)c ‖s− ŝ m̂‖2
]

to both sides of the above inequality. It only

remains to show that this term is of the right order:

E

[1Ωc
n(ǫ) ‖s− ŝ m̂‖2

]
≤ E

[1Ωc
n(ǫ) ‖s− sm̂‖2

]
+ E

[1Ωc
n(ǫ) ‖sm̂ − ŝ m̂‖2

]
,

≤ ‖s‖2
P [ Ωc

n(ǫ) ] + E

[1Ωc
n(ǫ)

∑

λ∈m̂

[
νn(ϕλ)2

]
]
.

Lemma 5.4 then enables to deduce that the first term in the right-hand side inequality satisfies

∀n, ‖s‖2
P [ Ωc

n(ǫ) ] ≤ ‖s‖2 n0

n
,

for an appropriate choice of n0 > 0, depending on ǫ, δ and Φ.
For the second one, Jensen’s inequality yields

E

[
∑

λ∈m̂

ν2
n (ϕλ)1Ωc

n(ǫ)

]
≤ E

[
∑

λ∈m̂

(ϕλ(X) − Pϕλ)2 1Ωc
n(ǫ)

]
.

Moreover, (Squ) with any η > 0 provides

(ϕλ(X) − Pϕλ)
2 ≤ (1 + η)ϕ2

λ(X) + (1 + η−1)Pϕ2
λ.

Finally,
∑

λ∈Λ(m) ϕ
2
λ = φm and Pφm̂ ≤ ‖φm̂‖∞ lead to

E

[
∑

λ∈m̂

ν2
n (ϕλ)1Ωc

n(ǫ)

]
≤
(
2 + η + η−1

)
E
[
‖φm̂‖∞ 1Ωc

n(ǫ)

]
≤
(
2 + η + η−1

) Φn

(logn)2
P [ Ωc

n(ǫ) ]

thanks to (Reg) , and Lemma 5.4 enables to conclude.
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5.3.4 Proof of Proposition 5.1

Proof. Bernstein’s inequality [28] states

∀x > 0, P

[
|νn (φm)| ≥ 1

n

√
2v x+

b

3n
x

]
≤ e−x,

with b ≥ |φm(Xi) − Eφm(Xi)| and v =
∑n

i=1 Var [φm(Xi) ].
Since Xi are i.i.d. and φm ≥ 0, we have

b = ‖φm‖∞ and v ≤ nVm ‖φm‖∞ ,

hence the first part of the proposition.
For the second part of the result, a union bound provides

P

[
∃m ∈ Mn | |νn (φm)| ≥

√
2Vm

‖φm‖∞
n

ym +
‖φm‖∞
n

ym

]

≤
∑

m∈Mn

P

[
|νn (φm)| ≥

√
2Vm

‖φm‖∞
n

ym +
‖φm‖∞
n

ym

]
,

≤
∑

m∈Mn

e−ym ,

≤ e−z
∑

m∈Mn

e−C nEm (ym = z + C nEm),

≤ e−z
∑

m∈Mn

e−CξDm , (Ad)

≤ e−z
∑

D≥1

e−CξD+δ log(D), (Pol),

≤ Σ1 e
−z.

5.3.5 Proof of Lemma 5.4

Proof. We recall that

Ωn(ǫ) =

{
∀m ∈ Mn, ∀λ ∈ Λ(m), |νn (ϕλ)| ≤ 2ǫ ‖s‖∞ logn

κ(ǫ)
√

Φn

}
.

Then, we deduce that

P [ Ωc
n(ǫ) ] = P

[{
∃m ∈ Mn, ∃λ ∈ Λ(m) | |νn (ϕλ)| ≥ 2ǫ ‖s‖∞ logn

κ(ǫ)
√

Φn

}]
,

≤
∑

m∈Mn

∑

λ∈Λ(m)

P

[{
|νn (ϕλ)| ≥ 2ǫ ‖s‖∞ logn

κ(ǫ)
√

Φn

}]
,

≤
∑

m∈Mn

Dm e−
‖s‖∞η(ǫ)

Φ (log n)2 , (Bernstein)

≤
∑

D≥1

Dδ+1e−
‖s‖∞η(ǫ)

Φ (log n)2 , (Pol)

≤ nδ+2e−
‖s‖∞η(ǫ)

Φ (log n)2 , (D ≤ n)

where η(t) = 2ǫ2

κ(t)(κ(t)+2t/3) ·
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5.3.6 Proof of Proposition 5.2

Proof. First, we notice that χ(m) =
√
χ2(m) may be also expressed as

χ(m) = sup
a/
∑

λ∈Λ(m) α2
λ
=1

∣∣∣∣∣∣
νn




∑

λ∈Λ(m)

aλϕλ




∣∣∣∣∣∣
≥ sup

a∈A

∣∣∣∣∣∣
νn




∑

λ∈Λ(m)

aλϕλ




∣∣∣∣∣∣
,

where A is dense subset of



a = (a1, . . . , aDm
) ∈ R

Dm |
∑

λ∈Λ(m)

α2
λ = 1 and

∑

λ∈Λ(m)

|αλ| ≤
t

z




 .

Moreover, if we define the event

Ω =

{
sup

λ∈Λ(m)

νn (ϕλ) ≤ t

}

for t > 0, then we deduce that

χ(m) ≤ sup
a∈A

∣∣∣∣∣∣
νn




∑

λ∈Λ(m)

aλϕλ





∣∣∣∣∣∣
(19)

on Ω ∩ {χ(m) ≥ z}.
Then, Talagrand’s inequality to supa∈A

∣∣∣νn

(∑
λ∈Λ(m) aλϕλ

)∣∣∣ gives for ǫ > 0

∀x > 0, P



1Ω sup
a∈A

∣∣∣∣∣∣
νn




∑

λ∈Λ(m)

aλϕλ





∣∣∣∣∣∣
≥ (1 + ǫ)

(
√
χ2(m) +

√
2 ‖s‖∞
n

x

)

 ≤ e−x,

with z =
√

2 ‖s‖∞ /n and t = 2ǫ ‖s‖∞
[
κ(ǫ)Φn/(logn)2

]−1
.

Finally, the first result comes from both (19) and Ωn(ǫ) = Ω.

As for the second inequality,

P

[
∃m ∈ Mn |

√
nχ(m)1Ωn(ǫ) ≥ (1 + ǫ)

(√
nEm +

√
2 ‖s‖∞ xm

)]

≤
∑

m∈Mn

e−xm ,

≤ e−z
∑

m∈Mn

e−C′ nEm , (xm = C′ξ Dm + z)

≤ e−z
∑

D≥1

e−C′ ξD+δ log D, (Ad) and (Pol)

≤ Σ2 e
−z.

5.3.7 Proof of Lemma 5.6

Lemma 5.6. For n ≥ 29, there exists 0 < ǫ < 1 such that

ζ(ǫ) >
2

n− 1
and

4ζ(ǫ)

1 + 3ζ(ǫ)
+

2

n
< 1 − 2

ζ(ǫ)(n− 1) − 2
,

where ζ(ǫ) =
[
1 − (1 + ǫ)

−8
]
.
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Proof. The first part is obvious since for a given n, we can choose 0 < ǫ < 1 such that ζ(ǫ) > 2/(n− 1).
Then with δ = ζ(ǫ) − 2/(n− 1), we have

δ(n− 1) = ζ(ǫ)(n − 1) − 2.

After some calculations, it is easy to see that

4ζ(ǫ)

1 + 3ζ(ǫ)
+

2

n
< 1 − 2

ζ(ǫ)(n− 1) − 2
,

⇔ δ2
n+ 6

n
− δ

n− 10

n
+

2n+ 10

(n− 1)
2 < 0,

which is a polynomial of degree 2 in δ.
For n ≥ 29, the discriminant is positive and any δ between the two distinct zeros yields a value for ζ(ǫ)
such that

4ζ(ǫ)

1 + 3ζ(ǫ)
+

2

n
< 1 − 2

ζ(ǫ)(n − 1) − 2
,

which enables to conclude.

5.4 Theorem 3.2

5.4.1 Intermediate results

The proof of Theorem 3.2 follows the same structure as that of Theorem 3.1. We subsequently focus on
the main differences, which essentially occur in the control of the χ2-type statistic. Since they are nearly
the same, the following results are given (without or) with only short proofs.

We start introducing another event of large probability on which we are able to get the desired control.
For any ǫ > 0,

Ωn(ǫ) =

{
∀m ∈ Mn, ∀λ ∈ Λ(m), |νn (ϕλ)| ≤ 2ǫ‖s‖2

√
Φ/ξ nEm logn

κ(ǫ)
√

Φn

}
,

where κ(t) = 2(t−1 + 1/3).

The following lemma is the counterpart of Lemma 5.4 and is devoted to control the remainder terms.
It heavily relies on Bernstein’s inequality.

Lemma 5.7. Set ǫ > 0 and assume that (Reg) , (Reg2) , (Reg3) (Ad) and (Pol) hold. Then,

∀α > 0, P [ Ωc
n(ǫ) ] ≤ 2n2+δ e

−η(ǫ)√
Φ

(‖s‖∨1)(log n)2
,

where η(t) = 2ǫ2

κ(t)(κ(t)+2t/3) ·

Now, we are in position to give the main result providing the desired control on the χ2-type statistic.

Proposition 5.3. Set ǫ > 0 and for any C′, z > 0, xm = z + C′ √nEm. Assume that (Reg) , (Reg2) ,
(Reg3) , (Ad) and (Pol) are fulfilled. Then,

∀m ∈ Mn, P

[√
nχ(m)1Ωn(ǫ) ≥ (1 + ǫ)

(√
nEm +

√
2(‖s‖ ∨ 1)

√
Φ/ξ nEm xm

)]
≤ e−xm ,

and furthermore,

P

[
∃m ∈ Mn |

√
nχ(m)1Ωn(ǫ) ≥ (1 + ǫ)

(√
nEm +

√
2(‖s‖ ∨ 1)

√
Φ/ξ nEm xm

)]
≤ Σ2 e

−z,

where Σ2 > 0 denotes a positive constant independent from n.
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Proof. (sketch of proof) It relies on Talagrand’s inequality as well as of the following straightforward upper
bound.

∀m, sup
t∈Sm, ‖t‖2=1

Var [ t(X) ] ≤ ‖s‖ ‖t‖2

√
‖φm‖∞ = ‖s‖

√
‖φm‖∞ ≤ (‖s‖ ∨ 1)

√
‖φm‖∞.

5.4.2 Outline of the proof of Theorem 3.2

The first main difference in the proof comes from the use of Proposition 14, which yields

√
nχ(m)1Ωn(ǫ) ≥ (1 + ǫ)

(√
nEm +

√
2(‖s‖ ∨ 1)

√
Φ/ξ nEm xm

)

on an event of high probability.
From several applications of (Squ) and (Roo) , we obtain

∀ρ, C′ > 0,

√
2(‖s‖ ∨ 1)

√
Φ/ξ nEm xm ≤

√
2(‖s‖ ∨ 1)

√
Φ/ξ

√
nEm z +

√
2(‖s‖ ∨ 1)

√
Φ/ξC′nEm ,

≤ ρ
√
nEm + ρ−1(‖s‖ ∨ 1)

√
Φ/ξ z + C

√
nEm,

≤ (ρ+ C)
√
nEm + ρ−1(‖s‖ ∨ 1)

√
Φ/ξ z,

with C′ = C
[
2(‖s‖ ∨ 1)

√
Φ/ξ

]−1

.

Thus in the same way as (14), we derive

∀x > 0, χ2(m)1Ωn(ǫ) ≤ (1 + ǫ)2


(1 + x)Em [ 1 + (ρ+ C) ]2 + (1 + x−1)

(
ρ−1(‖s‖ ∨ 1)

√
Φ/ξ

)2

n
z2


 .

The following remains essentially the same.

The last point of the proof concerns the addition of the missing term E

[1Ωn(ǫ)c ‖s− ŝ m̂‖2
]

to both

sides of the inequality. We still have

E

[1Ωc
n(ǫ) ‖s− ŝ m̂‖2

]
≤ ‖s‖2

P [ Ωc
n(ǫ) ] + E

[1Ωc
n(ǫ) ‖sm̂ − ŝ m̂‖2

]
,

and Lemma 5.4 gives that

∀n, ‖s‖2
P [ Ωc

n(ǫ) ] + E
[∑

λ∈m̂ ν2
n (ϕλ)1Ωc

n(ǫ)

]
≤
(
‖s‖2

+ 1
)

n0

n ,

for an appropriate choice of n0 > 0, which depends on δ, Φ and ǫ.
This summarizes the main steps and concludes the proof.
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