
HAL Id: hal-00336997
https://hal.science/hal-00336997

Submitted on 5 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing Diagnosis Ability for Embedded Electronic
Systems Using Co-Modeling

Manel Khlif, M. Shawky

To cite this version:
Manel Khlif, M. Shawky. Enhancing Diagnosis Ability for Embedded Electronic Systems Using Co-
Modeling. SPRINGER, pp.6, 2007, ISBN 978-1-4020-8736-3. �hal-00336997�

https://hal.science/hal-00336997
https://hal.archives-ouvertes.fr

Enhancing Diagnosis Ability for Embedded
Electronic Systems Using Co-Modeling

Abstract- This paper describes a new modeling and simulation
approach in order to enhance the diagnosis ability of an
electronic embedded system, including in the automotive field.
Our modeling approach integrates the hardware specifications to
the functional model in order to establish better system
observation. It is based on hardware/software (HW/SW) co-
modeling with multilevel of granularity.

To reach this objective, we have set up a relationship between
the desired diagnosis accuracy and the level of granularity of the
HW/SW co-model, for every Electronic Computing Unit (ECU).
Our contribution allows the attribution of the right co-simulation
hierarchical level by attributing the right simulation accuracy,
for each function under observation.

Index Terms- hierarchical modeling, HW/SW co-modeling,
real time simulation.

I. INTRODUCTION

The technological development encourages the car
manufacturers to propose advanced driving assistance
functions that involve more than one computing unit. In fact, a
computing unit uses information issued from sensors or other
computing units, yielding a “system with distributed
functions”. In a vehicle, the functions are sometimes
distributed on several components or subsystems (computing
units, wires, sensors, actuators…), communicating with
several interconnection networks [1].

However, one of the disadvantages of this distribution is the

difficulty of the real time supervision to detect and localize a
fault, especially electronic hardware faults. To bring out the
advantages of a highly distributed architecture, we propose a
modeling methodology that benefits from the existing link
between the software and the hardware platforms.

Our contribution in this paper is to enrich the functional

models with hardware characteristics, at the very first phase of
establishing the diagnosis models (system observation), in
order to reproduce the appropriate behavior of the system in a
set of comprehensible models showing at the same time the
hardware and the software behaviors.

To present our contributions, this paper is structured as

follows:
First, we present the need of HW/SW co-modeling for

embedded electronic systems supervision. Then, we present
the related works done in the field of the HW/SW co-design
[2].

In section IV, we show a relationship between the required
accuracy for fault detection and the level of granularity in the
HW/SW co-model, in order to find an appropriate compromise
between fault detection accuracy and simulation speed. In
section V, we use SystemC as a working environment for the
hierarchical HW/SW co-modeling of our embedded electronic
architecture. We present the results in sections VI and VII.

Finally, in the last section we conclude this paper and
present our future works.

II. HARDWARE/SOFTWARE CO-MODELING FOR EMBEDDED

ELECTRONIC SYSTEMS

Car manufacturers usually employ software models
expressing the embedded functions to make fault detection
and diagnosis. However, when the hardware architecture
reaches a complex level of functional distribution, it becomes
difficult to a diagnosis designer to maintain the HW/SW link
for each function or sub-function of the system in the
diagnosis model.

We believe that every sub-function has a link with at least

one hardware sub-component, and a hardware fault appears in
the system as a functional fault. Therefore, if we detect the
functional fault we can localize the hardware fault if we know
exactly the existing link between the sub-function and the
hardware sub-component.

The electronic distributed architecture that we study is

embedded on board of a truck. It is composed of a set of ECUs
connected by the interconnection bus CAN (Controller Area
Network) [3]. Every ECU is composed of a processor, a
memory, a CAN interface and eventually Inputs/Outputs
interfaces.

Manel KHLIF, Mohamed SHAWKY
Heudiasyc - UMR 6599

Université de Technologie de Compiègne
Centre de Recherches de Royallieu

BP 20529
60205 COMPIEGNE cedex FRANCE

Functional

models

Hardware
description

models

Hardware-software
co-models

Co-simulation

System observation for diagnosis

Fig. 1. Hardware and software models for system observation for diagnosis.

Some existing techniques of fault detection and diagnosis,
especially of electronic systems, are based on functional
simulation of the real controlled system, running on a
prototyping platform, in parallel with the real time operation
of the system [4]. These techniques do not describe hardware
components (i.e. architecture and behavior description) and
need to be more accurate by expressing simultaneously both
hardware and software behaviors, in order to lead to more
accurate results of fault detection (Fig. 1).

We aim at modeling the functional distribution on the
hardware architecture, in a coherent way, offering the ability
to be connected to other models that may be proposed by
different manufacturers of such heterogeneous electronic
system. Our approach should allow the supervision system
designer to integrate different models to simulate and test the
system.

In the next section we present research works close to our

objectives, and that use mix hardware and software
information for simulation.

III. HW/SW CO-DESIGN

Hardware/software co-design is a set of methodologies and
techniques specifically created to support the concurrent
design of both systems, effectively reducing multiple
iterations and major redesigns [2].

Within the context of co-design methodologies, concurrent

hardware and software techniques have been proposed in the
literature employing for example SpecC to add more details at
the specification level [5]. The adoption of various formal
languages for co-simulation, like SDL and C [6] is mainly
used for the design of reactive systems, following the
stimulus–response paradigm of behavior, like telecom systems
such as wireless protocols employing different and

standardized formalisms. On the other hand, functional models
compatible with HDL (Hardware Description Language)
models [7] are needed to get accurate hardware specifications
using for example RTL (Register Transfer Level) level of
modeling. However when it concerns HW/SW co-design for
providing observation and verification, system’s behavior and
properties are specified in a single formal language such as in
[8] and [9].

Even though Hardware/Software co-design is receiving a lot

of attention in literature, most published works do not address
model-based diagnosis for electronic systems. In this paper,
we are not interested by dependability analysis (fault
simulation, estimation of optimal diagnostic strategies, etc,),
but we focus on co-modeling of the appropriate behavior of an
electronic system for co-simulation oriented diagnosis.

IV. MULTILEVEL OF GRANULARITY CO-MODELING

Multilevel of granularity is a hierarchical view of a system,
expressing in each level a degree of details and accuracy.

Our objective is also to develop a relationship between the
accuracy of the expected on-line fault detection and the level
of granularity of hardware/software co-modeling (Fig. 2).

Sub-system

co-modeled with a “g”
granularity level

Functional
model

A fault

Hardware
description

model

The hardware
source of fault

Fig. 2. Relationship between a sub-system HW/SW co-model and hardware

source of fault.

As a first step, we have to model the hardware architecture
as a set of hardware sub-components. Then, we have to model
the software platform as a set of sub-functions allocating them
to the modeled hardware sub-systems.

As a second step, we define a scale of criticality levels for
the sub-functions. Then we allocate a granularity level of
modeling to every criticality level, and hence, each sub-
function is co-modeled with a corresponding granularity level
(Fig. 3).

The more accurate the level of granularity, the longer the

simulation time is. Thus, it is possible to switch between two
or more levels of granularity according to the criticality level
of eventual faults and to the diagnosis system needs (e.g.:
functions priorities). This is the main advantage of our
approach of modeling at various levels of granularity.

s-f 1.2

s-f 2.3

s-f 3.1.
.
.

ECU1

ECU 2

ECU 3
.
.

Sub-system co-model

(with “g” granularity level)

List of faults
of s-f 1.2

(s-f 1.2 has
“p” function

priority)

“g” <->“p” “p” <->“a”

Accuracy “a”
of supervision

Fig. 3. Granularity-accuracy relationship.

V. WORKING ENVIRONMENT

A. SystemC

One of the most promising SystemC advantages is HW/SW
co-modeling to develop virtual platforms, because it supports
a unified language of HW/SW modeling [10].

We have selected SystemC as a working environment

because it has many advantages:

• SystemC allows hierarchical modeling to express the
multilevel of granularity modeling

• It allows HW/SW modeling with the same language
• The models could be easily connected to any other

hardware models [11], or functional models (e.g. in
Simulink) [12][13][14]

• SystemC environment includes also a simulator: it consists
of a C++ library and an event-based motor for simulation

• Any C or C++ library can be included in a HW/SW co-
model

Hence, we can describe the appropriate behavior of the

electronic embedded system with different levels of hierarchy.
Thus, every sub-system that should be under supervision can
be hierarchically co-modeled.

B. Cycle Accurate modeling

SystemC Transaction-level modeling (TLM) is a high-level
approach to model digital systems where details of
communication among modules are separated from the details
of the implementation of functional units or of the
communication architecture [15].

A Cycle Accurate (CA) model is a TLM model that
represents the stage of communication refinement, in which
communication is modeled accurately down to the level of bus
cycles, and even clock cycles. CA modeling allows hardware
verification, evaluating the state of every component in every
cycle and running software device drivers. CA simulation
speed varies between 10 and 100 KHz. A CA model consists
of a set of processes that run once per cycle. This fits with the
use of SC_METHOD processes and non-blocking calls.

 Fig. 4 shows that TLM projects do not require a lot of effort

and time to be correctly modeled compared to RTL projects.
In fact, a Cycle Accurate project may need approximately half
of the time compared to an RTL project for its realization.

For these advantages, we have used the CA level to co-
model our HW/SW platform as shown in the next section.

Fig. 4. Time and effort spent for RTL and TLM use cases [16].

VI. MULTILEVEL CO-MODELS

A. Multilevel of granularity using TLM modeling

We co-modeled with TLM, hierarchically, each HW/SW
sub-system beginning with the highest level of granularity.
Thus, on each level of granularity, we find a set of models
representing at the same time the functional behavior and the
hardware architecture.

 In the next sub-sections we show an example of TLM
model representing the embedded electronic architecture.

B. ECUs and CAN bus modeling

The whole architecture consists of n ECUs communicating
through the CAN network [3]. In this part of the work, we
have modeled the CAN protocol real-time behavior to realize
communications between ECUs models. We have simplified
the details to ease the modeling; by implementing a virtual
arbiter in the bus. With the Transaction modeling, the
communication between components is described as function
calls.

Each ECU is master and slave at the same time and has one
bidirectional port in each module. It is used to send orders to
the bus (Requests) and getting data and information from the
bus (Responses) (see Fig. 5). Each ECU that wants to send a
message sends a request to the bus. If at least 2 ECUs request
a bus transmission at the same time (i.e. in a time shorter than
a bus cycle), the bus arbiter selects the most important
message by comparing arbitration fields in the two messages.

Only one clock is used for all processors when the level of
granularity is high and the accuracy of the model for
simulation is set to the ECU clock cycle.

It is important to note that full CAN protocol is used only in
models with high level of granularity, expressing transactions
between ECUs. With a more accurate level of granularity, the

processor and the memory models of every ECU are wrapped
into SystemC modules in order to communicate with other
devices such as CAN controllers. Anyway, the transactions are
kept cycle accurate.

Master

Master

Master Slave

Slave

Slave

Arbiter

ECU1
ECU2
ECU3
Channel + communication port

Master

Master

Master Slave

Slave

Slave

Arbiter

ECU1
ECU2
ECU3
Channel + communication port

Fig. 5. CAN bus TLM model.

C. HW/SW models interfacing

The communication between hardware modules and
software modules should be done through message exchange.
Messages should be exchanged through a shared interface
between the two sides, implementing the needed methods for
message exchange and eventually using blocking calls (Fig.
6).

We have co-modeled in SystemC a sub-function of Lane

Keeping [17]; a given function from a truck manufacturer. The
Lane Keeping should keep a truck centered in the current lane
of a highway, detected by an embedded camera. Fig. 6 shows
also the example of the embedded camera software that sends
the acquired videos to an ECU (the hardware module), which
is responsible of filtering all extra images from the video
sequence, to get only the video sequence of the highway.

D. Interfacing SystemC co-models

A systemC co-model may be the result of a higher level
system level modeling, such as SySML [18] or AADL
(Architecture Analysis and Design Language) [19]. A
SystemC co-model can also integrate other functional models
in Simulink [12] for SW description and VHDL [20] for HW
description models. We show also that co-simulation is
possible by using interfaces between the heterogeneous
simulators (Fig. 7). For example, [11] presents some results of
design practice of HW modules; co-simulation and synthesis
are combined to achieve higher abstraction levels in the
design. The SystemC-VHDL co-simulator tool is also based
on a SystemC/C++ front-end developed to support the co-
simulation between VHDL and SystemC. Another example of
co-simulation tool is shown in [13] using Simulink with
SystemC in a cycle-accurate context.

/ / m o d u le u s in g S h a re d In te r fa c e

w h ile (tru e)
{

/ /G e t v id e o fro m c a m e ra
v id e o = a c q u ir e _ v id e o () ;

/ /S e n d v id e o to S h a re d In te r fa c e
p o rt -> s e n d _ v id e o (v id e o) ; / /1

//R e s u lts
v id e o = p o r t-> g e t_ f ilt_ v id e o () ; / /4

}

• v o id s e n d _ v id e o (V i v)
• V i g e t_ v id e o ()
• v o id s e n d _ la n e s _ v id e o (V i v)
• V i g e t_ f i lt_ v id e o ()

S o ftw a r e m o d u le

S h a re d In te r fa c e

// m o d u le u s in g S h a re d In te r fa c e

w h ile (t ru e)
{

/ /G e t v id e o fro m S h a re d In te r fa c e
v id e o = p o rt -> g e t_ v id e o () ; / /2

//L a n e s e x tra c t in g
e x tra c t in g _ la n e s (v id e o) ;

/ /S e n d f il te re d v id e o
p o r t-> s e n d _ la n e s _ v id e o (v id e o) ; / / 3

}

H a rd w a re m o d u le

Fig. 6. HW/SW modules interfacing.

The advantage of the proposed multilevel granularity co-
modeling is the possibility of establishing a link between a
HW/SW co-model and another type of models in any level of
detail and having several possibilities of co-simulation speed
for fault detection.

System design
and modeling

(e.g. AADL, SySML)

Partitioning

interfaceSW HW

Multilevel of Granularity
HW/SW co-models

(e.g. SystemC)

Functional
models

(e.g. Simulink
Matlab)

Hardware
description

models
(e.g. VHDL

Verilog

Simulation

System observation

Simulation SimulationCo-simulation
interface

Co-simulation
interface

1

2

3

4

5

Fig. 7. SystemC co-models communication with different simulation tools.

VII. CO-SIMULATION FOR DIAGNOSIS

The supervisory system can simulate the co-models
beginning with the highest level of the hierarchy in order to
observe the electronic system. In case of incoherence detection
in a given level of the hierarchy, our approach brings the
advantage of co-simulating the system with a more accurate
level in order to increase the accuracy of incoherence
localization (Fig. 8).

f1(ECU3)

processor

Memory

CAN interface

Co-model with

« G » granularity

Co-model with

« g» granularity

more accurate
than « G»

Diagnosis
with granularity« G »

Diagnosis
more accurate

with granularity« g »

Observation with
« G » granularity

Observation with
« g » granularity

ECU2

ECU3

ECU1

F1

Fig. 8. Multilevel of granularity co-simulation.

It is important to add that this approach of modeling for
diagnosis is simple to implement when the embedded
functions are cyclic, as progressive and repetitive simulations
may be done with real input values. For this reason, we have
tested our approach with the Lane Keeping (LK) system
described earlier (Fig. 9).
This system supplies a wheel angle set point sent to the ECUs,
and does not require any driver intervention. At any time, the
driver can deactivate the LK function. The LK system
recognizes the lane markings using an embedded camera.
In case of fault detection with a high level of granularity co-
simulation, the diagnosis system should make sure that the
electronic embedded system may suffers from a fault by co-
simulating and testing the same sub-function (e.g. Highway
videos capturing) with a more accurate level of granularity
until reaching the sub-system eventual source of fault.

Fig. 9. Lane Keeping function [14]

VIII. CONCLUSIONS AND PERSPECTIVES

This paper has presented a co-modeling technique with
multilevel of granularity under SystemC for electronic
systems. Cycle accurate models of the CAN bus, CAN

interfaces and ECUs including memories and processors has
been co-modeled with different levels of granularity.

The impact of a multi-granularity HW/SW model for the
hardware real-time fault detection has been shown.

This result shows that such modeling method is suitable to

simulate distributed real time HW/SW architecture, especially
electronic architectures and allows the supervision designer to
re-use the co-models in embedded simulations for real time
supervision or to simulate and test the system off-line.

As future work, we aim to extend the multilevel granularity

modeling to other computing platforms, like SoC (System On
Chip) for example; a technology which is gaining interest for
car manufacturers. The TLM is very suitable to model the
architecture of a SoC, in order to enable development of the
embedded software in advance of the hardware, and to carry
out analyses earlier in the design cycle.

ACKNOWLEDGMENT

We would like to thank Amanie Ghannoum and Janine
Alhassan for their contribution to this work.

REFERENCES

[1] Paret D. 2007. Multiplexed Networks for Embedded Systems: CAN,

LIN, FlexRay, Safe-by-Wire, Wiley, ISBN: 978-0-470-03416-3
[2] Giovanni. De Micheli, Rolf. Ernst. Readings in hardware/software co-

design. 2001. Embedded System Computer
[3] Paret D, 1999. Le bus CAN description : de la théorie à la pratique.

Dunod , ISBN-10: 2100047647, ISBN-13: 978-2100047642.
[4] Hamscher W. and al, 1992. Readings in model-based diagnosis. Morgan

Kaufmann, isbn: 1-55860-249-6, San Francisco, CA, USA.
[5] Gajski D-D. and al, 2000. SpecC: Specification Language and

Methodlogy, Kluwer Academic Publishers.
[6] Gioulekas, F. and al, 2005. Heterogeneous system level co-simulation

for the design of telecommunication systems. Journal of Systems
Architecture. 51, p. 688-705.

[7] Wong, S.Y, 1998. Hardware/software co-design language compatible with
VHDL. IEEE, WESCON/98, Anaheim, CA, USA, p. 78 -83.

[8] Csertan G. and al, 1994. Modeling of Fault-Tolerant Computing
Systems. In Proceedings of the 8th Symposium on Microcomputers and
Applications, uP'94, Budapest, Hungary, p.78-83.

[9] Csertan G. and al, 1995. Dependability Analysis in HW/SW co-design.
In Proceedings of the IEEE International Computer Performance and
Dependability Symposium, IPDS'95, Erlangen, Germany, p. 316-325.

[10] Grötker T. and al, 2002. System Design with SystemC. Springer,
Chapter 8, p. 131. ISBN 1402070721.

[11] Bombana, M.; Bruschi, F. 2003. SystemC-VHDL co-simulation and
synthesis in the HW domain. Design, Automation and Test in Europe
Conference and Exhibition, pp. 101-105, Messe Munich, Germany.

[12] Warwick C, “SystemC calls MATLAB”, MATLAB Central, March
2003, http://www.mathworks.com/matlabcentral/

[13] Czerner F. And Zellmann J. 2002. Modeling Cycle-Accurate Hardware
with Matlab/Simulink using SystemC. 6th European SystemC Users
Group Meeting (ESCUG). Stresa, Ilalia.

[14] Boland J-F and al. 2004. Using Matlab and Simulink in a SystemC
verification Environment. 2nd North American SystemC User’s Group.
Santa Clara, CA, USA

[15] Cai L. and Daniel G, 2003. Transaction level modeling: An overview. In
Hardware/Software Co design and System Synthesis, Report 03-10,
Center for Embedded Computer Systems, University of California, p.
466-471.

[16] Ghenassia, F. (ed.), 2005. Transaction-Level Modeling with SystemC.
TLM Concepts and Applications for Embedded Systems. Springer.
ISBN 0-387-26232-6.

[17] Claeys X. and al, 2003. Chauffeur Assistant Functions. Report restricted
to RENAULT TRUCKS, Contract number IST-1999-10048, Lyon,
FRANCE.

[18] SysML Partners. 2005. Systems Modeling Language (SysML)
Specification. Version 1.0 alpha. SysML.org

[19] http://www.axlog.fr/aadl/http://www.mathworks.com/products/simulink/
[20] Cote, C.; Zilic, Z. 2002. Automated SystemC to VHDL translation in

hardware/software co-design. Electronics, Circuits and Systems, 2002.
9th International Conference on Volume 2, Issue , pp. 717-720,
Dubrovnik Croatia.

