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Enhancing Diagnosis Ability for Embedded 
Electronic Systems Using Co-Modeling  

 
 

Abstract- This paper describes a new modeling and simulation 
approach in order to enhance the diagnosis ability of an 
electronic embedded system, including in the automotive field. 
Our modeling approach integrates the hardware specifications to 
the functional model in order to establish better system 
observation. It is based on hardware/software (HW/SW) co-
modeling with multilevel of granularity.  

To reach this objective, we have set up a relationship between 
the desired diagnosis accuracy and the level of granularity of the 
HW/SW co-model, for every Electronic Computing Unit (ECU). 
Our contribution allows the attribution of the right co-simulation 
hierarchical level by attributing the right simulation accuracy, 
for each function under observation.  
 

Index Terms- hierarchical modeling, HW/SW co-modeling, 
real time simulation. 

I. INTRODUCTION 

The technological development encourages the car 
manufacturers to propose advanced driving assistance 
functions that involve more than one computing unit. In fact, a 
computing unit uses information issued from sensors or other 
computing units, yielding a “system with distributed 
functions”. In a vehicle, the functions are sometimes 
distributed on several components or subsystems (computing 
units, wires, sensors, actuators…), communicating with 
several interconnection networks [1].  

 
However, one of the disadvantages of this distribution is the 

difficulty of the real time supervision to detect and localize a 
fault, especially electronic hardware faults. To bring out the 
advantages of a highly distributed architecture, we propose a 
modeling methodology that benefits from the existing link 
between the software and the hardware platforms.  

 
Our contribution in this paper is to enrich the functional 

models with hardware characteristics, at the very first phase of 
establishing the diagnosis models (system observation), in 
order to reproduce the appropriate behavior of the system in a 
set of comprehensible models showing at the same time the 
hardware and the software behaviors. 

 
To present our contributions, this paper is structured as 

follows: 
First, we present the need of HW/SW co-modeling for 

embedded electronic systems supervision. Then, we present 
the related works done in the field of the HW/SW co-design 
[2].  

In section IV, we show a relationship between the required 
accuracy for fault detection and the level of granularity in the 
HW/SW co-model, in order to find an appropriate compromise 
between fault detection accuracy and simulation speed. In 
section V, we use SystemC as a working environment for the 
hierarchical HW/SW co-modeling of our embedded electronic 
architecture. We present the results in sections VI and VII. 

Finally, in the last section we conclude this paper and 
present our future works. 

II. HARDWARE/SOFTWARE CO-MODELING FOR EMBEDDED 

ELECTRONIC SYSTEMS  

Car manufacturers usually employ software models 
expressing the embedded functions to make fault detection 
and diagnosis. However, when the hardware architecture 
reaches a complex level of functional distribution, it becomes 
difficult to a diagnosis designer to maintain the HW/SW link 
for each function or sub-function of the system in the 
diagnosis model. 

  
We believe that every sub-function has a link with at least 

one hardware sub-component, and a hardware fault appears in 
the system as a functional fault. Therefore, if we detect the 
functional fault we can localize the hardware fault if we know 
exactly the existing link between the sub-function and the 
hardware sub-component. 

 
The electronic distributed architecture that we study is 

embedded on board of a truck. It is composed of a set of ECUs 
connected by the interconnection bus CAN (Controller Area 
Network) [3]. Every ECU is composed of a processor, a 
memory, a CAN interface and eventually Inputs/Outputs 
interfaces. 
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Fig. 1. Hardware and software models for system observation for diagnosis. 

Some existing techniques of fault detection and diagnosis, 
especially of electronic systems, are based on functional 
simulation of the real controlled system, running on a 
prototyping platform, in parallel with the real time operation 
of the system [4]. These techniques do not describe hardware 
components (i.e. architecture and behavior description) and 
need to be more accurate by expressing simultaneously both 
hardware and software behaviors, in order to lead to more 
accurate results of fault detection (Fig. 1). 
 

We aim at modeling the functional distribution on the 
hardware architecture, in a coherent way, offering the ability 
to be connected to other models that may be proposed by 
different manufacturers of such heterogeneous electronic 
system. Our approach should allow the supervision system 
designer to integrate different models to simulate and test the 
system. 

  
In the next section we present research works close to our 

objectives, and that use mix hardware and software 
information for simulation. 

III.  HW/SW CO-DESIGN  

Hardware/software co-design is a set of methodologies and 
techniques specifically created to support the concurrent 
design of both systems, effectively reducing multiple 
iterations and major redesigns [2]. 

 
Within the context of co-design methodologies, concurrent 

hardware and software techniques have been proposed in the 
literature employing for example SpecC to add more details at 
the specification level [5]. The adoption of various formal 
languages for co-simulation, like SDL and C [6] is mainly 
used for the design of reactive systems, following the 
stimulus–response paradigm of behavior, like telecom systems 
such as wireless protocols employing different and 

standardized formalisms. On the other hand, functional models 
compatible with HDL (Hardware Description Language) 
models [7] are needed to get accurate hardware specifications 
using for example RTL (Register Transfer Level) level of 
modeling. However when it concerns HW/SW co-design for 
providing observation and verification, system’s behavior and 
properties are specified in a single formal language such as in 
[8] and [9].  

 
Even though Hardware/Software co-design is receiving a lot 

of attention in literature, most published works do not address 
model-based diagnosis for electronic systems. In this paper, 
we are not interested by dependability analysis (fault 
simulation, estimation of optimal diagnostic strategies, etc,), 
but we focus on co-modeling of the appropriate behavior of an 
electronic system for co-simulation oriented diagnosis. 

IV. MULTILEVEL OF GRANULARITY CO-MODELING 

Multilevel of granularity is a hierarchical view of a system, 
expressing in each level a degree of details and accuracy. 

Our objective is also to develop a relationship between the 
accuracy of the expected on-line fault detection and the level 
of granularity of hardware/software co-modeling (Fig. 2).  
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Fig. 2. Relationship between a sub-system HW/SW co-model and hardware 

source of fault. 

As a first step, we have to model the hardware architecture 
as a set of hardware sub-components. Then, we have to model 
the software platform as a set of sub-functions allocating them 
to the modeled hardware sub-systems.  

As a second step, we define a scale of criticality levels for 
the sub-functions. Then we allocate a granularity level of 
modeling to every criticality level, and hence, each sub-
function is co-modeled with a corresponding granularity level 
(Fig. 3). 

 
The more accurate the level of granularity, the longer the 

simulation time is. Thus, it is possible to switch between two 
or more levels of granularity according to the criticality level 
of eventual faults and to the diagnosis system needs (e.g.: 
functions priorities). This is the main advantage of our 
approach of modeling at various levels of granularity. 
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Fig. 3. Granularity-accuracy relationship. 

V. WORKING ENVIRONMENT 

A. SystemC  

One of the most promising SystemC advantages is HW/SW 
co-modeling to develop virtual platforms, because it supports 
a unified language of HW/SW modeling [10]. 

 
We have selected SystemC as a working environment 

because it has many advantages: 
 

• SystemC allows hierarchical modeling to express the 
multilevel of granularity modeling  

• It allows HW/SW modeling with the same language 
• The models could be easily connected to any other 

hardware models [11], or functional models (e.g. in 
Simulink) [12][13][14] 

• SystemC environment includes also a simulator: it consists 
of a C++ library and an event-based motor for simulation 

• Any C or C++ library can be included in a HW/SW co-
model 

 
Hence, we can describe the appropriate behavior of the 

electronic embedded system with different levels of hierarchy. 
Thus, every sub-system that should be under supervision can 
be hierarchically co-modeled. 

B. Cycle Accurate modeling 

SystemC Transaction-level modeling (TLM) is a high-level 
approach to model digital systems where details of 
communication among modules are separated from the details 
of the implementation of functional units or of the 
communication architecture [15]. 
 

A Cycle Accurate (CA) model is a TLM model that 
represents the stage of communication refinement, in which 
communication is modeled accurately down to the level of bus 
cycles, and even clock cycles. CA modeling allows hardware 
verification, evaluating the state of every component in every 
cycle and running software device drivers. CA simulation 
speed varies between 10 and 100 KHz. A CA model consists 
of a set of processes that run once per cycle. This fits with the 
use of SC_METHOD processes and non-blocking calls. 

 
 Fig. 4 shows that TLM projects do not require a lot of effort 

and time to be correctly modeled compared to RTL projects. 
In fact, a Cycle Accurate project may need approximately half 
of the time compared to an RTL project for its realization. 

For these advantages, we have used the CA level to co-
model our HW/SW platform as shown in the next section.  

 

 

Fig. 4. Time and effort spent for RTL and TLM use cases [16]. 

VI. MULTILEVEL CO-MODELS 

A. Multilevel of granularity using TLM modeling  

We co-modeled with TLM, hierarchically, each HW/SW 
sub-system beginning with the highest level of granularity. 
Thus, on each level of granularity, we find a set of models 
representing at the same time the functional behavior and the 
hardware architecture. 

 In the next sub-sections we show an example of TLM 
model representing the embedded electronic architecture.  

B. ECUs and CAN bus modeling 

The whole architecture consists of n ECUs communicating 
through the CAN network [3]. In this part of the work, we 
have modeled the CAN protocol real-time behavior to realize 
communications between ECUs models. We have simplified 
the details to ease the modeling; by implementing a virtual 
arbiter in the bus. With the Transaction modeling, the 
communication between components is described as function 
calls. 

Each ECU is master and slave at the same time and has one 
bidirectional port in each module. It is used to send orders to 
the bus (Requests) and getting data and information from the 
bus (Responses) (see Fig. 5). Each ECU that wants to send a 
message sends a request to the bus. If at least 2 ECUs request 
a bus transmission at the same time (i.e. in a time shorter than 
a bus cycle), the bus arbiter selects the most important 
message by comparing arbitration fields in the two messages.  

Only one clock is used for all processors when the level of 
granularity is high and the accuracy of the model for 
simulation is set to the ECU clock cycle.  

It is important to note that full CAN protocol is used only in 
models with high level of granularity, expressing transactions 
between ECUs. With a more accurate level of granularity, the 



processor and the memory models of every ECU are wrapped 
into SystemC modules in order to communicate with other 
devices such as CAN controllers. Anyway, the transactions are 
kept cycle accurate.  
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Fig. 5. CAN bus TLM model. 

C.  HW/SW models interfacing  

The communication between hardware modules and 
software modules should be done through message exchange. 
Messages should be exchanged through a shared interface 
between the two sides, implementing the needed methods for 
message exchange and eventually using blocking calls (Fig. 
6). 

 
We have co-modeled in SystemC a sub-function of Lane 

Keeping [17]; a given function from a truck manufacturer. The 
Lane Keeping should keep a truck centered in the current lane 
of a highway, detected by an embedded camera. Fig. 6 shows 
also the example of the embedded camera software that sends 
the acquired videos to an ECU (the hardware module), which 
is responsible of filtering all extra images from the video 
sequence, to get only the video sequence of the highway.  

D. Interfacing SystemC co-models 

A systemC co-model may be the result of a higher level 
system level modeling, such as SySML [18] or AADL 
(Architecture Analysis and Design Language) [19]. A 
SystemC co-model can also integrate other functional models 
in Simulink [12] for SW description and VHDL [20] for HW 
description models. We show also that co-simulation is 
possible by using interfaces between the heterogeneous 
simulators (Fig. 7). For example, [11] presents some results of 
design practice of HW modules; co-simulation and synthesis 
are combined to achieve higher abstraction levels in the 
design. The SystemC-VHDL co-simulator tool is also based 
on a SystemC/C++ front-end developed to support the co-
simulation between VHDL and SystemC. Another example of 
co-simulation tool is shown in [13] using Simulink with 
SystemC in a cycle-accurate context. 

 

/ /  m o d u le  u s in g  S h a re d  In te r fa c e

w h ile  ( tru e )
{

/ /G e t v id e o  fro m  c a m e ra  
v id e o  =  a c q u ir e _ v id e o () ;

/ /S e n d  v id e o  to  S h a re d  In te r fa c e
p o rt -> s e n d _ v id e o (v id e o ) ;  / /1

//R e s u lts
v id e o  =  p o r t-> g e t_ f ilt_ v id e o ( ) ;   / /4

}

• v o id s e n d _ v id e o (V i v )  
• V i g e t_ v id e o ()
• v o id s e n d _ la n e s _ v id e o (V i v )
• V i g e t_ f i lt_ v id e o ()

S o ftw a r e  m o d u le       

S h a re d  In te r fa c e

//  m o d u le  u s in g  S h a re d  In te r fa c e

w h ile  ( t ru e )
{

/ /G e t  v id e o  fro m  S h a re d  In te r fa c e
v id e o  =  p o rt -> g e t_ v id e o ( ) ;  / /2

//L a n e s  e x tra c t in g
e x tra c t in g _ la n e s (v id e o ) ;

/ /S e n d  f il te re d  v id e o
p o r t-> s e n d _ la n e s _ v id e o (v id e o ) ; / /  3

}

H a rd w a re  m o d u le

 
 

Fig. 6. HW/SW modules interfacing. 

The advantage of the proposed multilevel granularity co-
modeling is the possibility of establishing a link between a 
HW/SW co-model and another type of models in any level of 
detail and having several possibilities of co-simulation speed 
for fault detection.  
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Fig. 7. SystemC co-models communication with different simulation tools. 



VII.  CO-SIMULATION FOR DIAGNOSIS 

The supervisory system can simulate the co-models 
beginning with the highest level of the hierarchy in order to 
observe the electronic system. In case of incoherence detection 
in a given level of the hierarchy, our approach brings the 
advantage of co-simulating the system with a more accurate 
level in order to increase the accuracy of incoherence 
localization (Fig. 8). 
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Fig. 8. Multilevel of granularity co-simulation. 

It is important to add that this approach of modeling for 
diagnosis is simple to implement when the embedded 
functions are cyclic, as progressive and repetitive simulations 
may be done with real input values. For this reason, we have 
tested our approach with the Lane Keeping (LK) system 
described earlier (Fig. 9). 
This system supplies a wheel angle set point sent to the ECUs, 
and does not require any driver intervention. At any time, the 
driver can deactivate the LK function. The LK system 
recognizes the lane markings using an embedded camera. 
In case of fault detection with a high level of granularity co-
simulation, the diagnosis system should make sure that the 
electronic embedded system may suffers from a fault by co-
simulating and testing the same sub-function (e.g. Highway 
videos capturing) with a more accurate level of granularity 
until reaching the sub-system eventual source of fault. 

 
Fig. 9. Lane Keeping function [14] 

VIII.  CONCLUSIONS AND PERSPECTIVES 

This paper has presented a co-modeling technique with 
multilevel of granularity under SystemC for electronic 
systems. Cycle accurate models of the CAN bus, CAN 

interfaces and ECUs including memories and processors has 
been co-modeled with different levels of granularity. 

The impact of a multi-granularity HW/SW model for the 
hardware real-time fault detection has been shown.  

 
This result shows that such modeling method is suitable to 

simulate distributed real time HW/SW architecture, especially 
electronic architectures and allows the supervision designer to 
re-use the co-models in embedded simulations for real time 
supervision or to simulate and test the system off-line.  

 
As future work, we aim to extend the multilevel granularity 

modeling to other computing platforms, like SoC (System On 
Chip) for example; a technology which is gaining interest for 
car manufacturers. The TLM is very suitable to model the 
architecture of a SoC, in order to enable development of the 
embedded software in advance of the hardware, and to carry 
out analyses earlier in the design cycle. 
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