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Abstract

This paper describes a new property checking apgrda
order to enhance the diagnosis ability of an elecic
embedded system, included in an automotive apjgitatve
consider functional diagnosis that is not necedgasiiented
towards electronic components, and may result fflaws in
the design process. The idea is, at the highesidesf the
design procedure, to be able to assess the obsétyalegree
of the aimed system. Our approach is based onrhg/sis of
the system simulation results. It allows checkirtge t
observability property in a real time electronicsggm in order
to improve its diagnosis capacity.

Our contribution in this paper is to enhance thagdosis
ability of a real time distributed electronic systeespecially
in the automotive field. Therefore, we check theaskability
of the system necessary for real time on-line diagnThe
electronic distributed architecture that we stuslyembedded
on board of a truck. It is composed of a set of ECU
(Electronic Computing Unit) connected by the bus NCA
(Controller Area Network) [3]. Every ECU is compdsef a
processor, a memory, a CAN interface and Input/Qutp
interfaces.

To present our contributions, this paper is stmertuas

To reach this objective, we have set up an iteeatig|iows:

modeling process. The model of the real time ealeatr
system represents the input for the simulation,stetpich
precedes the property checking. It is possible twleh the

First, we present the definition of the observability pdp.
Then, we present the observability property analyaind
checking process that we propose in Section Il.

system in two different ways: either with a comdbine Section Il and IV present the property checkingl ahe

architectural and functional modeling using Systentdt
solely functional modeling using Matlab/Simulinkhen, we
check the observability property of the systemit i not
verified, our contribution consists in adding adbeack to the
modeling step to improve the model. Otherwise, aliglate
the result through a test in an electronic autow®tplatform
using as input the Simulink model used for the ksitimn step.

Index Terms Observability, property checking, co-

modeling, co-simulation, real time system diagnosis

1. Introduction

Car manufacturers propose continuously advancedndri
assistance functions that involve more than one pcimg
unit. A computing unit uses information issued freensors
or other computing units, yielding a “system witistdbuted

observability analysis principles, as we practiocent in our
design expansion process.

In section V, we present the design flow startinghwa
combined architectural/functional modeling (usingt®mcC).
In section VI, we give the details of OBSAN Tool
(OBServability ANalyzer) that we have implementatfe
discuss the results in section VII and the valmaton a
physical platform in section VIII.

Finally, we conclude this paper and present ouuréut
works.

2. Observability Property

Before adding a diagnosis process to a system,hoald
check its diagnosability [4], [5]. To estimate the
“diagnosability level” of a system, the resolutibevel of
faults detection and isolation and faults predicticapacity

functions”. However, one of the disadvantages ois thhave to be verified. The presence of a fault isscted by

distribution is the difficulty of the real time djaosis to detect
and localize a fault. To take into account all ttemputing
considerations of a highly distributed architectune use a
combined modeling methodology that reveals the tiegjs
links between architectural and functional mode(2lg

observing of one or more discrepancies. In this,waylts

detection is the result of the observation of tismpancies
of the system compared to its appropriate behaj@u7].

Thus, the observation of the behaviour of the sysis

necessary to validate its diagnosability.



For this reason, we propose in this paper a prpp=tiied
“Observability” as a sub-property of the diagnogbi

We consider that the on-line diagnosis is realizgd
additional functions with respect to those neeasdHe usual
operation of the system. The local diagnosis fuomdti
periodically check the correct behaviour of the mah
functions, by accessing their inputs/outputs, ahdcking if
the actual results correspond to the expected ones.

In our approach, we aim checking the observahilipperty

in an electronic automotive system to allow addingrocess
This should allow an eas

of real time observation.
observation of the system’s behaviour for diagnegitiout
interfering with the nominal
(Figure 1).

in out
Data for observation I ~— Data from observation
Data —— = Results
Observation
Process for diagnosi

Communication Bus

Figure 1. Observation process.

We define the observability degree as the timelalig for
on observing process to carry out the periodic ellance

operation of the syste

In the next section, we present research worksedour
objectives, using different property checking teqghbes for
electronic architectures.

3. Electronic Architectures Property checking

The existing techniques of property checking uselL&ID
(Hardware Description Language) for specificatitost of
these techniques use PSL (Property Specificatiamglage)
for properties specification. PSL is a languageetteped by
Accellera standards organisation, for specifyingpgirties or
assertions about hardware designs [8]. The prasectn then
¥e simulated or formally verified. Since Septembef4 the
standardization of the language has been donehik IEB50
working group. In September 2005, the IEEE 1850 &ted
for Property Specification Language (PSL) was ameed.

Property Specification Language is used with mildtip
electronic system design languages such as:

» VHDL: Very high speed integrated circuit Hardware
Description Language (IEEE 1076),

» Verilog (IEEE 1364),

» System Verilog (IEEE 1800), and

e SystemC by OSCI.

Then, these HDL based techniques use model-chgeckin

process. We consider that we are dealing_with Ipcalioois to check the specified properties [9], susfng10], [11]
synchronous and globally asynchronous digital syste ¢, SystemC model checking, [12] for VHDL model cking

within a single ECU, all input/output accessesaigned with
the edges of a main clock, and throughout the métved
ECUs, the data diffusions are done through asymdus
demands over the CAN bus. Hence, to determinetaidahle
time intervals for the observation process, we shekfree
cycles not exploited by the nominal operation cf gystem
(Figure 2). After that, we compare the duration thie
available cycles with the time necessary to exedbte
observation process using the same hardware resourte
system is called “potentially observable” if th@moccupied’
periods allow the execution of the observation pssc

Time

E— |

LI L

Function 1 Nl | || | |

Function 2 ”Nk\lll |<

Legend:
&\\\ Occupied component by data processing
Free cycle

| | | | | ‘ Occupied component by read/write data

Figure 2. Processes execution cycles.

and [13] for PSL.

However, to be able to check a property, it hasbéo
specified in the model, whereas, for our study,prepose an
approach of property checking without the need rofearly
property description.

Electronic design engineers, especially in the motove
field, when they model a new function as a firsemupt, they
mainly need to optimize its hardware resources insaider to
estimate its cost. Therefore, our technique hasefinite
advantage as it checks the observability properithout
adding any more specifications definition.

4. Observability Analysis Process

In order to check the observability, first we imagi to
analyze the model by parsing the source code tokdine free
cycles. This approach would have needed a deeysimalf
the code, pinpointing the 1/0O accesses, expandiegldops,
etc.; tasks quite equivalent to a compilation ph&¥e then
noticed that during the simulation of the sourcele;othe
simulation engine actually follows the same analysieps.
Hence, we oriented our efforts to the interpretataf the
simulation results of a model representing the apate
behaviour of the system, which is easier and fastefact,



when we simulate a model, we can generate a tribee
recording all the value changes of the system gaad
variables. Such trace file should be sufficientstek free
clock cycles by seeking cycles when there are nloega
changes.

Hence, in order to be able to check the observgplili a
system, an alternative approach would be to cauty an
analysis on generated trace file, in order to detiee non-
occupied clock cycles by the nominal operationhef $ystem.
It means that we should detect the cycles non-dedupy the
value changes during simulation. Then, we chetkefsystem
is sufficiently ready to accept on line the obséoraprocess
for diagnosis in these free cycles. If the fred&ycduration is
not sufficient, we should try to propose modificas to
improve the basic model (Figure 3).

he=ul
=
S
= 3] Ready q
= S for On-board Rea; tlmde
i ‘ diagnosis ‘ on-boarf
/;pﬁropnat? % = diagnosis
ehavior of g |\S ) Trace file =) 5
the system c >
model ) g
o -
S =

Figure 3. Observability checking iterative process.

5. SystemC HW/SW Co-design

The automotive industry usually employs Simulinkdais
to express the embedded functions specificatiormsveder,
when the hardware architecture reaches a compiest (&
functional distribution, it becomes difficult to diagnosis
designer to maintain the HW/SW link for each fuaotior
sub-function of the system in the diagnosis modlekrefore,
to keep track of the hardware mapping of the softwa
functions, we use HW/SW co-design languages to inaie
simulate the appropriate behaviour of the systgmnesenting
an automotive distributed function. If we detectuactional
fault, we can localize the corresponding hardwacelute as
we know exactly the existing link between the subetion
and the hardware sub-component [2].

5.1. SystemC language

One of the most promising SystemC advantages isSYW/
co-modeling to develop virtual platforms, becaussupports
a unified language of HW/SW modeling [14].

We have selected SystemC as a modeling languageidec
it has many advantages:
» It allows HW/SW modeling with the same language
« The models could be easily connected to any oth

f

hardware models [15], or functional models (e.g. in
Simulink) [16], [17], [18];

SystemC environment includes also a simulatorofisists

of a C++ library and an event-based simulation reegi

Any C or C++ library can be included in a HW/SW co-
model.

5.2. The embedded electronic ar chitecture

The whole architecture consists of n ECUs commuiniga
through the CAN network. In this part of the wovke have
modeled the CAN protocol real-time behaviour tolirea
communications between ECUs models. We have siieglif
the details to ease the modeling; by implementingraual
arbiter on the bus. With the Transaction Modelipgpraach,
the communication between components is described a
function calls 0.

5.3. SystemC co-simulation trace

The simulation of the SystemC model generatesc tfite
in the VCD format, specified in the standard IEEZ64-1995.
The dump file is structured in a free format. Whefgace is
used to separate commands and to make the fildy easi
readable by a text editor. The VCD file starts witbader
information giving the date, the simulator's versinumber
used for the simulation, and the timescale useat,Nee file
contains definitions of the scope and type of \@esa being
dumped, followed by the actual value changes atheac
simulation time increment.

Sdate
Mar 17, 2008
Send

Sversion

10:03:45

systemC 2.1.vl --- Jun 11 2007 17:21:36
$end

$timescale
Send

$scope module systemc $end

Svar wire a clk $end

Svar wire 32 aab wir_in [31:0] Send
$var wire 32 aac vir_out [31:0] Send
$var wire 16 aad Jogic_in [15:0] Send
Svar wire 16 aae TJogic_out [15:0] Send
Supscope Send

Senddefinitions $end

$comment
;1Tdﬁnﬁtia1 values are dumped below at time 0 sec = 0 1
en

Sdumpvars
1.

b111l aae

Figure4. VCD fileformat.

Only the variables that change value during a finceement
are listed. The simulation time recorded in VCIefik the
absolute value of the simulation time for the chemdn
ggriable values (Figure 4).



6. OBSAN (OBServability ANalysis) Tool

6.1. Working environment

On the vertical axis, we may see that the obsditiatakes a
Boolean value: observability= “1” if the correspemd clock
cycle in the horizontal axis is sufficient for obsaion,
otherwise, observability="0".

We use Matlab tool as working environment for the

implementation of OBSAN Tool. The choice of Matlalas
justified by the easiness of the connection of atlaba
program either to Simulink models or SystemC modiett
we use for the simulation of the system behaviddatlab,
allows also an easy manipulation of VCD files byerting
them in a string array of one column. Thereafter tool
analyzes the contents of each line of the arragaryying out
string manipulations. Finally, Matlab generatespgia charts
as output.

6.2. Input parameters

As input parameters, OBSAN Tool reads:
* The content of the VCD file,

- Figure 1: Result

File Edit View Insert Tools Desktop Window Help
DER8 F AAM9|(E D0E =0
This system is observable with the mean frequency per period =4

Observability

time: "2000ps

Figure 6. OBSAN tool output user interface.

We went a bit further in our analysis by determini‘the
observability timing plan” of the system. This phéamg is
established from the result of observability chagkiby
adding the observation process when observability=ind

» the duration of time necessary for the observatiowith a rational frequency, yielding the activatiplanning of

per clock cycle,

the surveillance process (Figure 6).

» the duration of time required by the hardware

component for data processing,

8. Validation

* time necessary for accessing the hardware ports fOIEI'o validate the results of our observability chagki

read/write,

analysis, we applied it to a function that an irtdak partner

* the length of an observation period, expressed as,3s proposed to us. We first described this functémd then

multiple of the clock period.

2+ Figure 1: OBSAN Tool
File Edit View Insert Tools Desktop Window Help
Deds hfaMe €08 50

E B

Cancel Check observaity

Figure5. OBSAN tool input user interface.

Then, the tool computes the system observabiliyebased
on these inputs (Figure 5).

7. Results

Figure 6 shows the first result of observabilityecking; the
message “This system is observable with the mesquéncy
per period = 4”, means that the free clock cyclkessafficient
to accept an observation process whose duration
approximately 4 times the system clock period.

we describe its implementation on our test platform

8.1. Smart Distance K eeping system

We have tested our approach on the Smart Distarepig
(SDK) function, given by a truck manufacturer. “SDi6
equivalent to the Adaptive Cruise Control (ACC) dtian,
except that the distance/speed regulation is basgdon a
fixed distance of 50 m (compliant to European ratiohs for
heavy trucks).

1Im m . — Il I N . EE

Figure 7. Smart Distance K eeping function.

Thus, using an embedded radar, the SDK sub-system
maintains a safe headway time, i.e. the inter-\etdéstance
is varying as a function of the velocity and is ntained at a
minimum legal distance of 50 m (Figure 7), [19].

8.2. DIAFORE platform specifications

is
The platform that we use for tests is called DIAEOR
(Diagnosis of distributed functions), and consisfsthree



ECUs. The first two ECUs are equivalent, while tthied ECU
is based on a more powerful microcontroller (Fig@®g
[20][21]. The ECUs exchange data via the CAN bus.

Microprocessor: Motorola MPC555, 40MHz
Memory: 448K Flash, 26K RAM, 8K EEPROM
Operating Voltage: 9-16VDC
Inputs: 15 Analog Inputs
3 Low Frequency Digital Inputs
1 Emergency Stop Input
Outputs: 12 3A Peak/1A Hold Injector Drivers
6 6A Low Side PWM
1 5A PWM H-Bridge
1 Relay Driver (Main Power)
Datalinks: 2 CAN 2.0B Channels
1 RS485 Channel

Figure 8. Sample of thetarget ECUs

A Smartcraft star node and an interconnection dewre
used to connect the different ECUs with a develagrtaptop
through the CAN bus (Figure 9).

Simulink/Motohaw!
blocks

—_—

CAN

I jl—.,z(u I
1

I : - L .
e
ECU E ECU

1

Figure 9. DIAFORE platform interconnected components.

Terminator

CAN Monitoring

Terminator

8.3. Implementing the application on a ECUs
networ k

In order to implement an application on an ECUstfia
Matlab/Simulink model of the application should treated.
Then, “Motohawk” physical mapping blocks, includingO
blocks, timer blocks, triggers, data storage in memCAN
bus configurations and more internal controllectwits have
to be instantiated to establish the link with thygical target
ECU (programming the physical timers and configgrthe
CAN bus and I/O pins, Figure 10) [22].

Then, once our Simulink model for the applicatios i

code of our model that contains both basic Simubidcks
with diagnosis process blocks and physical mapjiogks.
Finally, a given tool transfers the assembled gerdrC code
to the ECUs memories. This interactive tool helfso ao
visualize the input/output values and to contr@ #tored or
predefined data.

[ Link: untitied/Override Fuel Calculation *
Ele Edt Yew Smuaton g Jools Heb

D@da 3 Normal zllEW$

RE T ®

Override Fuel Calculation
Gain ana Otset per Insctor

e

Resdy 8% pdeds

Figure 10. Simulink M otohawk blocs.

As the described validation process admits only uimk
models, we had to envisage a second way of modbksed
on Matlab/Simulink instead of SystemC. We figurad that
Modelsim tool, a mixed VHDL/Verilog/System C simtda
(from Mentor Graphics Inc.), has the capabilitygenerating
simulation traces in VCD format. This tool couldib&erfaced
to Simulink using “Link for ModelSim library”. So &/set up
an alternative solution where the design is modekddg the
usual Simulink blocks, the signals whose obseritglshould
be checked are probed by Modelsim “to-vcd-file"dis. The
behavioural model of this co-simulation probe blackone in
VHDL.

As soon as a simulation session starts, Simulind an
ModelSim collect the results in a VCD file whichncéde
processed using the OBSAN Tool for observabilitgaiting
as described before.

9. Conclusions and per spectives

This paper proposed an alternative approach foarihg
the diagnosis of electronic embedded systems bykatg
observability. The simulation environments usedvadidate
our approach are SystemC and Matlab/Simulink. Theact
of a rigorous property checking method on real tdi@gnosis
for automotive applications has been shown.

However, this result has been obtained for one Isition

completed and ready to be tested, the RTW (RealeTimun of the system. In a complex system, and fronarzalysis

Workshop) Simulink library and the a cross-comilattool

point of view, the system events would have an epga

(Greenhills software [23]pond together to generate the Grandom behaviour that may be analyzed statistic@lys, to



improve the realness of our analysis, we needdwifgiantly  [13] Model Checking PSL Using HOL and SMV . Model CheckiPSL
increase the number of simulation runs Using HOL and SMV.Hardware and Software, Verification and

) . . Testing ISBN: 978-3-540-70888-9. Springer may 2007.
As a future work, we aim to gather valid observéibil [14] Grotker, T. and al. 2002. System Design with Sy&erSpringer
frequencies of the same model in order to improwe o  Chapter 8, p. 131SBN 1402070721

; ot ; ; [15] Bombana, M. Bruschi, F. 2003. SystemC-VHDL co-siatioh and
approach with a statistical interpretation of thesults. To synthesis in the HW domailesign, Automation and Test in Europe

reach this goal, we need to randomize data inm‘s "f‘nd Conference and Exhibitiopp. 101-105, Messe Munich, Germany.
the value change instants and run numerous sirookatising [16] Warwick, C. SystemC calls MATLABMATLAB Central March 2003,
the randomized values. We aim also to extend tqe http:/Awww.mathworks.com/matlabcentral/

b bili | | Isoid 17] Czerner, F. and Zellmann, J. 2002. Modeling CyatewXate Hardware
observability property at several system levelsorder to with Matlab/Simulink using System@6" European SystemC Users

achieve different levels of observability. Group Meeting (ESCUGPtresa, llalia.
We will also investigate the feedback to the degigncess [18] Boland, J-F. and al. 2004. Using Matlab and Sinkuiim a SystemC
h th b bilit hecki tool il b i verification Environment2™ North American SystemC User’s Group
when the observability checking tool will be part an Santa Clara, CA, USA
iterative design and modeling process. [19] Claeys, X. and al. 2003. Chauffeur Assistant Fansti Report
restricted toRENAULT TRUCKSContract number 1ST-1999-10048,
Lyon, FRANCE.
10. Acknowledgements [20] MGM.Mototron Inc ECM-0555-080-0703-F Data Sheet-20/10/2006
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The implementation on the physical platform hasnbdene [22] http:/ww.mototron.com/support/wiki/index.phpitMotoHawk
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