
HAL Id: hal-00337021
https://hal.science/hal-00337021

Submitted on 5 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Observability Checking to Enhance Diagnosis of Real
Time Electronic Systems

Manel Khlif, M. Shawky

To cite this version:
Manel Khlif, M. Shawky. Observability Checking to Enhance Diagnosis of Real Time Electronic
Systems. DS-RT 2008. The 12-th IEEE International Symposium on Distributed Simulation and
Real Time Applications.October 27 - 29, 2008., Oct 2008, Vancouver, Canada. �hal-00337021�

https://hal.science/hal-00337021
https://hal.archives-ouvertes.fr

Observability Checking to Enhance
 Diagnosis of Real Time Electronic Systems

Abstract

This paper describes a new property checking approach in

order to enhance the diagnosis ability of an electronic
embedded system, included in an automotive application. We
consider functional diagnosis that is not necessarily oriented
towards electronic components, and may result from flaws in
the design process. The idea is, at the highest levels of the
design procedure, to be able to assess the observability degree
of the aimed system. Our approach is based on the analysis of
the system simulation results. It allows checking the
observability property in a real time electronic system in order
to improve its diagnosis capacity.

To reach this objective, we have set up an iterative
modeling process. The model of the real time electronic
system represents the input for the simulation step, which
precedes the property checking. It is possible to model the
system in two different ways: either with a combined
architectural and functional modeling using SystemC, or
solely functional modeling using Matlab/Simulink. Then, we
check the observability property of the system, if it is not
verified, our contribution consists in adding a feedback to the
modeling step to improve the model. Otherwise, we validate
the result through a test in an electronic automotive platform
using as input the Simulink model used for the simulation step.

Index Terms- Observability, property checking, co-
modeling, co-simulation, real time system diagnosis.

1. Introduction
Car manufacturers propose continuously advanced driving

assistance functions that involve more than one computing
unit. A computing unit uses information issued from sensors
or other computing units, yielding a “system with distributed
functions”. However, one of the disadvantages of this
distribution is the difficulty of the real time diagnosis to detect
and localize a fault. To take into account all the computing
considerations of a highly distributed architecture, we use a
combined modeling methodology that reveals the existing
links between architectural and functional modeling [2].

Our contribution in this paper is to enhance the diagnosis

ability of a real time distributed electronic system, especially
in the automotive field. Therefore, we check the observability
of the system necessary for real time on-line diagnosis. The
electronic distributed architecture that we study is embedded
on board of a truck. It is composed of a set of ECUs
(Electronic Computing Unit) connected by the bus CAN
(Controller Area Network) [3]. Every ECU is composed of a
processor, a memory, a CAN interface and Input/Output
interfaces.

To present our contributions, this paper is structured as

follows:
First, we present the definition of the observability property.

Then, we present the observability property analysis and
checking process that we propose in Section II.

Section III and IV present the property checking and the
observability analysis principles, as we practice them in our
design expansion process.

In section V, we present the design flow starting with a
combined architectural/functional modeling (using SystemC).
In section VI, we give the details of OBSAN Tool
(OBServability ANalyzer) that we have implemented. We
discuss the results in section VII and the validation on a
physical platform in section VIII.

Finally, we conclude this paper and present our future
works.

2. Observability Property
Before adding a diagnosis process to a system, we should

check its diagnosability [4], [5]. To estimate the
“diagnosability level” of a system, the resolution level of
faults detection and isolation and faults prediction capacity
have to be verified. The presence of a fault is detected by
observing of one or more discrepancies. In this way, faults
detection is the result of the observation of the discrepancies
of the system compared to its appropriate behaviour [6], [7].
Thus, the observation of the behaviour of the system is
necessary to validate its diagnosability.

Manel KHLIF, Mohamed SHAWKY
Heudiasyc UMR 6599- Université de Technologie de Compiègne

Centre de Recherches de Royallieu BP 20529
60200 Compiègne FRANCE

Firstname.lastname@hds.utc.fr

For this reason, we propose in this paper a property called

“Observability” as a sub-property of the diagnosability.
We consider that the on-line diagnosis is realized by

additional functions with respect to those needed for the usual
operation of the system. The local diagnosis functions
periodically check the correct behaviour of the nominal
functions, by accessing their inputs/outputs, and checking if
the actual results correspond to the expected ones.

In our approach, we aim checking the observability property
in an electronic automotive system to allow adding a process
of real time observation. This should allow an easy
observation of the system’s behaviour for diagnosis without
interfering with the nominal operation of the system
(Figure 1).

in out

Function 1 Function 2

Data Results

ECU

Communication Bus

Data for observationData for observation

Observation
Process for diagnosis

Data from observationData from observation

Figure 1. Observation process.

We define the observability degree as the time available for
on observing process to carry out the periodic surveillance
process. We consider that we are dealing with locally
synchronous and globally asynchronous digital systems:
within a single ECU, all input/output accesses are aligned with
the edges of a main clock, and throughout the network of
ECUs, the data diffusions are done through asynchronous
demands over the CAN bus. Hence, to determine the available
time intervals for the observation process, we seek the free
cycles not exploited by the nominal operation of the system
(Figure 2). After that, we compare the duration of the
available cycles with the time necessary to execute the
observation process using the same hardware resources. The
system is called “potentially observable” if the ‘non-occupied’
periods allow the execution of the observation process.

Time

Function 1

Function 2

Occupied component by data processing

Free cycle

Legend:

Occupied component by read/write data

Figure 2. Processes execution cycles.

In the next section, we present research works close to our
objectives, using different property checking techniques for
electronic architectures.

3. Electronic Architectures Property checking
The existing techniques of property checking use HDLs

(Hardware Description Language) for specification. Most of
these techniques use PSL (Property Specification Language)
for properties specification. PSL is a language developed by
Accellera standards organisation, for specifying properties or
assertions about hardware designs [8]. The properties can then
be simulated or formally verified. Since September 2004 the
standardization of the language has been done in IEEE 1850
working group. In September 2005, the IEEE 1850 Standard
for Property Specification Language (PSL) was announced.

Property Specification Language is used with multiple
electronic system design languages such as:

• VHDL: Very high speed integrated circuit Hardware
Description Language (IEEE 1076),

• Verilog (IEEE 1364),
• System Verilog (IEEE 1800), and
• SystemC by OSCI.

 Then, these HDL based techniques use model-checking
tools to check the specified properties [9], such as in [10], [11]
for SystemC model checking, [12] for VHDL model checking
and [13] for PSL.

However, to be able to check a property, it has to be
specified in the model, whereas, for our study, we propose an
approach of property checking without the need of an early
property description.

Electronic design engineers, especially in the automotive
field, when they model a new function as a first attempt, they
mainly need to optimize its hardware resources use, in order to
estimate its cost. Therefore, our technique has a definite
advantage as it checks the observability property without
adding any more specifications definition.

4. Observability Analysis Process
In order to check the observability, first we imagined to

analyze the model by parsing the source code to check the free
cycles. This approach would have needed a deep analysis of
the code, pinpointing the I/O accesses, expanding the loops,
etc.; tasks quite equivalent to a compilation phase. We then
noticed that during the simulation of the source code, the
simulation engine actually follows the same analysis steps.
Hence, we oriented our efforts to the interpretation of the
simulation results of a model representing the appropriate
behaviour of the system, which is easier and faster. In fact,

when we simulate a model, we can generate a trace file
recording all the value changes of the system signals and
variables. Such trace file should be sufficient to seek free
clock cycles by seeking cycles when there are no values
changes.

Hence, in order to be able to check the observability of a
system, an alternative approach would be to carry out an
analysis on generated trace file, in order to detect the non-
occupied clock cycles by the nominal operation of the system.
It means that we should detect the cycles non-occupied by the
value changes during simulation. Then, we check if the system
is sufficiently ready to accept on line the observation process
for diagnosis in these free cycles. If the free cycles’ duration is
not sufficient, we should try to propose modifications to
improve the basic model (Figure 3).

Trace file

S
im

ul
at

io
n

Appropriate
behavior of
the system

model

O
bs

er
va

bi
lit

y
ch

ec
ki

ng

Yes

No

Ready
for On-board

diagnosis

Real time
on-board

diagnosis

Figure 3. Observability checking iterative process.

5. SystemC HW/SW Co-design
The automotive industry usually employs Simulink models

to express the embedded functions specifications. However,
when the hardware architecture reaches a complex level of
functional distribution, it becomes difficult to a diagnosis
designer to maintain the HW/SW link for each function or
sub-function of the system in the diagnosis model. Therefore,
to keep track of the hardware mapping of the software
functions, we use HW/SW co-design languages to model and
simulate the appropriate behaviour of the system representing
an automotive distributed function. If we detect a functional
fault, we can localize the corresponding hardware module as
we know exactly the existing link between the sub-function
and the hardware sub-component [2].

5.1. SystemC language

One of the most promising SystemC advantages is HW/SW
co-modeling to develop virtual platforms, because it supports
a unified language of HW/SW modeling [14].

We have selected SystemC as a modeling language because

it has many advantages:

• It allows HW/SW modeling with the same language
• The models could be easily connected to any other

hardware models [15], or functional models (e.g. in
Simulink) [16], [17], [18];

• SystemC environment includes also a simulator: it consists
of a C++ library and an event-based simulation engine;

• Any C or C++ library can be included in a HW/SW co-
model.

5.2. The embedded electronic architecture

The whole architecture consists of n ECUs communicating
through the CAN network. In this part of the work, we have
modeled the CAN protocol real-time behaviour to realize
communications between ECUs models. We have simplified
the details to ease the modeling; by implementing a virtual
arbiter on the bus. With the Transaction Modeling approach,
the communication between components is described as
function calls 0.

5.3. SystemC co-simulation trace

The simulation of the SystemC model generates a trace file
in the VCD format, specified in the standard IEEE 1364-1995.
The dump file is structured in a free format. White space is
used to separate commands and to make the file easily
readable by a text editor. The VCD file starts with header
information giving the date, the simulator’s version number
used for the simulation, and the timescale used. Next, the file
contains definitions of the scope and type of variables being
dumped, followed by the actual value changes at each
simulation time increment.

Figure 4. VCD file format.

Only the variables that change value during a time increment
are listed. The simulation time recorded in VCD file is the
absolute value of the simulation time for the changes in
variable values (Figure 4).

6. OBSAN (OBServability ANalysis) Tool

6.1. Working environment

We use Matlab tool as working environment for the
implementation of OBSAN Tool. The choice of Matlab was
justified by the easiness of the connection of a Matlab
program either to Simulink models or SystemC models that
we use for the simulation of the system behaviour. Matlab,
allows also an easy manipulation of VCD files by converting
them in a string array of one column. Thereafter, our tool
analyzes the contents of each line of the array by carrying out
string manipulations. Finally, Matlab generates graphic charts
as output.

6.2. Input parameters

As input parameters, OBSAN Tool reads:
• The content of the VCD file,
• the duration of time necessary for the observation

per clock cycle,
• the duration of time required by the hardware

component for data processing,
• time necessary for accessing the hardware ports for

read/write,
• the length of an observation period, expressed as a

multiple of the clock period.

Figure 5. OBSAN tool input user interface.

Then, the tool computes the system observability degree based
on these inputs (Figure 5).

7. Results
Figure 6 shows the first result of observability checking; the
message “This system is observable with the mean frequency
per period = 4”, means that the free clock cycles are sufficient
to accept an observation process whose duration is
approximately 4 times the system clock period.

On the vertical axis, we may see that the observability takes a
Boolean value: observability= “1” if the correspondent clock
cycle in the horizontal axis is sufficient for observation,
otherwise, observability=”0”.

Figure 6. OBSAN tool output user interface.

 We went a bit further in our analysis by determining “the
observability timing plan” of the system. This planning is
established from the result of observability checking by
adding the observation process when observability=”1” and
with a rational frequency, yielding the activation planning of
the surveillance process (Figure 6).

8. Validation
To validate the results of our observability checking

analysis, we applied it to a function that an industrial partner
has proposed to us. We first described this function, and then
we describe its implementation on our test platform.

8.1. Smart Distance Keeping system

We have tested our approach on the Smart Distance Keeping
(SDK) function, given by a truck manufacturer. “SDK” is
equivalent to the Adaptive Cruise Control (ACC) function,
except that the distance/speed regulation is based only on a
fixed distance of 50 m (compliant to European regulations for
heavy trucks).

Figure 7. Smart Distance Keeping function.

Thus, using an embedded radar, the SDK sub-system
maintains a safe headway time, i.e. the inter-vehicle distance
is varying as a function of the velocity and is maintained at a
minimum legal distance of 50 m (Figure 7), [19].

8.2. DIAFORE platform specifications

The platform that we use for tests is called DIAFORE
(Diagnosis of distributed functions), and consists of three

ECUs. The first two ECUs are equivalent, while the third ECU
is based on a more powerful microcontroller (Figure 8),
[20][21]. The ECUs exchange data via the CAN bus.

Microprocessor: Motorola MPC555, 40MHz
Memory: 448K Flash, 26K RAM, 8K EEPROM

Operating Voltage: 9-16VDC
Inputs: 15 Analog Inputs

3 Low Frequency Digital Inputs
1 Emergency Stop Input

Outputs: 12 3A Peak/1A Hold Injector Drivers
6 6A Low Side PWM
1 5A PWM H-Bridge

1 Relay Driver (Main Power)
Datalinks: 2 CAN 2.0B Channels

1 RS485 Channel

Figure 8. Sample of the target ECUs

A Smartcraft star node and an interconnection device are
used to connect the different ECUs with a development laptop
through the CAN bus (Figure 9).

Simulink/Motohawk
blocks

Figure 9. DIAFORE platform interconnected components.

8.3. Implementing the application on a ECUs
network

In order to implement an application on an ECU, first a
Matlab/Simulink model of the application should be created.
Then, “Motohawk” physical mapping blocks, including I/O
blocks, timer blocks, triggers, data storage in memory, CAN
bus configurations and more internal controlled circuits have
to be instantiated to establish the link with the physical target
ECU (programming the physical timers and configuring the
CAN bus and I/O pins, Figure 10) [22].

Then, once our Simulink model for the application is
completed and ready to be tested, the RTW (Real Time
Workshop) Simulink library and the a cross-compilation tool
(Greenhills software [23]) bond together to generate the C

code of our model that contains both basic Simulink blocks
with diagnosis process blocks and physical mapping blocks.
Finally, a given tool transfers the assembled generated C code
to the ECUs memories. This interactive tool helps also to
visualize the input/output values and to control the stored or
predefined data.

Figure 10. Simulink Motohawk blocs.

As the described validation process admits only Simulink
models, we had to envisage a second way of modeling based
on Matlab/Simulink instead of SystemC. We figured out that
Modelsim tool, a mixed VHDL/Verilog/System C simulator
(from Mentor Graphics Inc.), has the capability of generating
simulation traces in VCD format. This tool could be interfaced
to Simulink using “Link for ModelSim library”. So we set up
an alternative solution where the design is modeled using the
usual Simulink blocks, the signals whose observability should
be checked are probed by Modelsim “to-vcd-file” blocks. The
behavioural model of this co-simulation probe block is done in
VHDL.

As soon as a simulation session starts, Simulink and
ModelSim collect the results in a VCD file which can be
processed using the OBSAN Tool for observability checking
as described before.

9. Conclusions and perspectives
This paper proposed an alternative approach for enhancing

the diagnosis of electronic embedded systems by checking
observability. The simulation environments used to validate
our approach are SystemC and Matlab/Simulink. The impact
of a rigorous property checking method on real time diagnosis
for automotive applications has been shown.

However, this result has been obtained for one simulation
run of the system. In a complex system, and from an analysis
point of view, the system events would have an apparent
random behaviour that may be analyzed statistically. Thus, to

improve the realness of our analysis, we need to significantly
increase the number of simulation runs.

As a future work, we aim to gather valid observability
frequencies of the same model in order to improve our
approach with a statistical interpretation of the results. To
reach this goal, we need to randomize data inputs values and
the value change instants and run numerous simulations using
the randomized values. We aim also to extend the
observability property at several system levels in order to
achieve different levels of observability.

We will also investigate the feedback to the design process
when the observability checking tool will be part of an
iterative design and modeling process.

10. Acknowledgements
The implementation on the physical platform has been done
on the equipped vehicles of our laboratory, where the
engineering team, including Mr. Dherbomez, Ms Serban and
Mr. Tahan has been involved.

11. References

[1] Khlif, M., Shawky, M. Co-modelling and simulation with multilevel of

granularity for real time electronic systems supervision.
EUROSIM/UKSIM 2008. IEEE 10th International conference on
computer Modelling and Simulation. Emmanuel College, Cambridge,
England, 1 – 3 April 2008.

[2] Khlif, M., Shawky, M. Enhancing Diagnosis Ability for Embedded
Electronic Systems Using Co-Modeling. International Joint Conferences
on Computer, Information, and Systems Sciences, and Engineering
(CIS2E 07 - IETA 07 IEEE conference). December 3 - 12, 2007 (on line
conference).

[3] Paret, D. 2007. Multiplexed Networks for Embedded Systems: CAN,
LIN, FlexRay, Safe-by-Wire, Wiley, ISBN: 978-0-470-03416-3

[4] Nouioua, F., Dague P. A Probabilistic Analysis of Diagnosability in
Discrete Event Systems. The 18th European Conference on Artificial
Intelligence (ECAI'08. University of Patras, Patras, Greece /July 21st to
25th, 2008.

[5] Hamscher, W. and al, 1992. Readings in model-based diagnosis.
Morgan Kaufmann,ISBN: 1-55860-249-6, San Francisco, CA, USA.

[6] Misra, A., and al. Diagnosability of Dynamical Systems. Third
International Workshop on Principles of Diagnosis. pp. 239-244,
Rosario, WA, Oct. 12-14, 1992.

[7] Misra A., and al. Modeling Paradigm for Failure Detection, Isolation
and Recovery. Technical Report #95-001, Measurement and Control
Systems Laboratory, Department of Electrical Engineering. Vanderbilt
University, Jan. 1995.

[8] Accellera Inc. Property Specification Language Reference Manual-
Version 1.1- June 9/2004

[9] Bormann, J. and al. Model Checking in Industrial Hardware Design.
Design Automation Conference-1995- p= 298-303.

[10] Tahar, S. Assertion and Model Checking of SystemC. First Annual
North American SystemC Users Group (NASCUG) Meeting- San Diego,
California, USA-June 07, 2004

[11] Moinudeen, H. and al. Model Based Verification of SystemC Designs.
Circuits and Systems, 2006 IEEE North-East Workshop on. Gatineau,
Que. June 2006 - ISBN: 1-4244-0417-7, p: 289-292.

[12] D'eharbe, D. and al. Model checking VHDL with CV. Formal Methods
in Computer Aided Design (FMCAD), 1997.

[13] Model Checking PSL Using HOL and SMV . Model Checking PSL
Using HOL and SMV. Hardware and Software, Verification and
Testing. ISBN: 978-3-540-70888-9. Springer may 2007.

[14] Grötker, T. and al. 2002. System Design with SystemC. Springer,
Chapter 8, p. 131. ISBN 1402070721.

[15] Bombana, M. Bruschi, F. 2003. SystemC-VHDL co-simulation and
synthesis in the HW domain. Design, Automation and Test in Europe
Conference and Exhibition, pp. 101-105, Messe Munich, Germany.

[16] Warwick, C. SystemC calls MATLAB. MATLAB Central, March 2003,
http://www.mathworks.com/matlabcentral/

[17] Czerner, F. and Zellmann, J. 2002. Modeling Cycle-Accurate Hardware
with Matlab/Simulink using SystemC. 6th European SystemC Users
Group Meeting (ESCUG). Stresa, Ilalia.

[18] Boland, J-F. and al. 2004. Using Matlab and Simulink in a SystemC
verification Environment. 2nd North American SystemC User’s Group.
Santa Clara, CA, USA

[19] Claeys, X. and al. 2003. Chauffeur Assistant Functions. Report
restricted to RENAULT TRUCKS, Contract number IST-1999-10048,
Lyon, FRANCE.

[20] MGM.Mototron Inc. ECM-0555-080-0703-F Data Sheet-20/10/2006
[21] MGM.Mototron Inc. GCM-0563-048-0802 Data Sheet-14/08/2006
[22] http://www.mototron.com/support/wiki/index.php?title=MotoHawk
[23] http://www.ghs.com/

