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Abstract: The performance of cross-validation (CV) is analyzed in two contexts: (i) risk estima-
tion and (ii) model selection in the density estimation framework. The main focus is given to one
CV algorithm called leave-p-out (Lpo), where p denotes the cardinality of the test set. Closed-form
expressions are settled for the Lpo estimator of the risk of projection estimators, which makes
V-fold cross-validation completely useless.

From a theoretical point of view, these closed-form expressions enable to study the Lpo perfor-
mances in terms of risk estimation. For instance, the optimality of leave-one-out (Loo), that is Lpo
with p = 1, is proved among CV procedures. Two model selection frameworks are also considered:
estimation, as opposed to identification.

Unlike risk estimation, Loo is proved to be suboptimal as a model selection procedure. In the
estimation framework with finite sample size n, optimality is achieved for p large enough (with
p/n = o(1)) to balance overfitting. A link is also identified between the optimal p and the structure
of the model collection. These theoretical results are strongly supported by simulation experiments.
When performing identification, model consistency is also proved for Lpo with p/n → 1 as n → +∞.

AMS 2000 subject classifications: Primary 62G09; secondary 62G07, 62E17.
Keywords and phrases: Cross-validation, leave-p-out, resampling, risk estimation, model selec-
tion, density estimation, oracle inequality, projection estimators, concentration inequalities.

1. Introduction

1.1. Model selection

For estimating a target quantity denoted by s, let {Sm}m∈M denote a collection of sets of candidate
parameters and M denote a set of index. From each Sm called a model, an estimator ŝm of s is computed.
The goal of model selection is to design a criterion crit : M → R

+ such that minimizing crit(·) over
M provides a final estimator ŝ m̂ that is “optimal”. Among various strategies of model selection, model
selection via penalization has been introduced in the seminal papers by Mallows (1973); Akaike (1973);
Schwarz (1978) on respectively AIC, Cp, and BIC criteria. However since AIC and BIC are derived from
asymptotic arguments, their performances crucially depend on model collection and sample size (see
Baraud et al., 2009).

More recently Birgé and Massart (1997, 2001, 2006) have developed a non-asymptotic approach inspired
from the pioneering work of Barron and Cover (1991). It relies on concentration inequalities (Talagrand,
1996; Ledoux, 2001) and aims at deriving oracle inequalities such as

ℓ (s, ŝ m̂) ≤ C inf
m∈M

{ℓ (s, ŝm)}+ rn

with probability larger than 1− c/n2, where c > 0 is a constant, ℓ(s, t) is a measure of the gap between
parameters s and t, rn is a remainder term with respect to infm ℓ (s, ŝm), and C ≥ 1 denotes a constant
independent of s. The closer C to 1 and the smaller rn, the better the model selection procedure. If
C = Cn → 1 and rn → 0 as n → +∞, the model selection procedure is said asymptotically optimal (or
efficient) (see Arlot and Celisse, 2010, for instance). Note that other asymptotic optimality properties

1

imsart-generic ver. 2009/02/27 file: cvhistoAOS_HAL.tex date: April 2, 2012
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have been studied in the literature. For instance, a model selection procedure satisfying

P [ m̂ = m0 ] −−−−−→
n→+∞

1 ,

where m0 denotes a fixed given model is said model consistent (see Shao, 1997, for a study of various
model selection procedures in terms of model consistency).

In the density estimation framework, model selection with deterministic penalties has been developed:
(i) for Kullback-Leibler divergence and histograms by Barron et al. (1999); Castellan (1999, 2003) and
further studied in Birgé and Rozenholc (2006), and (ii) for quadratic risk and projection estimators by
Birgé and Massart (1997) and Barron et al. (1999).

1.2. Cross-validation

The aforementioned approaches rely on some deterministic penalties such as AIC or BIC. These penalties
are derived in some specific settings (for instance Birgé and Massart, 2006, assume a Gaussian noise ),
which makes their performances setting dependent.

Conversely, cross-validation (CV) is a resampling procedure based on a universal heuristics which
makes it applicable in a wide range of settings. CV algorithms have been first studied in a regression
context by Stone (1974, 1977) for the leave-one-out (Loo) and Geisser (1974, 1975) for the V -fold cross-
validation (VFCV), and in the density estimation framework by Rudemo (1982); Stone (1984). Since
these algorithms can be computationally demanding or even intractable, Rudemo (1982); Bowman (1984)
derived closed-form formulas for the Loo estimator of the risk of histograms or kernel estimators. These
results have been recently extended to the leave-p-out cross-validation (Lpo) by Celisse and Robin (2008).

Although CV algorithms are extensively used in practice, only few theoretical results exist on their
performances, most of them being of asymptotic nature. For instance in the regression framework, Burman
(1989, 1990) proves Loo is asymptotically the best CV algorithm in terms of risk estimation. Several papers
are dedicated to show the equivalence between some CV algorithms and penalized criteria in terms of
asymptotic optimality properties: (i) efficiency in Li (1987); Zhang (1993), and (ii) model consistency
in Shao (1993); Yang (2007). We refer interested readers to Shao (1997) for an extensive review about
asymptotic optimality properties in terms of efficiency and model consistency of some penalized criteria
as well as CV algorithms.

As for non-asymptotic results in the density framework, Birgé and Massart (1997) have settled an
oracle inequality that relies on a conjecture and may be applied to Loo. However to the best of our
knowledge, no result of this type has already been proved for Lpo in the density estimation framework.
Recently in the regression setting, Arlot (2007) established oracle inequalities for V -fold penalties, while
Arlot and Celisse (2011) have carried out an extensive simulation study in the change-point detection
problem with heteroscedastic observations.

1.3. Main contributions

In the present paper, we derive closed-form expressions for the Lpo risk estimator of the broad class of
projection estimators (Section 2). Such closed-form expressions make V -FCV completely useless since it
is more variable and computationally demanding than Lpo (Section 2.3). They also enable to study the
theoretical performance of CV in two respects: (i) for risk estimation (Section 2.4), and (ii) for model
selection (Section 3). For instance, it is proved that Loo is the best CV algorithm for risk estimation
(Theorem 2.1), while it is suboptimal for model selection (Corollary 3.1 and Theorem 3.3).

Moreover, two aspects of model selection via CV have been explored. In Section 3.1, the estimation
point of view is described where it is shown that Lpo is optimal as long as p/n = o(1) and p is large enough
to balance the influence of the model collection structure. All these new theoretical results are supported
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by simulation experiments detailed in Section 3.1.4. Conversely, identification is studied in Section 3.2,
where the optimal performance is obtained for p/n −−−−−→

n→+∞
1, which is consistent with previous results

settled in the regression framework for instance by Shao (1993). However, our result is more precise since
we were able to localize the optimal rate of convergence of 1 − p/n toward 0 between 1/n and 1/

√
n as

n tends to +∞. Finally, proofs and technical lemmas have been collected in Appendix A.

2. Cross-validation and risk estimation

2.1. Statistical framework

2.1.1. Notation

Throughout the paper, X1, . . . , Xn ∈ [0, 1] are independent and identically distributed (i.i.d. ) random
variables drawn from a probability distribution P of density s ∈ L2([0, 1]) with respect to Lebesgue’s
measure on [0, 1], and X1,n = (X1, . . . , Xn).

Let S∗ denote the set of mesurable functions on [0, 1]. The distance between s and any u ∈ S∗ is
measured thanks to the quadratic loss denoted by

ℓ : (s, u) 7→ ℓ (s, u ) := ‖s− u‖2 =

∫

[0,1]

[ s(t)− u(t) ]
2
dt .

It is related to the contrast function

γ : (u, x) 7→ γ(u;x) := ‖u‖2 − 2u(x) , with ℓ (s, u ) = Pγ(u)− Pγ(s) (1)

where Pγ(u) = P (γ(u; ·)) and Pf := E [ f (X1) ] for every f ∈ S∗. The performance of every estimator
ŝ = ŝ (X1, . . . , Xn) of s is assessed thanks to the quadratic risk

Rn( ŝ ) := E [ ℓ (s, ŝ ) ] = E

[
‖s− ŝ ‖2

]
.

Estimating Pγ(u) is made through the empirical contrast defined by

Pnγ(u) :=
1

n

n∑

i=1

γ (u;Xi) , where Pn = 1/n

n∑

i=1

δXi

denotes the empirical measure and Pnf := 1/n
∑n

i=1 f(Xi) for every f ∈ S∗.
Let us further introduce Mn a countable set of indices and for every m ∈ Mn, Sm denote a set of

functions, called model, used to estimate s. To each Sm, an estimator ŝm corresponds that is defined as
the empirical contrast minimizer

ŝm := Argminu∈Sm
Pnγ(u) . (2)

It results a collection {ŝm}m∈Mn
of estimators of s depending on the choice of models Sms. Instances of

such models and estimators are described in Section 2.1.2.

2.1.2. Projection estimators

Let Λn be a set of countable indices and {ϕλ}λ∈Λn
a family of vectors in L2([0, 1]) such that for every

m ∈ Mn, {ϕλ}λ∈Λ(m) denotes an orthonormal family of L2([0, 1]) with Λ(m) ⊂ Λn. For every m ∈ Mn,
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Sm denotes the linear space spanned by {ϕλ}λ∈Λ(m), Dm = dim (Sm), and sm is the orthogonal projection
of s onto Sm

sm := Argminu∈Sm
Pγ(u) =

∑

λ∈Λ(m)

Pϕλ ϕλ, with Pϕλ = E [ϕλ(X) ] .

Definition 2.1. An estimator ŝ ∈ L2([0, 1]) is a projection estimator if there exists a family {ϕλ}λ∈Λ

of orthonormal vectors of L2([0, 1]) such that

ŝ =
∑

λ∈Λ

αλ ϕλ, with αλ =
1

n

n∑

i=1

Hλ(Xi),

where {Hλ(·)}λ∈Λ depends on the family {ϕλ}λ∈Λ.

As a consequence, it is straightforward to check that the empirical contrast minimizer defined by
Eq. (2) over Sm = Span (ϕλ, λ ∈ Λ(m)) is a projection estimator since

ŝm =
∑

λ∈Λ(m)

Pnϕλ ϕλ , with Pnϕλ =
1

n

n∑

i=1

ϕλ(Xi) . (3)

Here are a few examples of projection estimators (see DeVore and Lorentz, 1993):

• Histograms : For every m ∈ Mn, let {Iλ}λ∈Λ(m) be a partition of [0, 1] in Dm = Card(Λ(m))

intervals. Set ϕλ = 1Iλ/
√
|Iλ| for every λ ∈ Λ(m), with |Iλ| the Lebesgue measure of Iλ, and

1Iλ(x) = 1 if x ∈ Iλ and 0 otherwise. Then,

ŝm =
∑

λ∈Λ(m)

Pn1Iλ

1Iλ

|Iλ|
· (4)

• Trigonometric polynomials : For every λ ∈ Z, let ϕλ : t 7→ ϕλ(t) = e2πiλt. Then for any finite
Λ(m) ⊂ Z,

ŝm(t) =
∑

λ∈Λ(m)

Pnϕλ e2πiλt, ∀t ∈ [0, 1] (5)

is a trigonometric polynomial.
• Wavelet basis : Let {ϕλ}λ∈Λn

be an orthonormal basis of L2([0, 1]) made of compact supported

wavelets, where Λn =
{
(j, k) | j ∈ N

∗ and 1 ≤ k ≤ 2j
}
. Then for every subset Λ(m) of Λn,

ŝm =
∑

λ∈Λ(m)

Pnϕλ ϕλ . (6)

Some of these estimators can take negative values for finite sample size. The same phenomenon arises
with kernel estimators (Tsybakov, 2003). A possible solution to avoid negative values is truncating and
normalizing the preliminary projection estimator

s̃m = ŝm1ŝm≥0

(∫

[0,1]

1ŝm≥0(t)ŝm(t) dt

)−1

.

Note that if s(x0) > 0 at a given x0 ∈ [0, 1] and ŝm(x)
P−−−−−→

n→+∞
s(x) for every x ∈ [0, 1], then ŝm(x0) ≥ 0

for large enough values of n.
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2.2. Leave-p-out cross-validation

In the literature, several cross-validation (CV) algorithms have been successively introduced to overcome
the defects of already existing ones. The purpose of the present section is to briefly describe the main CV
algorithms that will be used throughout the paper with some emphasis to computational aspects.

2.2.1. Cross-validation

For every 1 ≤ p ≤ n − 1, let us define Ep = {e ⊂ {1, . . . , n} , Card(e) = p} and for any such e ∈ Ep,
set Xe = {Xi, i ∈ e} (test set) and X(e) = {Xi, i ∈ {1, . . . , n} \ e} (training set). Let also P e

n :=

1/p
∑

i∈e δXi
and P

(e)
n := 1/(n− p)

∑
i∈(e) δXi

denote the empirical measures defined respectively from

the test set Xe and the training set X(e).

Hold-out Simple validation also called Hold-out has been introduced at the early 30s (Larson, 1931).
For every 1 ≤ p ≤ n−1, it consists in randomly splitting observations into a training set X(e) of cardinality
n−p and a test set Xe of cardinality p. Random data splitting is only made once and introduces additional
variability. For every e ∈ Ep (randomly chosen), the hold-out estimator of Rn( ŝ ) is

R̂Ho,p( ŝ ) := P e
n γ
(
ŝ (X(e))

)
=

1

p

∑

i∈e

γ
(
ŝ (X(e));Xi

)
. (7)

Hold-out has been studied for instance by Bartlett et al. (2002); Blanchard and Massart (2006) in clas-
sification and by Lugosi and Nobel (1999); Wegkamp (2003) in regression.

Leave-p-out Unlike Eq. (7) where a single split e of the data is randomly chosen, which introduces
additional unwanted variability, leave-p-out (Lpo) considers all the

(
n
p

)
= Card (Ep) splits. The Lpo

estimator of Rn( ŝ ) is defined by

R̂p( ŝ ) =

(
n

p

)−1 ∑

e∈Ep

P e
n γ
(
ŝ (X(e))

)
. (8)

For instance, it has been studied by Shao (1993), Zhang (1993), and Arlot and Celisse (2011) in the
regression framework. With p = 1, Lpo reduces to the celebrated leave-one-out (Loo) cross-validation
introduced by Mosteller and Tukey (1968) and further studied by Stone (1974). Note that computing
the Lpo estimator requires a computational complexity of order

(
n
p

)
times that of computing ŝ , which

quickly becomes intractable as n grows.

V -fold cross-validation To overcome the high computational burden of Lpo (Eq. (8)), Geisser (1974,
1975) introduced the V-fold cross-validation (V-FCV). Instead of considering all the

(
n
p

)
possible splits,

one (randomly or not) chooses a partition of X1, . . . , Xn into V subsets Xe1 , . . . , XeV of approximately
equal size p = n/V = Card(ei), i = 1, . . . , V . Every Xei , i = 1, . . . , V is successively used as a test set
leading to the V-fold risk estimator of Rn( ŝ )

R̂V−FCV( ŝ ) =
1

V

V∑

v=1

P ev
n γ

(
ŝ (X(ev))

)
. (9)

V-FCV has been studied in the regression framework by Burman (1989, 1990) who suggests a correction
to remove its bias.
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2.2.2. Lpo versus V-FCV

As explained in Section 2.2.1, the Lpo computational complexity is roughly
(
n
p

)
times that of computing

ŝ , which can be highly time-consuming. Unlike Lpo (and even Loo when p = 1), V-FCV involves only V
such computations, which is less demanding as long as V ≪ n. Note that usual values for V are 3, 5, and
10 (except V = n where V-FCV and Loo coincide).

However, V-FCV relies on a preliminary (possibly random) partitioning of X1, . . . , Xn into V subsets.
Unlike Lpo where an exhaustive splitting is performed, this preliminary partitioning induces some addi-
tional variability, which could be misleading. For instance, Celisse and Robin (2008) have theoretically
quantified the amount of additional variability induced by V-FCV with respect to Lpo.

On the one hand, Lpo can be seen as a ”gold standard” among CV algorithms since it relies on
exhaustive splitting and does not introduce any additional variability. On the other hand, V-FCV appears
as an approximation to the ”ideal Lpo” that cannot be achieved due to a prohibitive computational cost.
Note that other approximations to Lpo have been proposed such as the repeated learning-testing cross-
validation (Breiman et al., 1984; Burman, 1989; Zhang, 1993).

2.3. Closed-form expressions for the Lpo risk estimator

In Section 2.2.2 it is claimed that as long as Lpo cannot be computed V-FCV is preferable. Closed-
form formulas for the Lpo estimator are proved in the present section, which makes Lpo fully effective
in practice and always better than V-FCV. Besides, closed-form formulas also enable a more accurate
theoretical analysis of CV algorithms both in terms of risk estimation (Section 2.4) and model selection
(Section 3).

With the notation introduced at the beginning of Section 2.2.1, let us consider projection estimators ŝm
defined by Eq. (3). Closed-form formulas for the Lpo risk estimator are derived exploiting the “linearity”
of projection estimators. Sums over Ep (which cannot be computed in general) then reduce to binomial
coefficients. Recalling the expression of the contrast γ(· ; ·) (Eq. (1)), one has to compute both quadratic
and linear terms.

Lemma 2.1. For every m ∈ Mn, let ŝm = ŝm(X1,n) denote a projection estimator defined by Eq. (3)
and set Xe = {Xi, i ∈ e} for every e ∈ Ep. Then for every p ∈ {1, . . . , n− 1},

∑

e∈Ep

∥∥∥ŝm(X(e))
∥∥∥
2

=
1

(n− p)2

∑

λ∈Λ(m)



(
n− 1

p

) n∑

k=1

ϕ2
λ(Xk) +

(
n− 2

p

)∑

k 6=ℓ

ϕλ(Xk)ϕλ(Xℓ)


 ,

∑

e∈Ep

∑

i∈e

ŝ (X(e))(Xi) =
1

n− p

∑

λ∈Λ(m)

(
n− 2

p− 1

)∑

i6=j

ϕλ(Xi)ϕλ(Xj) .

Proof of Lemma 2.1. For every e ∈ Ep, and t ∈ [0, 1],

ŝm(X(e))(t) =
∑

λ

(P (e)
n ϕλ)ϕλ(t) =

1

n− p

n∑

j=1

∑

λ

ϕλ(Xj)ϕλ(t)1(j∈(e)) ,

which implies

∑

i∈e

ŝm(X(e))(Xi) =
1

n− p

∑

i6=j

∑

λ

ϕλ(Xj)ϕλ(Xi)1(j∈(e))1(i∈e) .
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It remains to sum over e ∈ Ep, which is made thanks to Lemma A.1.

Lemma 2.1 enables to derive closed-form formulas for the Lpo risk estimator, which makes Lpo algo-
rithm fully efficient in practice.

Proposition 2.1. For every m ∈ Mn, let ŝm = ŝm(X1,n) denote a projection estimator defined by
Eq. (3). Then for every p ∈ {1, . . . , n− 1},

R̂p(m) = R̂p(ŝm) =
1

n(n− p)

∑

λ∈Λ(m)




n∑

j=1

ϕ2
λ(Xj)−

n− p+ 1

n− 1

∑

j 6=k

ϕλ(Xj)ϕλ(Xk)


 . (10)

Proposition 2.1 enjoys a great interest. First it applies to the broad family of projection estimators.
Second, it allows to reduce the computation time from an exponential to a linear complexity since com-
puting (10) is of order O (n). Note that in the more specific setting of histograms and kernel estimators,
such closed-form formulas have been derived by Celisse and Robin (2008).

Proof of Proposition 2.1. From definitions of the contrast (Eq. (1)) and the Lpo estimator Eq. (8), it
comes

R̂p(m) =

(
n

p

)−1 ∑

e∈Ep

∥∥∥ŝm(X
(e)
1,n)
∥∥∥
2

− 2

p

(
n

p

)−1 ∑

e∈Ep

∑

i∈e

ŝm(X
(e)
1,n)(Xi) .

Then, Lemma 2.1 provides the expected conclusion.

Let us now specify the Lpo estimator expressions for the three examples of projection estimators in
Section 2.1.2.

1.

Corollary 2.1 (Histograms). For ŝm given by Eq. (4) and for p ∈ {1, . . . , n− 1},

R̂p(m) =
1

(n− 1)(n− p)

Dm∑

λ=1

1

|Iλ|

[
(2n− p)

nλ

n
− n(n− p+ 1)

(nλ

n

)2 ]
,

where nλ = Card ({i |Xi ∈ Iλ}).
2.

Corollary 2.2 (Trigonometric polynomials). For every k ∈ N, let ϕλ denote either t 7→ cos(2πkt),
if λ = 2k or t 7→ sin(2πkt), if λ = 2k + 1. Let us further assume Λ(m) = {0, . . . , 2K} for K ∈ N

∗.
Then for every p ∈ {1, . . . , n− 1},

R̂p(m) = α(n, p)− β(n, p)
K∑

k=0








n∑

j=1

cos(2πkXj)





2

+





n∑

j=1

sin(2πkXj)





2

 ,

where α(n, p) = (p− 2)(K + 1) [ (n− 1)(n− p) ]−1 and β(n, p) = (n− p+ 1) [n(n− 1)(n− p) ]−1.
3.
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Corollary 2.3 (Haar basis). Let us define ϕ : t 7→ 1[0,1] and ϕj,k(t) = 2j/2ϕ(2j ·−k), where j ∈ N

and 0 ≤ k ≤ 2j −1, and assume Λ(m) ⊂
{
(j, k) | j ∈ N, 0 ≤ k ≤ 2j − 1

}
for every m ∈ Mn. Then,

R̂p(m) =
1

(n− 1)(n− p)

∑

(j,k)∈Λ(m)

2j
[
(2n− p)

nj,k

n
− n(n− p+ 1)

(nj,k

n

)2 ]
,

where nj,k = Card
({

i | Xi ∈ [k/2j, (k + 1)/2j]
})

.

2.4. Risk estimation: Leave-one-out optimality

From the general closed-form formula given by Eq. (10), one derives closed-form expressions for the
expectation and variance of the Lpo risk as well. These expressions will be useful to analyze the theoretical
behavior of CV in terms of risk estimation and model selection (see Section 3). In the present section for
instance, they are used to prove the optimality of Loo for estimating the risk of any projection estimator
(Theorem 2.1).

Proposition 2.2. For every m ∈ Mn, let ŝm = ŝm(X1,n) denote a projection estimator defined by
Eq. (3). Then for every 1 ≤ p ≤ n− 1,

E

[
R̂p(m)

]
=

1

n− p

∑

λ∈Λ(m)

[
Eϕ2

λ(X)− (Eϕλ(X))2
]
−

∑

λ∈Λ(m)

(Eϕλ(X))2 ,

and

Var
[
R̂p(m)

]
=

1

(n− 1)2

[
an +

bn
(n− p)

+
cn

(n− p)2

]
, (11)

where an = Var
[∑

λ∈Λ(m)

(
n(Pnϕλ)

2 − Pnϕ
2
λ

) ]
, cn = Var

[
n
∑

λ∈Λ(m)

(
Pnϕ

2
λ − (Pnϕλ)

2
) ]

, and bn =

−2 Cov
[∑

λ∈Λ(m)

(
n(Pnϕλ)

2 − Pnϕ
2
λ

)
,
∑

λ∈Λ(m) n
(
Pnϕ

2
λ − (Pnϕλ)

2
) ]

.

The proof is a straightforward application of Proposition 2.1 and has been omitted. Note that the
above quantities do exist as long as P |ϕλ|3 < +∞ for any λ ∈ Λ(m), which holds true if s is bounded

for instance and
∫
|ϕλ|3 < +∞ (ϕλ continuous and compact supported for instance). In the variance

expression, an, bn, and cn do not depend on p. Then knowing the behavior of the variance with respect
to p only depends on the magnitude of an, bn, and cn, which is clarified by Corollary 2.5.

Let us first focus on the bias B

[
R̂p(m)

]
:= ER̂p(m)−E

[
‖ŝm‖2 − 2

∫
[0,1] s ŝm

]
of the Lpo estimator.

Corollary 2.4 (Bias). For every m ∈ Mn, let ŝm = ŝm(X1,n) denote a projection estimator defined by
Eq. (3). Then for every m ∈ Mn and 1 ≤ p ≤ n− 1,

B

[
R̂p(m)

]
=

p

n(n− p)

∑

λ∈Λ(m)

Var [ϕλ(X1) ] ≥ 0 .

The bias is nonnegative and increases with p, which means Loo (p = 1) has the smallest bias among

CV algorithms. Besides if p = pn satisfies pn/n −−−−−→
n→+∞

q ∈ [0, 1), then B

[
R̂p(m)

]
−−−−−→
n→+∞

0. Thus, Loo

is asymptotically unbiased.
Let us now describe the behavior of the variance with respect to p.
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Corollary 2.5 (Variance). With the same notation as Proposition 2.2, for every m ∈ Mn and 1 ≤ p ≤
n− 1,

Var
[
R̂p(m)

]
=

n

(n− 1)2

[
A+

B

n− p
+

C

(n− p)2
+O

(
1

n

)]
,

where

A = 4Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]
≥ 0 ,

B = 8Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]
− 4Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]
,

C = 4Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]
− 4Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]

+Var

[
∑

λ

ϕ2
λ(X1)

]
≥ 0 .

In the more specific case of histogram and kernel density estimators, Celisse and Robin (2008) derived
a similar (non asymptotic) result for the variance. Note that the monotonicity of the variance with respect
to p depends on the sign of B since x 7→ f(x) = Ax2 + Bx+ C has for derivative x 7→ f ′(x) = 2Ax+B
and A ≥ 0. However in full generality, the sign of B is unknown.

Proof of Corollary 2.5. Combining Proposition 2.2, Lemmas A.2 and A.3, and Proposition A.1, it comes

an = 4nβ +O(1) ,

bn = 8nβ − 4nγ +O(1) ,

cn = 4nβ − 4nγ + nδ +O(1) ,

where β = Cov [
∑

λ ϕλ(X1)ϕλ(X2),
∑

λ ϕλ(X1)ϕλ(X3) ], γ = Cov
[∑

λ ϕ
2
λ(X1),

∑
λ ϕλ(X1)ϕλ(X3)

]
,

and δ = Var
[∑

λ ϕ
2
λ(X1)

]
. This provides the expected conclusion with A = 4β, B = 8β − 4γ, and

C = 4β − 4γ + δ.

The purpose of the following proposition is to describe the monotonicity of the variance depending on
the sign of B

Proposition 2.3. Let us define p0,n = Argmin1≤p≤n−1Var
[
R̂p(m)

]
in Eq. (11). Then,

p0,n = n+

(
1− Cov

[∑
λ ϕ

2
λ(X1),

∑
λ ϕλ(X1)ϕλ(X3)

]

2Cov [
∑

λ ϕλ(X1)ϕλ(X2),
∑

λ ϕλ(X1)ϕλ(X3) ]

)
(1 + o(1)) .

Furthermore,

1. if

2Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]
≥ Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]
, (12)

p ∈ {1, . . . , n− 1} 7→ Var
[
R̂p(m)

]
is increasing.
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2. Otherwise, p 7→ Var
[
R̂p(m)

]
is decreasing on [1, p0,n] and increasing on [p0,n, n− 1].

Eq. (12) is related to the sign of B in Corollary 2.5 and to the minimum location value p0,n. In
particular if it holds true, then p0,n 6∈ {2, . . . , n− 1}, which means Loo has the smallest variance among
CV algorithms.

Theorem 2.1. For every m ∈ Mn, let us define the mean-square error (MSE) of ŝm by MSE(m; p) =(
B

[
R̂p(m)

])2
+Var

[
R̂p(m)

]
, for every p ∈ {1, . . . , n− 1}.

1. If (12) holds true, then for every m ∈ Mn, p 7→ MSE(m; p) is minimum for p = 1.
2. Otherwise, for every p = pn ∈ {1, . . . , n− 1} such that pn/n −−−−−→

n→+∞
q ∈ [0, 1), then

MSE(m; p) =
A

n
+O

(
1

n2

)
, as n → +∞ .

If (12) holds true, Loo is the best CV algorithm in terms of MSE when estimating the risk of an
estimator. Otherwise as long as pn/n 6→ 1 as n → +∞, choosing a value of p 6= 1 is useless since any
value in {1, . . . , n− 1} asymptotically leads to the same performance in terms of MSE. But since Loo
has a minimum bias (Corollary 2.4), one concludes Loo is optimal among CV algorithms for estimating
the risk of an estimator. This result confirms what has been previously stated by Burman (1989) in the
regression framework.

3. Optimal cross-validation for model selection

In Section 2.4, the optimality of Loo among CV algorithms has been proved in the context of risk
estimation. However, the best possible algorithm for risk estimation is not necessarily the best one for
model selection. For instance, empirical contrast minimization (2) is used to design an estimator ŝm ∈
Sm. But using empirical contrast minimization to choose one m̂ ∈ Mn (without penalizing) would
systematically lead to overfitting. The purpose of the present section is to study the performance of CV
for model selection with respect to the cardinality p of the test set.

In model selection, two (contradictory) purposes can be pursued: Estimation and Identification (see
Shao, 1997; Yang, 2005, for an extensive presentation). With the Estimation point of view, one focuses
on minimizing the risk over a collection of models without assuming the targeted s belongs to one of
them. Conversely in Identification, one assumes s belongs to at least one model of the collection and the
goal is to recover the smallest model containing s.

3.1. Optimal cross-validation for Estimation

Model selection by CV pursuing Estimation is our main concern here. First, the performance of CV with
respect to p is characterized through a sharp oracle inequality (Theorem 3.1) where constants are related
to the difficulty of the estimation problem. In particular, a leading constant converging to 1 as n → +∞
is achieved for given values of p. Second, Loo is theoretically shown to be suboptimal for model selection
(Corollary 3.1), which is also empirically supported by simulation experiments (Section 3.1.4).

3.1.1. Estimation point of view

With the notation of Section 2.1, let us consider a family of projection estimators {ŝm}m∈Mn
, where Mn

denotes an (at most countable) index set allowed to depend on n. The best possible model, called the
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oracle model, is denoted by Sm∗ , where

m∗ := Argminm∈Mn
Pγ(ŝm)− Pγ(s) = Argminm∈Mn

‖s− ŝm‖2

= Argminm∈Mn
Pγ(ŝm) .

Since Pγ(ŝm) has to be estimated, one uses CV (Lpo) to choose a candidate model. So for every 1 ≤ p ≤
n− 1,

m̂(p) := Argminm∈Mn
R̂p(m) , (13)

and the final candidate model is denoted by Sm̂(p). The purpose is now to study the properties of ŝ m̂(p)

with respect to p ∈ {1, . . . , n− 1} in terms of an oracle inequality, that is an inequality such that an
event of large probability exists on which

‖s− ŝ m̂‖2 ≤ Cn inf
m∈Mn

{
‖s− ŝm‖2

}
+ rn , (14)

where ŝ m̂ is the final estimator provided by the considered model selection procedure, the constant
Cn ≥ 1 does not depend on s, and rn is a remainder term. When Cn −−−−−→

n→+∞
1 on an event of probability

larger than 1−K/n2 (for some K > 0), the model selection procedure is said efficient (Arlot and Celisse,
2010).

3.1.2. Main oracle inequality

Let us first introduce some notation and detail the main assumptions used along the following sections.

Square-integrable density:

s ∈ L2([0, 1]) . (SqI)

Unlike Castellan (2003) for instance, it is not assumed that s ≥ ρ for a constant ρ > 0.

Polynomial collection: There exists aM ≥ 0 such that

Card(Mn) ≤ naM . (Pol)

In particular, this holds true if there exists α ≥ 0 such that Card ({m ∈ Mn, Dm = D}) ≤ Dα, for every
1 ≤ D ≤ n.

Model regularity:

∃Φ > 0, sup
m∈Mn

‖φm‖∞
Dm

≤ Φ , with φm =
∑

λ∈Λ(m)

ϕ2
λ . (RegD)

It relates the regularity of the orthonormal basis (measured in terms of sup-norm) to the dimension of the
model. For instance using (4), (RegD) requires |Iλ| ≥ (ΦDm)−1 for every λ ∈ Λ(m). Thus, the length of
intervals Iλ cannot be too different from one another.

Maximal dimension:
∃Γ > 0, sup

m∈Mn

Dm ≤ Γ
n

(logn)2
. (Dmax)

In the sequel, we always use Γ = 1 to simplify the notation. Note that proofs and conclusions are not
changed by this particular choice.
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Estimation error and dimension:

∃ξ > 0, inf
m∈Mn

√
nE (‖sm − ŝm‖)√

Dm

≥
√
ξ . (LoEx)

This assumption makes the estimation error E
(
‖sm − ŝm‖2

)
and Dm comparable. For instance, (LoEx)

is fulfilled if s ≥ ρ > 0.

Richness of the collection: There exist m0 ∈ Mn and crich ≥ 1 such that,

√
n ≤ Dm0

≤ crich
√
n . (Rich)

Such an assumption only depends on our choice of model collection and can always be fulfilled.

Approximation property: There exist cℓ, cu > 0 and ℓ > u > 0 such that, for every m ∈ Mn,

cℓD
−ℓ
m ≤ ‖s− sm‖2 ≤ cuD

−u
m . (Bias)

This assumption quantifies the bias (approximation error) incurred by model Sm in estimating s. It
therefore relies on a smoothness assumption on s. Such an upper bound is classical for α-Hölderian
functions with α ∈ (0, 1] and regular histograms (4) for instance. Note that Stone (1985) uses the same
assumption (lower bound), which is the finite sample counterpart of the classical assumption ‖s− sm‖ > 0
for every m ∈ Mn usually made to prove asymptotic optimality for a model selection procedure (see Birgé
and Massart, 2006).

Rate of convergence for the oracle model:

nR∗
n(logn)

−2 −−−−→
n→∞

+∞, with R∗
n = inf

m∈Mn

Rn(ŝm) , (OrSp)

This assumption implies the risk of the oracle model R∗
n does not decrease to 0 faster than (logn)2/n. In

particular, this holds true for densities in H(L, α) with L > 0 and α ∈ (0, 1] for instance (see Section A.6).

The performance of the Lpo estimator with respect to p is described by the following oracle inequality
where the leading constant Cn(p) relates the complexity of the collection of models {Sm}m∈Mn

to p.

Theorem 3.1 (Optimal CV). Let s denote a density on [0, 1] such that (SqI) holds true, set {Sm}m∈Mn

a collection of models defined in Section 2.1.2, and assume (Pol), (RegD), (Dmax), (Rich), (LoEx),

(Bias), and (OrSp). Let m̂ = m̂(p) denote the model minimizing R̂p(m) over Mn for every p ∈
{1, . . . , n− 1}. Then, there exist a sequence (δn)N such that δn → +∞, and nδn → +∞ as n → +∞, and

an event Ω̃ with P(Ω̃) ≥ 1− 6/n2 on which, for large enough values of n,

∥∥s− ŝ m̂(p)

∥∥2 ≤ Cn(p) inf
m∈Mn

{
‖s− ŝm‖2

}
with Cn(p) =

T+
B ∨ T+

V

T−
B ∧ T−

V

≥ 1 ,

where

T−
B = 1− δnK(n, p) , T−

V =
1

1− p/n
(1 − δn) [ 1− 4δn ]− 2δnK(n, p) [ 3− 4δn ] ,

T+
B = 1 + δnK(n, p) , T+

V =
1

1− p/n
(1 + δn) [ 1 + 4δn ] + 2δnK(n, p) [ 3 + 4δn ] ,

and K(n, p) = 1 + 2
n−1 + p

n−p
1

n−1 ·
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First if p = pn = o(n), then p/n → 0 and Cn(p) → 1 as n → +∞. Then, such values of p lead to
efficient (asymptotically optimal) model selection procedures. In particular, this holds true for p = 1,
that is, Loo is asymptotically optimal since

∥∥s− ŝ m̂(1)

∥∥2

infm∈Mn

{
‖s− ŝm‖2

} a.s.−−−−−→
n→+∞

1 .

Second, Cn(p) can be optimized as a function of p at each finite sample size n. Since Cn(p) also depends

on δn, which is related to the structure of {Sm}m∈Mn
and the probability of the event Ω̃, minimizing

Cn(p) with respect to p enables to take into account the difficulty of the estimation problem at hand.

Proof of Theorem 3.1.
First let us use Proposition A.2 applied with m,m′ ∈ Mn such that R̂p(m

′) ≤ R̂p(m). Then, it comes

n

n− p
E
[
Z2
m′

]
+ ‖s− sm′‖2 −K(n, p)

[
Z2
m′ − E

[
Z2
m′

] ]

≤ n

n− p
E
[
Z2
m

]
+ ‖s− sm‖2 −K(n, p)

[
Z2
m − E

[
Z2
m

] ]

− 2K(n, p) νn (sm′ − sm) +
1

n

(
K(n, p) +

n

n− p

)
νn (φm′ − φm) ,

where K(n, p) = 1 + 2
n−1 + p

n−p
1

n−1 ·
Then, combining Propositions A.3 and A.4 to control the remainder terms, there exist a sequence

(δn)N with δn → 0 and nδn → +∞ as n → +∞ and an event Ω = Ωrem,1 ∩Ωrem,2 of probability 1− 4/n2

on which

n

n− p
E
[
Z2
m′

]
+ ‖s− sm′‖2 −K(n, p)

[
Z2
m′ − E

[
Z2
m′

] ]

≤ n

n− p
E
[
Z2
m

]
+ ‖s− sm‖2 −K(n, p)

[
Z2
m − E

[
Z2
m

] ]

+ δnK(n, p)
(
‖s− sm′‖2 + E

[
Z2
m′

]
+ ‖s− sm‖2 + E

[
Z2
m

])

+ δn

(
K(n, p) +

n

n− p

)[
E
[
Z2
m′

]
+ E

[
Z2
m

] ]
.

In the following, δn always denotes such a sequence even if the precise expression of δn can differ from
line to line.

Let us now use concentration results stated in Corollaries A.1 and A.2 on the events Ωleft and Ωright.
The important point in this proof is given by Lemmas A.4 and A.5, where it is proved that on the event
Ω = Ωleft∩Ωright ∩Ωrem,1 ∩Ωrem,1, min

{
Dm∗ , Dm̂(p)

}
≥ (logn)4 for large enough values of n. Therefore,

one can apply Lemma A.8 and Corollaries A.1 and A.2 with Lm = 0 = rn(m) to get

Z2
m′

[(
n

n− p
(1− δn)− 2δnK(n, p)

)
(1− 4δn)− 4K(n, p)δn

]
+ [ 1− δnK(n, p) ] ‖s− sm′‖2

≤ Z2
m

[(
n

n− p
(1 + δn) + 2δnK(n, p)

)
(1 + 4δn) + 4K(n, p)δn

]
+ [ 1 + δnK(n, p) ] ‖s− sm‖2 .

Choosing m′ = m̂, it comes

T−
V Z2

m̂ + T−
B ‖s− sm̂‖2 ≤ T+

V Z2
m + T+

B ‖s− sm‖2 ,
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where

T−
B = 1− δnK(n, p) , T−

V =
n

n− p
(1 − δn) [ 1− 4δn ]− 2K(n, p)

[
3δn − 4δ2n

]
,

T+
B = 1 + δnK(n, p) , T+

V =
n

n− p
(1 + δn) [ 1 + 4δn ] + 2K(n, p)

[
3δn + 4δ2n

]
.

Finally on the event Ω, the following oracle inequality holds true for every p ∈ {1, n− 1}
∥∥s− ŝ m̂(p)

∥∥2 ≤ Cn(p) inf
m∈Mn

{
‖s− ŝm‖2

}
, with Cn(p) =

T+
B ∨ T+

V

T−
B ∧ T−

V

.

Moreover, on the event Ω, Lemmas A.4 and A.5 show min
{
Dm∗ , Dm̂(p)

}
≥ (logn)4. Then, it is enough

to apply Propositions A.6 and A.5 to models satisfying this constraint, which leads to the new event Ω̃
(where models with dimension smaller than (logn)4 have been omitted) of probability at least 1− 6/n2.

While asymptotic optimality is proved in Theorem 3.1 for any CV procedure as long as p = o(n),
it is also desirable to analyze the performance of CV for finite samples. Minimizing Cn(p) as a func-
tion of p for each n provides the value p∗ = p∗n for which m̂(p∗) reaches the best performance among
{m̂(p), 1 ≤ p ≤ n− 1}. The following Corollary 3.1 proves Loo is suboptimal in terms of rate of conver-
gence, which can lead to overfitted models.

Corollary 3.1 (Suboptimality of Leave-one-out). With the notation and assumptions of Theorem 3.1,
the constant Cn(p) is minimized over p ∈ {1, . . . , n− 1} for

0 < q∗n :=
p∗n
n

= 1−
1− 5δn + 4δ2n − 2

n−1 (3δn − 4δ2n) +
δn
n−1

1 + 2(1 + 1
n−1 )(3δn − 4δ2n)− δn(1 +

1
n−1 )

< 1 ·

Furthermore, the optimal ratio q∗n = p∗/n is slowly decreasing to 0 as n tends to +∞
q∗n ∼+∞ 10δn , and p∗n ∼+∞ 10nδn −−−−−→

n→+∞
+∞ .

In particular, Loo (p = 1) is suboptimal in terms of rate of convergence with respect to n.

Whereas Theorem 3.1 settles Loo (and any CV algorithm with p = o(n)) is asymptotically optimal,
Corollary 3.1 proves it is nevertheless suboptimal in terms of rate of convergence. Indeed, the optimal rate
is achieved when pn/n is slowly decreasing to 0 like δn as n grows. Let us also recall that δn is strongly
related to the structure of the model collection, so that the more complex the collection, the slower δn,
and the larger pn should be to balance overfitting arising with too large models. As a consequence, Loo
(p = 1) does not adapt to the model collection {Sm}m∈Mn

, which results in overfitting, that is, choosing
too large models (see simulation experiments in Section 3.1.4).

Proof of Corollary 3.1. Let us recall the expression of the leading constant

Cn(p) =
T+
B ∨ T+

V

T−
B ∧ T−

V

,

with

T−
B = 1− δnK(n, p) , T−

V =
1

1− p/n
(1− δn) [ 1− 4δn ]− 2δnK(n, p) [ 3− 4δn ] ,

T+
B = 1 + δnK(n, p) , T+

V =
1

1− p/n
(1 + δn) [ 1 + 4δn ] + 2δnK(n, p) [ 3 + 4δn ] ,
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and K(n, p) = 1 + 2
n−1 + p

n−p
1

n−1 .

First as long as n is large enough, simple calculations when p = 1 show T−
V (1) ≤ T−

B (1). Noticing
moreover that T+

V (p) ≥ T+
B (p) for every p, it comes for p close to 1

Cn(p) =
T+
V

T−
V

=
(1 + δn) [ 1 + 4δn ] + 2(1− p/n)δnK(n, p) [ 3 + 4δn ]

(1− δn) [ 1− 4δn ]− 2(1− p/n)δnK(n, p) [ 3− 4δn ]
·

It is then easy to show that p 7→ Cn(p) is increasing on {1, . . . , p∗}, where p∗ denotes the value of p such
that T−

V (p) = T−
B (p). Hence,

p∗n
n

= 1−
1− 5δn + 4δ2n − 2

n−1 (3δn − 4δ2n) +
δn
n−1

1 + 2(1 + 1
n−1 )(3δn − 4δ2n)− δn(1 +

1
n−1 )

·

It results that for every p ≥ p∗

Cn(p) =
T+
V

T−
B

,

which is increasing with respect to p.
In the same way, it is easy to check that p∗n/(10nδn) −−−−−→n→+∞

1, which enables to conclude.

3.1.3. Adaptivity in the minimax sense

Adaptivity in the minimax sense is a desirable property for model selection procedures. It means the
considered procedure automatically adapts to the unknown smoothness of the target function s to estimate
(see Barron et al., 1999, for an extensive presentation).

Several adaptivity in the minimax sense results are provided in the present section. Deriving such
results from oracle inequalities such as (14) is somewhat classical. However, the novelty is first that CV
as model selection procedure enjoys such a desirable property, second that the leading constant Cn(p) in
Theorem 3.1 when converging to 1 as n tends to +∞ provides accurate results.

Let us first provide a general result from which all adaptivity results will be immediate corollaries.

Theorem 3.2. Let s denote a density on [0, 1] such that (SqI) holds true, set {Sm}m∈Mn
a collection

of models defined in Section 2.1.2, and assume (Pol), (RegD), (Dmax), (Rich), (LoEx), (Bias), and

(OrSp). Let m̂ = m̂(p) denote the model minimizing R̂p(m) over Mn for every p ∈ {1, . . . , n− 1}. Then
for every 1 ≤ p ≤ n− 1,

E

[ ∥∥s− ŝ m̂(p)

∥∥2
]
≤ Cn(p)E

[
inf

m∈Mn

‖s− ŝm‖2
]
+ (Φ + ‖s‖2) 12

n(log n)2
+

6cu
n2

, (15)

where Cn(p) =
T+

B
∨T+

V

T−

B
∧T−

V

, with

T−
B = 1− δnK(n, p) , T−

V =
1

1− p/n
(1 − δn) [ 1− 4δn ]− 2δnK(n, p) [ 3− 4δn ] ,

T+
B = 1 + δnK(n, p) , T+

V =
1

1− p/n
(1 + δn) [ 1 + 4δn ] + 2δnK(n, p) [ 3 + 4δn ] ,

and K(n, p) = 1 + 2
n−1 + p

n−p
1

n−1 ·
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The last two terms in the right-hand side of (15) are remainder terms. They results from Assumptions
(RegD), (Dmax), and (Bias). From remarks following Theorem 3.1, one deduces p = pn = o(n) implies
Cn(p) → 1 as n → +∞ and

E

[ ∥∥s− ŝ m̂(p)

∥∥2
]

E

[
infm∈Mn

‖s− ŝm‖2
] −−−−−→

n→+∞
1 .

Proof of Theorem 3.2. Introducing the event Ω̃ of Theorem 3.1, it comes

E

[ ∥∥s− ŝ m̂(p)

∥∥2
]
= E

[ ∥∥s− ŝ m̂(p)

∥∥2 1Ω̃

]
+ E

[ ∥∥s− ŝ m̂(p)

∥∥2 1Ω̃c

]

≤ E

[
inf

m∈Mn

‖s− ŝm‖2
]
+ E

[ ∥∥s− ŝ m̂(p)

∥∥2 1Ω̃c

]
.

Applying (Bias), one gets

E

[ ∥∥s− sm̂(p)

∥∥2 1Ω̃c

]
≤ E

[
cu

Du
m̂(p)

1Ω̃c

]
≤ cuP

(
Ω̃
)
≤ 6cu

n2
,

and (RegD) and (Dmax) provide

E

[ ∥∥sm̂(p) − ŝ m̂(p)

∥∥2 1Ω̃c

]
= E


 ∑

λ∈Λ(m̂(p))

(Pnϕλ − Pϕλ)
2
1Ω̃c




≤ 2E


 ∑

λ∈Λ(m̂(p))

(Pnϕλ)
2
1Ω̃c


+ 2E


 ∑

λ∈Λ(m̂(p))

(Pϕλ)
2
1Ω̃c




≤ 2E


 ∑

λ∈Λ(m̂(p))

1

n2

n∑

i,j=1

ϕλ(Xi)ϕλ(Xj)1Ω̃c


+ 2 ‖s‖2 E

[
Dm̂(p)1Ω̃c

]

≤ 2(Φ + ‖s‖2) n

(log n)2
P

(
Ω̃c
)
≤ (Φ + ‖s‖2) 12

n(log n)2
·

Applying Theorem 3.2 to the collection of regular histograms defined by (4), the following corollary
settles an adaptivity property with respect to Hölder balls (see DeVore and Lorentz, 1993).

Corollary 3.2. Let us consider the model collection of Section 2.1.2 made of piecewise constant functions
and the associated histograms defined by (4) such that, for every m ∈ Mn and λ ∈ Λ(m), |Iλ| = D−1

m

(regular histograms). Let us also assume (Dmax) and (LoEx) hold true.
If the target density s belongs to the Hölder ball H(L, α) for some L > 0 and α ∈ (0, 1], then for every
1 ≤ p ≤ n− 1 there exist constants 0 < K−

α ≤ K+
α such that

K−
α L

2
2α+1n− 2α

2α+1 ≤ sup
s∈H(L,α)

E

[ ∥∥s− ŝ m̂(p)

∥∥2
]
≤ Cn(p)K

+
αL

2
2α+1n− 2α

2α+1 +O

(
1

n(logn)2

)
,

K−
α and K+

α only depend on α (not on n or s).
Furthermore since this property holds for every L > 0 and α ∈ (0, 1], then

{
ŝ m̂(p)

}
n∈N∗

is adaptive in

the minimax sense with respect to {H(L, α)}L>0,α∈(0,1] for every 1 ≤ p ≤ n− 1.
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The proof has been deferred to Section A.6. The lower bound is not new and has been proved earlier

by Ibragimov and Khas’minskij (1981). Besides, the upper bound is tight since the rate n− 2α
2α+1 and the

dependence on the radius L
2

2α+1 are the same as in the lower bound. Note that similar results can be
easily proved for instance for Besov balls Bα

∞,2(L), with α,L > 0 (see DeVore and Lorentz, 1993) by using
an appropriate collection of models such as trigonometric polynomials defined by (5).

3.1.4. Simulation experiments

Results of simulation experiments are provided to support the theoretical analysis developed in Sec-
tion 3.1.2. Samples of size n = 100, 500, 1000, 2000, 3000, 4000, 5000, 6000, 10 000 have been generated
from a mixture of Beta distributions

∀x ∈ [0, 1], s(x) =
β(3, 7;x) + β(10, 5;x)

2
, (16)

which is a Hölderian density on [0, 1]. For each n, every p ∈ {1, . . . , n− 1} have been considered. Note
that in these experiments, (Dmax) is fulfilled with Γ = 1 (Figure 1) and Γ = 2 (Figure 2).

The model collection we used is made of piecewise constant functions described in Section 2.1.2 leading
to regular histogram estimators defined by (4). For every 1 ≤ p ≤ n− 1, m̂(p) is defined by (13).

Let us also introduce

Cor,n(p) := E




∥∥s− ŝ m̂(p)

∥∥2

infm∈Mn

{
‖s− ŝm‖2

}


 and p0 := Argmin1≤p≤n−1Cor,n(p) , (17)

which measures the average performance of ŝ m̂(p) with respect to that of the oracle estimator ŝm∗ .
Thus the closer Cor,n(p) to 1, the better ŝ m̂(p). Then, minimizing Cor,n(p) as a function of p for various
values of n allows us to check whether the conclusions drawn from minimizing Cn(p) with respect to p
(Theorem 3.1 and Corollary 3.1) hold true or not, that is whether Cn(p) is an accurate approximation
of Cor,n(p). For each curve p 7→ Cor,n(p), a confidence band has been also displayed. It is delimited by
p 7→ C−

or,n(p) and p 7→ C+
or,n(p) respectively defined by

C−
or,n(p) = Cor,n(p)−

σ̂√
N

, and C+
or,n(p) = Cor,n(p) +

σ̂√
N

, (18)

where σ̂ denotes the empirical standard deviation.
First from Figure 1, curves p/n 7→ Cor,n(p) (plain red lines) decrease to 1 uniformly with p as n grows.

This confirms Theorem 3.1 where Cn(p) → 1 as n → +∞ when p is kept fixed. Furthermore, p 7→ Cn(p)
and p 7→ Cor,n(p) have a similar behavior since, as suggested by Corollary 3.1 when n is fixed, Cor,n(p)
is minimized for p > 1 but increases as p/n gets closer to 1. Recalling Cor,n(p) measures the accuracy
of ŝ m̂(p), previous remarks show Theorem 3.1 is accurate enough to make Cn(p) a reliable measure of
the performance of ŝ m̂(p) with respect to p. In particular, optimizing Cn(p) as a function of p actually

amounts to finding the best estimator among
{
ŝ m̂(p)

}
1≤p≤n−1

.

Second from (a) to (c) (Figure 1), the shape of p/n 7→ Cor,n(p) changes, its minimum location becoming
less clear as n grows from n = 100, to n = 10 000. According to Corollary 3.1, p is chosen large enough
to balance the deviations due to δn (model collection complexity). Since δn → 0 as n → +∞, this
requirement on p vanishes as n grows. This explanation is also supported by Figure 2 (c) where p0/n (see
Eq. (17)) has been displayed for different values of n. It shows p0/n slowly decreases as n grows, which
has been proved in Corollary 3.1 (p∗/n ∼ 10δn with δn → 0 and nδn → +∞ as n tends to +∞).

Finally, (a) and (b) in Figure 2 display p/n 7→ Cor,n(p) for n = 2 000 and (a) Γ = 1, (b) Γ = 2. As
indicated by (Dmax), an increase of Γ results in a more complex collection of models, inducing larger
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Fig 1. From (a) to (c), p/n 7→ Cor,n(p) (plain red line) is plotted for Γ = 1 (see (Dmax)) and different values of n:

(a) n = 100, (b) n = 1000, (c) and n = 10 000. p/n 7→ C+

oracle,n
(p) (blue dashed line) and p/n 7→ C−

oracle,n
(p) (black

dot-dashed line) have been plotted on the same graph as well (see (18)). In each setting, N = 1000 samples have been drawn
from the mixture of Beta distributions defined by (16).
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Fig 2. For (a) and (b), p/n 7→ Cor,n(p) (plain red line) is plotted for n = 2000 and different values of Γ(see (Dmax)):

(a) Γ = 1 , (b) Γ = 2. p/n 7→ C+

oracle,n
(p) (blue dashed line) and p/n 7→ C−

oracle,n
(p) (black dot-dashed line) have been

plotted on the same graph as well (see (18)). In each setting, N = 1000 samples have been drawn from the mixture of Beta
distributions defined by (16). For (c), n 7→ p0/n is displayed, where p0 denotes the minimizer of Cor,n(p) as a function of
p.

deviations (δn slower). On the one hand, the curve in (b) (Γ = 2) is above that in (a) (Γ = 1). The
performance of ŝ m̂(p) worsens as the collection of modes becomes more complex. On the other hand,
the minimum location is also larger for Γ = 2 than for Γ = 1. Since Γ is larger, so is δn. Then, p has
to be chosen larger to balance the effect of δn. Since the same phenomena have been observed in other
simulation experiments (not reported here), one concludes the optimal p is strongly linked with the model
collection structure: the more complex the model collection, the larger the optimal p.

3.2. Optimal cross-validation for Identification

3.2.1. Identification point of view

With the notation of Section 2.1, {ŝm}m∈Mn
denotes a collection of projection estimators (Section 2.1.2)

which is allowed to depend on n. From the Identification point of view, one assumes

{m ∈ Mn, s ∈ Sm} 6= ∅ .
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The purpose is to find the smallest model containing s, denoted by Sm̄ and defined by

m̄ := Argminm∈Mn
E

[
‖sm − ŝm‖2

]
, (19)

where sm denotes the orthogonal projection of s onto Sm. Note that Assumptions (LoEx) and (RegD)

imply ξDm ≤ E

[
‖sm − ŝm‖2

]
≤ ‖s‖2 ΦDm. For every m ∈ Mn, E

[
‖sm − ŝm‖2

]
is related to Dm as

a measure of the size of Sm. However unlike the dimension Dm, E
[
‖sm − ŝm‖2

]
measures the size of

Sm through s. Thus, a model Sm is not simply “too large” because it depends on more parameters, but

rather because the estimation error E
[
‖sm − ŝm‖2

]
incurred by Sm is too large.

3.2.2. Main model consistency result

In the following analysis, one further assumes m̄ does not depend on n for large enough values of n. First,
it entails m̄ ∈ Mn for large enough values of n. Second, letting Mn grow with n amounts for instance
to include too large models in {Sm}m∈Mn

without modifying m̄. In particular, it is not required that
{Sm}m∈Mn

is nested.

Let us first describe the asymptotic behavior of R̂p as a function of 1 ≤ p ≤ n− 1.

Theorem 3.3 (Asymptotic behavior of R̂p). Let ∪m∈Mn
Sm be a collection of models satisfying (Pol),

m̄ ∈ M be defined by (19) such that m̄ does not depend on n, and assume (SqI), (RegD), (Dmax),
(LoEx) hold true. Then, an event Ωn exists with P [ Ωn ] ≥ 1− 8/n2 on which for every p = pn such that

n
(
1− p

n

)
−−−−−→
n→+∞

+∞ , (20)

1. if s 6∈ Sm,

R̂p(m)− R̂p(m̄) = ‖s− sm‖2 + oP(1) > 0 ,

2. if s ∈ Sm,

R̂p(m̄)− R̂p(m) ≤ n

n− p

[
(1 + δn)E

[
Z2
m̄

]
− (1− δn)E

[
Z2
m

] ]
+ 4Ln

(
E
[
Z2
m̄

]
+ E

[
Z2
m

])
(21)

R̂p(m̄)− R̂p(m) ≥ n

n− p

[
(1− δn)E

[
Z2
m̄

]
− (1 + δn)E

[
Z2
m

] ]
− 4Ln

(
E
[
Z2
m̄

]
+ E

[
Z2
m

])
,

(22)

where δn → 0 with nδn → +∞ as n → +∞, and Ln =
√
4
√
2Φn−1/2.

On the one hand, the constraint (20) ensures R̂p(m) is a consistent estimator of Rn(ŝm). It only requires
1−p/n converges to 0 slower than 1/n. Any p = pn satisfying (20) enables to discard too small models Sm

such that s 6∈ Sm since R̂p(m) > R̂p(m̄). On the other hand when s ∈ Sm, upper and lower bounds (21)

and (22) give possible deviations of R̂p(m)−R̂p(m̄) with high probability for large models. These bounds
relate p to δn and Ln which are determined by the structure of the model collection {Sm}m∈Mn

at hand
and the probability of the event Ωn.
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Proof of Theorem 3.3. From Proposition A.2, for every m,m′ ∈ M,

R̂p(m
′)− R̂p(m) = E

[
‖s− ŝm′‖2

]
− E

[
‖s− ŝm‖2

]

+
p

n− p

(
E
[
Z2
m′

]
− E

[
Z2
m

])

+K(n, p)
[
Z2
m − E

[
Z2
m

] ]
−K(n, p)

[
Z2
m′ − E

[
Z2
m′

] ]

− 2K(n, p) νn (sm′ − sm) +
1

n

(
K(n, p) +

n

n− p

)
νn (φm′ − φm) ,

where K(n, p) = 1 + 2/(n− 1) + p/ [ (n− 1)(n− p) ] ·
Setting ∆(m) = R̂p(m)− E

[
‖s− ŝm‖2

]
− p

n−pE
[
Z2
m

]
, it results

|∆(m′)−∆(m)| ≤ K(n, p)
∣∣[Z2

m − E
[
Z2
m

] ]
−
[
Z2
m′ − E

[
Z2
m′

] ]∣∣

+ 2K(n, p) |νn (sm′ − sm)|+ 1

n

(
K(n, p) +

n

n− p

)
|νn (φm′ − φm)| .

First, Propositions A.5 and A.6 imply there exist an event Ωright ∩ Ωleft of probability at least 1 −
2/n2 − β1 − β2 on which

K(n, p)
∣∣[Z2

m − E
[
Z2
m

] ]
−
[
Z2
m′ − E

[
Z2
m′

] ]∣∣ ≤ K(n, p)
[
(δn + Lm′)E

[
Z2
m

]
+ (δn + Lm)E

[
Z2
m

] ]
.

(23)

Let us notice that since Dm does not depend from n, Lm > 0 for large enough values of n. Furthermore

choosing β1 = β2 = βn with βn → 0 as n → +∞, it comes Lm = Lm′ = Ln =
√
4
√
2Φβ

−1/4
n → +∞ as

n tends to +∞. Subsequently, choosing βn such that n4βn → +∞ as n → +∞ results in Ln/n → 0 as
n → +∞.

Second, Proposition A.3 entails there exists an event Ωrem,1 with probability at least 1−2/n2 on which

1

n

(
K(n, p) +

n

n− p

)
|νn (φm′ − φm)| ≤ δn

(
K(n, p) +

n

n− p

)(
E(Z2

m) + E(Z2
m′)
)

≤ δn

(
3 +

n

n− p

)(
E(Z2

m) + E(Z2
m′)
)

, (24)

since K(n, p) ≤ 3 for n ≥ 4.
Third for m′ = m̄, Proposition A.8 entails there exists an event Ωrem,3 with probability at least 1−2/n2

on which

2K(n, p) |νn (sm̄ − sm)| ≤ 3δn ‖sm − sm̄‖2 + 3δn ‖s‖
√
Φ

√
Dm +Dm̄

n
+ 3δnΦ

Dm +Dm̄

n
. (25)

Combining (23), (24), and (25), there exist an event Ωn := Ωright∩Ωleft∩Ωrem,1∩Ωrem,3 with probability
at least 1− 6/n2 − 2βn on which two settings occur:

1. If s 6∈ Sm,

|∆(m̄)−∆(m)| ≤
(
3Ln + 6δn +

n

n− p
δn

)(
E
[
Z2
m̄

]
+ E

[
Z2
m

])

+ 3δn ‖sm − sm̄‖2 + 3δn ‖s‖
√
Φ

√
Dm +Dm̄

n
+ 3δnΦ

Dm +Dm̄

n
· (26)
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2. If s ∈ Sm,

|∆(m̄)−∆(m)| ≤
(
3Ln + 6δn +

n

n− p
δn

)(
E
[
Z2
m̄

]
+ E

[
Z2
m

])
· (27)

In these two settings for every m ∈ M, (RegD) and δn −−−−−→
n→+∞

0 imply

|∆(m̄)−∆(m)| = oP(1) ,

hence,

R̂p(m)− R̂p(m̄) = E

[
‖s− ŝm‖2

]
− E

[
‖s− ŝ m̄‖2

]
+

p

n− p

(
E
[
Z2
m

]
− E

[
Z2
m̄

])
+ oP(1) .

Hence, requiring R̂p(m) − R̂p(m̄) −
(
E

[
‖s− ŝm‖2

]
− E

[
‖s− ŝ m̄‖2

])
→ 0 as n → +∞ implies the

necessary constraint p/ [ (n− p)n ] → 0, which amounts to

n
(
1− p

n

)
−−−−−→
n→+∞

+∞ . (28)

On the one hand, it is then straightforward to check that Eq. (26) leads, for every m ∈ M such that
s 6∈ Sm, to

R̂p(m)− R̂p(m̄) = ‖s− sm‖2 + oP(1) .

On the other hand, for every m ∈ M such that s ∈ Sm, Eq. (27) provides
∣∣∣∣R̂p(m̄)− R̂p(m)− n

n− p

(
E
[
Z2
m̄

]
− E

[
Z2
m

])∣∣∣∣ ≤
(
4Ln +

n

n− p
δn

)(
E
[
Z2
m̄

]
+ E

[
Z2
m

])
,

hence

R̂p(m̄)− R̂p(m) ≤ n

n− p

[
(1 + δn)E

[
Z2
m̄

]
− (1− δn)E

[
Z2
m

] ]
+ 4Ln

(
E
[
Z2
m̄

]
+ E

[
Z2
m

])
, (29)

and

R̂p(m̄)− R̂p(m) ≥ n

n− p

[
(1− δn)E

[
Z2
m̄

]
− (1 + δn)E

[
Z2
m

] ]
− 4Ln

(
E
[
Z2
m̄

]
+ E

[
Z2
m

])
.

Using βn = 1/n2 enables to conclude.

From the upper bound (21), one derives a sufficient condition on p to discard too large models. This
condition enables to determine the minimal rate at which p/n has to decrease to 0 as n tends to +∞,
which ensures model consistency for m̂.

Corollary 3.3 (Model consistency). With the same notation and assumptions as Theorem 3.3, let us

define m̂ = m̂(p) = Argminm∈MR̂p(m) for every 1 ≤ p ≤ n− 1. Then any p = pn such that

n
(
1− p

n

)
−−−−−→
n→+∞

+∞, and 0 < 1− p

n
<

K√
n

with K =

(
8

√√
2Φ

)−1

,

leads to

P [ m̂ = m∗ ] −−−−−→
n→+∞

1 .
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First the main conclusion is that model consistency results from requiring pn/n → 1 as n → +∞.
One therefore recovers previous results by Shao (1993) and Yang (2007) established in the regression
framework. However, our Corollary 3.3 is more precise than Shao (1993) since it localizes the optimal
convergence rate of 1 − p/n between 1/

√
n and 1/n. In particular, Loo (and Lpo with any p = o(n)) is

completely misleading for identifying the model Sm̄. Second, p has to be chosen large enough to balance
the deviations (Ln) in (30). Indeed, the rate 1/

√
n is determined by the structure of the model collection

{Sm}m∈Mn
and the probability of the event Ωn. Another collection of models could have produced

another minimal rate.

Proof of Corollary 3.3. Applying Eq. (29) for every m 6= m̄ ∈ M such that s ∈ Sm, it results a sufficient

condition on p such that R̂p(m̄)− R̂p(m) < 0, that is

0 <

(
n

n− p
(1 + δn) + 4Ln

)
E
[
Z2
m̄

]
<

(
n

n− p
(1− δn)− 4Ln

)
E
[
Z2
m

]
. (30)

This leads to require n
n−p > 4Ln(1 − δn)

−1 > 4Ln, which can be reformulated as

1

1− p
n

> 4Ln = 8

√√
2Φβ−1/4

n ⇔ 0 < 1− p

n
<

β
1/4
n

8
√√

2Φ
·

The conclusion results from choosing βn = 1/n2 and P [ Ωn ] −−−−−→
n→+∞

1.

4. Discussion

From the present analysis of CV algorithms in te density estimation framework, we were able to prove
the optimality of leave-one-out cross-validation for risk estimation. Besides when CV is used as model
selection procedure, the optimal p strongly depends on the structure of the model collection and on our
goal (estimation or identification). However this characterization of the behavior of the optimal p provides
some guidelines, but does not result in a data-driven choice of p.

A possible way to design such a data-driven choice is to follow the same idea as Shao (1997) exploiting
the deep connection between CV and penalized criteria. Let us describe the heuristic argument leading
to this choice. Arlot (2008) introduced the ideal penalty defined for every m ∈ Mn by

penid(m) = Pγ(ŝm)− Pnγ(ŝm) ,

with the notation of Section 2.1. It enables to rephrase ℓ(s, ŝm) in terms of a penalized criterion

ℓ(s, ŝm) = Pγ(ŝm)− Pγ(s) = Pnγ(ŝm) + penid(m)− Pγ(s) .

Similarly for the Lpo risk estimator,

R̂p(ŝm) = Pnγ(ŝm) + penLpo(m) ,

where penLpo(m) = R̂p(ŝm)−Pnγ(ŝm) is called the Lpo-penalty (see Celisse, 2008). Then in our setting,
some simple algebra provides

E
[
penLpo(m)

]
=

2n− p

2(n− p)
E [ penid(m) ] ,

showing that on average penLpo is equal to penid up to a multiplicative constant. Thus, using the so-
called slope heuristics (Arlot and Massart, 2009, in the regression framework) could serve to calibrate the
optimal p of CV algorithms.
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Appendix A: Proofs of Sections 2 and 3

A.1. Closed-form expressions

Lemma A.1. With the notation of Section 2.2.1, for any i 6= j 6= k ∈ {1, . . . , n},
∑

e∈Ep

1(j∈(e)) =

(
n− 1

p

)
and

∑

e∈Ep

1(j∈(e))1(k∈(e)) =

(
n− 2

p− 1

)
,

∑

e∈Ep

1(i∈e)1(j∈(e))1(k∈(e)) =

(
n− 3

p− 1

)
and

∑

e∈Ep

1(i∈e)1(j∈(e)) =

(
n− 2

p− 1

)
.

Lemma A.2. With the same notation as Proposition 2.2, it comes

an = n2Var



∑

λ∈Λ(m)

(Pnϕλ)
2


+Var

[
∑

λ

Pnϕ
2
λ

]
− 2nCov



∑

λ

Pnϕ
2
λ,

∑

λ∈Λ(m)

(Pnϕλ)
2


 ,

bn = 2n2


Var



∑

λ∈Λ(m)

(Pnϕλ)
2


− Cov



∑

λ

Pnϕ
2
λ,

∑

λ∈Λ(m)

(Pnϕλ)
2



(
1 +

1

n

)
+

1

n
Var

[
∑

λ

Pnϕ
2
λ

]
 ,

cn = n2Var

[
∑

λ

Pnϕ
2
λ

]
+ n2Var



∑

λ∈Λ(m)

(Pnϕλ)
2


− 2n2Cov



∑

λ

Pnϕ
2
λ,

∑

λ∈Λ(m)

(Pnϕλ)
2


 .

Lemma A.3. With the notation of Section 2.3, simple algebra leads to

Var

[
∑

λ

Pnϕ
2
λ

]
=

1

n
Var

[
∑

λ

ϕ2
λ(X1)

]
,

Cov

[
∑

λ

Pnϕ
2
λ,
∑

λ

(Pnϕλ)
2

]
=

1

n2
Var

[
∑

λ

ϕ2
λ(X1)

]
+ 2

n− 1

n2
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X2)

]

Var

[
∑

λ

(Pnϕλ)
2

]
=

Var
[∑

λ ϕ
2
λ(X1)

]

n3
+ 4

n− 1

n3
Var

[
∑

λ

ϕλ(X1)ϕλ(X2)

]

+ 4
(n− 1)(n− 2)

n3
Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]

+ 4
n− 1

n3
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]
.

Proposition A.1. With the notation of Lemma A.2,

an = 4
n− 1

n
α+ 4

(n− 1)(n− 2)

n
β

bn = 8
n− 1

n
α+ 8

(n− 1)(n− 2)

n
β − 4(n− 1)

(
1− 1

n

)
γ

cn = 4
n− 1

n
α+ 4

(n− 1)(n− 2)

n
β − 4 (n− 1)

(
1− 1

n

)
γ +

(
n− 2 +

1

n

)
δ .
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where α = Var [
∑

λ ϕλ(X1)ϕλ(X2) ], β = Cov [
∑

λ ϕλ(X1)ϕλ(X2),
∑

λ ϕλ(X1)ϕλ(X3) ], γ =
Cov

[∑
λ ϕ

2
λ(X1),

∑
λ ϕλ(X1)ϕλ(X3)

]
, and δ = Var

[∑
λ ϕ

2
λ(X1)

]
.

Proof of Proposition A.1. Using Lemmas A.2 and A.3, it comes

an = n2

[
Var

[∑
λ ϕ

2
λ(X1)

]

n3
+ 4

n− 1

n3
Var

[
∑

λ

ϕλ(X1)ϕλ(X2)

]

+4
(n− 1)(n− 2)

n3
Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]

+4
n− 1

n3
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]]
+

1

n
Var

[
∑

λ

ϕ2
λ(X1)

]

− 2n

[
1

n2
Var

[
∑

λ

ϕ2
λ(X1)

]
+ 2

n− 1

n2
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X2)

]]

= 4
n− 1

n
Var

[
∑

λ

ϕλ(X1)ϕλ(X2)

]

+ 4
(n− 1)(n− 2)

n
Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]
.

In the same way,

bn = 2n2


Var


 ∑

λ∈Λ(m)

(Pnϕλ)
2


− Cov


∑

λ

Pnϕ
2
λ,

∑

λ∈Λ(m)

(Pnϕλ)
2



(
1 +

1

n

)
+

1

n
Var

[
∑

λ

Pnϕ
2
λ

]


= 8
n− 1

n
Var

[
∑

λ

ϕλ(X1)ϕλ(X2)

]

+ 8
(n− 1)(n− 2)

n
Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]

− 4(n− 1)

(
1− 1

n

)
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]
.

Finally,

cn = n2Var

[
∑

λ

Pnϕ
2
λ

]
+ n2Var


 ∑

λ∈Λ(m)

(Pnϕλ)
2


− 2n2Cov


∑

λ

Pnϕ
2
λ,

∑

λ∈Λ(m)

(Pnϕλ)
2




=

(
n− 2 +

1

n

)
Var

[
∑

λ

ϕ2
λ(X1)

]
+ 4

n− 1

n
Var

[
∑

λ

ϕλ(X1)ϕλ(X2)

]

+ 4
(n− 1)(n− 2)

n
Cov

[
∑

λ

ϕλ(X1)ϕλ(X2),
∑

λ

ϕλ(X1)ϕλ(X3)

]

− 4 (n− 1)

(
1− 1

n

)
Cov

[
∑

λ

ϕ2
λ(X1),

∑

λ

ϕλ(X1)ϕλ(X3)

]
.
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Proposition A.2. For every m,m′ ∈ M and p ∈ {1, . . . , n− 1}, it comes

R̂p(m
′)− R̂p(m)

=

(
n

n− p

)(
E

[
‖sm′ − ŝm′‖2

]
− E

[
‖sm − ŝm‖2

])
+
[
‖s− sm′‖2 − ‖s− sm‖2

]

−K(n, p)
[
‖sm′ − ŝm′‖2 − E

[
‖sm′ − ŝm′‖2

] ]
+K(n, p)

[
‖sm − ŝm‖2 − E

[
‖sm − ŝm‖2

] ]

− 2K(n, p) νn (sm′ − sm) +
1

n

(
K(n, p) +

n

n− p

)
νn (φm′ − φm) ,

where

K(n, p) = 1 +
1

n− 1
+

n

n− p

1

n− 1
·

A.2. Bounding remainder terms

Proposition A.3 (Bound on νn (φm − φm′)).
Let us assume (RegD) and apply (42) with t = φm and x = xm = c1nE(Z

2
m) (c1 > 0). Then, an event

Ωrem,1 exists with P [ Ωrem,1 ] ≥ 1− 2
∑

m∈M e−xm, on which for every m,m′ ∈ Mn

|νn (φm − φm′)| ≤ nE(Z2
m) + nE(Z2

m′)

logn
,

where Zm = supt∈Sm
νn(t) for every m.

Proof of Proposition A.3. A straightforward use of (42) leads to the expected conclusion.

Proposition A.4 (Bound on νn (sm − sm′)). Let us assume (Pol),(SqI), (RegD), (LoEx), and (OrSp)
hold true. Then, there exists a sequence (δn)N such that for every m,m′ ∈ M,

P

[
2 |νn(sm − sm′)| > δn

(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

) ]
≤ 2n−(2aM+2) ,

with δn → 0 and nδn → +∞ as n → +∞, and 0 ≤ δn ≤ 1 for n large enough.
Furthermore, an event Ωrem,2 exists with P [ Ωrem,2 ] ≥ 1− 2/n2, on which for every m,m′ ∈ M

2 |νn(sm − sm′)| ≤ δn

(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

)
.

Proof of Proposition A.4. For every η > 0,

2νn(sm − sm′) = 2 ‖sm − sm′‖ νn(tm,m′)

≤ η ‖sm − sm′‖2 + η−1 [ νn(tm,m′) ]2 ,

where tm,m′ = (sm − sm′) / ‖sm − sm′‖.
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Thanks to (42) where t = tm,m′ , it comes

|νn(tm,m′)| >
√
2
Var (tm,m′(X1))

n
x+

‖tm,m′‖∞
3n

x ,

with probability not larger than 2 exp (−x), x > 0. Hence with (SqI), one has

2νn(sm − sm′) ≤ η ‖sm − sm′‖2 + 4η−1Var (tm,m′(X1))

n
x+ 2η−1

(‖tm,m′‖∞
3n

x

)2

(31)

≤ 2η
(
‖s− sm‖2 + ‖s− sm′‖2

)
+ 4η−1 ‖s‖ ‖tm,m′‖∞

n
x+ 2η−1

(‖tm,m′‖∞
3n

x

)2

.

Moreover assuming (RegD), it comes

‖tm,m′‖∞ ≤
√
Φ (Dm +Dm′) .

Then,

Var (tm,m′(X1))

n
x ≤ ‖s‖

√
Φ
√
(Dm +Dm′)

n
x ,

(‖tm,m′‖∞
3n

x

)2

≤ Φ (Dm +Dm′)
x2

9n2
·

Let us take x = (2aM + 2) logn. Then,

Var (tm,m′(X1))

n
x ≤ ‖s‖

√
Φ
√
(Dm +Dm′)

n
(2aM + 2) logn ,

(‖tm,m′‖∞
3n

x

)2

≤ Φ (Dm +Dm′)
((2aM + 2) logn)

2

9n2
·

Then,

2
νn(sm − sm′)

E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

≤ 2η + 4η−1 ‖s‖
√
Φ
√
(Dm +Dm′)

n
(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

) (2aM + 2) logn

+ 2η−1Φ
Dm +Dm′

n
(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

) ((2aM + 2) logn)
2

9n

≤ 2η + 4η−1
‖s‖

√
Φ
ξ√

n
(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

) (2aM + 2) logn

+ 2η−1Φ

ξ

((2aM + 2) logn)
2

9n
,

thanks to (LoEx). Moreover using that

n
(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

)
≥ 2n inf

m
E ‖s− ŝm‖2 =: 2nR∗

n,
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it comes

2
νn(sm − sm′)

E ‖s− ŝm‖2 + E ‖s− ŝm′‖2
≤ 2η + 4η−1 ‖s‖

√
Φ

2ξ
(2aM + 2)

1√
nR∗

n(log n)
−2

+ 2η−1Φ

ξ
(2aM + 2)2

(logn)
2

9n
.

Then, (OrSp) entails there exists a sequence δn → 0, nδn → +∞ as n → +∞ (0 < δn < 1 for n large
enough) such that

2νn(sm − sm′) ≤ δn

(
E ‖s− ŝm‖2 + E ‖s− ŝm′‖2

)
.

Finally, let us notice that
∑

m,m′∈M 2n−(2aM+2) ≤ 2n2aMn−(2aM+2) = 2/n2.

A.3. Deviations of
√

nZm

A.3.1. Right deviation

Proposition A.5 (Right deviation of
√
nZm). Let us assume (Pol), (SqI), (RegD), and (LoEx) hold

true, and set Zm = supt∈Sm
νn(t), σ

2
m = supt∈Sm

Var [ t(X1) ] and bm = supt∈Sm
‖t‖∞. Then, there exists

a sequence (δn)n≥1 with δn → 0 and nδn → +∞ as n → +∞ such that for every m ∈ M,

√
nZm ≤ √

nE(Zm)


 1 + δn +

√√√√4

√
Φ

ξ
C ‖s‖1(√Dm<(logn)2)




on an event Ωright with P [ Ωright ] ≥ 1− 1/n2 − β1, for any β1 ∈ (0, 1) and C ≥
√
2ξ/β1.

Proof of Proposition A.5.
Let us use Eq. (43) and upper bound the deviation terms. Assuming (SqI) and (RegD), Lemma A.6
leads to

σ2
m ≤ ‖s‖

√
Φ
√
Dm , bm ≤

√
Φ
√
Dm .

Furthermore, (LoEx) entails

σ2
m ≤ ‖s‖

√
Φ

ξ

√
nE(Zm) , bm ≤

√
Φ

ξ

√
nE(Zm) .

Let us first upperbound
√

2 (σ2
m + 2bmE(Zm))xm:

1. If
√
Dm ≥ (log n)2:

Then choosing xm = (aM + 2) logn, there exists a sequence δn decreasing to 0, nδn → +∞ as
n → +∞ such that

√
2 (σ2

m + 2bmE(Zm)) xm ≤ √
nE(Zm)δn .
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2. Otherwise
√
Dm < (logn)2:

Then,
√
2 (σ2

m + 2bmE(Zm))xm is no longer negligible with respect to
√
nE(Zm). So, choosing

xm = C
√
nE(Zm) (C > 0) leads to

√
2 (σ2

m + 2bmE(Zm))xm ≤ √
nE(Zm)

√√√√2

√
Φ

ξ
C (‖s‖+ 2E(Zm)) ≤ √

nE(Zm)

√√√√4

√
Φ

ξ
C ‖s‖ ,

as long as n is large enough.

Let us now upperbound bmxm

3
√
n

:

bmxm

3
√
n

≤ √
nE(Zm)

√
Φ

ξ

(aM+2) logn ∨ C(log n)2

3
√
n

·

Finally, we can remark that

∑

m∈M
e−xm =

∑

Dm≥(logn)4

n−(aM+2) +
∑

Dm<(logn)4

e−C
√
nE(Zm) ≤ 1

n2
+ 2

ξ

c2
·

Corollary A.1. For Zm = supt∈Sm
νn(t), set Lm =

√
4
√

Φ
ξ C ‖s‖1(√Dm<(logn)2). Then on the event

Ωright defined in Proposition A.5,

Z2
m ≤ E(Z2

m) (1 + δn + Lm)
2

.

A.3.2. Left deviation

Proposition A.6 (Left deviation of
√
nZm). Let us assume (Pol), (SqI), (RegD), and (LoEx) hold

true, and set Zm = supt∈Sm
νn(t), σ

2
m = supt∈Sm

Var [ t(X1) ] and bm = supt∈Sm
‖t‖∞. Then, there exists

a sequence (δn)n≥1 with δn → 0 and nδn → +∞ as n → +∞ such that for every m ∈ M,

√
nZm ≥ √

nE(Zm)


 1− δn −

√√√√4

√
Φ

ξ
C ‖s‖1(√Dm<(logn)2)


 , (32)

on an event Ωleft with P [ Ωleft ] ≥ 1− 1/n2 − β2 for any β2 ∈ (0, 1) and C ≥
√
2ξ/β2.

Proof of Proposition A.6. Similar to that of Proposition A.5 with the use of Eq. (44) and the additional
Proposition A.7 which provides an upper bound of E(Zm)2 depending on E(Z2

m).
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Proposition A.7 (Upper bound on Var(Z)). Let X1, . . . , Xn be i.i.d. random variables defined on
a mesurable space (X , T ). Let S denote a set of real valued functions such that supt∈S ‖t‖∞ ≤ b,
supt∈S Var (t(X1)) = σ2, and set Z = supt∈S νn(t). Then,

Var(Z) ≤ 2σ2 + 32bE(Z)

n
. (33)

Let us assume (SqI), (RegD), and (LoEx). If S denotes a linear space of dimension D, then there
exists a positive sequence (δn)n≥1 with δn → 0 and nδn → +∞ as n → +∞ (0 < δn < 1 for n large
enough), and every constant θ > 0 such that

E(Z2) ≤ (E(Z))2
(
1 + δn + θ

√
Φ

ξ
1(

√
Dm<(logn)2)

)
+ rn ,

where rn = θ−1
√

Φ
ξ

2‖s‖2

n 1(
√
D<(logn)2).

Proof of Proposition A.7. Assumptions (SqI), (RegD), and (LoEx) provide

E(Z2)− (E(Z))
2 ≤ 2

√
Φ

ξ
(E(Z))

2

( ‖s‖√
nE(Z)

+
16√
n

)
.

1. If
√
nE(Z) ≥ √

ξD ≥ √
ξ(log n)2:

E(Z2)− (E(Z))
2 ≤ 2

√
Φ

ξ
(E(Z))

2

( ‖s‖√
ξ(logn)2

+
16√
n

)

≤ δ1,n (E(Z))
2

,

with δ1,n = 2
√

Φ
ξ

(
‖s‖√

ξ(logn)2
+ 16√

n

)
.

2. Otherwise
√
nE(Z) ≤

√
ΦD <

√
Φ(log n)2:

E(Z2)− (E(Z))
2 ≤ 2

√
Φ

ξ
E(Z)

(‖s‖√
n
+

16E(Z)√
n

)
≤ θ

√
Φ

ξ
(E(Z))

2
+ θ−1

√
Φ

ξ

1

n
(‖s‖+ 16E(Z))

2

≤ θ

√
Φ

ξ
(E(Z))

2
+ θ−1

√
Φ

ξ

1

n

(
2 ‖s‖2 + 32 (E(Z))

2
)

≤
(
δ2,n + θ

√
Φ

ξ

)
(E(Z))2 + rn

for every θ > 0, with δ2,n = θ−1
√

Φ
ξ

32
n and rn = θ−1

√
Φ
ξ

2‖s‖2

n .

Then, there exists a positive sequence (δn)n≥1 with δn = max {δ1,n, δ2,n} decreasing to 0 with nδn → +∞
as n → +∞, such that

E(Z2)− rn

1 + δn + θ
√

Φ
ξ 1(

√
D<(logn)2)

≤ (E(Z))
2

.

imsart-generic ver. 2009/02/27 file: cvhistoAOS_HAL.tex date: April 2, 2012



A. Celisse/Optimal cross-validation 30

Corollary A.2. For Zm = supt∈Sm
νn(t), set Lm =

√
4
√

Φ
ξ C ‖s‖1(√Dm<(logn)2) and rn(m) =

θ−1
√

Φ
ξ

2‖s‖2

n 1(
√
Dm<(logn)2). Then on the event Ωleft defined in Proposition A.6,

E(Z2
m) ≤ Z2

m (1− δn − Lm)
−3

+ rn(m) .

Proof of Corollary A.2. From Propositions A.6 and A.7, it comes that

E(Z2
m) ≤ Z2

m

1 + δn + θ
√

Φ
ξ 1(

√
Dm<(logn)2)

(1− δn − Lm)
2 + rn(m) .

Then, Lemma A.9 enables to conclude.

A.4. Dimension behavior with respect to n

Lemma A.4 (Oracle dimension). Let us assume (Bias), (Rich), and (RegD) hold true. Then, on the
event Ω′ = Ωleft∩Ωright, where Ωleft and Ωright are respectively defined in Corollary A.1 and Corollary A.2,
it comes

Dm∗ ≥ (log n)4 , (34)

for large enough values of n.

Proof of Lemma A.4. Since m∗ = Argminm ‖s− ŝm‖2, it comes

‖s− ŝm∗‖2 ≤ ‖s− sm0
‖2 + ‖sm0

− ŝm0
‖2 ,

with m0 defined by (Rich).
First on the event Ω′, using E

(
Z2
m0

)
≤ ΦDm0

/n by (RegD) and Corollaries A.1 and A.2, there exists
δn such that

∣∣Z2
m0

− E
(
Z2
m0

)∣∣ ≤ δnE
(
Z2
m0

)
≤ δnΦ

Dm0

n
·

Then by use of (Bias) and (Rich) on Ω′,

cℓD
−ℓ
m∗ ≤ ‖s− sm∗‖2 ≤ ‖s− ŝm∗‖2 ≤ cun

−u/2 + crich(1 + δn)Φn
−1/2 ,

which is contradictory with assuming Dm∗ < (logn)4 as long as n is large enough.

Lemma A.5 (Chosen model dimension). Let us assume (Bias), (Rich), (LoEx), and (RegD) hold
true. Then with the notation of Lemma A.4, on the event Ω = Ω′ ∩ (Ωrem,1 ∩ Ωrem,2), where Ωrem,1 and
Ωrem,2 are respectively defined in Proposition A.3 and Proposition A.4, it comes

Dm̂ ≥ (logn)4 , (35)

for large enough values of n.
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Proof of Lemma A.4. For any model m such that R̂p(m) ≤ R̂p(m0), Proposition A.3, Proposition A.4,
and Proposition A.2 lead to

[ 1−K(n, p)δn ] ‖s− sm‖2 +
[

n

n− p
−K(n, p)δn −

(
K(n, p) +

n

n− p

)
δn

]
E
(
Z2
m

)

−K(n, p)
[
Z2
m − E

(
Z2
m

) ]

≤ [ 1 +K(n, p)δn ] ‖s− sm0
‖2 +

[
n

n− p
+K(n, p)δn +

(
K(n, p) +

n

n− p

)
δn

]
E
(
Z2
m0

)

−K(n, p)
[
Z2
m0

− E
(
Z2
m0

) ]
.

First, assuming Dm̂ < (logn)4 on Ω and combining (LoEx) and (RegD) entail for m = m̂ that there
exists a constant C > 0 such that
∣∣∣∣
[

n

n− p
−K(n, p)δn −

(
K(n, p) +

n

n− p

)
δn

]
E
(
Z2
m

)
−K(n, p)

[
Z2
m − E

(
Z2
m

) ]∣∣∣∣ ≤ C
(logn)4

n
·

Second, using (Bias) provides

[ 1−K(n, p)δn ] ‖s− sm‖2 ≥ [ 1−K(n, p)δn ] cℓ(logn)
−4ℓ ,

which is larger than C (log n)4

n for large enough values of n.
Using the same arguments as in Lemma A.4 for upper bounding the terms depending on m0, it results

that Dm̂ ≥ (log n)4 on Ω.

A.5. Technical results

Lemma A.6. Let X1, . . . , Xn be i.i.d. random variables defined on a mesurable space (X , T ). Let S
denote a set of real valued functions such that supt∈S ‖t‖∞ ≤ b and supt∈S Var (t(X1)) = σ2. Let us
assume (SqI). Then

σ2 ≤ ‖s‖ b . (36)

Furthermore, (RegD) leads to

σ2 ≤ ‖s‖
√
ΦD , (37)

where D denotes the dimension of the vector space S.

Lemma A.7. (Dmax) implies

‖φm‖∞ ≤
√
Φ

n

(log n)2
,

Var (φm(X1)) ≤
(
nE(Z2) + ‖s‖2

)√
Φ

n

(logn)2
.
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Proof.

Var (φm(X1)) ≤ E
[
φ2
m(X1)

]
≤ ‖φm‖∞ E [φm(X1) ]

= ‖φm‖∞
(
nE(Z2) + ‖sm‖2

)
≤ ‖φm‖∞

(
nE(Z2) + ‖s‖2

)

≤
(
nE(Z2) + ‖s‖2

)√
Φ

n

(logn)2
.

Lemma A.8. Let us assume that 0 ≤ δn + Lm for every m ∈ M. Then on the event Ωleft ∩Ωright (with
Ωleft and Ωright defined in Proposition A.6 and Proposition A.5 respectively), for every m,m′ ∈ M,

Z2
m′ (1− 4(δn + Lm′)) ≤ E(Z2

m′), Z2
m′ − E(Z2

m′) ≤ 4Z2
m′(δn + Lm′) . (38)

and

E(Z2
m) ≤ Z2

m (1 + 4(δn + Lm)) + rn, E(Z2
m)− Z2

m ≤ 4Z2
m(δn + Lm) + rn . (39)

Proof of Lemma A.8.
Proof of (38) From Corollary A.1, on the event Ωright, it comes

Z2
m ≤ (E(Zm))

2
(1 + δn + Lm)

2
.

Then assuming moreover 0 ≤ δn + Lm < 1, Jensen’s inequality and (1 − x)−2 < (1 + x2) for x ∈ [0, 1[
lead to

Z2
m ≤ E(Z2

m) (1 + δn + Lm)2 ≤ E(Z2
m)

1

(1− δn − Lm)
2 ·

Finally if 0 ≤ δn + Lm < 1/4, then

E(Z2
m) ≥ Z2

m (1− δn − Lm)
2 ≥ Z2

m [ 1− 2(δn + Lm) ] ≥ Z2
m [ 1− 4(δn + Lm) ] .

Proof of (39) Assuming δn + Lm < 1/4, Corollary A.2 and Lemma A.10 provide

E(Z2
m) ≤ Z2

m (1 + 4(δn + Lm)) + rn(m) .

Lemma A.9. For every a, b ∈ (0, 1) such that a < b(1− b)−1,

1 + a

(1− b)
2 ≤ 1

(1− b)
3 . (40)

Moreover if 0 < a = b < 1, then a < a(1− a)−1 and Eq. (40) holds true.

Lemma A.10. For every interval I ⊂ [0, 1[ such that 0 ∈ I, there exists a constant ∆ > 3 such that

∀x ∈ I, (1− x)−3 ≤ 1 + ∆x .

In particular for I = [0, 1/4], this property holds true with ∆ = 4. Furthermore for every x ∈]1,+∞[,

(1− x)−3 ≤ 1.
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A.6. Adaptivity in the minimax sense

A.6.1. Proof of Corollary 3.2

The proof simply consists in combining Theorems 3.1 and 3.2 by checking their assumptions. First,
s ∈ H(L, α) implies (SqI). Combined with Lemma A.11, it shows (Bias) is fulfilled. Besides, (OrSp)
holds true since

inf
m∈Mn

E

[
‖s− ŝm‖2

]
≈ n− 2α

2α+1 ⇒ n

(log n)2
inf

m∈Mn

E

[
‖s− ŝm‖2

]
≈ n

1
2α+1 (logn)−2 ,

where a ≈ b means there exist constants 0 < c1 ≤ c2 such that c1b ≤ a ≤ c2b.
Second, since the model collection is built from regular partitions of [0, 1], (RegD) is clearly satisfied,

and (Dmax) entails (Rich) is fulfilled.

A.6.2. Technical Lemma

Lemma A.11. Let s be a density such that s ∈ H(L, α) for some α ∈ (0, 1] and L > 0. For every
D ∈ N

∗, let sD denote the orthogonal projection of s defined in Section 2.1.2 onto piecewise constant
functions built from a given regular partition of [0, 1] in D intervals. Then,

cℓ
Dℓ

≤ ‖s− sD‖2 ≤ cu
Du

, (41)

where u = 2α, cu = L2, ℓ = 1 + 1/α and cℓ = ǫ2+1/α2−(5+2/α)L−1/α, for some ǫ > 0.

Proof of Lemma A.11. First, let us notice (41) excludes s = 1[0,1]. Then, there exist x < y ∈ [0, 1] such
that |x− y| ≤ η and |s(x)− s(y)| ≥ ǫ for some η, ǫ > 0. Besides for a regular partition of [0, 1] in intervals
I1, . . . , ID of Lebesgue measure |Ik| = 1/D, it comes

‖s− sD‖2 =

D∑

k=1

∫

Ik

[ s(t)− sD(t) ]
2
dt =

D∑

k=1

∫

Ik

[ s(t)− sIk ]
2
dt ,

where sIk denotes the mean of s on interval Ik.
Second, let K(η) = {1 ≤ k ≤ D, Ik ∩ [x, y] 6= ∅} and N(η) denote the cardinality of K(η). Then,

N(η) ≤ 2 + ηD. Combined with Lemma A.12, it leads to

‖s− sD‖2 ≥
∑

k∈K(η)

∫

Ik

[ s(t)− sIk ]
2
dt ≥ 1

24+1/αL1/α

∑

k∈K(η)

∆
2+1/α
k ,

where ∆k := supIk s− infIk s, for every 1 ≤ k ≤ D. Applying Hölder’s inequality, it comes

∑

k∈K(η)

∆
2+1/α
k ≥ N(η)−(1+1/α)



∑

k∈K(η)

∆k




2+1/α

≥ N(η)−(1+1/α)ǫ2+1/α ,
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since
∑

k∈K(η) ∆k ≥ ǫ. Hence,

‖s− sD‖2 ≥
∑

k∈K(η)

∫

Ik

[ s(t)− sIk ]
2
dt ≥ 1

24+1/αL1/α

∑

k∈K(η)

∆
2+1/α
k

≥ 1

24+1/αL1/α
N(η)−(1+1/α)ǫ2+1/α

≥ 1

24+1/αL1/α
(1 + η)−(1+1/α)D−(1+1/α)ǫ2+1/α

≥ ǫ2+1/α

25+2/αL1/α
D−(1+1/α) ·

Lemma A.12. Let s denote a density defined on [0, 1] such that s ∈ H(L, α), for some L > 0 and

α ∈ (0, 1]. Let us define an interval I ⊂ [0, 1] and sI = |I|−1 ∫
I s(t) dt denotes the mean of s on I. Then,

∫

I

(s(t)− sI)
2
dt ≥ ∆2+1/α

24+1/αL1/α
,

where ∆ = supI s− infI s.

Proof of Lemma A.12. First, let us notice s− = infI s ≤ sI ≤ supI s = s+, which implies

max
(
s+ − sI , sI − s−

)
≥ ∆/2 .

Without loss of generality, let us assume max (s+ − sI , sI − s−) = s+ − sI . Then s+ − sI ≥ ∆/2.
Second, let us introduce x+ ∈ I such that s+ = s(x+). By continuity of s, there exists an interval

J ⊂ I such that x+ ∈ J and

∀x ∈ J, 0 ≤ s(x+)− s(x) ≤ ∆/4 .

Then,

∀x ∈ J, s(x)− sI ≥ ∆/2−∆/4 = ∆/4 .

Moreover,

|J | (∆/2)
2 ≤

∫

J

(
s(x+)− sI

)2
dx ≤

∫

J

(
s(x+)− s(x)

)2
dx ≤

∫

J

L2
∣∣x+ − x

∣∣2α dx ≤ |J |2α+1
L2 ,

which implies

|J | ≥
(

∆

2L

)1/α

·

Finally,

∫

I

(s(x)− sI)
2
dx ≥

∫

J

(s(x) − sI)
2
dx ≥ (∆/4)

2 |J | ≥ (∆/4)
2

(
∆

2L

)1/α

·
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A.7. Identification point of view

Proposition A.8 (Bound on νn (sm − sm̄)). Let us assume (Pol),(SqI), (RegD) hold true. Then, there
exists a sequence (δn)N and an event Ωrem,3 with P [ Ωrem,3 ] ≥ 1− 2/n2, on which for every m ∈ M,

2 |νn(sm − sm̄)| ≤ δn ‖sm − sm̄‖2 + δn ‖s‖
√
Φ

√
Dm +Dm̄

n
+ δnΦ

Dm +Dm̄

n
,

with δn → 0 and nδn → +∞ as n → +∞, and 0 ≤ δn ≤ 1 for n large enough.

Proof of Proposition A.8. Combining Eq. (31), (SqI), and (RegD) it comes for every η > 0,

2νn(sm − sm̄) ≤ η ‖sm − sm̄‖2 4η−1 ‖s‖
√
Φ
√
(Dm +Dm̄)

n
x+ 2η−1Φ (Dm +Dm̄)

x2

9n2
.

with probability not larger than 2 exp (−x), for any x > 0.
Let us further assume that (Pol) holds true. Then with x = xm = (aM + 2) logn, it comes

2νn(sm − sm̄)

≤ η ‖sm − sm̄‖2 + 4η−1 ‖s‖
√
Φ
√
(Dm +Dm̄)√
n

(aM + 2)
logn√

n
+ 2η−1Φ

Dm +Dm̄

n

((aM + 2) logn)
2

9n
·

Let us choose η = 1/ logn, then there exists a sequence (δn)N with δn → 0 and nδn → +∞ as n → +∞
such that.

2νn(sm − sm̄) ≤ δn ‖sm − sm̄‖2 + δn ‖s‖
√
Φ

√
Dm +Dm̄

n
+ δnΦ

Dm +Dm̄

n
·

Finally, let us notice that
∑

m∈M 2e−xm =
∑

m∈M 2n−(aM+2) ≤ 2naMn−(aM+2) = 2/n2.

Appendix B: Key concentration inequalities

Theorem B.1 (Bernstein’s inequality). Let X1, . . . , Xn be i.i.d. random variables defined on a mesurable
space (X , T ), and let t denote a mesurable bounded real valued function. Then for every x > 0,

P

[
νn(t) >

√
2Var (t(X1))x

n
+

‖t‖∞ x

3n

]
≤ e−x . (42)

Theorem B.2 (Bousquet’s version of Talagrand’s inequality (Bousquet, 2002)).
Let X1, . . . , Xn be i.i.d. random variables defined on a mesurable space (X , T ). Let S denote a set of real
valued functions such that supt∈S ‖t‖∞ ≤ b and supt∈S Var (t(X1)) = σ2. Denoting Z = supt∈S νn(t),
then for every x > 0

P

[√
nZ ≤ √

nE(Z) +
√
2 (σ2 + 2bE(Z))x+

bx

3
√
n

]
≤ e−x . (43)

Theorem B.3 (Rio’s version of Talagrand’s inequality (Klein and Rio, 2005)).
Let X1, . . . , Xn be i.i.d. random variables defined on amesurable space (X , T ). Let S denote a set of real
valued functions such that supt∈S ‖t‖∞ ≤ b and supt∈S Var (t(X1)) = σ2. Denoting Z = supt∈S νn(t),
then for every x > 0

P

[√
nZ ≤ √

nE(Z)−
√
2 (σ2 + 2bE(Z))x− 8bx

3
√
n

]
≤ e−x . (44)
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