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ABSTRACT
With the multiplication of XML data sources, many XML
data warehouse models have been proposed to handle data
heterogeneity and complexity in a way relational data ware-
houses fail to achieve. However, XML-native database sys-
tems currently suffer from limited performances, both in
terms of manageable data volume and response time. Frag-
mentation helps address both these issues. Derived horizon-
tal fragmentation is typically used in relational data ware-
houses and can definitely be adapted to the XML context.
However, the number of fragments produced by classical al-
gorithms is difficult to control. In this paper, we propose the
use of a k-means-based fragmentation approach that allows
to master the number of fragments through its k parameter.
We experimentally compare its efficiency to classical derived
horizontal fragmentation algorithms adapted to XML data
warehouses and show its superiority.

Categories and Subject Descriptors
H.2 [Database Management]: Physical Design

General Terms
Performance

1. INTRODUCTION
XML data sources that are pertinent for decision-support

are becoming increasingly common with XML becoming a
standard for representing complex business data [6]. How-
ever, they bear specificities (e.g., heterogeneous number and
order of dimensions or complex measures in facts, ragged di-
mension hierarchies, etc.) that would be intricate to handle
in a relational environment. Hence, many efforts toward
XML data warehousing have been achieved in the past few
years [13, 35, 39], as well as efforts for extending the XQuery
language with near On-Line Analytical Processing (OLAP)
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capabilities, such as advanced grouping and aggregation fea-
tures [6, 21, 37].

In this context, performance is a critical issue, since XML-
native database systems currently suffer from limited perfor-
mances, both in terms of manageable data volume and re-
sponse time for complex analytical queries. These issues are
typical of data warehouses and can be addressed by frag-
mentation. Fragmentation consists in splitting a data set
into several fragments such that their combination yields
the original warehouse without loss nor information addi-
tion. Fragmentation can subsequently lead to distribute the
target data warehouse, e.g., on a data grid [16]. In the rela-
tional context, derived horizontal fragmentation is acknowl-
edged as best-suited to data warehouses, because it takes
decision-support query requirements into consideration and
avoids computing unnecessary join operations [5]. Several
approaches have also been proposed for XML data fragmen-
tation, but they do not take multidimensional architectures
(i.e., star-like schemas) into account.

In derived horizontal fragmentation, dimensions’ primary
horizontal fragmentation is crucial. In the relational con-
text, two major algorithms address this issue: the predicate
construction [32] and the affinity-based [31] strategies. How-
ever, both are automatic and the number of fragments is not
known in advance, while it is crucial to master it, especially
since distributing M fragments over N nodes with M > N
can become an issue in itself. Hence, we propose in this
paper the use of a k-means-based fragmentation approach
that allows to control the number of fragments through its
k parameter. Our idea, which adapts a proposal from the
object-oriented domain [14] to XML warehouses, is to cluster
workload query predicates to produce primary horizontal di-
mension fragments, with one fragment corresponding to one
cluster of predicates. Primary fragmentation is then derived
on facts. Queries including given predicates are executed
over the corresponding fragments only, instead of the whole
warehouse, and thus run faster.

The remainder of this paper is organized as follows. We
first discuss existing research related to relational data ware-
house, XML data and data mining-based fragmentation in
Section 2. Then, we present our k-means-based XML data
warehouse fragmentation approach in Section 3. We experi-
mentally compare its efficiency to classical derived horizon-
tal fragmentation algorithms adapted to XML data ware-
houses and show its superiority in Section 4. Finally, we
conclude this paper and present future research directions
in Section 5.



2. RELATED WORK

2.1 Fragmentation Definition
There are three fragmentation types in the relational con-

text [23]: vertical fragmentation, horizontal fragmentation
and hybrid fragmentation.

Vertical fragmentation splits a relation R into subrela-
tions that are projections of R with respect to a subset of
attributes. It consists in grouping together attributes that
are frequently accessed by queries. Vertical fragments are
built by projection. The original relation is reconstructed
by joining the fragments.

Horizontal fragmentation divides a relation into subsets
of tuples using query predicates. It reduces query process-
ing costs by minimizing the number of irrelevant accessed
instances. Horizontal fragments are built by selection. The
original relation is reconstructed by fragment union. A vari-
ant, derived horizontal fragmentation, consists in partition-
ing a relation with respect to predicates defined on another
relation.

Finally, hybrid fragmentation consists of either horizontal
fragments that are subsequently vertically fragmented, or
vertical fragments that are subsequently horizontally frag-
mented.

2.2 Data Warehouse Fragmentation
Many research studies address the issue of fragmenting

relational data warehouses either to efficiently process ana-
lytical queries or to distribute the warehouse.

To improve ad-hoc query performance, Datta et al. ex-
ploit a vertical fragmentation of facts to build the Cuio in-
dex [15], while Golfarelli et al. apply the same fragmentation
on warehouse views [19]. Munneke et al. propose a fragmen-
tation methodology for a multidimensional database [30].
Fragmentation consists in deriving a global data cube into
fragments containing a subset of data. This process is de-
fined by the slice and dice operation. The authors also define
another fragmentation strategy, server, that removes one or
several dimensions from a hypercube to produce fragments
with fewer dimensions than the original data cube. Bella-
treche and Boukhalfa apply horizontal fragmentation to a
star-schema [5]. Their fragmentation strategy is based on
a query workload and exploits a genetic algorithm to se-
lect a partitioning schema. This algorithm aims at choosing
an optimal fragmentation schema that minimizes query cost.
Finally, Wu and Buchmaan recommend to combine horizon-
tal and vertical fragmentation for query optimization [38].
A fact table can be horizontally partitioned with respect to
one or more dimensions. It can also be vertically partitioned
according to its dimensions, i.e., all the foreign keys to the
dimension tables are partitioned as separate tables.

To distribute a data warehouse, Noaman et al. exploit a
top-down strategy that uses horizontal fragmentation [32].
The authors propose an algorithm for deriving horizontal
fragments from the fact table based on queries that are de-
fined on all dimension tables. Finally, Wehrle et al. pro-
pose to distribute and query a warehouse on a computing
grid [36]. They use derived horizontal fragmentation to split
the data warehouse and build a so-called block of chunks, a
data set defining a fragment.

In summary, these proposals generally exploit static de-
rived horizontal fragmentation to reduce irrelevant data ac-
cess rate and efficiently process join operations across mul-

tiple relations [5, 32, 36]. In the literature, the prevalent
methods used for derived horizontal fragmentation are the
following [23].

• Predicate construction. This method fragments a
relation by using a complete and minimal set of pred-
icates [32]. Completeness means that two relation in-
stances belonging to the same fragment have the same
probability of being accessed by any query. Minimality
garantees that there is no redundancy in predicates.

• Affinity-based fragmentation. This method is an
adaptation of vertical fragmentation methods to hori-
zontal fragmentation [31]. It is based on the predicate
affinity concept [40], where affinity defines query fre-
quency. Specific matrices (predicate usage and affinity
matrices) are exploited to cluster selection predicates.
A cluster is defined as a selection predicate cycle and
forms a dimension graph fragment.

2.3 XML Database Fragmentation
Recently, several fragmentation techniques for XML data

have been proposed. They split an XML document into a
new set of XML documents. Their main objective is either to
improve XML query performance [7, 18, 25] or to distribute
or exchange XML data over a network [9, 10].

To fragment XML documents, Ma et al. define a new
fragmentation type: split [24, 25], which is inspired from
the oriented-object domain. This fragmentation splits XML
document elements and assigns a reference to each sub-
element. The references are then added to the Document
Type Definition (DTD) defining the XML document. The
authors extend the DTD and XML-QL languages. Boni-
fati et al. also propose a fragmentation strategy for XML
documents that is driven by structural constraints [7, 8].
This strategy uses both heuristics and statistics. Andrade
et al. propose to apply fragmentation to an homogeneous
XML collection [2]. They adapt traditional fragmentation
techniques to an XML document collection and base their
proposal on the Tree Logical Class (TLC) algebra [33]. The
authors also evaluate these techniques and show that hori-
zontal fragmentation provides the best performance.

Gertz and Bremer introduce a distribution approach for
an XML repository [18]. They propose a fragmentation
method and outline an allocation model for distributed XML
fragments in a centralized archirecture. Gertz and Bremer
also define horizontal and vertical fragmentation for an XML
document. A fragment is defined with a path expression lan-
guage, called XF, which is derived from XPath. This frag-
ment is obtained by applying an XF expression on a graph
RG representing XML data. Moreover, the authors define
exclusion expressions that ensure fragment coherence and
disjunction.

Bose and Fegaras use XML fragments for data exchange
in a peer-to-peer network (P2P), called XP2P [10]. XML
fragments are interrelated and each is uniquely identified by
an ID. The authors propose a fragmentation schema, called
Tag Structure, to define the structure of data and fragmenta-
tion information. Bonifati et al. also define XML fragments
for a P2P framework [9]. An XML fragment is obtained and
identified by a single path expression, a root-to-node path
expression XP, and managed on a specific peer. In addition,
the authors associate to each fragment two path expressions:



super fragment and child fragment. These paths ensure the
identification of fragments and relationships.

In summary, these proposals adapt classical static frag-
mentation methods to split XML data. An XML fragment
is defined and identified by a path expression [9] or an XML
algebra operator [2]. Fragmentation is performed on a single
XML document [24, 25] or on an homogeneous XML collec-
tion [2]. Note that XML data warehouse fragmentation has
not been addressed yet, to the best of our knowledge.

2.4 Data Mining-based Fragmentation
Although data mining has proved useful for selecting phys-

ical data structures that enhance performance, such as in-
dexes or materialized views [3, 4], few approaches exploit
data mining for fragmentation.

Gorla and Betty exploit association rules (by adapting the
Apriori algorithm [1]) for vertical fragmentation approach in
relational databases [20].

Darabant and Campan propose the horizontal fragmenta-
tion method for object-oriented distributed databases based
on k-means clustering we inspire from [14]. This method
clusters object instances into fragments by taking all com-
plex relationships between classes into account (aggregation,
associations and links induced by complex methods).

Finally, Fiolet and Toursel propose a parallel, progressive
clustering algorithm to fragment a database and distribute
it over a grid [17]. It is inspired by the CLIQUE sequen-
tial clustering algorithm that consists in clustering data by
projection.

Though in limited number, these studies clearly demon-
strate how data mining can be used for vertical and hori-
zontal fragmentation, through association rule mining and
clustering, respectively. They are also static, though.

3. K-MEANS-BASED FRAGMENTATION
Although XML data warehouse architectures from the lit-

erature share a lot of concepts (mostly originating from clas-
sical data warehousing), they are nonetheless all different.
Hence, we proposed a unified, reference XML data ware-
house model that synthesizes and enhances existing mod-
els [29], and on which we base our fragmentation work. We
first recall this model before detailing our fragmentation ap-
proach.

3.1 XML Warehouse Reference Model
XML warehousing approaches assume that the warehouse

is composed of XML documents that represent both facts
and dimensions. All these studies mostly differ in the way
dimensions are handled and the number of XML documents
that are used to store facts and dimensions. A performance
evaluation study of these different representations showed
that representing facts in one single XML document and
each dimension in one XML document allowed the best per-
formance [12]. Moreover, this representation also allows to
model constellation schemas without duplicating dimension
information. Several fact documents can indeed share the
same dimensions. Hence, we adopt this architecture model.
More precisely, our reference data warehouse is composed of
the following XML documents:

• dw-model.xml that represents warehouse metadata;

• a set of factsf .xml documents that each store infor-
mation related to set of facts f ;

• a set of dimensiond.xml documents that each store a
given dimension d’s member values.

The dw-model.xml document (Figure 1) defines the mul-
tidimensional structure of the warehouse. Its root node,
DW-model, is composed of two types of nodes: dimension
and FactDoc. A dimension node defines one dimension, its
possible hierarchical levels (Level elements) and attributes
(including their types), as well as the path to the correspond-
ing dimensiond.xml document. A FactDoc element defines
a fact, i.e., its measures, references to the corresponding di-
mensions, and the path to the corresponding factsf .xml
document.

@id

DW-model

dimension FactDoc

dimensionmeasure

@id @type
@idref

@path

@id
@path

Level

@id
attribute

@name @type

attribute

dimensiondimension

Figure 1: dw-model.xml graph structure

A factsf .xml document stores facts (Figure 2(a)). The
document root node, FactDoc, is composed of fact subele-
ments that each instantiate a fact, i.e., measure values and
dimension references. These identifier-based references sup-
port the fact-to-dimension relationship.

Finally, a dimensiond.xml document helps instantiate one
dimension, including any hierarchical level (Figure 2(b)). Its
root node, dimension, is composed of Level nodes. Each one
defines a hierarchy level composed of instance nodes that
each define the level’s member attribute values. In addi-
tion, an instance element contains Roll-up and Drill-Down
attributes that define the hierarchical relationship within di-
mension d.

(b)   (a) 

...

...

dimension

dimension

Level

instance

instance

@id

attribute

attribute

@id @value

@value @value-id

@id
@dim-id

@id

@Roll-up

FactDoc

fact

measure

@mes-id @dim-id

(2)
(1)

Level

instance

@id

(3)

@Drill-Down

Figure 2: factsf .xml (a) and dimensiond.xml (b)
graph structures



3.2 Fragmentation Approach

3.2.1 Principle
Since the aim of fragmentation is to optimize query re-

sponse time, the prevalent fragmentation strategies are work-
load driven [5, 7, 18, 31, 32]. More precisely, they exploit
selection predicates found in workload queries to derive suit-
able fragments. Our approach also belongs to this family.
Its general principle is summarized in Figure 3. It out-
puts both a fragmentation schema (metadata) and the frag-
mented XML warehouse. It is subdivided into three steps
that are detailed in the following sections:

1. selection predicate extraction from the query work-
load;

2. predicate clustering with the k-means method;

3. fragment construction with respect to predicate clus-
ters.

1. Selection predicate

extraction


XQuery workload


2. Predicate clustering

(k-means)


3. Fragment

construction


Source XML

data warehouse

(schema + data)


XML warehouse

fragments


Fragmentation

schema


Figure 3: K-means-based fragmentation principle

3.2.2 Selection Predicate Extraction
Selection predicate set P is simply parsed from workload

W . For example, let WS be the sample XQuery workload
provided in Figure 4 and PS the corresponding predicate set.
PS = {p1, p2, p3, p4, ...}, where:
p1 = $y/attribute[@id = ”c nation key”]/@value>”15”,
p2 = $y/attribute[@id = ”c nation key”]/@value = ”13”,
p3 = $y/attribute[@id = ”p type”]/@value = ”PBC” and
p4 = $y/attribute[@id = ”d date name”]/@value = ”Sat.”.
For example, p2 and p3 are selection predicates obtained
from query q2 ∈ WS.

Parsed predicates are then coded in a query-predicate ma-
trix QP whose general term QPij equals to 1 if predicate
pj ∈ P appears in query qi ∈ W , and to 0 otherwise. For
example, the QPS matrix corresponding to WS and PS is
featured in Table 1.

3.2.3 Predicate Clustering
Our objective is to derive fragments that optimize data

access for a given set of queries. Since horizontal fragments
are built from predicates, clustering predicates with respect
to queries achieves our goal. Intuitively, we ideally seek to
build rectangles (clusters) of 1s in matrix QP . We chose the
widely-used k-means algorithm [26] for clustering. This al-
gorithm inputs vectors of object attributes (columns of QP

q1 for $x in //FactDoc/Fact,
$y in //dimension[@dim-id=”Customer”]/Level/instance
where $y/attribute[@id=”c nation key”]/@value>”15”
and $x/dimension[@dim-id=”Customer”]/@value-id=$y/@id
return $x

q2 for $x in //FactDoc/Fact,
$y in //dimension[@dim-id=”Customer”]/Level/instance,
$z in //dimension[@dim-id=”Part”]/Level/instance
where $y/attribute[@id=”c nation key”]/@value=”13”
and $y/attribute[@id=”p type”]/@value=”PBC”
and $x/dimension[@dim-id=”Customer”]/@value-id=$y/@id
and $x/dimension[@dim-id=”Part”]/@value-id=$z/@id
return $x

. . .
q10 for $x in //FactDoc/Fact,

$y in //dimension[@dim-id=”Customer”]/Level/instance,
$z in //dimension[@dim-id=”Date”]/Level/instance
where $y/attribute[@id=”c nation key”]/@value=”13”
and $y/attribute[@id=”d date name”]/@value=”Sat.”
and $x/dimension[@dim-id=”Customer”]/@value-id=$y/@id
and $x/dimension[@dim-id=”Part”]/@value-id=$z/@id
return $x

Figure 4: XQuery workload snapshot WS

p1 p2 p3 p4 ...

q1 1 0 0 0

q2 0 1 1 0

...

q10 0 0 1 1

Table 1: Sample query-predicate matrix QPS

in our case). It attempts to find the centers of natural clus-
ters in source data by minimizing total intra-cluster variance∑k

i=1

∑
xj∈Ci

(xj −µi)
2, where Ci, i = 1, ..., k are the k out-

put clusters and µi is the centroid (mean point) of points
xj ∈ Ci. Let C be the set of all clusters Ci.

Usually, having k as an input parameter is viewed as a
drawback in clustering. In our case, this turns out to be
an advantage, since we want to limit the number of clus-
ters/fragments, typically to the number of nodes the XML
data warehouse will be distributed on.

In practice, we used the Weka [22] SimpleKMeans imple-
mentation of k-means. SimpleKMeans uses the Euclidean
distance to compute distances between points and clusters.
It directly inputs matrix QP (acually, the pj vectors) and
k, and outputs set of predicate clusters C. For example, on
matrix QPS with k = 2, SimpleKMeans outputs:

CS = {{p1}, {p2, p3, p4}}.

3.2.4 Fragment Construction
The fragmentation construction step is itself subdivided

into two substeps (Figure 5). First, predicate cluster set
C is joined to warehouse schema (document dw-model.xml)
to produce an XML document named frag-schema.xml that
represents the fragmentation schema (Figure 6). Its root
node, Schema, is composed of fragment elements. Each
fragment is identified by an @id attribute and contains di-
mension elements. A dimension element is identified by a
@name attribute and contains predicate elements that store
the predicates used for fragmentation. For example, the
fragmentation schema frag-schemaS .xml corresponding to
cluster set CS is provided in Figure 7.

In this process, we also output a set of XQueries (the
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Figure 6: frag-schema.xml graph structure

fragments.xq script) that, applied to the XML data ware-
house (i.e., the whole set of factsf .xml and dimensiond.xml
documents), produces the actual fragments, which we store
in a set of factsfi

.xml and dimensiondi
.xml documents,

i = 1, ..., k + 1. As fragments, these documents indeed
bear the same schema than the original warehouse. The
(k + 1)th fragment is based on an additional predicate, de-
noted ELSE, which is the negation of the conjunction of
all predicates in P and is necessary to ensure fragmenta-
tion completeness (Section 2.2). In our running example,
ELSE = ¬(p1 ∧ p2 ∧ p3 ∧ p4).

Figure 8 provides an excerpt from the fragmentsS .xq script
that helps build fragment f2 from Figure 7. Dimension frag-
ments are generated first, one by one, through selections ex-
ploiting the predicate(s) associated to the current dimension
(three first queries from Figure 8). Then, fragmentation is
derived on facts by joining the original fact document to the
newly-created dimension fragments (last query).

4. EXPERIMENTS
Since derived horizontal fragmentation is a NP-hard prob-

lem [11] solved by heuristics, we choose to validate our pro-
posal experimentally.

4.1 Experimental conditions
We use XWeB (XML Data Warehouse Benchmark) [27]

as a test platform. XWeB is based on the reference model
defined in Section 3.1, and proposes a test XML data ware-
house and its associated XQuery decision-support workload.

<Schema>

<fragment id=”f1”>
<dimension name=”Customer”>

<predicate name=”p1” />

</dimension>

</fragment>
<fragment id=”f2”>

<dimension name=”Customer”>
<predicate name=”p2” />

</dimension>

<dimension name=”Part”>
<predicate name=”p3” />

</dimension>

<dimension name=”Date”>
<predicate name=”p4” />

</dimension>

</fragment>
</Schema>

Figure 7: Sample frag-schemaS.xml document

element dimension{ attribute dim-id{Customer}, element Level{
attribute id {Customers},
for $x in document(”dimensionCustomer.xml”)//Level
where $x//attribute[@id=”c nation key”]/@value=”13”]
return $x }
}
element dimension{ attribute dim-id{Part}, element Level{
attribute id {Part},
for $x in document(”dimensionPart.xml”)//Level
where $x//attribute[@id=”p type”]/@value=”PBC”]
return $x }
}
element dimension{ attribute dim-id{Date}, element Level{
attribute id {Date},
for $x in document(”dimensionDate.xml”)//Level
where $x//attribute[@id=”d date name”]/@value=”Sat.”]
return $x }
}
element FactDoc {
for $x in //FactDoc/Fact,
$y in document(”dimensionCustomerf2

.xml”)//instance,

$z in document(”dimensionPartf2
.xml”)//instance,

$t in document(”dimensionDatef2
.xml”)//instance

where $x/dimension[@dim-id=”Customer”]/@value-id=$y/@id
and $x/dimension[@dim-id=”Part”]/@value-id=$z/@id
and $x/dimension[@dim-id=”Date”]/@value-id=$t/@id
return $x
}

Figure 8: Excerpt from sample fragmentsS.xq script

XWeB’s warehouse consists of sale facts characterized by
the amount (of purchased products) and quantity (of pur-
chased products) measures. These facts are stored in the
factssales.xml document and are described by four dimen-
sions: Customer, Supplier, Date and Part stored in the
dimensionCustomer.xml, dimensionSupplier.xml,
dimensionDate.xml and dimensionPart.xml documents, re-
spectively. XWeB’s warehouse characteristics are displayed
in Table 2.

XWeB’s workload is composed of queries that exploit the
warehouse through join and selection operations. We extend
this workload by adding queries and selection predicates in
order to obtain a significant fragmentation. Due to space
constraints, our workload is only available on-line1.

We ran our tests on a Pentium 2 GHz PC with 1 GB of
main memory and an IDE hard drive under Windows XP.
We use the X-Hive XML native DBMS2 to store and query
the warehouse. Our code is written in Java and connects

1
http://eric.univ-lyon2.fr/∼hmahboubi/Workload/workload.xq

2
http://www.x-hive.com/products/db/



Facts Maximum number of cells

Sale facts 7000

Dimensions Number of instances

Customer 1000
Supplier 1000
Date 500
Part 1000

Documents Size (MB)

factssales.xml 2.14
dimensionCustomer.xml 0.431
dimensionSupplier.xml 0.485
dimensionDate.xml 0.104
dimensionPart.xml 0.388

Table 2: XWeB warehouse characteristics

to X-Hive and Weka through their respective Application
Programming Interfaces (APIs). It is available on demand.

4.2 Fragmentation Strategy Comparison
In this first series of experiments, we aim at comparing our

k-means-based horizontal fragmentation approach (denoted
KM) to the classical derived horizontal fragmentation tech-
niques, namely by predicate construction (PC) and affinity-
based (AB) primary fragmentation (Section 2.2), which we
adapted to XML data warehouses [28]. We also record per-
formance when no fragmentation is applied (NF), for refer-
ence.

4.2.1 Query Response Time
This experiment measures workload execution time with

the three fragmentation strategies we adopted. For KM, we
arbitrarily fixed k = 8, which could correspond to a com-
puter cluster’s size. The fragments we achieve are stored in
distinct collections to simulate data distribution. Each col-
lection can indeed be considered to be stored on a distinct
node and can be identified, targeted and queried separately.
To measure query execution time over a fragmented ware-
house, we first identify the required fragments with the frag-
schema.xml document. Then, we execute the query over
each fragment and save execution time. To simulate parallel
execution, we only consider maximum execution time.

Figure 9 plots workload response time with respect to data
warehouse size (expressed in number of facts). It clearly
shows that fragmentation significantly improves response
time, and that KM fragmentation performs better than PC
and AB fragmentation when the warehouse scales up. Work-
load execution time is indeed, on an average, 86.5% faster
with KM fragmentation than with NF, and 36.7% faster with
KM than with than AB. We believe our approach performs
better than classical derived horizontal fragmentation tech-
niques because these latter produce many more fragments
(159 with PC and 119 with AB vs. 9 with KM). Hence,
at workload execution time, queries must access many frag-
ments (up to 50 from our observations), which multiplies
query distribution and result reconstruction costs. The num-
ber of accessed fragments is much lower with KM (typically
2 fragments in our experiments).
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Figure 9: Fragmentation efficiency comparison

4.2.2 Fragmentation Overhead
We also compare the PC, AB and KM (k = 8) fragmen-

tation strategies in terms of overhead (i.e., fragmentation
algorithm execution time). When assessing performance, it
is indeed necessary to find a fair trade-off between gain and
overhead. Table 3 summarizes the results we obtain for an
arbitrarily fixed data warehouse size of 3,000 facts. It shows
that KM clearly outperforms AB and PC, which is in line
with these algorithms’ complexities : O(|P |), O(|P |2) and

O(2|P |), respectively. While AB and PC would have to run
off-line, KM could on the other hand be envisaged to run
on-line.

PC AB KM

Execution time (h) 16.8 11.9 0.25

Table 3: Fragmentation overhead comparison

4.3 Influence of Number of Clusters
In this experiment, we fixed data warehouse size (to 4,000

and 5,000 facts, respectively) and varied KM parameter k to
observe its influence on workload response time. Figure 10
confirms that performance improves quickly when fragmen-
tation is applied, but tends to degrade when the number of
fragments increases, as we explained in Section 4.2.1. Fur-
thermore, it hints that an optimal number of clusters for
our test data warehouse and workload lies between 4 and
6, making us conclude that over-fragmentation must be de-
tected and avoided. Note that, on Figure 10, k = 1 cor-
responds to the NF experiment (this one fragment is the
original warehouse).

5. CONCLUSION
In this paper, we have introduced an approach for frag-

menting XML data warehouses that is based on data min-
ing, and more precisely clustering and the k-means algo-
rithm. Classical derived horizontal fragmentation strategies
run automatically and output an unpredictable number of
fragments, which is nonetheless crucial to keep under con-
trol. By contrast, our approach allows to fully master the
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Figure 10: Influence of number of clusters

number of fragments through the k-means k parameter.
To validate our proposal, we have compared our fragmen-

tation strategy to XML adaptations of the two prevalent
fragmentation methods for relational data warehouses. Our
experimental results show that our approach, by producing
a lower number of fragments, outperforms both the others
in terms of performance gain and overhead.

Now that we have efficiently fragmented an XML data
warehouse, our more direct perspective is to distribute it on
a data grid. This raises several issues that include processing
a global query into subqueries to be sent to the right nodes
in the grid, and reconstructing a global result from sub-
query results. Properly indexing the distributed warehouse
to guarantee good performance shall also be very important.

Finally, in a continuous effort to minimize the data ware-
house administration function and aim at autoadministra-
tive systems [3, 4], we plan to make our data mining based-
fragmentation strategy dynamic. The idea is to perform
incremental fragmentation when the warehouse is refreshed.
This could be achieved with the help of an incremental vari-
ant of the k-means algorithm [34].
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(ASD 06), 9th Maghrebian Conference on Information
Technologies (MCSEAI 06), Agadir, Morocco, 2006.

[28] H. Mahboubi and J. Darmont. Enhancing XML Data
Warehouse Performance by Fragmentation. Technical
report, Technical report, ERIC, University of Lyon 2,
France, 2008.

[29] H. Mahboubi, M. Hachicha, and J. Darmont. XML
Warehousing and OLAP. Encyclopedia of Data
Warehousing and Mining, Second Edition. IGI
Publishing, August 2008.

[30] D. Munneke, K. Wahlstrom, and M. K. Mohania.
Fragmentation of multidimensional databases. In 10th
Australasian Database Conference (ADC 99),
Auckland, New Zealand, pages 153–164, 1999.

[31] S. B. Navathe, K. Karlapalem, and M. Ra. A Mixed
Fragmentation Methodology for Initial Distributed
Database Design. Journal of Computer and Software
Engineering, 3(4), 1995.

[32] A. Y. Noaman and K. Barker. A Horizontal
Fragmentation Algorithm for the Fact Relation in a
Distributed Data Warehouse. In 1999 ACM
International Conference on Information and
Knowledge Management (CIKM 99), Kansas City,
USA, pages 154–161. ACM, 1999.

[33] S. Paparizos, Y. Wu, L. V. S. Lakshmanan, and H. V.
Jagadish. Tree Logical Classes for Efficient Evaluation
of XQuery. In SIGMOD International Conference on
Management of Data (SIGMOD 04), Paris, France,
pages 71–82, 2004.

[34] D. Pham, S. Dimov, and C. Nguyen. An Incremental
K-means algorithm. Journal of Mechanical
Engineering Science, 218(7):783–795, 2004.
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