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Abstract: We propose here a new LMI solution to H∞ observer-controller design
that ensures a disturbance attenuation level for the controlled output and for the
state estimation error, which is an open problem. This will be compared with a
well-known solution. An application to a wind tunnel model is provided.
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1. INTRODUCTION

For sake of simplicity, we consider single delayed-state
systems as:⎧⎪⎪⎨

⎪⎪⎩

ẋ = A0x + A1xh + Bu + Ew
y = Cx + Fw
z = Dx
x(θ) = φ(θ); θ ∈ [−h, 0]

(1)

where x ∈ R
n is the state vector, xh = x(t − h),

u ∈ R
r is the control input, y ∈ R

p is the output
measurement vector, z ∈ R

m is the controlled output,
w ∈ Rq is the square-integrable disturbance vector,
φ(θ) ∈ C[−h, 0] is the functional initial condition and
h ∈ R

+ is the delay.
An H∞ robust observer-controller is here proposed
in a delay independent framework, the design of
which being much simpler than existing ones. To
emphasize the interest of our method, the provided
results will be compared (on an illustrative example)
with existing strategies (e.g (Choi and Chung, 1996)).
On the other hand, when the observer delay is dif-
ferent from the system one (due to uncertainties), we
develop here a robustness analysis, and provide the
allowable maximal delay uncertainty that preserves
the stability of the (extended) closed-loop system.
The contributions of the paper are the following:

• We provide an LMI solution to the H∞ observer-
controller design, much simpler and powerful
than previous results.

• The given solution allows to get an H∞ distur-
bance attenuation property for the controlled
output and for the state estimation errors as
well, while, in previous contributions, only the
controlled output is considered which makes the
observer useless.

• In practice, the observer delay may be different
from the system one (which may be unknown
or difficult to measure). In this case, we provide
here a robustness analysis (with respect to delay
uncertainties) and give an evaluation of the
maximum allowable uncertainty.

The outline of this paper is as follows. In section 2,
some necessary background is developed. In section
3 a new simple method of H∞ observer-controllers
design is proposed in an LMI framework. The ro-
bustness of observer-controller scheme is studied in
section 4 to get the maximal delay uncertainty that
keeps stability. The illustrative example, i.e., the wind
tunnel model, is presented in section 5. Finally, some
concluding remarks end the paper.

2. BACKGROUND

This part is devoted to the results of (Choi and
Chung, 1996) for observer-based controllers of the
form (2). Note that it includes a specific term EGx̂(t)
that represents the coupling within the observer and
the control. In an H∞ framework it represents an



estimation of the worst possible disturbance (see
(Trentelman et al., 2001) for the linear non delay
case).{

˙̂x = (A0 + EG)x̂ + A1x̂h + Bu(t) − L(Cx̂ − y)
u = Kx̂

(2)

The observer and the control are then obtained
through two coupled Riccati equations including 7
parameters (2 matrices and 5 constants) which is
very involved to use. Nevertheless the estimation
error stability is guaranteed for closed-loop systems
only and no performance (in terms of H∞ gain) is
ensured for the observer. On the other hand, such a
performance is obtained for the closed-loop system,
as stated below.

Proposition 1. Consider the time-delay system (1)
(with F = Ip) and the observer-based controller (2),
and suppose that the control parameters are given by:

K = −
1

εc

BT Pc, G =
1

γ2εc

ET Pc, L =
1

εo

PoC
T

where εc and εo are some positive constants, and
Pc and Po are positive definite solution matrices
to the following Riccati-like equations for some for
some positive constants δc and δo and some positive-
definite weighting matrices Qc and Qo:

AT
0

Pc + PcA0 −
1

εc

Pc(BBT
−

1

δc

A1AT
1
−

1

γ2
EET )Pc

+εc(δcIn + DT D + Qc) = 0

(A0 + EG)Po −
1

εo

Po(CT C −
1

γ2
KT K −

δo

γ2
In)Po

+Po(A0 + EG)T + εo(
γ2

δo

A1AT
1

+ EET + Qo) = 0

(3)

Then, for all h, the closed-loop system is asymptoti-
cally stable and such that : ‖Tzw‖∞ ≤ γ.

3. A NEW H∞ OBSERVER-CONTROLLER
DESIGN METHOD

This section contains the main contribution of this
paper, i.e. the design of an H∞ observer-based con-
troller in an LMI framework. The provided method
ensures, not only the stability of the extended sys-
tem, but also an a priori H∞ attenuation property
of the disturbance, for the controlled output and
the estimation error, which is not the case in the
previous mixed design methods. This guarantees that
the observer can be used, in this control structure,
to get a good estimation of the state variables. For
instance, this can be useful also for diagnosis pur-
pose where the residuals, generated as the difference
between measured and estimated variables, are used
for fault detection. First, an H∞ stability criterion is
recalled for a time-delay system of the form (1), as
an extension of results in (Gu et al., 2003), or in a
similar form as in (Kokame et al., 1998).

Lemma 2. Consider system (1). Given a positive
scalar γ, if there exist some positive definite matrices

P = PT and S such that

L =

⎡
⎢⎣

A′

0P + PA0 + D′D + S PA1 PE
A′

1P −S 0

E′P 0 −γ2Iq

⎤
⎥⎦ < 0,

then
• the trivial solution of (1) with w ≡ 0, u ≡ 0, is

asymptotically stable for any delay, and
• ‖Tzw(s)‖∞ ≤ γ, for zero initial condition and

some positive scalar γ

Note that this result can directly be extended to
the case of time-varying delay, as precised in (Gu et

al., 2003).
Finally the optimal value of the attenuation bound γ
can be found by solving

γ∗2
min = min

P,S
γ2 (4)

s.t. L < 0, P > 0, S > 0,

which is a convex optimization problem.
Now, the following observer-controller scheme is con-
sidered:{

˙̂x = A0x̂ + A1x̂h + Bu − L(Cx̂ − y) + Gx̂
u = Kx̂

(5)

Noting e := x − x̂, and the extended state xe =[
x e

]T
, the extended closed-loop system with ob-

server and control (5) is:

ẋe =

[
A0 + BK −BK

−G A0 − LC + G

]
xe+[

A1 0
0 A1

]
(xe)h +

[
E

E − LF

]
w

= A0xe + A1(xe)h + Ew

(6)

The aim is here to provide results that ensure H∞

stability for the controlled output z and the estima-
tion error e. Two different cases are investigated in
this part:
(1) obtain an H∞ stabilization of a new controlled

output, combining z and e (with a unique atten-
uation bound γ)

(2) get the H∞ stabilization of the controlled output
z = Dx and of the estimation error e (with two
different attenuation bounds, γc and γo resp.).

Definition 3. The system (5) is said to be an H∞

observer-controller for system (1) if
• the trivial solution of (6) with w(t) ≡ 0, is

asymptotically stable, and
• (1) ‖Tzew(s)‖∞ ≤ γ for zero initial condition

and some positive scalar γ, with ze =[
D 0
0 In

]
xe = Dxe, or

(2) ‖Tzcw(s)‖∞ ≤ γc and ‖Tzow(s)‖∞ ≤ γo,
zc =

[
D 0

]
xe = and zo =

[
0 In

]
xe,

for zero initial condition and some positive
scalars γc and γo.



3.1 Case 1

This first case consists in applying the result of lemma
2 to the extended system (6). This leads to the
following solution.

Theorem 4. Consider the time-delay system (1) and
the observer-controller (5). Given a positive scalar
γ, if there exist positive definite matrices Pc = PT

c ,
Po = PT

o , Sc and So, and some matrices X ∈ R
m×n,

Y ∈ R
n×p satisfying the following matrix inequality:

Loc =

⎡
⎢⎢⎢⎢⎣

Mc 0 A1Pc 0 E PcDT

∗ Mo 0 PoA1 PoE − LF 0
∗ ∗ −Sc 0 0 0

∗ ∗ ∗ −So 0 0

∗ ∗ ∗ ∗ −γ2Iq 0

∗ ∗ ∗ ∗ ∗ −In

⎤
⎥⎥⎥⎥⎦ < 0, (7)

where ∗ means the symmetric element, and

Mc = A0Pc + PcA
T
0 + BX + XT BT + Sc,

Mo = AT Po + PoA − P−1
c (XB + BT XT )P−1

c

+CT Y Y + Y C + In + So

then the system (5) is an H∞ observer-controller
according to Definition 3, with the disturbance at-
tenuation level γ and the observer-controller gains:

L = −P−1
o Y, K = XP−1

c , G = −KT BT P−1
c P−1

o

Proof: The aim of this proof is to apply Lemma 2 to
the extended system, which leads to the LMI:⎡
⎢⎣
A′

0P + PA0 + D′D + S PA1 PE
A′

1P −S 0

E ′P 0 −γ2Iq

⎤
⎥⎦ < 0 (8)

Assuming that P and S are of the form:

P =

[
P1 0
0 P2

]
S =

[
S1 0
0 S2

]
(9)

we obtain:⎡
⎢⎢⎢⎢⎣

L11 −P1BK − GT P2 P1A1 0 P1E
∗ L22 0 P2A1 P2(E − LF )
∗ ∗ −S1 0 0
∗ ∗ ∗ −S2 0
∗ ∗ ∗ ∗ −γ2Iq

⎤
⎥⎥⎥⎥⎦ < 0

with

L11 = (AT + KT BT )P1 + P1(A + BK) + DT D + S1

L22 = (AT − CT LT + GT )P2 + P2(A − LC + G) + In + S2

Now let us choose G such as GT P2 = −P1BK
and multiplying both sides of the previous LMI by
diag([P−1

1 , In, P−1
1 , In, Iq]) it leads to:

L2 < 0, with

L2 =

⎡
⎢⎢⎢⎢⎣

L211 0 A1P
−1
1 0 E

∗ L222 0 P2A1 P2(E − LF )
∗ ∗ −P−1

1 S1P
−1
1 0 0

∗ ∗ ∗ −S2 0
∗ ∗ ∗ ∗ −γ2Iq

⎤
⎥⎥⎥⎥⎦

and

L211 = P−1

1
(AT + KT BT ) + (A + BK)P−1

1

+P−1

1
DT DP−1

1
+ P−1

1
S1P−1

1

L222 = (AT
− CT LT + GT )P2 + P2(A − LC + G) + In + S2

Noting Pc = P−1
1 , Po = P2, Sc = P−1

1 S1P
−1
1 ,

So = S2, X = KP−1
1 , Y = −P2L, we get:

L2 =

⎡
⎢⎢⎣

L211 0 A1Pc 0 E

∗ L222 0 PoA1 PoE + Y F

∗ ∗ −Sc 0 0
∗ ∗ ∗ −So 0

∗ ∗ ∗ ∗ −γ2Iq

⎤
⎥⎥⎦ < 0 (10)

L211 = PcAT + APc + XT BT + BX + PcDT DPc + Sc

L222 = AT Po + PoA − P−1

c (XB + BT XT )P−1

c

+CT Y Y + Y C + In + So

Using the Schur complement, it leads to the inequal-
ity (7). �

If the minimal attenuation bound is to be searched,
then the following optimization problem has to be
solved:

γ2
min = min

Pc,Po,X,Y,Sc,So

γ2 (11)

s.t. Loc < 0, Pc > 0, Po > 0, (12)

Sc > 0, So > 0,

Of course the problem to be solved (11) is not convex
due to the term P−1

c (XB + BT XT )P−1
c in Mo. Note

that this can be rewritten as:

Mo = AT Po + PoA + CT Y Y + Y C

+In + So − ZT − Z (13)

( with Z = −GT Po = P−1
c BK) (14)

A first attempt to solve this non convex problem is
given below.

Proposition 5. A solution to the observer-controller
design is to follow the iterative procedure:
Step 1: Initialisation: solve the LMI problem (11)

with Mo of the form (13), Z being unknown and
get Z, γ1 = γ1

min. Set test = 1, tol = 1e − 3, i = 1
and Niter = 50.

Step 2: (1) while (test==1) and (i < Niter),
(2) Solve the LMI problem (11) with Mo of the

form (13) (Z being the one obtained at step 1)
and get Pc, Po, X, Y , Sc, So, γmin

(3) Calculate Z = P−1
c BX and set γi = γi

min

(4) test=(γi
−γi−1

γi > tol)

(5) i = i + 1, γi−1 = γi

(6) end
Step 3: If test=0, then γmin=γi. calculate L =
−P−1

o Y, K = XP−1
c and G = −KT BT P−1

c P−1
o

Step 4: Check the H∞ closed-loop stability by solv-
ing the optimisation problem (4) (following Lemma
2) on the extended system (6) with L, K and G
obtained at step 3. This allows to get the minimal
attenuation bound ensured with the H∞ stabilizing
observer-controller.



Note that, in order to reduce the convergence time
when the attenuation bound approaches zero, the
optimal problem (11) is solved with the constraints
γ > 0.01. This will avoid to do many iterations when
γ is approaching 0.

3.2 Case 2

In that case the result of lemma 2 is applied to the
extended system (6) in both configurations:
(1) zc =

[
D 0

]
xe = Dcxe (requiring an attenua-

tion bound γc)
(2) zo =

[
0 In

]
xe = Doxe (requiring an attenua-

tion bound γo)
This leads to the following result:

Theorem 6. Consider the time-delay system (1) and
the observer-controller (5). Given some positive
scalars γc and γo, if there exist positive definite matri-
ces Pc = PT

c , Po = PT
o , Sc and So, and some matrices

X ∈ R
m×n, Y ∈ R

n×p satisfying the following matrix
inequalities:

Lc =

⎡
⎢⎢⎢⎢⎣

Mc 0 A1Pc 0 E PcDT

∗ Mc
o 0 PoA1 PoE + Y F 0

∗ ∗ −Sc 0 0 0
∗ ∗ ∗ −So 0 0

∗ ∗ ∗ ∗ −γ2

c Iq 0
∗ ∗ ∗ ∗ ∗ −In

⎤
⎥⎥⎥⎥⎦ < 0, (15)

Lo =

⎡
⎢⎢⎣

Mc 0 A1Pc 0 E

∗ Mo
o 0 PoA1 PoE + Y F

∗ ∗ −Sc 0 0
∗ ∗ ∗ −So 0

∗ ∗ ∗ ∗ −γ2

oIq

⎤
⎥⎥⎦ < 0, (16)

where ∗ means the symmetric element, and

Mc = A0Pc + PcA
T
0 + BX + XT BT + Sc,

M c
o = AT Po + PoA − P−1

c (XB + BT XT )P−1
c

+CT Y Y + Y C + So,

Mo
o = AT Po + PoA − P−1

c (XB + BT XT )P−1
c

+CT Y Y + Y C + In + So

then the system (5) is an H∞ observer-controller
according to Definition 3, with the disturbance at-
tenuation levels γc, γo (respectively for the controlled
output z = Dx and for the state estimation error e)
and the observer-controller gains:

L = −P−1
o Y, K = XP−1

c , G = −KT BT P−1
c P−1

o(17)

If a minimal attenuation bound is to be searched, a
solution is to solve the following optimization prob-
lem:

γmin = min
Pc,Po,X,Y,Sc,So

1

2
(γc + γo) (18)

s.t. Lc < 0,Lo < 0, Pc > 0, Po > 0, (19)

Sc > 0, So > 0,

Proof: The proof directly follows the methodology of
the previous proof of Theorem 4. Applying Lemma 2
for both configurations (zc and zo), leads to:

with zc : We obtain L2 with

L211 = PcA
T + APc + XT BT + BX + PcD

T DPc + Sc

L222 = AT Po + PoA − P−1
c (XB + BT XT )P−1

c

+CT Y Y + Y C + So

with zo : We obtain L2 with

L211 = PcA
T + APc + XT BT + Sc

L222 = AT Po + PoA − P−1
c (XB + BT XT )P−1

c

+CT Y Y + Y C + So + In

which leads to the above theorem. �

Finally the intuitive procedure given above to over-
come the nonlinearity in the matrix inequality can
directly be applied to this case, with the new optimi-
sation problem (18).

4. ROBUSTNESS ANALYSIS W.R.T DELAY
UNCERTAINTY

In this part we assume that the delay is uncertain,
i.e the delay of the real system is h = d + θ and may
be different from the one used in the observer (the
nominal delay d. Note that the method here used has
been developed in (Verriest et al., 2002). It can be
directly extended to other types of uncertainties.
In this case, the observer-controller is then of the form{

˙̂x = A0x̂ + A1x̂(t − d) + Bu − L(Cx̂ − y) + Gx̂

u = Kx̂
(20)

and the extended closed-loop system is:

ẋe =

[
A0 + BK −BK

−G A0 − LC + G

]
xe +

[
A1 0
A1 0

]
(xe)h

+

[
0 0

−A1 A1

]
(xe)d +

[
E

E − LF

]
w

=A0xe + Ah(xe)h + Ad(xe)d + Ew (21)

Now, assuming h = d + θ, we can write:

e−sh = e−sd + (e−s(d+θ) − e−sd) = e−sd(1 − ∆(s))

with ∆(s) = 1 − e−sθ. Therefore the characteristic
equation of the above system can be written as:

Ψ(s) = det[Ψ0(s)] det[In + Ψ−1
0 (s)Ahe−sd∆(s)]

where Ψ0(s) = sI2n −A0 − (Ah + Ad)e
−sd.

Now, the previous design ensures that the nominal
extended system is stable, i.e. det[Ψ0(s)] is stable.
Then the perturbed closed loop system remains stable
if det[In + Ψ−1

0 (s)Ahe−sd∆(s)] does not change sign
when s sweeps the imaginary axis. Invoking Rouché’s
theorem, it follows that the condition for stability is

‖Qd(s)∆(s)‖∞ < 1. (22)

where Qd(s) = Ψ−1
0 (s)Ahe−sd. As shown in (Verriest

et al., 2002), this means that the maximal uncertainty
bound that preserves stability may be determined as:

θmax = 1/‖se−sdΨ−1
0 (s)Ah‖∞ (23)

Then for all θ ∈ (−θmax, θmax), the determinant has
a fixed sign, implying the absence of zero crossings,



and henceforth the stability of the perturbed system
(provided the nominal one is stable).
The result here given can be summarized by the
following proposition.

Proposition 7. Let the real system (1) be defined with
an uncertain delay h = d+ θ, where d is known and θ
is the uncertainty (unknown and bounded). Assume
that an observer-controller (5) has been designed in
the nominal case (i.e. θ = 0). Then the applied
observer-controller in the real case (20) preserves the
closed-loop stability for all uncertainty up to

θmax = 1/‖se−sdΨ−1
0 (s)Ah‖∞ (24)

where Ψ0(s) = sI2n −A0 − (Ah + Ad)e
−sd.

5. APPLICATION TO A WIND TUNNEL MODEL

This example in (Manitius, 1984) is a simplified
mathematical model of the Mach number dynamic
response to guide vane changes. The delay in one state
variable represents the transportation time between
the guide vanes of the fan and the test section of
the tunnel. It has been tackled also in (Germani
et al., 2000), where an approximation approach is
used to design a LQG control, i.e. in the presence of
Gaussian noise, and assuming the exact knowledge of
the delay. In steady-state operating conditions (fan
speed, liquid nitrogen injection rate and gaseous-
nitrogen vent rate) the dynamic response of the Mach
number is given by the following system (Germani et

al., 2000):

ẋ =

⎡
⎣−0.5091 0 0

0 0 1
0 −36 −9.6

⎤
⎦ x +

⎡
⎣ 0 −0.005956 0

0 0 0
0 0 0

⎤
⎦xh

+

⎡
⎣ 0

0
36

⎤
⎦u +

⎡
⎣ 0

0
10

⎤
⎦w

y =
[
0 1 0

]
x + w

and h = 0.33sec., x1 is the Mach number, x2 is the
guide vane angle and x3 = ẋ2. The disturbance is a
resistant torque on the input motor.
Note that we have decided to control the Mach
number but also the vane angle, i.e.

z =

[
1 0 0
0 1 0

]
x (25)

For simulation purpose an initial value at time t =
0sec. is used to generate a functional initial condition
on t ∈ [0, 0.5]. The observer acts at t = 0.5sec. A unit
step disturbance is applied at t = 10sec.

5.1 Choi-Chung method

Using the method of (Choi and Chung, 1996) we can
obtain the following result (note that due to the 7
parameters to be set, this procedure is quite involved
and not systematic). A solution can be obtained for

γ = 1.4 (for the closed-loop system). Results are
shown in figure 1. The estimated error response e
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and the controlled output z are shown in figure 3 for
h = 0.33sec.
We can note in vector e of figure 3 that, as no robust
property is guaranteed for the observer in this case,
the disturbance attenuation for the state estimation
error may not be good. This can be appreciated in the
maximum singular value frequency plot of Tew(jω)
(Fig. 2).
Note also, that, even if different values of the pa-
rameters can be chosen to get a smaller γ, the ob-
tained attenuation property may be larger. Indeed,
this depends on the coupling between the observer
and controller.
Applying the robustness analysis w.r.t delay uncer-
tainties, in this framework, leads to θmax = 118.7 sec.
To conclude from this example only, this does not
emphasize the interest of this mixed design. The
methodology is too complex (too much parameters
to set a priori) and the results are not so far differ-
ent from what could be obtained using a separated
design.

5.2 Proposed method- case 1

Following the methodology given in proposition 5, a
solution is obtained in 4 iterations and is such that
γmin = 0.01 and

G � 03×3, K =

⎡
⎣ 0
−4.4823106

−29315

⎤
⎦

T

, L =

⎡
⎣ 0

0
10

⎤
⎦



Now, when applying the step 4 of proposition 5, we
obtain

γstep4
min = 1.55 10−6,

which, as we can see in figures 4 and 5 is a good esti-
mation of the real obtained disturbance attenuation
level.
Of course we can note that some gains are very large.
This is due to the fact that the minimal attenuation
bound is required which, in this case, is near 0. If one
aims to solve a sub optimal problem only (i.e. with γ
given a priori) the gain will be much less large.
With this design the frequency and temporal behav-
iors of the observer-controller are presented in figures
4, 5 and 6. As we can see on these figures, the designed
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observer controller scheme is not affected by the dis-
turbance input (neither the controlled output nor the
state estimation errors), which is a great advantage
compared to both previous designs.
Note that solving case 2 would lead here to very
similar results.
Finally, applying proposition 7, the maximal de-
lay uncertainty that preserves stability is θmax =
118.7 sec. Hence, simulations with an observer delay
d much different from the system one h could show
the robust property. As the transient behaviors are
very few affected by such a difference, results are not
shown here.
To conclude on our method, it clearly points out
the efficiency of the LMI formulation, which allows
to get a solution even with a great disturbance
attenuation property, and with no parameter to be set
a priori. Also the H∞ disturbance attenuation can be
ensured for both the controlled output and the state

estimation errors which greatly improves the existing
results.

6. CONCLUDING REMARKS

A new observer-controller design is proposed and
solved in a procedure including LMIs. This new de-
sign allows to get a closed-loop system and an ob-
server which both satisfy an H∞ attenuation prop-
erty. The proposed method is simple to be solved
as it does not contain any parameter to be chosen a
priori, which differs from the current solution in the
literature. As the solution is based on an optimisation
procedure, it is worth noting that one can design
(if possible) the best observer-controller w.r.t a dis-
turbance attenuation property but could also design
an observer-controller scheme with attenuation levels
specified a priori for the estimation errors and for the
controlled outputs, allowing to tackle the usual trade-
off performance (w.r.t disturbance attenuation) /ro-
bustness (w.r.t uncertainties). This emphasizes the
great flexibility of the methodology.
The given results could be directly extended to the
case of multiple time-delay and also for time-varying
delays. As a further extension, it could be possible to
take into account some constraints on the observer
and controller gain.
Further study may also concern the derivation of
delay-dependent H∞ observer-controller; however, to
reduce conservatism, complex Lyapunov-Krasovskii
functionals are generally used (Gu et al., 2003) which
may lead in our case to non convex matrix inequalities
more difficult to be relaxed to get LMIs.
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Kokame, H., H. Kobayashi and T. Mori (1998). Ro-

bust H∞ performance for linear delay-differential
systems with time-varying uncertainties. IEEE

Transactions on Automatic Control 43(2), 223–
226.

Manitius, A. Z. (1984). Feedback controllers for a
wind tunnel model involving a delay: Analytical
design and numerical simulation. IEEE Trans. on

Automatic Control 29(12), 1058–1068.
Trentelman, H.L., A.A. Stoorvogel and M. Hau-

tus (2001). Control Theory for Linear Systems.
Springer.

Verriest, E., O. Sename and P. Pepe (2002). Robust
observer-controller for delay-differential systems.
In: IEEE Conference on Decision and Control.
Las Vegas, USA.


