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Observability Checking to Enhance 
 Diagnosis of Real Time Electronic Systems  

 
Abstract 

 
This paper describes a new property checking approach in 

order to enhance the diagnosis ability of an electronic 
embedded system, included in an automotive application. We 
consider functional diagnosis that is not necessarily oriented 
towards electronic components, and may result from flaws in 
the design process. The idea is, at the highest levels of the 
design procedure, to be able to assess the observability degree 
of the aimed system. Our approach is based on the analysis of 
the system simulation results. It allows checking the 
observability property in a real time electronic system in order 
to improve its diagnosis capacity.  

To reach this objective, we have set up an iterative 
modeling process. The model of the real time electronic 
system represents the input for the simulation step, which 
precedes the property checking. It is possible to model the 
system in two different ways: either with a combined 
architectural and functional modeling using SystemC, or 
solely functional modeling using Matlab/Simulink. Then, we 
check the observability property of the system, if it is not 
verified, our contribution consists in adding a feedback to the 
modeling step to improve the model. Otherwise, we validate 
the result through a test in an electronic automotive platform 
using as input the Simulink model used for the simulation step.  
  
 

Index Terms- Observability, property checking, co-
modeling, co-simulation, real time system diagnosis. 

1. Introduction 
Car manufacturers propose continuously advanced driving 

assistance functions that involve more than one computing 
unit. A computing unit uses information issued from sensors 
or other computing units, yielding a “system with distributed 
functions”. However, one of the disadvantages of this 
distribution is the difficulty of the real time diagnosis to detect 
and localize a fault. To take into account all the computing 
considerations of a highly distributed architecture, we use a 
combined modeling methodology that reveals the existing 
links between architectural and functional modeling [2].  

 
Our contribution in this paper is to enhance the diagnosis 

ability of a real time distributed electronic system, especially 
in the automotive field. Therefore, we check the observability 
of the system necessary for real time on-line diagnosis. The 
electronic distributed architecture that we study is embedded 
on board of a truck. It is composed of a set of ECUs 
(Electronic Computing Unit) connected by the bus CAN 
(Controller Area Network) [3]. Every ECU is composed of a 
processor, a memory, a CAN interface and Input/Output 
interfaces. 

 
To present our contributions, this paper is structured as 

follows: 
First, we present the definition of the observability property. 

Then, we present the observability property analysis and 
checking process that we propose in Section II.  

Section III and IV present the property checking and the 
observability analysis principles, as we practice them in our 
design expansion process.  

In section V, we present the design flow starting with a 
combined architectural/functional modeling (using SystemC). 
In section VI, we give the details of OBSAN Tool 
(OBServability ANalyzer) that we have implemented. We 
discuss the results in section VII and the validation on a 
physical platform in section VIII. 

Finally, we conclude this paper and present our future 
works. 

2. Observability Property  
Before adding a diagnosis process to a system, we should 

check its diagnosability [4], [5]. To estimate the 
“diagnosability level” of a system, the resolution level of 
faults detection and isolation and faults prediction capacity 
have to be verified. The presence of a fault is detected by 
observing of one or more discrepancies. In this way, faults 
detection is the result of the observation of the discrepancies 
of the system compared to its appropriate behaviour [6], [7]. 
Thus, the observation of the behaviour of the system is 
necessary to validate its diagnosability.  
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For this reason, we propose in this paper a property called 

“Observability” as a sub-property of the diagnosability.  
We consider that the on-line diagnosis is realized by 

additional functions with respect to those needed for the usual 
operation of the system. The local diagnosis functions 
periodically check the correct behaviour of the nominal 
functions, by accessing their inputs/outputs, and checking if 
the actual results correspond to the expected ones.  

In our approach, we aim checking the observability property 
in an electronic automotive system to allow adding a process 
of real time observation. This should allow an easy 
observation of the system’s behaviour for diagnosis without 
interfering with the nominal operation of the system 
(Figure 1). 
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Figure 1. Observation process. 

We define the observability degree as the time available for 
on observing process to carry out the periodic surveillance 
process. We consider that we are dealing with locally 
synchronous and globally asynchronous digital systems: 
within a single ECU, all input/output accesses are aligned with 
the edges of a main clock, and throughout the network of 
ECUs, the data diffusions are done through asynchronous 
demands over the CAN bus. Hence, to determine the available 
time intervals for the observation process, we seek the free 
cycles not exploited by the nominal operation of the system 
(Figure 2). After that, we compare the duration of the 
available cycles with the time necessary to execute the 
observation process using the same hardware resources. The 
system is called “potentially observable” if the ‘non-occupied’ 
periods allow the execution of the observation process. 
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Figure 2. Processes execution cycles. 

In the next section, we present research works close to our 
objectives, using different property checking techniques for 
electronic architectures. 

3. Electronic Architectures Property checking 
The existing techniques of property checking use HDLs 

(Hardware Description Language) for specification. Most of 
these techniques use PSL (Property Specification Language) 
for properties specification. PSL is a language developed by 
Accellera standards organisation, for specifying properties or 
assertions about hardware designs [8]. The properties can then 
be simulated or formally verified. Since September 2004 the 
standardization of the language has been done in IEEE 1850 
working group. In September 2005, the IEEE 1850 Standard 
for Property Specification Language (PSL) was announced. 

Property Specification Language is used with multiple 
electronic system design languages such as: 

• VHDL: Very high speed integrated circuit Hardware 
Description Language (IEEE 1076), 

• Verilog (IEEE 1364), 
• System Verilog (IEEE 1800), and 
• SystemC by OSCI. 

 Then, these HDL based techniques use model-checking 
tools to check the specified properties [9], such as in [10], [11] 
for SystemC model checking, [12] for VHDL model checking 
and [13] for PSL.  

However, to be able to check a property, it has to be 
specified in the model, whereas, for our study, we propose an 
approach of property checking without the need of an early 
property description. 

Electronic design engineers, especially in the automotive 
field, when they model a new function as a first attempt, they 
mainly need to optimize its hardware resources use, in order to 
estimate its cost. Therefore, our technique has a definite 
advantage as it checks the observability property without 
adding any more specifications definition. 

4. Observability Analysis Process  
In order to check the observability, first we imagined to 

analyze the model by parsing the source code to check the free 
cycles. This approach would have needed a deep analysis of 
the code, pinpointing the I/O accesses, expanding the loops, 
etc.; tasks quite equivalent to a compilation phase. We then 
noticed that during the simulation of the source code, the 
simulation engine actually follows the same analysis steps. 
Hence, we oriented our efforts to the interpretation of the 
simulation results of a model representing the appropriate 
behaviour of the system, which is easier and faster. In fact, 



  

when we simulate a model, we can generate a trace file 
recording all the value changes of the system signals and 
variables. Such trace file should be sufficient to seek free 
clock cycles by seeking cycles when there are no values 
changes.  

Hence, in order to be able to check the observability of a 
system, an alternative approach would be to carry out an 
analysis on generated trace file, in order to detect the non-
occupied clock cycles by the nominal operation of the system. 
It means that we should detect the cycles non-occupied by the 
value changes during simulation. Then, we check if the system 
is sufficiently ready to accept on line the observation process 
for diagnosis in these free cycles. If the free cycles’ duration is 
not sufficient, we should try to propose modifications to 
improve the basic model (Figure 3). 
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Figure 3. Observability checking iterative process. 

5. SystemC HW/SW Co-design  
The automotive industry usually employs Simulink models 

to express the embedded functions specifications. However, 
when the hardware architecture reaches a complex level of 
functional distribution, it becomes difficult to a diagnosis 
designer to maintain the HW/SW link for each function or 
sub-function of the system in the diagnosis model. Therefore, 
to keep track of the hardware mapping of the software 
functions, we use HW/SW co-design languages to model and 
simulate the appropriate behaviour of the system representing 
an automotive distributed function. If we detect a functional 
fault, we can localize the corresponding hardware module as 
we know exactly the existing link between the sub-function 
and the hardware sub-component [2]. 

5.1. SystemC language 

One of the most promising SystemC advantages is HW/SW 
co-modeling to develop virtual platforms, because it supports 
a unified language of HW/SW modeling [14]. 

 
We have selected SystemC as a modeling language because 

it has many advantages: 
 

• It allows HW/SW modeling with the same language 
• The models could be easily connected to any other 

hardware models [15], or functional models (e.g. in 
Simulink) [16], [17], [18]; 

• SystemC environment includes also a simulator: it consists 
of a C++ library and an event-based simulation engine; 

• Any C or C++ library can be included in a HW/SW co-
model. 

5.2. The embedded electronic architecture 

The whole architecture consists of n ECUs communicating 
through the CAN network. In this part of the work, we have 
modeled the CAN protocol real-time behaviour to realize 
communications between ECUs models. We have simplified 
the details to ease the modeling; by implementing a virtual 
arbiter on the bus. With the Transaction Modeling approach, 
the communication between components is described as 
function calls 0. 

5.3. SystemC co-simulation trace  

The simulation of the SystemC model generates a trace file 
in the VCD format, specified in the standard IEEE 1364-1995. 
The dump file is structured in a free format. White space is 
used to separate commands and to make the file easily 
readable by a text editor. The VCD file starts with header 
information giving the date, the simulator’s version number 
used for the simulation, and the timescale used. Next, the file 
contains definitions of the scope and type of variables being 
dumped, followed by the actual value changes at each 
simulation time increment.  
 

 

Figure 4. VCD file format. 

Only the variables that change value during a time increment 
are listed. The simulation time recorded in VCD file is the 
absolute value of the simulation time for the changes in 
variable values (Figure 4).  



  

6. OBSAN (OBServability ANalysis) Tool  

6.1. Working environment 

We use Matlab tool as working environment for the 
implementation of OBSAN Tool. The choice of Matlab was 
justified by the easiness of the connection of a Matlab 
program either to Simulink models or SystemC models that 
we use for the simulation of the system behaviour. Matlab, 
allows also an easy manipulation of VCD files by converting 
them in a string array of one column. Thereafter, our tool 
analyzes the contents of each line of the array by carrying out 
string manipulations. Finally, Matlab generates graphic charts 
as output. 

6.2. Input parameters 

As input parameters, OBSAN Tool reads:  
• The content of the VCD file,  
• the duration of time necessary for the observation 

per clock cycle, 
• the duration of time required by the hardware 

component for data processing,  
• time necessary for accessing the hardware ports for 

read/write, 
• the length of an observation period, expressed as a 

multiple of the clock period. 
  

 
 

Figure 5. OBSAN tool input user interface. 

Then, the tool computes the system observability degree based 
on these inputs (Figure 5). 

7. Results 
Figure 6 shows the first result of observability checking; the 
message “This system is observable with the mean frequency 
per period = 4”, means that the free clock cycles are sufficient 
to accept an observation process whose duration is 
approximately 4 times the system clock period. 

On the vertical axis, we may see that the observability takes a 
Boolean value: observability= “1” if the correspondent clock 
cycle in the horizontal axis is sufficient for observation, 
otherwise, observability=”0”. 
  
 

 

Figure 6. OBSAN tool output user interface. 

 We went a bit further in our analysis by determining “the 
observability timing plan” of the system. This planning is 
established from the result of observability checking by 
adding the observation process when observability=”1” and 
with a rational frequency, yielding the activation planning of 
the surveillance process (Figure 6). 

8. Validation 
To validate the results of our observability checking 

analysis, we applied it to a function that an industrial partner 
has proposed to us. We first described this function, and then 
we describe its implementation on our test platform. 

8.1. Smart Distance Keeping system  

We have tested our approach on the Smart Distance Keeping 
(SDK) function, given by a truck manufacturer. “SDK” is 
equivalent to the Adaptive Cruise Control (ACC) function, 
except that the distance/speed regulation is based only on a 
fixed distance of 50 m (compliant to European regulations for 
heavy trucks). 

 

Figure 7. Smart Distance Keeping function. 

Thus, using an embedded radar, the SDK sub-system 
maintains a safe headway time, i.e. the inter-vehicle distance 
is varying as a function of the velocity and is maintained at a 
minimum legal distance of 50 m (Figure 7), [19]. 

8.2. DIAFORE platform specifications 

The platform that we use for tests is called DIAFORE 
(Diagnosis of distributed functions), and consists of three 



  

ECUs. The first two ECUs are equivalent, while the third ECU 
is based on a more powerful microcontroller (Figure 8), 
[20][21]. The ECUs exchange data via the CAN bus. 

  

Microprocessor: Motorola MPC555, 40MHz
Memory: 448K Flash, 26K RAM, 8K EEPROM

Operating Voltage: 9-16VDC
Inputs:      15 Analog Inputs

3 Low Frequency Digital Inputs
1 Emergency Stop Input

Outputs:   12 3A Peak/1A Hold Injector Drivers
6 6A Low Side PWM
1 5A PWM H-Bridge

1 Relay Driver (Main Power)
Datalinks: 2 CAN 2.0B Channels

1 RS485 Channel
 

Figure 8. Sample of the target ECUs 

A Smartcraft star node and an interconnection device are 
used to connect the different ECUs with a development laptop 
through the CAN bus (Figure 9). 

Simulink/Motohawk
blocks

 

Figure 9. DIAFORE platform interconnected components. 

8.3. Implementing the application on a ECUs 
network 

In order to implement an application on an ECU, first a 
Matlab/Simulink model of the application should be created. 
Then, “Motohawk” physical mapping blocks, including  I/O 
blocks, timer blocks, triggers, data storage in memory, CAN 
bus configurations and more internal controlled circuits have 
to be instantiated to establish the link with the physical target 
ECU (programming the physical timers and configuring the 
CAN bus and I/O pins, Figure 10) [22]. 

Then, once our Simulink model for the application is 
completed and ready to be tested, the RTW (Real Time 
Workshop) Simulink library and the a cross-compilation tool 
(Greenhills software [23]) bond together to generate the C 

code of our model that contains both basic Simulink blocks 
with diagnosis process blocks and physical mapping blocks. 
Finally, a given tool transfers the assembled generated C code 
to the ECUs memories. This interactive tool helps also to 
visualize the input/output values and to control the stored or 
predefined data. 

 

Figure 10. Simulink Motohawk blocs. 

As the described validation process admits only Simulink 
models, we had to envisage a second way of modeling based 
on Matlab/Simulink instead of SystemC. We figured out that 
Modelsim tool, a mixed VHDL/Verilog/System C simulator 
(from Mentor Graphics Inc.), has the capability of generating 
simulation traces in VCD format. This tool could be interfaced 
to Simulink using “Link for ModelSim library”. So we set up 
an alternative solution where the design is modeled using the 
usual Simulink blocks, the signals whose observability should 
be checked are probed by Modelsim “to-vcd-file” blocks. The 
behavioural model of this co-simulation probe block is done in 
VHDL.  

As soon as a simulation session starts, Simulink and 
ModelSim collect the results in a VCD file which can be 
processed using the OBSAN Tool for observability checking 
as described before. 

9. Conclusions and perspectives 
This paper proposed an alternative approach for enhancing 

the diagnosis of electronic embedded systems by checking 
observability. The simulation environments used to validate 
our approach are SystemC and Matlab/Simulink. The impact 
of a rigorous property checking method on real time diagnosis 
for automotive applications has been shown.  

However, this result has been obtained for one simulation 
run of the system. In a complex system, and from an analysis 
point of view, the system events would have an apparent 
random behaviour that may be analyzed statistically. Thus, to 



  

improve the realness of our analysis, we need to significantly 
increase the number of simulation runs. 

As a future work, we aim to gather valid observability 
frequencies of the same model in order to improve our 
approach with a statistical interpretation of the results. To 
reach this goal, we need to randomize data inputs values and 
the value change instants and run numerous simulations using 
the randomized values. We aim also to extend the 
observability property at several system levels in order to 
achieve different levels of observability.  

We will also investigate the feedback to the design process 
when the observability checking tool will be part of an 
iterative design and modeling process. 
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