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Abstract: This paper introduces a new model for disease outbreaks. This model describes
the disease evolution through a system of nonlinear differential equations with distributed-
delay. The main difference between classical SIR-model resides in the fact that the recovery
rate of the population is expressed as a distributed-delay term modeling the time spent being
sick by infected people. This model is identified to fit realistic measurements which shows the
effectiveness of the model. Finally, we develop an optimal campaign vaccination strategy based
on recent results on the impulsive control of time-delay systems.
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support and control

1. INTRODUCTION

Nowadays, due to the large mobility of people within a
country or even worldwide, the risk of being infected by a
virus is relatively higher than several decades ago. That is
why it is interesting to elaborate models of the evolution
of diseases in order to develop strategies to decrease the
impact of the outbreak.

The first model of an epidemic was suggested by Bernoulli
in 1970. He used this model to explain the basic con-
trol effects obtained through population immunization,
and the advantages of vaccination in order to prevent an
epidemic. Simple mathematical models are governed by
action-mass laws [Daley and Gani, 1999, Hethcote, 2002].
The rate of spread of infection is hereby assumed to be
proportional to the density of susceptible people and the
density of infected people (strong homogenous mixing).
Simpler models, based on weak homogenous mixing (rate
of new infections proportional to the number of suscep-
tibles) are explored in [Anderson and May, 2002]. One
parameter stands out in these models: the ratio of the rate
of infection to the rate of recovery, denoted by r0, called
the basic reproduction number. It is the average number of
new cases produced when one infective is introduced into
a completely susceptible host population. A basic result in
modern epidemiology is the existence of a threshold value
for the reproduction number. If r0 is below the threshold,
an epidemic outbreak does not follow the introduction of a
few infectious individuals in the community. For example
measles has a r0 on the order of 12-15 Anderson and May
[1982].

The biological processes of sudden and severe epidemics
are inherently nonlinear, and exhibit fundamentally differ-
1 The authors contributed equally to this work

ent dynamic behaviors from linear systems (e.g. multiple
equilibria, limit cycles, and chaos). In addition, more com-
plex nonlinear models encompassing spatial variation (i.e.
mixing locally within households and globally throughout
the population, temporal variation (age structure) and
delays [den Driessche] are also required to give added
realism, which makes the control problem even harder.
Hence, regarding the control of epidemics, few analytical
results exist. A notable and recent exception is the work
of Behncke [2000]. Nonetheless, analytical or numerical ap-
proximations for infection control measures such as vacci-
nation, dose profile and timing in pulse vaccination regimes
[Stone et al., 2000], isolation and quarantine, screening or
other public health interventions are vital for controlling
severe epidemics. When using finite dimensional models, it
is clear that when the initial state is reached again through
the action of the control, the process will be periodic
[Bainov and Simeonov, 1996]. This is the principle behind
pulse vaccination [Nokes and Swinton, 1997], although
true periodicity of the state is not assumed. However,
when delays are present the system is inherently infinite
dimensional, and it is unlikely that the same state may
be reached twice. Hence the premise that a periodic pulse
vaccination strategy is optimal is false. Techniques recently
developed by the authors Verriest et al. [2004] for optimal
impulsive control for systems with delays will be applied
in order to overcome this problem.

We propose in this paper a new model embedding further
information such as the minimal time spent sick by the
infected population. This model considers that infected
people remain sick for a certain amount of time greater
to a threshold τ . This time is defined by a distribution
over [τ, +∞). The model is validated while identifying
its parameters using real epidemic measurements reported
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in a medicine journal Lancet [March 4 1978]. Finally we
develop an optimal pulse vaccination strategy [E.I. Verriest
and Egerstedt, 2005, Verriest, 2005] minimizing a certain
criterium.

In section 2, we recall classical epidemiological models
and in section 3 some vaccination strategies are discussed.
Then a new model is given to represent the dynamic of
the disease among the population in section 4. Finally,
in section 5 the optimal pulse vaccination strategy is
teated and illustrated through an example based on a real
scenario.

2. SIR MODELS

To understand how basic epidemics models work, we will
first describe some open loop models. The most basic
model is the SIR model. People who are susceptible (S) be-
come infected with a force of infection proportional to the
number of infected (I). After the infection people become
immune and are removed (the R in the SIR model), or
become infected again (SIS model). The simplest of these
models are closed in the sense that total population re-
mains fixed, either by disregarding immigration (for short
duration outbreaks) or assuming that birth and death
rates are equal (for long duration models) or both. These
are the basic Kermack-McKendrick models described in
all introductory books on mathematical epidemiology and
they will be briefly described below:

Ṡ = −f1(S, I) + f2(I, R)
İ = f2(S, I) − f3(I, S)

Ṙ = f3(I, S) − f2(I, R)

(1)

where f1 > 0 models the rate of infection, f2 > 0 the rate
at which recovered people become susceptible again and
f3 > 0 the rate of recovery for (R, I, S) ∈ R

3
+

However, diseases such as measles do not fit such a descrip-
tion, and call for an extended model sporting a compart-
ment of exposed but not yet infectious (E) individuals. It
is assumed that individuals stay in this class for a fixed
period of time and hence such a model involves delays.
Once the tools for the study of epidemic models have been
produced and the models themselves understood, the real
test of their validity is to use these models in predicting
the outcome of various interventions Wickwire [1977], and
ultimately in optimizing such interventions.

A natural question is: “What can be done to prevent a
predicted epidemic from occurring?” The above models
cast in various level of detail the evolution of epidemics
as dynamical systems and first question one has to ask
here is: “How can the dynamics be influenced by external
factors?” and as standard in control theory, “What closed
loop control strategies can be used?”

3. MATHEMATICAL FRAMEWORK

In order to be able to solve optimal immunization prob-
lems, some results on optimal impulse control must be
recalled Verriest et al. [2004], and for the sake of easy
reference, we restate them here.

3.1 Optimal Impulse Control for Point Delay Systems

To fix ideas, let the autonomous system under considera-
tion be modeled by

ẋ = f(x) + g(xτ ), (2)

where xτ = x(t−τ), and where x(θ) is given for −τ < θ <
0. Moreover, let the effect of the impulsive inputs be given
by

x(T +

i ) = x(T−

i ) + G(x(T−

i ), ui, Ti). (3)

The amplitudes, ui, and instants, Ti, are to be chosen such
that a performance index

J =

∫ tf

0

L(x(t))dt +

N−1
∑

i=1

K(x(T−

i ), ui, Ti) (4)

is optimized. Now, in Verriest et al. [2004], the following
result (that will provide a basis for the developments on
this proposal) was derived:

Theorem 3.1. The impulsive system in Equations (2) and
3 minimizes the performance index (4) if the magnitudes
ui and times Ti are chosen as follows:
Define:

Hi = L(x) + λT
i (f(x) + g(xτ )) (5)

Mi = K(x(T−

i ), ui, Ti) + µiG(x(T−

i ), ui, Ti). (6)

Euler-Lagrange Equations:

λ̇i =−

(

∂L

∂x

)T

−

(

∂f

∂x

)T

λi−χ+

i

(

∂g

∂x

)T

λτ
i −χ−

i+1

(

∂g

∂x

)T

λτ
i+1, (7)

with Ti−1 < t < Ti, i = 1, . . . , N −1, and where χ+

i (t) = 1
if t ∈ [Ti−1, Ti−τ ] and 0 otherwise, χ−

i+1
(t) = 1 if t ∈ [Ti−

τ, Ti] and 0 otherwise, and λτ
i = λi(t + τ). Moreover,

λ̇N = −

(

∂L

∂x

)T

−

(

∂f

∂x

)T

λN − χ+

N

(

∂g

∂x

)T

λτ
N . (8)

Boundary Conditions:

λN (TN ) = 0 (9)

λi(T
−

i ) = λi+1(T
+

i ) +

(

∂Mi

∂x

)T

. (10)

Multipliers:

µi = λi+1(T
+

i ), i = 1, . . . , N − 1 (11)

µN =−

(

∂MN

∂x

)T

. (12)

Optimality Conditions:

dJ

dui

=
∂Mi

∂ui

= 0 (13)

dJ

dTi

= Hi(T
−

i ) − Hi+1(T
+

i ) +
∂Mi

∂Ti

(14)

+λi+1(Ti+τ)T(g(x(T +

i ))−g(x(T−

i )))=0.

These necessary optimality conditions will have to be
massaged in some manner in order to be numerically
effective.
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3.2 Gradient Descent

The reason why the formulas derived here above are
particularly easy to work with is that they give us access
to a very straight-forward numerical algorithm.

For each iteration k, let θ(k) = (T, v)T be the vector of
control variables, and compute the following:

(1) Compute x(t) forward in time on [t0, tf ] by integrat-
ing from x(t0) = x0.

(2) Compute the costate λ(t) backward in time from tf
to t0 by integrating the costate dynamics.

(3) Use the equations above to compute ∇θJ = ( dJ
dT

, dJ
dv

).
(4) Update θ as follow :

θ(k + 1) = θ(k) − l(k)∇θJ
T ,

where l(k) is the step size, e.g. given by the Armijo
algorithm Armijo [1996].

(5) Repeat.

Note that the cost function J may be non-convex which
means that we can only expect the method to reach a
local minimum. But, as we will see, it still can give quite
significant reductions in cost.

4. DELAY-SIR MODEL

In this section a new model for an epidemic, the delay
SIR, is proposed and matched against real epidemic data.
While both the new and the old (standard SIR) model
corroborate the data, the delay-SIR may be more adapted
to a physical model of the disease.

The main ingredient in this model is the fact that we
assume that once infected, a person is instantaneously
infectious, and this for at least a time τ . After this initial
lapse, we assume that the person remains infectious for an
additional random time span, characterized by a density
function ρ(θ). Such a model seems more reasonable to
us, than the assumption that the infectious people are
removed at a rate α used in the standard SIR model. Hence
the delay-SIR model is described by

Ṡ(t) =−βS(t)I(t) (15)

İ(t) = βS(t)I(t) − Q(t) (16)

with Q(t) the removal rate. As in the classic SIR, in a
time ∆t the number of newly infected is given by the
mass action law βS(t)I(t)∆t. Meanwhile from the newly
infected between time t− θ and t + ∆t− θ, a fraction ρ(θ)
becomes immune and is removed from the infected. The
support of ρ is contained in (τ,∞). Hence,

Q(t) =

∫

∞

τ

ρ(θ)S(t − θ)I(t − θ)dθ. (17)

If ρ has a rational Laplace transform, the above equations
may be extended to a pure (crisp) delay system by further
differentiation, as explained in Verriest [1999]. This leads
to a general delay model of the form

Ṡ(t) =−βS(t)I(t) (18)

p(t) = S(t)I(t) (19)

İ(t) = βS(t)I(t) − hq(t) (20)

q̇(t) = Fq(t) + gp(t − τ). (21)

A block diagram is given in Figure 1. where dim(q) = n

−β

τ

H(s)

+

1
s

1
s

−

+

S

I

×

Fig. 1. Generic Delay-SIR

and (F, g, h) is an n-th SISO system with transfer function
H(s) = h(sI − F )−1g. It can be reorganized as an input-
delayed linear system with nonlinear dynamic feedback.
In this form the delay τ may be identifiable from the data
using techniques from Belkoura et al. [2006].

We used the data published in Lancet [March 4 1978],
(the Lancet, March 4, 1978) because it has been used by
other authors. This data pertains to an influenza epidemic
in a boys’ boarding school. The population in this model
is N = 763. Assuming that the onset was due to one
infected individual, we set S(0) = 762 and I(0). The best
fit for the SIR model was obtained. The original data
and the best fitting SIR model (β := 0.00218; α := 0.44)
are displayed in Figure 2. We considered the delay-SIR

600

400

200

0

0 2010 155

Fig. 2. SIR model fit to raw data

model with second order distribution (meaning that the
corresponding H(s) is a second order system).

ρ(θ) = N (1 + γθ) e−λθ

Here N is a normalization factor, ensuring that
∫

∞

τ

ρ(θ)dθ = 1

We find

N =
λ2

γ + λ + γλτ
eλτ .
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This distribution corresponds to a second order Jordan
block. A good fit to the data was found for τ = 0.69, β =
0.00177, γ = 0.3, and λ = 0.75. The evolution of I(t) and
S(t) is given in Figure 3. The detailed description is thus

5.0 12.57.52.5

600

0.0

0

400

200

10.0

Fig. 3. Delay SIR model (Jordan) fit to raw data

Ṡ(t) = −βS(t)I(t)

İ(t) = βS(t)I(t) − βN (q1(t) + γq2(t)
Ṙ(t) = βN (q1(t) + γq2(t)
p(t) = S(t)I(t)
q̇1(t) = −λq1(t) + e−λτ p(t − τ)
q̇2(t) = q1(t) − λq2(t) + τ e−λτ p(t − τ)

(22)

5. OPTIMAL PULSE VACCINATION

We present here the application of the optimal pulse
control to the proposed model of dynamic outbreak.

5.1 Necessary and Sufficient Conditions for optimal pulse
vaccination

Model (22) needs to be augmented by the set of equations
(23)-(27) to capture the whole impulsive control frame-
work.

S(T +

k ) = S(T−

k ) − vk (23)

I(T +

k ) = I(T−

k ) (24)

R(T +

k ) = R(τ−

k ) + vk (25)

q1(T
+

k ) = q1(T
−

k ) (26)

q2(T
+

k ) = q2(T
−

k ) (27)

The vaccination takes place at certain times Tk, k = 1, . . .
and have magnitude vk. These decision variables must be
determined in order to minimize the objective function
(we consider a one pulse vaccination strategy for sake of
simplicity)

J(v, T ) = cv2 +

∫ tf

0

I(t)dt. (28)

The integral term measures the burden of disease (total
time spent sick in the population) during the epidemic,
and the quadratic control cost reflects the added logistical

burden when large populations need to be vaccinated. Note
that a purely linear vaccination cost, without imposing the
constraint v ≥ 0, may lead to inadmissible controls Ogren
and Martin [2000].

We present here a simple result with one pulse vaccination
strategy

Lemma 5.1. Consider system (22) with (23)-(27), there
exist an (locally) optimal one pulse vaccination strategy
minimizing cost (28) if the following necessary and suffi-
cient conditions are satisfied:

Necessary Conditions

λ̇ = −

(

∂L

∂x

)T

−

(

∂f

∂x

)

λ −

(

∂g

∂x

)

λτ

λ(η) = 0, η ∈ [tf , tf + τ ]

t ∈ [T, tf ]

Sufficient Conditions

2cv + λ(T )T







−1
0
0
0






= 0

βλ(T )T







−1
1
0
0






− e−λτ λ(T + τ)T







0
0
1
τ






= 0,

λ(η) = 0, η ∈ [tf , tf + τ ]

with

df

dx
=







−βI −βS 0 0
βI βS −βN −βNγ
0 0 −λ 0
0 0 1 −λ






(29)

dg

dx
=







0 0 0 0
0 0 0 0

− e−λτ I − e−λτ S 0 0
τ e−λτ I τ e−λτ S 0 0







dL

dx
= [0 1 0 0] (30)

Proof : Identifying system (22) with template system (2)
we have L(x) = I,

f(x) =







−βSI
βSI − βN (q1 + γq2)

−λq1

q1 − λq2






g(x) =







0
0

e−λτ SI

τ e−λτ SI







(31)
It is then straightforward to compute the Jacobian matri-
ces.

We have removed the equation governing R since its value
can be trivially retrieved from S and I (i.e. we have the
relation S + I + R = cst).

Note we have

L(x) = I
∂L

∂x
= [0 1 0 0]

K(x(T−), v, T ) = cv2
(32)

As M = K + µT G satisfies ∂M
∂x

= 0, it means that
λ1(T

−) = λ2(T
+) (i.e. the costate is continuous). Now

let λ denote this single continuous costate and note that
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we only need to solve for λ on the time interval [T, tf ] with
λ(tf ) = 0. After solving for λ, we get that µ = λ(T ) and
hence that the first optimality conditions implies

dJ

dv
= 2cv + λ(T )T







−1
0
0
0






= 0 (33)

The second optimality condition is a bit more involved
since the function g(x) depends on S which will experi-
ence an impulse at time T . First note that g(xτ (T−)) −
g(xτ (T +)) = 0 then it is straightforward to obtain

H(T−) − H(T +) = λ(T )T (f(x(T−)) − f(x(T +))) (34)

where

f(x(T−)) − f(x(T +)) =







−βI(T )v
βI(T )v

0
0






(35)

Moreover as

g(x(T +)) − g(x(T−)) =







0
0

− e−λτ I(T )v
−τ e−λτ I(T )v






(36)

then we get

dJ

dT
= λ(T )T βI(T )v







−1
1
0
0






−λ(T+τ)T e−λτ I(T )v







0
0
1
τ






= 0

(37)
and assuming that neither I(T ) = 0 nor v = 0 we have

βλ(T )T







−1
1
0
0






− e−λτ λ(T + τ)T







0
0
1
τ






= 0 (38)

�

5.2 Numerical Example

We consider the model identified in Section 4 (i.e. τ =
0.69, β = 0.00177, γ = 0.3, and λ = 0.75). The results are
summarized below with u0 = 100 and T0 = 10 as initial
conditions:

H
H

H
HH

c
tf 15 50

0.02 100 298
0.05 99.9 234
0.1 77.22 198
0.2 39.6 119.8
0.5 16 47.9
0.8 10 32.28
1 8 26.5
3 2.7 9.11

Table 1. Optimal values of u w.r.t. cost (i.e. c
and tf )

It is worth noting that for tf = 15 we always find T = 5.7
while for tf = 50 we get T = 6.64. For simulation purpose
we choose an interesting case: c = 0.02 and tf = 15 we
obtain figure 4.
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f
=15

Fig. 4. Evolution of infected people without (plain) and
with one pulse vaccination strategy (dashed) - cri-
terium 1

If we compute the ratio of the integral term
∫ tf

0
I(t)dt with

and without the vaccination strategy we obtain ratio =
0.8577 and this measures the reduction of the number of
people who gets infected.

In the case c = 0.02 and tf = 50 we obtain figure 5.
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c=0.02 and t
f
=50

Fig. 5. Evolution of infected people without (plain) and
with one pulse vaccination strategy (dashed) - cri-
terium 2

In that case we obtain: ratio = 0.6981 and this shows that
strategy 2 is better than the first one. Nevertheless, the
second strategy is more expensive than the first one.

It is worth noting that, the multiple pulse vaccination
strategy might lead to better result but it is not detailed
here for sake of brevity. In this case, the new criterium to
minimize should be

Jn :=

Np
∑

i=1

ciu
2
i +

∫ tf

0

I(t)dt (39)

where ci > 0 are chosen weighting parameters.

6. CONCLUSION

We have proposed a new epidemiological model. This new
model considers the standard SIR model but includes a
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distribute delay modeling the rate at which infected people
recover from the disease. Following the measurement of an
real outbreak, we have identified the parameters and shows
that it correctly describes the reality. On the other hand,
we have developed an optimal pulse vaccination strategy
minimizing a certain criterium measuring the cost of the
campaign and the time spent by the population being sick.
The interest of the approach is demonstrated through a
realistic example.
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