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Summary. Let Z = (X, Y ) be a planar Brownian motion, Z the filtration it gen-
erates, and B a linear Brownian motion in the filtration Z. One says that B (or its
filtration) is maximal if no other linear Z-Brownian motion has a filtration strictly
bigger than that of B. For instance, it is shown in [2] that B is maximal if there exists
a linear Brownian motion C independent of B and such that the planar Brownian
motion (B, C) generates the same filtration Z as Z.

We give a necessary condition for B to be maximal, and a sufficient condition
which may be weaker than the existence of such a C. This sufficient condition is
used to prove that the linear Brownian motion

R

(X dY −Y dX)/|Z|, which governs
the angular part of Z, is maximal.

MSC 2000: 60J65, 60H20

Key words: Brownian filtration, Maximal Brownian motion, Exchange prop-
erty

1 Introduction

In the theory of filtered probability spaces, it is natural to study pairs of
filtrations, one immersed in the other, and to attempt to understand possible
different ways the smaller filtration can be immersed in the larger. A simple
case is to consider various ways the filtration of a one-dimensional Brownian
motion can be immersed in that of a two-dimensional Brownian motion. This
study was started by two of us, who introduced in Section 2 of [2] the notions
of complementability and maximality (Definition 1 below), and gave examples
and counter-examples. The present paper, which concentrates on criteria for
maximality, can be considered a sequel to [2].
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Let Z = (Zt)t>0 denote a planar Brownian motion with Z0 = 0 (all Brown-
ian motions will be started from the origin); call Z = (Zt)t>0 the filtration
generated by Z. In the sequel, Z and Z are fixed, and interest will focus on
one-dimensional Z-Brownian motions (shortly: Z-BM1) and their filtrations.
If B is a Z-BM1, its natural filtration FB is immersed in Z, that is, every
FB-martingale is also a Z-martingale. Consequently, FB

t = Zt ∩ FB
∞ for every

t > 0, so FB is characterized by its end σ-field FB
∞ = σ(B). Many properties

that FB may enjoy can equivalently be stated either in terms of FB
t for all t,

or in terms of σ(B) only.

An example of such equivalent statements is the following double defini-
tion, borrowed from [2].

Definition 1. Let B be a Z-BM1.
One says that B is complementable if there exists a Z-BM1 C inde-

pendent of B, and such that the Z-BM2 (B, C) generates the filtration Z

(equivalently, the Z-BM2 (B, C) generates the σ-field σ(Z)).
One says that B is maximal if for every Z-BM1 D, one has

(

∀t > 0 FB
t ⊂ FD

t

)

=⇒
(

∀t > 0 FB
t = FD

t

)

(equivalently, σ(B) ⊂ σ(D) =⇒ σ(B) = σ(D)).

These two properties (to be complementable and to be maximal) can also
be considered as properties of the filtration FB generated by B; in the sequel,
we shall sometimes say that a filtration is complementable or maximal when
it is generated by a complementable or maximal Z-BM1.

Considering Z = (X, Y ) as the complex BM Z = X + iY and calling R
the modulus of Z, we get an interesting example by setting

Ut =

∫ t

0

Xs dXs + Ys dYs

Rs
and Vt =

∫ t

0

Xs dYs − Ys dXs

Rs
.

Indeed, U and V are independent Z-BM1 which govern the radial part and
angular part of Z, but (U, V ) does not generate the whole filtration. Actually,
as recalled in Proposition 5, it generates only the quotient of FZ by SO2,
that is, the filtration generated by Z up to an arbitrary rotation. Yet, U is
complementable: an independent complement is exhibited in [2].

Corollary 6 of [2] states that every complementable Z-BM1 is maximal.
Thus, U is maximal. This corollary also gives many examples of non com-
plementable BM1, for instance B′ =

∫

sgn(B) dB, where B is any Z-BM1.
Indeed, the filtration generated by B′ is also generated by |B|, so it is strictly
included in that of B, and not maximal; by the corollary it cannot be com-
plementable.
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Conversely, is every maximal Z-BM1 complementable? We do not know.
This question is already open in the simpler case when B is complementable
except for a germ property at time 0+ (this will be made precise in Defini-
tion 3).

In that particular case, we shall give a necessary and sufficient condition for
maximality (Theorem 1). Interestingly, this condition is an exchange property:
it says that supremum and intersection of certain σ-fields commute.

The necessary and sufficient condition of Theorem 1 is no longer sufficient
for an arbitrary Z-BM1 to be maximal, but it is still necessary (Corollary 1).

Using a variation on this condition (Proposition 4), we establish maximal-
ity for the Z-BM1 V =

∫

(X dY −Y dX)/R. When the present paper was first
submitted, the question whether V is complementable, a stronger property,
was open. We now know that the answer is positive (September 2008); our
construction of an independent complement is rather involved and we hope
to simplify it before publication.

2 Notation and reminders

In a probability space (Ω, A, P), all sub-σ-fields are assumed to be (A, P)-
complete. Similarly, all filtrations are right-continuous and (A, P)-complete; a
raw filtration is a filtration which is not necessarily right-continuous.

If S = (St)t>0 is any process, the filtration generated by S is denoted

by FS . For 0 6 a < b < ∞, we define new processes as follows:

S
bda,bce

= (St)t∈bda,bce S
cea,bce

= (Sa+t − Sa)t∈bd0,b−ace

S
bda,∞bd

= (St)t∈bda,∞) S
cea,∞bd

= (Sa+t − Sa)t>0

If G is a filtration and S a σ-field, the exchange property

⋂

h>0

(Gt+h∨ S) = Gt∨ S

does not hold in general; but it does when G and S are independent (see [5]).
In plain words, independent enlargements preserve right-continuity. A key
ingredient in the proof of this fact is that independent enlargements preserve
conditional expectations: if T and U are two independent σ-fields, if T is T-
measurable and if S is a sub-σ-field of T, then E[ T | S ] = E[ T | S∨U ].

All Brownian motions are started at the origin. A planar Brownian motion
Z = (X, Y ) is fixed; its natural filtration is denoted by Z = (Zt)t>0.

Recall the previsible representation property: every Z-martingale has the
form c+

∫

H dX+
∫

K dY , where c is a constant and H and K are Z-previsible.
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3 A necessary condition for maximality

Definition 2. Two Z-BM1 B and C are said to be parallel if C =
∫

H dB
for some Z-previsible process H.

Since B and C are linear Brownian motions, H = ±1 on a (dt× dP)-full set;
so one also has B =

∫

H dC. Parallelism is an equivalence relation.

Any two Z-BM1 generating the same filtration, or more generally any two
Z-BM1 B and C such that the filtration FB is included in FC , are parallel.
Indeed, B is a Z-martingale adapted to the sub-filtration FC , hence also an
FC-martingale; so it is a stochastic integral w.r.t. C.

Proposition 1. 1) Given any Z-BM1 B, there always exists some Z-BM1
independent of B.

2) Given two Z-BM1 B and C, the following are equivalent:

(i) B and C are parallel;

(ii) there exists a Z-BM1 independent of B and independent of C;

(iii) every Z-BM1 independent of B is also independent of C.

Proof. 1) B has the form
∫

H dX +
∫

K dY , where H and K are Z-previsible,
and H2 + K2 = 1. The martingale D = −

∫

K dX +
∫

H dY is also a Z-BM1
since <D, D> = K2 + H2 = 1; and D is independent of B since <D, B> =
−KH + HK = 0.

(i) ⇒ (iii): if B and C are parallel, C =
∫

H dB for some previsible H ; so
if D is any Z-BM1 independent of B, one has d<C, D> = H d<B, D> = 0,
showing thet D is independent of C too.

(iii) ⇒ (ii) is an immediate consequence of 1.

(ii) ⇒ (i): if D is a Z-BM1 independent of B and of C, one has

dB = HB dX + KB dY , dC = HC dX + KC dY

and dD = HD dX + KD dY ,

where the vector (HD, KD) is ( dt× dP)-a.e. orthogonal to (HB , KB) and
( dt× dP)-a.e. orthogonal to (HC , KC). Hence, (HB , KB) and (HC , KC) are
( dt× dP)-a.e. parallel; so (HB , KB) = L (HC , KC) for some previsible L
defined ( dt× dP)-a.e. Consequently B =

∫

L dC, showing parallelism. ut

Open questions. Given an arbitrary Z-BM1 B, does there always exist a C
parallel to B and maximal? Does there always exist a C parallel to B and
complementable? We do not know.

Proposition 2. Let B be a Z-BM1.

(i) The σ-fields B′
t =

⋂

ε>0(Zε∨FB
t ) form a filtration (that is, they are

right-continuous in t).
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(ii) The filtration B′ contains FB and it is generated by some Z-BM1 B′.

(iii) Any such B′ is parallel to B.

(iv) Applying the same procedure to B′ instead of B does not yield any-
thing new: the filtration B′′ defined by B′′

t =
⋂

ε>0(Zε∨B′
t) is equal to B′.

Proof. (i) The raw filtration B′ is right-continuous at 0 because B′
t ⊂ Zt and

⋂

t>0 Zt is degenerate. It is also right-continuous at t > 0 for the following
reason. For ε > 0, the raw filtration (Zε∨FB

t )t∈[ε,∞) is generated by the σ-field

Zε and the Brownian motion B
ceε,∞bd

which is independent of that σ-field; by
the independent exchange property, that raw filtration is right-continuous.
Consequently, for 0 < ε < t one has

⋂

h>0

B′
t+h ⊂

⋂

h>0

(Zε∨FB
t+h) = Zε ∨ FB

t ,

and right-continuity of B′ follows from
⋂

h>0

B′
t+h ⊂

⋂

ε>0

(Zε∨FB
t ) = B′

t.

(ii) The filtration B′ clearly contains FB ; to show that B′ is generated by
some Z-BM1, it suffices by Corollary 1 of [3] to verify that B′ is immersed in
Z and is “1-Brownian after 0”.

The immersion property will be established by checking that if R is any
bounded, B′

∞-measurable r.v., E[ R |Zt ] is B′
t-measurable. This is trivial for

t = 0 since Z0 is degenerate, so we suppose t > 0. For any ε ∈ ce0, tce, one

can write R = Φ
(

Z
bd0,εce

, B
bd0,tce

, B
cet,∞bd)

for some measurable functional Φ.
Now, the first two arguments of Φ are Zt-measurable and the third one is

independent of Zt; so E[ R |Zt ] =
∫

Φ
(

Z
bd0,εce

, B
bd0,tce

, b
)

w(db), where w stands

for the law of B
cet,∞bd

. Hence E[ R |Zt ] is measurable for Zε∨FB
t ; as this holds

for any ε ∈ ce0, tce, E[ R |Zt ] is B′
t-measurable and B′ is immersed in Z.

It remains to see that B′ is 1-Brownian after 0, that is, given any s > 0, the
filtration (B′

t)t>s is generated by its initial σ-field B′
s and some 1-dimensional

BM independent of B′
s. Now, for all t > s, one can write

B′
t =

⋂

ε∈ce0,sce

(

Zε ∨ FB
s ∨ σ(B

ces,tce
)
)

=
(

⋂

ε∈ce0,sce

(Zε ∨ FB
s )

)

∨ σ(B
ces,tce

) = B′
s ∨ σ(B

ces,tce
) ,

where the second equality (exchanging a supremum with an intersection) is

due to the process B
ces,tce

being independent of the σ-field Zs and a fortiori of

the smaller σ-field Zε∨FB
s . The claim is established by observing that B

ces,∞bd

is a BM1 independent of Zs and a fortiori of B′
s. So B′ is generated by some

Z-BM1 B′.

(iii) B′ must be parallel to B because its filtration contains that of B.
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(iv) The filtration B′′ obtained by iterating this procedure verifies for
0 < ε 6 t the inclusion B′′

t ⊂ Zε∨B′
t ⊂ Zε ∨ (Zε∨FB

t ) = Zε∨FB
t . Taking the

intersection over ε gives B′′
t ⊂ B′

t, whence equality. This extends to t = 0 by
right-continuity, or by observing that B′′

0 is degenerate. ut

With the notation of Proposition 2, B cannot be maximal unless its fil-
tration equals the (a priori larger) filtration B′. Thus we get the following
corollary.

Corollary 1. Let B be a Z-BM1. A necessary condition for B to be maximal
is the exchange property

∀t > 0
⋂

ε>0

(Zε∨FB
t ) = FB

t

(or equivalently, the equality
⋂

t>0

(

Zt∨σ(B)
)

= σ(B)

between the final σ-fields of these filtrations).

4 Sufficient conditions for maximality

The following lemma was used in the proof of Corollary 6 of [2] (although it
was not explicitly stated there).

Lemma 1. Given (Ω, A, P), let S, T and U be three ( (A, P)-complete) sub-
σ-fields of A verifying S ⊂ T and S ∨ U = T ∨ U. If U is independent of T,
then S = T.

Proof. It suffices to use an independent enlargement in conditional expecta-
tions so as to write, for any bounded, T-measurable r.v. T ,

E[ T | S ] = E[ T | S∨U ] = E[ T |T∨U ] = T . ut

Definition 3. Let B be a Z-BM1. We shall say that B is complementable
after 0 if there exists a Z-BM1 C independent of B such that

∀t > 0 ∀ε ∈ ce0, tce Zε ∨ F
(B,C)
t = Zt (1)

(or equivalently,
∀ε > 0 Zε ∨ σ(B, C) = Z∞ , (2)

since the filtration (Zε ∨ F
(B,C)
t )t>ε is immersed in (Zt)t>ε).

Clearly, if B is complementable, it is also complementable after 0. The
converse is false; for instance, if B is complementable, any Brownian motion
generating the Goswami-Rao filtration associated to B (see [1]) is comple-
mentable after 0, but not complementable.
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Complementability after 0 is easily seen to be a property of the filtration:
if B̄ is any other Z-BM1 generating FB , then B̄ is complementable after 0 if
and only if B is (with the same independent complement C). Thus we may
say that the filtration itself is complementable after 0.

Observe that (2) is equivalent to
⋂

ε>0

(

Zε ∨ σ(B, C)
)

= Z∞ since Z∞

contains everything. Similarly, (1) is equivalent to

∀t > 0
⋂

ε∈ce0,tce

(

Zε ∨ F
(B,C)
t

)

= Zt .

If C in definition 3 is not a complement to B, that is, if σ(B, C) is strictly
included in Z∞, one has

(

⋂

ε>0

Zε

)

∨ σ(B, C) = Z0 ∨ σ(B, C) = σ(B, C) 6= Z∞ =
⋂

ε>0

(

Zε ∨ σ(B, C)
)

,

so the exchange property fails for these σ-fields.
Observe also that B and C play the same rôle in Definition 3: when (1)

or (2) is satisfied, both B and C are complementable after 0.

The next two lemmas will be useful to get a sufficient condition for maxi-
mality.

Lemma 2. Let B be a Z-BM1. If B is complementable after 0, then the
filtration B′ introduced in Proposition 2 is complementable after 0.

Proof. Since B is complementable after 0, let C be as in Definition 3. For
ε > 0, one has Z∞ = Zε ∨ σ(B, C) ⊂ Zε ∨ σ(B′, C) ⊂ Z∞, wherefrom
Zε ∨ σ(B′, C) = Z∞. But C is independent of B′ since B′ is parallel to B
(Propositions 1 and 2 (iii)). Consequently, B′ is complementable after 0. ut

Lemma 3. Let B and D be two Z-BM1. If B is complementable after 0 and
σ(B) ⊂ σ(D), then FD ⊂ B′, where B′ is the filtration defined in Proposi-
tion 2.

Proof. As B is complementable after 0, let C be as in Definition 3. Consider
any Z-BM1 D whose filtration contains FB ; to establish FD ⊂ B′, it suffices
to show inclusion of their end σ-fields only: σ(D) ⊂ B′

∞ =
⋂

t>0

(

Zt ∨ σ(B)
)

.
Since FD contains FB , D is parallel to B, and also independent of C by

condition (iii) of Proposition 1; so (C, D) is a Z-BM2. For t > 0, we shall
apply Lemma 1 to the three σ-fields

S = Zt ∨ σ(B) = Zt ∨ σ(Bcet,∞bd) ,

T = Zt ∨ σ(D) = Zt ∨ σ(D
cet,∞bd

) ,

U = σ(C
cet,∞bd

) .
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First, S is included in T because σ(D) contains σ(B). Second, owing to the
definition of C and to (2),

Z∞ = Zt ∨ σ(B, C) = Zt ∨ σ(B) ∨ σ(C
cet,∞bd

) = S ∨ U ⊂ T ∨ U ⊂ Z∞ ,

which implies S ∨ U = T ∨ U. Third, U is independent of T because the three

σ-fields Zt, σ(C
cet,∞bd

) and σ(D
cet,∞bd

) are independent, for (C, D) is a Z-BM2.
So Lemma 1 applies, yielding S = T. Therefore σ(D) ⊂ T = S = Zt ∨ σ(B),
and, as t > 0 was arbitrary, σ(D) ⊂

⋂

t>0

(

Zt ∨ σ(B)
)

. ut

From these two lemmas, one deduces immediately the following results.

Proposition 3. Let B a Z-BM1. If B is complementable after 0, then the
filtration B′ defined in Proposition 2 is maximal.

Proof. If FD contains B′ for D some Z-BM1, then FD contains a fortiori FB

and Lemma 3 gives FD ⊂ B′; so FD cannot strictly contain B′. ut

Remark 1. Define B to be maximal after 0 if for D any other Z-BM1, one has
the maximality property
⋂

ε>0

(

Zε ∨ σ(B)
)

⊂
⋂

ε>0

(

Zε ∨ σ(D)
)

=⇒
⋂

ε>0

(

Zε ∨ σ(B)
)

=
⋂

ε>0

(

Zε ∨ σ(D)
)

(equivalently, with obvious notation, B′ ⊂ D′ ⇒ B′ = D′). This property
is clearly necessary for B′ to be maximal; it is also sufficient, because, if
B′ ⊂ FD , one also has B′ ⊂ FD ⊂ D′, and maximality after 0 forces B′ = D′,
whence B′ = FD. So Proposition 3 can be thus rephrased: complementability
after 0 implies maximality after 0.

The next maximality criterion also has two equivalent statements, in terms of
the filtrations FB and B′, or of their end σ-fields σ(B) and B′

∞.

Theorem 1. Assume that B is a Z-BM1, complementable after 0. Then B is
maximal if and only if the following exchange property holds:

σ(B) =
⋂

ε>0

(

Zε ∨ σ(B)
)

(equivalently, the filtrations FB and B′ are equal).

Proof. Corollary 1 says that the exchange property is necessary for maximality
(without supposing B to be complementable after 0).

Conversely, if the exchange property holds, the filtration B′ from Propo-
sition 2 has the same terminal σ-field as the filtration FB , so these filtrations
are equal; and Proposition 3 says that B′ is maximal. ut

We shall now give a variant of the sufficient condition in Theorem 1, ob-
tained by modifying both the assumption that B be complementable after 0
and the exchange property.
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Proposition 4. Let W = (B, C) be a Z-BM2; call B′ the filtration con-
structed from B as in Proposition 2. Assume

(i) for each t > 0, σ(Z
bdt,∞bd

) ⊂ σ(Zt) ∨ σ(W
cet,∞bd

) ;

(ii) for each t > 0, the conditional laws L[ Zt |F
B
t ] and L[ Zt |B

′
t ] are

equal.

Then FB = B′ and B is maximal.

Observe that hypothesis (i) is stronger than supposing B to be comple-
mentable after 0, since it features σ(Zt) instead of the larger σ-field Zt in
the right-hand side. On the opposite, (ii) is weaker than the exchange prop-
erty FB = B′ from Theorem 1.

Remark also that one always has L[ Zt |F
B
t ] = L[ Zt |F

B
∞ ] and L[ Zt |B

′
t ] =

L[ Zt |B
′
∞ ] by independent enlargements; so (ii) in Proposition 4 amounts to

∀t > 0 L[ Zt |σ(B) ] = L

[

Zt

∣

∣

∣

⋂

ε>0

(

Zε∨σ(B)
)

]

. (3)

Proof of Proposition 4. It suffices to show that σ(B) = B′
∞; this implies equal-

ity of the filtrations FB and B′, and maximality of B follows by Theorem 1.
For an arbitrary bounded, Z∞-measurable r.v. R, we have to show

E

[

R
∣

∣

∣

⋂

ε>0

(

Zε∨σ(B)
)

]

= E[ R |σ(B) ] . (4)

By L1-density, we may restrict ourselves to the case that R is measurable in

σ(Z
bdt,∞bd

) for some t > 0. By hypothesis (i), R is some measurable function

of Zt and of the processes B
cet,∞bd

and C
cet,∞bd

. By linearity and density, we

may suppose R = f(Zt) g(B
cet,∞bd

) h(C
cet,∞bd

) with f , g and h bounded and
measurable. Calling w the 1-dimensional Wiener measure, one has

E[ R |Zt∨σ(B) ] = f(Zt) g(B
cet,∞bd

) E[ h(C
cet,∞bd

) |Zt∨σ(B) ]

= f(Zt) g(B
cet,∞bd

)
∫

h dw

since C
cet,∞bd

is a BM1 independent of Zt∨σ(B
cet,∞bd

) = Zt∨σ(B). Consequently

E

[

R
∣

∣

∣

⋂

ε>0

(

Zε∨σ(B)
)

]

= (
∫

h dw) g(B
cet,∞bd

) E

[

f(Zt)
∣

∣

∣

⋂

ε>0

(

Zε∨σ(B)
)

]

.

Using (3), the right-hand side becomes (
∫

h dw) g(B
cet,∞bd

) E[ f(Zt) |σ(B) ]; as
this is σ(B)-measurable, (4) is established. ut

Remark 2. The same proof also yields a slightly stronger result: Proposition 4
remains true if (i) and (ii) are no longer supposed to hold for each t > 0, but
only for a sequence of times tending to 0.
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5 Maximality of the BM1 driving the angular part of Z

It will be convenient to consider Z = (X, Y ) as the complex BM Z = X +iY .
Call R the modulus of Z. Almost surely Z does not come back to 0, so another
complex BM W can be defined by

Wt =

∫ t

0

Rs

Zs
dZs .

The real and imaginary parts of W are the BM1 given by

Ut =

∫ t

0

Xs dXs + Ys dYs

Rs
and Vt =

∫ t

0

Xs dYs − Ys dXs

Rs
.

The next proposition recalls some well-known facts concerning U and V
(see for instance Proposition 3.1 and Théorème 3.4 in [4]).

Proposition 5 (classical properties of U and V ; see [4]).

(i) The linear Brownian motions U and V are independent.

(ii) The process R is a strong solution of the stochastic differential equation

dRs = dUs +
ds

2Rs
;

in particular, R and U generate the same filtration.

(iii) For 0 < s 6 t,
Zt

Rt
=

Zs

Rs
exp

(

i

∫ t

s

dVr

Rr

)

.

(iv) For each t > 0, FZ
t = FW

t ∨ σ(Zt/Rt); moreover the r.v. Zt/Rt is
independent of W and uniformly distributed on the unit circle.

It is shown in [2] that the Z-BM1 U is complementable, hence also maximal.
Clearly, V is not an independent complement to U , because (U, V ) does not
generate Z (Proposition 5 (iv)); but V (and also U) is complementable after 0,
because if Z has been observed during some time-interval bd0, εce (however
small), then observing U and V suffices to recover Z.

We shall show that V is maximal as an application of Proposition 4.

Theorem 2. The Z-BM1 V =

∫

X dY − Y dX

R
is maximal.

Proof. We shall check that V satisfies hypotheses (i) and (ii) of of Proposi-
tion 4.

Hypothesis (i) is readily verified: knowing Zt and the increments of U and
V after t is sufficient to recover the path of Z after t: the modulus R = |Z| is
obtained as the solution to the stochastic differential equation

dRs = dUs +
ds

2Rs
,

and the argument Θ of Z = ReiΘ is then given by dΘ = dV/R.
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Hypothesis (ii) says that the conditional laws of Zt given the σ-fields σ(V )
and

⋂

ε>0

(

Zε ∨ σ(V )
)

are equal. The former, L[Zt|V ], is simply the law of Zt

because Zt is independent of V . This is a direct consequence of Proposition 5:
by (ii), Rt is independent of V , and by (iv), Zt/Rt is independent of the pair
(U, V ), and a fortiori of (V, Rt). Hence the triple (V, Rt, Zt/Rt) is independent,
and Zt = (Zt/Rt) × Rt is independent of V .

So, to verify Hypothesis (ii), we have to check that Zt is independent of
⋂

s>0

(

Zs ∨σ(V )
)

too. This property is less straightforward than the indepen-
dence of Zt and V ; we state it as a lemma. Strictly speaking, the elementary
proof, given above, that Zt is independent of V , was not necessary, because
it is also a consequence of that lemma, for

⋂

ε>0

(

Zε ∨ σ(V )
)

contains σ(V ).

Lemma 4 (key lemma). For any t > 0, the r.v. Zt is independent of the
σ-field

⋂

s>0

(

Zs ∨ σ(V )
)

.

The end of this paper is devoted to that proof, which consists of four steps;
the first three steps are Lemmas 5 to 7. Lemma 5 is certainly well-known.

Lemma 5. If (Tp)p>1 is any sequence of strictly positive (possibly infinite),
identically distributed r.v., then lim sup

p
Tp is a.s. strictly positive.

Proof. For δ > 0, observe that
{

lim sup
p

Tp < δ
}

=
{

∃ p sup
q>p

Tq < δ
}

⊂ lim inf
p

{Tp < δ } .

According to Fatou’s lemma, the probability of these events is majorized by
lim infp P[Tp < δ ], which equals P[T1 < δ ] because the Tp have the same law.
So P[lim sup Tp < δ] 6 P[T1 < δ]; the lemma follows by letting δ go to 0. ut

Lemma 6. Let (βt)t∈bd0,1ce be a BM1 and (αt)t∈bd0,1ce be a continuous, strictly
positive process independent of β, with diffuse law. Then the conditional law

of
∫ 1

0 αt dβt given β is almost surely diffuse. A fortiori, for every real m 6= 0,
∣

∣

∣
E
[

exp
(

i m
∫ 1

0 αt dβt

)
∣

∣ β
]

∣

∣

∣
< 1 a.s.

Proof. Let α̃ be a process with the same law as α, independent of (β, α). Then

L
[ ∫ 1

0
(αt − α̃t) dβt

∣

∣ α, α̃
]

= N
(

0,
∫ 1

0
(αt − α̃t)

2
dt

)

is a.s. non-degenerate. Consequently,

P
[∫ 1

0
(αt − α̃t

)

dβt = 0
]

= 0 ,

wherefrom
P
[ ∫ 1

0
αt dβt =

∫ 1

0
α̃t dβt

∣

∣ β
]

= 0 a.s.

But, conditional on β, the r.v.
∫ 1

0 αt dβt and
∫ 1

0 α̃t dβt are independent and
have the same law; so this conditional law must be diffuse. ut
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Lemma 7. Call R the σ-field σ
(

(R2n)n∈Z

)

. The r.v. Z1/R1 is independent
of

⋂

s>0
(Zs ∨ σ(V ) ∨ R) and uniformly distributed on the unit circle.

Proof. Owing to the reverse martingale convergence theorem, it suffices to
prove that for every m ∈ Z \ {0},

E

[ (Z1

R1

)m ∣

∣

∣
Z2n ∨ σ(V ) ∨ R

]

−→ 0 a.s. when n → −∞ .

To that end, call Qn this conditional expectation and, using Proposition 5 (iii),
observe that for n 6 −1,

Z1

R1
=

Z2n

R2n

−1
∏

k=n

ei∆k ,

where ∆k denotes the angular variation of Z from time 2k to 2k+1:

∆k =

∫ 2k+1

2k

dVs

Rs
.

One has

Qn =
(Z2n

R2n

)m

E

[

−1
∏

k=n

ei m∆k

∣

∣

∣
FR

2n ∨ σ
(Z2n

R2n

)

∨ σ(V ) ∨ R

]

,

where Z2n has been replaced with FR
2n∨σ(Z2n/R2n) in the conditioning σ-field

owing to the equality

Z2n = FR
2n ∨ FV

2n ∨ σ(Z2n/R2n) .

But everything in both sides of the conditional expectation is in σ(R, V ),
except Z2n/R2n which is independent of (R, V ) (see Proposition 5 (iv)). So,
by independent enlargement, σ(Z2n/R2n) may be removed, yielding

Qn =
(Z2n

R2n

)m

E

[

−1
∏

k=n

ei m∆k

∣

∣

∣
FR

2n ∨ σ(V ) ∨ R

]

.

Now, the random variables ∆k =
∫ 2k+1

2k dVs/Rs are conditionally independent
given FR

2n ∨ σ(V ) ∨ R because R and V are independent, R is Markov and
V has independent increments. This gives

Qn =
(Z2n

R2n

)m −1
∏

k=n

Ck ,

where
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Ck = E
[

ei m∆k

∣

∣ FR
2n ∨ σ(V ) ∨ R

]

= E
[

ei m∆k

∣

∣ σ
(

V
ce2k,2k+1ce

, R2k , R2k+1

) ]

.

It remains to prove that the product
∏−1

k=n Ck tends to 0 when n → −∞. By
scaling invariance of Z, the law of

(

2−k/2(V2kt−V2k )t∈bd1,2ce , 2−k/2R2k , 2−k/2R2k+1 , ∆k

)

does not depend upon k; hence the Ck are identically distributed. One can

apply Lemma 6 to β = V
ce1,2ce

and to α the inverse of the 2-dimensional Bessel
bridge from R1 to R2; this yields

|C0| =
∣

∣

∣
E
[

exp
(

i m
∫ 2

1 R−1
s dVs

) ∣

∣ σ(V, R1, R2)
]

∣

∣

∣
< 1 a.s.

Applying now Lemma 5 to Tk = − ln |Ck | gives lim infk |Ck | < 1; so the infinite
product tends to zero, and Lemma 7 is proved. ut

The fourth step is the final one:

Proof of Lemma 4. By scaling, we may suppose t = 1; we have to establish
that

E

[

f(Z1)
∣

∣

∣

⋂

s>0

(

Zs ∨ σ(V )
)

]

is constant, where f is any bounded, Borel function.
By linearity and L1-density, we may restrict ourselves to functions of the

form f(z) = g(|z|) h(z/|z|), with g and h bounded. Using Lemma 7, one can
write

E

[

f(Z1)
∣

∣

∣

⋂

s>0

(

Zs ∨ σ(V ) ∨ R
)

]

= c g(R1) ,

with c =
∫ 1

0 h(ei2πt) dt. Hence

E

[

f(Z1)
∣

∣

∣

⋂

s>0

(

Zs ∨ σ(V )
)

]

= c E

[

g(R1)
∣

∣

∣

⋂

s>0

(

Zs ∨ σ(V )
)

]

. (5)

But
Zs ∨ σ(V ) = FR

s ∨ σ(V ) ∨ σ(Zs/Rs) ;

therefore, by independence of R, V and Zs/Rs, one has for 0 < s 6 1

E[ g(R1) |Zs ∨ σ(V ) ] = E[ g(R1) |F
R
s ] .

Let s go to zero. By reverse martingale convergence, and using the fact that
FR

0+ = FU
0+ is degenerate, one ends up with

E

[

g(R1)
∣

∣

∣

⋂

s>0

(

Zs ∨ σ(V )
)

]

= lim
s→0
s>0

E[ g(R1) |F
R
s ] = E[ g(R1)] .

So the right-hand side of (5) is constant, and we are done. ut
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