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Abstract: This paper is concerned in the synthesis of delay-scheduled state-feedback stabilizing
linear systems with time-varying delay when the delay can be approximatively known in real-
time. First we introduce a new model transformation turning the time-delay system into an
uncertain LPV system. Using this reformulation we elaborate delay-dependent stability test
based on the so-called full block S-procedure and derive from it a delay-dependent stabilization
lemma. Our results are then relaxed using a new relaxation lemma which is shown to have
good properties and provide then LMI based theorems, well-known for their tractability. Our
results tackle error measurement on the delay. We show the efficiency of the method through
an example.
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1. INTRODUCTION

Since several years, time-delay systems (TDS) have been
intensively studied [Niculescu, 2001, Gu et al., 2003, Frid-
man, 2006, Gouaisbaut and Peaucelle, 2006b, Suplin et al.,
2006, Kao and Rantzer, 2007]. Indeed, delays are often
responsible of instability and poor performances and their
effect must be considered to analyze stability and synthe-
size control laws. Since the advent of electrical commu-
nication networks and embedded electronics, system with
time-varying delays have gained more and more interests
since the control input and the measured output of a
system controlled through network are affected by a time-
varying delay physically corresponding to the information
propagation. There also exist many engineering problems
where time-varying delays are involved such as milling
process. . .

In some applications, it may be possible to measure or
compute the delay from a mathematical model and in
this case, it is interesting to use it in the controller. In
[Witrant et al., 2005], a predictive approach to control
NCS is given but a network model is necessary to com-
pute the prediction horizon. In [Sename et al., 1995] a
state feedback with internal delay is designed but the
robustness issue w.r.t delay measurement uncertainties
is not considered. The authors have proposed in [Briat
et al., 2007] some preliminary results on control design
for LPV TDS. Using some new model transformation,
the time-delay system is transformed into an uncertain
Linear Parameter Varying (LPV) system where the delay
acts now as a parameter and not anymore as an opera-
tor. However the results did only stand for interval delay

(with non zero delay). Some interesting results on similar
Linear Fractional Transformation (LFT) transformations
may also be found in [Zhang et al., 2001, Roozbehani and
Knospe, 2005, Gouaisbaut and Peaucelle, 2006a, Kao and
Rantzer, 2007].

This paper follows [Briat et al., 2007], the LPV/uncertain
system stability analysis and control synthesis tools are
used to prove stability and stabilize time-delay systems
(See [Apkarian and Adams, 1998, Scherer, 1999]). The
main contributions of the paper are:

• Following the path of [Briat et al., 2007] we propose
here a new model transformation correcting the weak-
nesses of the previous one.

• We propose then a method to approximate LMI with
polynomial dependence onto parameters into LMI
with a simple linear parameter dependence. This
result is based on spectral factorization and well-
known lemmas used in matrix algebra. This results is
closely related to SOS representation and relaxation
(see [Scherer and Hol, 2006, Dietz et al., 2006]).

• Using these results we provide a delay-dependent/rate-
dependent stability/H∞ -performances test using the
so-called full-block S-procedure and preliminary re-
sults of the paper. Computational approximations are
proposed and fully explained.

• From this stability test, we derive a stabilization
lemma expressed independently of the controller. The
obtained controlled is smoothly scheduled by the de-
lay value and take into account a priori bounds on
error measurements. It may be computed either using
an explicit formulation or via SDP with some addi-
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tional constraints. The originality of our approach al-
lows to consider several costs with different trade-offs
depending explicitly of the delay and its derivative.
• We show the validity through several examples.

We consider in this paper system of the form
ẋ(t) = Ax(t) +Ahx(t− h(t)) +Buu(t) + Ew(t)
z(t) = Cx(t) + Chx(t− h(t)) +Duu(t) + Fw(t) (1)

where x ∈ Rn, u ∈ Rm, w ∈ Rp and z ∈ Rq are respectively
the system state, the control input, the exogenous input
and the controlled output.

The time-varying delay h(t) is assumed to belong to the
set

H :=
{
h ∈ C1(R+, H), h′ : R+ → U

}
(2)

where C1(I, J) denotes the set of continuous functions with
continuous derivative mapping I to J , H := [hmin, hmax]
and U := [µmin, µmax].

We define the vertices set as
Vh := {hmin, hmax}
Vµ := {µmin, µmax} (3)

The aim of the paper is to find delay-scheduled state-
feedback controllers of the form

u(t) = K(ĥ(t))x(t) (4)

where ĥ(t) = h(t) + δh(t) is the known value of the delay
while δh(t) is the knowledge error at time t belonging to

∆ := {δh : R+ → ∆, δ′h : R+ → ∆ν} (5)

where ∆ := [−δ, δ] and ∆ν := [νmin, νmax].

Finally we define the set

Ĥ :=
{
ĥ ∈ C1(R+, Ĥ), ĥ′ : R+ → Û

}
(6)

with Ĥ := H + ∆ and Û := U + ∆ν .

According to the use of the main theorem, the state-
feedback may take several forms: linear, polynomial or
rational in ĥ hence allowing a large variety of controllers.

The notations is as follows, for a symmetric matrices A,B,
A > B means A− B is positive definite (i.e. A− B > 0).
For a square matrix A we have AH = A+AT where AT is
the transpose of A. Ker(A) is a basis of the null-space of
A. A⊥ is the orthogonal complement of A (i.e. ATA⊥ = 0).

⊕ is the direct sum of matrices: A ⊕ B =
[
A 0
0 B

]
. Kn is

the set of skew-symmetric matrices of dimension n and
Sn++ is the cone of symmetric positive definite matrices of
dimension n. L2 is the space of signals with finite energy
(finite L2-norm): ||f ||22 :=

∫ +∞
0
|f(t)|2dt < +∞ and L∞

the space of signals with finite amplitude ( finite L∞-
norm): ||f ||∞ := maxi[|fi(t)|] < +∞
The paper is organized as follows, section 2 develops pre-
liminary results. Section 3 presents the new model trans-
formation and the associated comparison system. Section
4 gives the delay-dependent stability test and comments
on its use. Section 5 gives the main result of the paper, the
delay-scheduled state-feedback existence theorem and its
computation. Finally an illustrative example is presented
in section 7.

2. PRELIMINARY RESULTS

We provide here two results: the first one is used to relax
a particular form of NMI while the second is a delay-
dependent stability lemma for system (1).

2.1 Converting polynomial into linear dependence

We provide here an useful result allowing to turn param-
eter dependent LMIs with polynomial dependence into a
conservative linearly parametrized LMI.

We present first the following definition
Definition 2.1. A square matrix S is said to be S2-
structured if it writes S = [Sij ]i,j with blocks Sij ∈
Rk×k, k > 1 and

Sij :=
{

0k×k if i = j
Sij = STji ∈ Kk if i 6= j

It is now possible to express the linearization lemma:
Lemma 2.1. Suppose that a M(δ) < 0 is a polynomially
parametrized LMI in δ admitting a spectral factorization
M(δ) = UT (δ)NU(δ) < 0 where U(δ) is a basis of
polynomials. Then M(δ) < 0 if there exists a matrix P
such that

N +R+ PV (δ) + V T (δ)PT < 0 (7)
where V T (δ) = Ker(UT (δ)) linear in δ and R is S2-
structured.

Proof : The prof is a simple application of the creation
lemma and projection lemma. First note that if we add
the quadratic form UT (δ)RU(δ) to UT (δ)NU(δ) we do not
change the expression of the quadratic form (due to skew-
symmetric matrices) but this additional matrix modifies
the eigenvalues and thus provides extra degrees of freedom.
Apply the creation lemma on UT (δ)NU(δ) < 0 leads to
the existence of Q(δ) such that

N +R+Q(δ)V (δ) + V T (δ)Q(δ)T < 0
These parameter dependent LMIs are completely equiva-
lent. Now note that V (δ) = V0 +

∑Np

i=1 Viδi where Np is
the number of distinct parameters. Then fixing Q to be
parameter independent leads to the proposed result (7). �

Remark 2.1. The matrix R is symmetric but is composed

by blocks being skew-symmetric: e.g. R =
[

0 R1

RT1 0

]
with

R1 +RT1 = 0. Adding such terms to a matrix, sayM, does
modify the eigenvalue of the expression M +R but does
not change the value of the associated quadratic form. This
is possible since the terms U(δ) are not column vectors but
matrices with, generally, more than one column.

It is worth noting that we loose here the equivalence since
we restrict P to be parameter independent. Nevertheless,
this relaxation leads to quite good results. We can then
use classical result for linearly parametrized LMIs such
as multi-convexity or similar results. It is worth noting
that the matrix P may have high dimensions due to the
use of the spectral factorization. If ones uses convexity
argument to conclude on negative definiteness of M(δ)
the number of LMIs to solve simultaneously will grow up
exponentially w.r.t. the number of parameters Np and we
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get #(LMIs) = 2Np . In this case, it would be interesting
to use the relaxation proposed in [Ben-Tal and Nemirovski,
2002] (and also presented in [Scherer])). This relaxation
converts the set 2Np into one LMI with extra decision
matrices. This is not detailed in the present paper and
the readers should refer to cited articles to get more
explanations.

A fundamental fact that we must point out concerns the
relaxation of the parameter rational dependence. This type
of LMIs can be turned into a polynomial dependence using
the full-block S-procedure and these ones can be then
transformed into a linear dependence with lemma 2.1.

This result is highly related to the so-called SOS relax-
ations of parameter dependent LMIs. The main difference
is that we take into account here the internal structure of
the spectral factor. It follows that we can add constraints
as used in SOS relaxations to give for instance relations
between them and then turn the global inequality into a
linear form.

3. A NEW MODEL TRANSFORMATION

We provide here a new model transformation allowing to
turn a TDS with time-varying delays into an uncertain
LPV system:

Let the operator
Dh : L2 → L2

η(t) → 1√
h(t)hM

∫ t

t−h(t)

η(s)ds (8)

This operator enjoys the following properties:

(1) Dh is L2 − L2 stable.
(2) Dh has an induced L2 − L2 norm lower than 1.

Proof : Let us prove first that for a L2 input signal we
obtain a L2 output signal effectively. Assume that η(t)
is continuous and denote by ηp(t) the signal satisfying
dηp(t)/dt = η(t) then we have

Dh(η(t)) =
ηp(t)− ηp(t− h(t))√

h(t)hM
(9)

Note that if h(t) is always positive then (9) is bounded
since η(t) belongs to L2 (and hence to L∞). The main
problem is when the delay attains 0. Suppose now that
there exist a (possibly infinite) family of time instants
ti+1 > ti ≥ 0 such that we have h(ti) = 0. It is obvious
that ηp(t) is continuously differentiable and hence we have

limt→ti

√
h(t)
hM

ηp(t)− ηp(t− h(t))
h(t)

= 0

As η(t) is continuous and belongs to L2, we can state that
η(ti) is always finite and then the output signal remains
bounded even if the delay reaches zero. We have proved
that Dh has a finite L∞-induced norm (no singularities).
To prove that it has a finite induced L2-norm it suffices to
compute its L2-L2 gain defined by ||Dh(η)||2/||η||2.

||Dh(η)||22 :=
∫ +∞

0

dt

hMh(t)

∫ t

t−h(t)

ηT (θ)dθ ·
∫ t

t−h(t)

η(θ)dθ

Then applying the Jensen’s inequality (see [Gu et al.,
2003]) and bounding the integral with hM we obtain

||Dh(η)||22 ≤
∫ +∞

0

dt

hM

∫ t

t−hM

ηT (θ)η(θ)dθ

Then exchanging the order of integration and considering
zero initial condition leads to the inequality

||Dh(η)||22 ≤
∫ +∞

0

ηT (t)η(t)dt =
√
hM ||η||22

We have then proved that Dh defines a L2-L2 stable
operator with an L2-induced norm lower than 1. �

We show now how to use this operator to transform a time-
delay system into a uncertain LPV system. Consider sys-
tem (1) and note that xh(t) = x(t)−(h(t)/hM )1/2Dh(ẋ(t))
then substituting into system (1) and once expressed into
a LFT form we obtain then

ẏ(t) = Āy(t)− (h(t)hM )1/2Ahw0(t) +Buu(t) + Ew(t)
z0(t) = ẏ(t)
z(t) = C̄y(t)− (h(t)hM )1/2Chw0(t) +Duu(t) + Ew(t)
w0(t) = Dh(z0(t))

(10)
with Ā = A + Ah and C̄ = C + Ch. We have changed
the state denomination since systems (1) and (10) may be
not equivalent (on the other hand we keep the same name
for input/output signals for sake of simplicity). Indeed,
the model transformation creates additional dynamics
inducing conservatism (see [Gu et al., 2003]) and then an
inequivalence between both models.

This system is then obviously:

• uncertain due to the presence of the ”unknown”
structured norm bounded LTV dynamic operator Dh
and for this part we will use results of robust stability
analysis and robust synthesis.

• parameter varying (even affine in
√
h(t)) and we

will use parameter dependent Lyapunov functions to
tackle this time-varying part.

It is clear that this system is not equivalent to (1) due
to the model transformation adding additional dynamics
(see [Gu et al., 2003]) but is not detailed here for sake
of brevity. Just note that additional dynamics may be a
source of conservatism in stability analysis. Nevertheless,
in the stabilization problem this is less problematic since
we aim to stabilize the system and hence we stabilize these
additional dynamics (assuming they are stabilizable).

4. DELAY-DEPENDENT STABILITY

We present here our result of delay dependent stability
based on the model transformation presented in section 3.
Lemma 4.1. System (10) without control input (i.e. u(t) =
0) is asymptotically stable for h ∈ H and satisfies the
H∞ -norm property ||z||2/||w||2 < γ(h, ḣ) if there exist a
smooth matrix function P : H → Sn++, matrix functions
D : H × U → Sn++, G : H × U → Kn and a function
γ : H × U → R++ such that the LMI (11) holds for all
h ∈ H and ḣ ∈ U :

Proof : Consider the parameter dependent Lyapunov func-
tion with parameter dependent supply rate s(·, ·, ·, ·)
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
[ĀTP (h)]H +

dP

dh
ḣ −(hhM )1/2P (h)Ah + ĀTG(h, ḣ) P (h)E C̄T ĀTD(h, ḣ)

? −D(h)− [(hhM )1/2AThG(h, ḣ)]H GT (h, ḣ)E −hCTh −(hhM )1/2AThD(h, ḣ)
? ? −γ(h, ḣ)Ip FT ETD(h, ḣ)
? ? ? −γ(h, ḣ)Iq 0
? ? ? ? −D(h, ḣ)

 < 0 (11)

V := xT (t)P (h(t))x(t)−
∫ t

0

s(w(s), z(s), h(s), ḣ(s))ds

(12)
where P (h(t) =

∑N
i=1 Pih(t)i and

s(·, ·, ·, ·) := γ(h(t), ḣ(t))wT (t)w(t)
+γ−1(h(t), ḣ(t))zT (t)z(t)

(13)

Then consider system

ẋ(t) = Āx(t)− (h(t)hM )1/2AhDh(ẋ(t)) + Ew(t)
z(t) = C̄x(t)− (h(t)hM )1/2ChDh(ẋ(t)) + Fw(t)

(14)

with Ā = A + Ah and C̄ = C + Ch. Computing the
derivative of the parameter dependent Lyapunov function
(12) along trajectories solutions of the system (14) leads
to

V̇ = xT (t)ḣ(t)
∂P

∂h
x(t) + [ẋT (t)P (h(t))x(t)]H + γwT (t)w(t)

+γ−1(C̄x(t)− h(t)ChDh(ẋ(t)) + Fw(t))zT (t)
(15)

Then, using the so-called full-block S-procedure, this
rewrites as

(?)TM(h, ḣ)


I 0 0
Ā −(h(t)hM )1/2Ah E
0 I 0
Ā −(h(t)hM )1/2Ah E
0 0 I

C̄ −(h(t)hM )1/2Ch F


︸ ︷︷ ︸

S

< 0 (16)

whereM(h, ḣ) =

[
ḣ
dP (h)
dh

P (h)
P (h) 0

]
⊕f(h, ḣ)⊕[−γ(h, ḣ)Ip]⊕

[γ−1(h, ḣ)Iq] and f(h, ḣ)) satisfies[
Dh
In

]T
f(h, ḣ)

[
Dh
In

]
> 0 (17)

The separator f(h, ḣ) = f∗(h, ḣ) is chosen following the
following facts:

• As ||Dh||∞ < 1 then Dh may satisfy[
Dh
In

]T [−1 0
0 1

]
︸ ︷︷ ︸

f1

[
Dh
In

]
> 0 (18)

• As the uncertain term is scalar and is repeated
diagonally of a number equalling the state dimension
then we have [

Dh
In

]T [
0 −i
i 0

]
︸ ︷︷ ︸

f2

[
Dh
In

]
= 0 (19)

Hence a set of separators are parametrized as f = f1 ⊗
D+f2⊗G where D = D∗ > 0 and arbitrary G = G∗. But

as we restrict the set of separators to be hermitian and the
signal are are real valued then the separator becomes

f(h, ḣ) :=
[
−D(h, ḣ) GT (h, ḣ)

? D(h, ḣ)

]
(20)

where D : H × U → Sn++ and G : H × U → Kn.

Then expand (16) and perform a Schur complement on
quadratic term

−

[
C̄T ĀTQ(h, ḣ)

−h1/2
r Ch −h

1/2
r AhQ(h, ḣ)

F ETQ(h, ḣ)

][
−γ−1(h, ḣ)Iq 0

0 −Q−1(h, ḣ)

]
(?)T

where hr = hhM leads to inequality (11). �

5. DELAY-SCHEDULED STATE-FEEDBACK DESIGN

We provide in that section the computation of a delay-
scheduled state-feedback of the form (4). In this case, the
closed-loop system is then given by

ẏ(t) = Ācl(ĥ,
˙̂
h)y(t)−Ah(h(t)hM )1/2w0(t) + Ew(t)

z(t) = C̄cl(ĥ,
˙̂
h)y(t)− Ch(h(t)hM )1/2w(t) + Fw(t)

z0(t) = ẏ(t)
w0(t) = Dh(z0(t))

(21)
with a state feedback of the form K(h+ δh), Ācl(h, δh) =

A+BuK(ĥ, ˙̂
h) and C̄cl(h, δh) = C +DuK(ĥ, ˙̂

h)

There exist several ways to compute this controller:

(1) Use a change of variable and in this case it is possible
to fix a desired form to the controller.

(2) Elaborate stabilizability test and deduce from it a
suitable controller either by explicit formulae or by
optimization.

In the present paper we propose a solution based on
a change of variable. It has the great benefits of being
more simple than the second approach and of fixing
the complexity degree of the controller. Nevertheless, the
second approach is really interesting since it provides
explicit solutions for the controller but these solutions
may not be implementable since some value (as the delay
derivative) are not accessible. Fixing some matrices to be
independent of parameters solves this problem but raises
the conservatism of the approach.
Theorem 5.1. The system (10) is stabilizable with a delay-
scheduled state feedback K(ĥ) = Y (ĥ)X−1(ĥ) if there
exists a smooth matrix function X : Ĥ → Sn++, matrix
functions D̃ : H × U × Ĥ × Û → Sn++, G̃ : H × U × Ĥ ×
Û → Kn and a scalar function γ : H ×U × Ĥ × Û → R++

such that the LMI (22) holds for all h ∈ H, ḣ ∈ U , δ ∈ ∆
and δ̇ ∈ ∆ν , where ξ = col(h, δh, ḣ, δ̇h) and hr = hhM .

Proof :
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
− ˙̂
h
∂X(ĥ)

∂ĥ
+ [X(ĥ)ĀT + Y T (ĥ)BT

u ]H X(ĥ)C̄T + Y T (ĥ)DT
u −

˙̂
h
∂X(ĥ)

∂ĥ
+ ĀX(ĥ) + h

1/2
r AhG̃

T (ξ) h
1/2
r AhD̃(ξ) E

? −γ(ξ)Iq (h/hM )1/2ChG̃
T (ξ) + C̄X(h) h

1/2
r ChD̃(ξ) F

? ? − ˙̂
h
∂X(ĥ)

∂ĥ
− D̃(ξ) 0 0

? ? ? −D̃(ξ) 0
? ? ? ? −γ(ξ)Ip

 < 0 (22)

First note that the real delay is h(t) and the known one
is ĥ(t) = h(t) + δh(t). Moreover as we use the change
of variable approach then X must depend on ĥ(t) only.
Nevertheless, the other variable may depend on all the
parameters (i.e. h(t), δh(t), ḣ(t), δ̇h(t)). From here let ξ =
col(h, δh, ḣ, δ̇h) for simplicity.

Consider the inequality (16) as a departure point, where
we inject the closed-loop system expression. Note that
n−(M) = 2n + m (where n−(M) denotes the number of
strictly negative eigenvalues of M) and equals the rank
of the subspace S (defined in (16)) then it is possible
to apply the dualization lemma (see [Scherer et al., 1997,
Scherer and Weiland, 2004]) and we obtain

(?)TM−1(ξ)


−ĀTcl(ĥ) −C̄T (ĥ) 0
In 0 In

(hhM )1/2ATh (hhM )1/2CTh 0
0 0 −In
−ET −FT 0

0 Iq 0

 > 0 (23)

where M−1(ξ) =

dP (ĥ)
dt

P (ĥ)
? 0

−1

⊕f−1(ξ)⊕[−γ−1(ξ)]⊕

[γ(ξ)]. Let X = P−1 and then
dX(ĥ)
dt

= −XdP (ĥ)
dt

X,

we have

dP (ĥ)
dt

P (ĥ)
? 0

−1

=

0 X(ĥ)

?
dX(ĥ)
dt

. Denote also

f−1(ξ) =
[
−D̃(ξ) G̃T (ξ)
? D̃(ξ)

]
with D̃ ∈ Sn++ and G̃ ∈ Kn.

Moreover f−1(·) satisfies the inequality[
−In
DTh (·)

]T [−D̃(ξ) G̃T (ξ)
? D̃(ξ)

] [
−In
DTh (·)

]
< 0 (24)

Then expand (23), multiply it by −1 and considering
R̃(h, ḣ) < 0, this allows to use a Schur complement on
the quadratic term:

−

(hhM )1/2AhD̃ E

(hhM )1/2ChD̃ F
0 0

[−D̃−1 0
0 −γ−1(ξ)Ip

]
(?)T (25)

and we obtain the inequality (22) where Y (ĥ) = K(ĥ)X(ĥ).
�

6. RELAXATION OF PARAMETRIZED LMIS AND
PARAMETRIZED OBJECTIVES

We have express the stability and stabilizability problems
as polynomially parametrized LMIs. Moreover the H∞ -
norm is expressed as a positive function of the parameters
and its minimization is not a well-defined problem. We

detail in that section how to equivalently relax these
inequalities and objective cost.

6.1 Equivalent Relaxations of parameter dependent LMIs

Note that any parameter dependent LMIs can be rewritten
in a spectral form

UT (ξ)ZU(ξ) < 0 (26)

where ξ represent the vector of parameters. Hence it is
possible to use lemma 2.1 to linearize the dependence onto
the parameters and we get for any matrixW of appropriate
dimensions and a S2-structured matrix Z̃

Z + Z̃ +WV (ξ) + V T (ξ)WT < 0 (27)

where V (ξ)U(ξ) = 0 and V (ξ) is linear in ξ. Then this can
be relaxed using a convex argument: it suffices to verify the
latter inequality at each vertices of the polytope where ξ
evolves to prove the negativity of the LMI for all parameter
values. That type of relaxation must be used on the LMIs,
parameterized decisions matrices (X, γ,D).

We have now turned parameter dependent LMIs into a set
of parameter independent LMIs.

6.2 Costs

As γ(ξ) is polynomial then there exists several costs J (·)
according to the application, but is is possible to give a
general formulation:

Jθ(γ) :=
∫
H×U×H̄×Û

θ(ξ)γ(ξ)dξ (28)

with
∫
H×U×H̄×Û

θ(ξ)dξ = 1.

We propose here some interesting values of the weighting
function θ(·, ·):

• θ1(ξ) = µ(H × U × H̄ × Û)−1 where µ(·) is the
Lebesgue measure.

• θ2(ξ) = δ(
∏f
i=1(ξ − ξi)) with δ(t) is the Dirac

distribution.
• θ3(ξ) = p(ξ) where p(·) denotes for instance a proba-

bility density function.

The first one minimizes the volume below the surface
γ : H × U × H̄ × Û → R+ without any preferences. The
second one aims to minimize the H∞ -norm for certain
delay, errors and their derivative values for systems (may
be interesting for discrete valued delay. The third one is
dedicated when we have a stochastic model of the delay
(and eventually a model for its derivative) attempts for
instance to minimize in priority the H∞ -norm for high
probable delay values.
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controller γ

constant 19.4055
linear 19.4055
rational 15.5030

Table 1. Minimal H∞ -norm of the closed-loop
system

7. EXAMPLE

We aim to stabilize the following time delay system with
time-varying delay

ẋ(t) =
[
11 23
14 16

]
x(t) +

[
15 18
12 23

]
xh(t) +

[
12
0

]
u(t)

+
[
11
22

]
w(t)

z(t) =
[
1 0
0 0

]
x(t) +

[
0

0.1

]
u(t)

(29)

with h(t) ∈ [0, 5], |ḣ| ≤ 0.2, δ̇, δ ∈ [−0.1, 0.1]. We choose
a constant γ > 0 and constant scaling (i.e. constant
D̃, G̃). We compute three different controllers: a constant
feedback, a linear state-feedback (i.e. K(ĥ) = K0 +
K1ĥ) and a rational state-feedback (i.e. K(ĥ) = (Kn0 +
Kn1ĥ)(Kd0 + Kd1ĥ)−1). The results are summarized in
table 1. We can see that in this example, taking a constant
or linearly dependent controller does not lead to a better
closed-loop H∞ -norm. Nevertheless, taking a rationally
dependent controller leads to a better H∞ -norm for the
closed-loop system. This happens for two main reasons:

(1) The controller have a more complex form
(2) Through the use of a parameter dependent Lyapunov

matrix, the information on the delay-derivative is
embedded and then reduce the conservatism.

8. CONCLUSION

We have presented in that paper a new model transfor-
mation refining the one in [Briat et al., 2007]. It allows
to consider a wider class of delay values and similarly
turns a time-delay system into an uncertain LPV system
where the delay acts now as a time-varying parameter.
Based on that description it is possible to propose a new
delay-dependent stability lemma based on the full-block
S-procedure and derive a constructive approach to the
solution of a stabilizing state-feedback. Both constant and
delay-scheduled controllers are considered and uncertain-
ties on the knowledge of the delay are taken a priori into
account in the synthesis problem. All the results are given
in terms of parameter dependent LMIs with polynomial
dependence onto parameters. These parametrized LMIs
are exactly relaxed into a set of LMIs using a result
exposed in this paper which seems to be new. Finally we
show the effectiveness of the approach trough an academic
example.
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C. Y. Kao and A. Rantzer. Stability analysis of systems
with uncertain time-varying delays. Automatica, 43:
959–970, 2007.

S.-I. Niculescu. Delay effects on stability. A robust control
approach, volume 269. Springer-Verlag: Heidelbeg, 2001.

M. Roozbehani and C. R. Knospe. Robust stability
and H∞ performance analysis of interval-dependent
time-delay system. In American Control Conference,
Portland, USA, 2005.

C. Scherer. Robust mixed control and LPV control with
full block scalings. Advances in LMI Methods in Control,
SIAM, 1999.

C. Scherer and S. Weiland. Linear matrix inequalities in
control. Technical report, Delft Center for Systems and
Control (Delft University of Technology) and Depart-
ment of Electrical Engineering (Eindhoven University
of Technology), 2004.

C. Scherer, P. Gahinet, and M. Chilali. Multiobjective
output-feedback control via lmi optimization. IEEE
Transaction on Automatic Control, 42(7):896–911, 1997.

C. W. Scherer. LMI relaxations in robust control. Preprint.
C. W. Scherer and C. W. J. Hol. Matrix sum-of-squares

relaxations for robust semi-definite programs. Mathe-
matical Programming Series B, 107:189–211, 2006.

O. Sename, J.F. Lafay, and R. Rabah. Controllability
indices of linear systems with delays. KybernetiKa, 6:
559–580, 1995.

V. Suplin, E. Fridman, and U. Shaked. H∞ control
of linear uncertain time-delay systems - a projection
approach. IEEE Transactions on Automatic Control,
51:680–685, 2006.

E. Witrant, D. Georges, C. Canudas De Wit, and
O. Sename. Stabilization of network controlled sys-
tems with a predictive approach. In 1st Workshop on
Networked Control System and Fault Tolerant Control,
Ajaccio, France, 2005.

J. Zhang, C.R. Knospe, and P. Tsiotras. Stability of time-
delay systems: Equivalence between lyapunov and scaled
small-gain conditions. IEEE Transactions on Automatic
Control, 46:482–486, 2001.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1272


