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We study the classical dimer model on a square lattice with a single vacancy by developing a graph-theoretic
classification of the set of all configurations which extends the spanning tree formulation of close-packed
dimers. With this formalism, we can address the question of the possible motion of the vacancy induced by
dimer slidings. We find a probability 57/4−10�2 for the vacancy to be strictly jammed in an infinite system.
More generally, the size distribution of the domain accessible to the vacancy is characterized by a power law
decay with exponent 9 /8. On a finite system, the probability that a vacancy in the bulk can reach the boundary
falls off as a power law of the system size with exponent 1 /4. The resultant weak localization of vacancies still
allows for unbounded diffusion, characterized by a diffusion exponent that we relate to that of diffusion on
spanning trees. We also implement numerical simulations of the model with both free and periodic boundary
conditions.
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I. INTRODUCTION

A. The problem

The statistical mechanics of rigid dimers arranged on a
lattice is relevant to many physical systems and has appeared
repeatedly in the literature over the years. The study of dimer
models can shed light on diatomic gases, the thermodynam-
ics of adsorbed films �1�, and the classical limit of resonating
valence bond �RVB� models of high-temperature supercon-
ductivity �2�.

The case of close-packed dimers on planar lattices is ex-
actly solvable and the associated mathematical techniques
have proven very powerful �3–8�. It provides a paradigm of
a geometrically constrained statistical system with a strong
interplay between the physical degrees of freedom and the
symmetry of the underlying lattice.

New challenges appear if we extend the close-packed
dimer models by allowing for defects in the form of vacan-
cies, namely, sites not covered by dimers �7,9–11�. The pres-
ence of defects allows dynamical moves for dimers by slid-
ing them into empty sites, as illustrated in Fig. 1. This, in
turn, induces motion of the vacancies in the form of discrete
jumps, each by two lattice spacings. It is of great interest to
characterize as explicitly as possible the nature of the con-
strained dynamics of vacancies as a model glassy system. In
particular, we would like to determine the extent to which a
vacancy can diffuse, both spatially and temporally.

In this paper, we consider the simplest case of an isolated
vacancy in a sea of dimers on the square lattice. Our primary
interest is the structure of the space accessible to the va-
cancy. In particular, we address the question of whether or
not the vacancy is localized, namely, confined to a finite

region. We find that our model exhibits localization but in a
very weak form. Although the motion of the vacancy in a
fixed dimer background is localized to a finite domain, the
mean size of this domain nevertheless diverges upon averag-
ing over all possible dimer backgrounds. We call this prop-
erty “weak localization,” as it allows vacancies to diffuse
arbitrarily far on average. It is also important to investigate
the kinetics of vacancy diffusion. We find an anomalous dif-
fusion exponent determined both by the internal structure of
the space available to the vacancy and the effects of weak
localization which control the size of this space.

B. Outline and summary of results

Our paper is structured as follows. In Sec. II, we recast
our dimer problem with a single vacancy as a model of span-
ning graphs on a rectangular grid by extending a famous
construction by Temperley. This construction is recalled in
Sec. II A and provides a bijection between dimer configura-
tions with the vacancy on the boundary of the grid and span-
ning trees on a subgrid. The generalization of this construc-
tion, in Sec. II B, to a vacancy in the bulk leads to more
general spanning webs, consisting of a central tree compo-
nent on which the vacancy can freely diffuse, surrounded by
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(b)(a)

FIG. 1. �Color online� An example of a dimer move on the
square lattice. The dimer slides into the empty site �vacancy� of
configuration �a�, resulting in a new configuration �b� where the
vacancy has jumped by two lattice spacings.
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a number of nested loops with branches, which act as cages
for the vacancy. We then derive in Sec. II C a determinant
formula for the partition function of these spanning webs.

Section III is devoted to a finite size study of dimers on a
square grid of size L, with a vacancy at the center, and the
asymptotic limit L→�. In Sec. III A, we use our determinant
formula to compute the probability that the vacancy can
reach the boundary of the grid, in which case it can reach all
sites of the grid. This “delocalization probability” is found to
decay with the system size as L−1/4. In Sec. III B, we analyze
the distribution p�s� for the size s of the domain accessible to
the vacancy in an infinite system. In the spanning web for-
mulation, this domain is nothing but the central tree compo-
nent that contains the vacancy. We characterize p�s� by first
giving the exact value of p�1�, which measures the probabil-
ity that the vacancy is strictly jammed. We then derive its
large s behavior p�s��s−9/8 from the associated scaling of
the delocalization probability. This power law behavior with
an exponent larger than −2 is responsible for the announced
weak localization property. We finally discuss in Sec. III C
the diffusion exponent on spanning webs ��� and on span-
ning trees ��0� and find the relation � /�0=7/8, which mea-
sures the slowing of diffusion by weak localization.

We complete our analysis in Sec. IV by a number of nu-
merical simulations both on the statistics of spanning webs
and the dynamics of diffusion. In Sec. IV A, we show how to
modify the well known Propp-Wilson algorithm for the gen-
eration of random spanning trees so as to obtain spanning
webs with a uniform measure. We present results for the
delocalization probability and for the size distribution p�s�,
finding good agreement with the analytic predictions. We
check the universality of p�s� by also carrying out simula-
tions with periodic boundary conditions. There we used the
efficient “pivot algorithm” to generate configurations directly
in the dimer formulation. Section IV B is devoted to the
numerical computation of the diffusion exponents �0 on
spanning trees and � on spanning webs, whose ratio agrees
with the analytic prediction.

Appendix A gives a heuristic derivation of the decay ex-
ponent for the delocalization probability via Coulomb gas
arguments. Appendix B discusses the technical details of the
extension of the Propp-Wilson algorithm to the generation of
spanning webs.

II. VACANCY IN A DENSE SEA OF DIMERS:
GRAPH-THEORETIC TREATMENT

A. Tree formulation

Let us first recall Temperley’s bijection between dimer
configurations on a rectangular grid and spanning trees on a
grid with double mesh size �12,13�. More precisely, let us
consider a rectangular grid with 2L+1 columns and 2M +1
rows, so that the total number of vertices is odd. The vertices
of the grid can be colored, say in black and white, so that
neighboring vertices have different colors, with the vertex in
the upper right corner being white. With this coloring, there
is one more white vertex than black vertex and the grid can

be fully covered by a set of dimers with a single vacancy on
a white vertex. Note that the set of white vertices can be
viewed as made of two intercalated grids of size �L+1�
� �M +1� and L�M, respectively, both with double mesh
size �see Fig. 2�. We shall refer to these grids as the odd
white grid and the even white grid, respectively. It is conve-
nient to extend the even white grid by an additional white
vertex dual to the exterior face of the original grid, together
with edges from that new vertex to all vertices on the bound-
ary of the even white grid �see Fig. 2�. With this convention,
the “extended” even white grid is simply the dual graph of
the odd white grid. Note finally that the black vertices sit
precisely on the edges of either of these two dual white grids.

Let us assume that we place the vacancy on a white vertex
of the boundary of the grid, necessarily part of the odd white
grid. Now any other vertex of the odd white grid carries a
dimer �see Fig. 3�a��. This dimer selects an edge of the odd
white grid, which we decide to mark and orient from the
white vertex carrying that dimer to its neighbor on the odd
white grid �see Fig. 3�b� and 3�c��. The graph made of all
these marked oriented edges together with all the original
vertices of the odd white grid forms a spanning tree of the
odd white grid whose edges are moreover oriented toward
the vacancy �see Fig. 3�d��. To understand the absence of
loops in the graph, note that a loop would enclose an interior
region of the original lattice with an odd number of vertices
that therefore could not be fully covered by dimers �here it is
crucial that we have taken the vacancy to lie strictly on the
boundary�. As the graph has exactly one more vertex than
edges �as the vertex carrying the vacancy does not give rise
to a marked edge�, it is necessarily made of a single tree
spanning the whole odd white grid. The edge orientations
produce the unique flow on the tree toward the vacancy �with
exactly one edge exiting from all vertices but the vacancy�.

(a)

(d)(c)

(b)

FIG. 2. A 9�7 grid �a� is bicolored with one more white than
black vertex. The set of white vertices is made of two intercalated
grids of double mesh size �b� with respective sizes 5�4 and 4
�3. The first one �c� will be referred to as the odd white grid and
the second one �d� as the even white grid. The latter is extended
�dashed lines� so as to include an extra vertex �here represented by
a double boundary� dual to the exterior face.
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In particular, if we fix the position of the vacancy, say in the
upper right corner, the above construction provides a bijec-
tion between fully packed dimer configurations of a �2L
+1�� �2M +1� grid with one vacancy in the corner and span-
ning trees of the associated �L+1�� �M +1� odd white grid.
To go from the spanning tree configuration back to the origi-
nal dimer configuration, we first orient each edge of the tree
so as to reproduce the unique flow toward the upper right
corner and replace each edge of the tree by a dimer on the
first half of the edge. We then consider the “dual tree” of the
spanning tree, made of those edges of the extended even
white grid that do not cross the edges of the spanning tree.
This dual graph is itself a tree spanning the extended even
white grid which we orient toward the exterior vertex �see
Fig. 3�d��. We finally repeat the above construction and re-
place each oriented edge of the dual tree by a dimer on the
first half of the edge.

Clearly, we have a similar bijection if we place the va-
cancy at some arbitrary but fixed white vertex on the bound-
ary of the grid. This simply amounts to consider spanning
trees with another orientation of the edges, now pointing
toward the new position of the vacancy on the boundary. If
we leave the position of the vacancy free along the boundary,
we clearly get a 2�L+M� to 1 mapping instead.

Let us now consider the motion of the vacancy generated
by sliding of dimers. In the tree formulation, as illustrated in
Fig. 4, performing an elementary slide corresponds to pick-
ing an edge adjacent to the vacancy �and necessarily pointing
to it� and reversing its orientation so that the flow now points
to a new vertex. We can then repeat the process, which al-
lows the vacancy to reach any vertex on the spanning tree,
hence any vertex of the odd white grid. In the tree formula-

tion, the dimer configurations accessible by slidings are
therefore described by the same spanning tree and differ only
by the choice of the �arbitrary� vacancy site on the odd white
grid toward which we orient all the edges of this tree. Each
orientation may then be mapped into dimers as above. Note
that the dimers corresponding to edges of the dual tree can-
not be affected by slidings and are in practice frozen. Note,
finally, that the property that the vacancy can reach any site
of the odd white grid holds only because the vacancy was on
the boundary in the first place. As shall see just below, this
property is not true in general for vacancies that lie inside the
grid. To conclude, the motion of the vacancy can be analyzed
as simple diffusion on a spanning tree picked uniformly at
random.

B. Extension to webs

Let us now consider the more general case where the
vacancy originally lies on an arbitrary vertex of the odd
white grid, not necessarily on the boundary �see Fig. 5�a��.
We can repeat the above construction by marking and orient-
ing, for each vertex of the odd white grid except the vacancy
vertex, the edge that is selected by the dimer covering that
vertex �see Fig. 5�b��. As before, we consider the graph made
of all these marked oriented edges together with all the origi-
nal vertices of the odd white grid. As there is exactly one
oriented edge exiting from each vertex but the vacancy ver-
tex, any connected component of this graph is either a tree
containing the vacancy vertex and with edges pointing to that
vertex or it is made of an oriented loop with attached
branches oriented toward it �see Fig. 5�c��. In this latter case,
the connected component cannot contain the vacancy vertex.
Moreover, as before, any such loop encloses an odd number
of vertices, so it must encircle the vacancy, which is possible
only if the vacancy does not lie on the boundary. To summa-
rize, the general structure of the graph is a tree containing the
vacancy vertex �the tree may be as small as a single vertex�
surrounded by a number of nested loop components �made of
a loop and attached branches� so that the graph spans the
entire odd white grid. We shall call such a structure a “span-
ning web” of the odd white grid rooted at the vacancy vertex.

Conversely, given such a graph, we note that the “dual
web” made of those edges of the extended even white grid
that do not cross the edges of the spanning web is itself a
spanning web of the extended even white grid �see Fig.
5�d��. It is made of a set of nested loop components, with
branches, complemented by a tree rooted at the exterior ver-
tex. The loops of the dual web and that of the original span-

(a) (b)

(d)(c)

FIG. 3. �Color online� A sample dimer configuration on a 17
�13 lattice �a� with a single vacancy ��� in the upper right corner.
In �b� we keep only those dimers that cover a vertex of the odd
white grid and translate them in �c� into oriented edges of that grid,
resulting in a spanning tree configuration whose edges are oriented
toward the upper right corner. In �d�, we also show the dual tree
�red �light-gray�� which spans the extended even white grid and is
oriented to the exterior face. The configuration �a� is recovered by
replacing every oriented edge of �d� by a dimer on its first half.

FIG. 4. �Color online� The elementary motion of the vacancy
resulting from the sliding of a dimer �top�. In the tree formulation,
this amounts to reversing the orientation of the corresponding edge
on the �oriented� spanning tree.
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ning web alternate and therefore match in number. We can
translate the spanning web configuration into a dimer con-
figuration by successively orienting the edges of its tree com-
ponent toward one of its vertices, where we put the vacancy,
the edges of each loop in the same direction, chosen arbi-
trarily for each loop, and finally the edges of the attached
branches toward the loops. Similarly, we orient the edges of
the tree component of the dual web toward the exterior ver-
tex, those of the loops in the same direction, arbitrarily for
each loop and those of the attached branches toward the
loops. The dimer configuration is obtained by replacing each
of these oriented edges by a dimer on the first half of the
edge.

The above construction provides a bijection between
dimer configurations with a vacancy at a fixed position on
the odd white grid and spanning webs whose tree component
contains the vacancy, together with a choice of orientation
for each loop of the spanning web and each loop of the dual
web. As there are two possible orientations per loop and an
equal number of loops on both web configurations, we can
get rid of the orientations by counting each loop of the origi-
nal spanning web with a degeneracy factor 4.

Again, let us examine how the vacancy can move under
the sliding of dimers. As before, an elementary slide amounts
in the spanning web language to reversing the orientation of
one edge pointing to the vacancy so that it points to a new
vertex. Under repeated moves, the vacancy can reach every
white site of the tree component of the spanning web, which
therefore constitutes a complete specification of the set of
sites accessible to the vacancy. Note that all the dimers cor-
responding to oriented edges of either the loop components
of the spanning web or any component of its dual web are
frozen. In particular, the vacancy cannot cross a loop of ei-
ther web.

On a finite grid, we may therefore divide the configura-
tions into two classes, depending on whether or not the va-
cancy can reach the boundary. If the vacancy can reach the
boundary, there cannot be any loop as the loops are required
to encircle the tree component of the spanning web. In this
case, the spanning web reduces to a spanning tree and the
vacancy can reach any vertex of the odd white grid. If the
vacancy cannot reach the boundary, there must be a loop
component containing all the white boundary vertices. There
are in general several nested loops, the interior-most one
acting as a cage for the vacancy. The motion of the vacancy
may then be analyzed as simple diffusion on the tree com-
ponent of the web. For a fixed initial position of the vacancy
on the grid, the ratio between the number of dimer configu-
rations for which the vacancy can reach the boundary and the
total number of dimer configurations can be interpreted as a
delocalization probability. This probability will be studied in
detail in Sec. III A below for the case of a square grid with
vacancy in the center. On an infinite grid, the vacancy is
always localized to a finite tree component but we shall see
that the mean size of this tree in fact diverges.

C. Determinant formulas

It is well known that the number of spanning trees on a
graph with n vertices is given by any principal �n−1�� �n
−1� minor of the Laplacian matrix of this graph. This is the
celebrated matrix-tree theorem attributed to Kirchhoff �14�.
Recall that the coefficients of the Laplacian matrix simply
read

�ij = �di for i = j ,

− 1 for i and j neighbors,

0 otherwise,
� �2.1�

where i and j are vertices of the graph and di is the degree of
i �number of incident edges� on the graph.

Here we are interested in the case of a rectangular grid
where di can be 2, 3, or 4 according to whether i lies at a
corner, on the side or in the bulk of the grid. Computing the
minor amounts to removing a given vertex i0, i.e. restricting
the indices of the matrix to all i� i0. Note that although i0 is

(a) (b)

(d)(c)

FIG. 5. �Color online� A sample dimer configuration �a� with a
single vacancy ��� in the bulk of the odd white grid. In �b� we show
only those dimers that cover a vertex of the odd white grid. When
mapping them into oriented edges of that grid, the resulting span-
ning web �c� consists of a tree component containing the vacancy,
surrounded by a number of loop components �here 2�. The edges
belonging to branches of the tree component are oriented toward the
vacancy while those belonging to branches of the loop components
are oriented toward the loop. On each loop, all edges have the same
orientation. In �d�, we also show the “dual web” �red �light-gray��
which spans the extended even white grid and is made of an equal
number of loop components surrounding the vacancy together with
an extra tree component attached to the exterior face. The edges
belonging to branches of this tree component are oriented toward
the exterior face while those belonging to branches of the loop
components are oriented toward the loop. Again, all edges have the
same orientation on each loop. The configuration �a� is recovered by
replacing every oriented edge of �d� by a dimer on its first half.
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removed, the degrees of its neighbors are kept unchanged.
The number Ztree of spanning trees therefore reads

Ztree = det��ij�i,j�i0
. �2.2�

Let us sketch a proof of this result, along the lines of Ref.
�15�, that can be easily extended to spanning webs. Writing
the determinant as a sum over permutations, we see that the
only permutations having a nonzero contribution are those
with the following two types of cycles: �i� trivial cycles of
length one �fixed points�, each contributing a weight equal to
the degree the associated vertex, and �ii� cycles of length
larger or equal to 2 for which any two successive elements of
the cycle are neighbors on the grid. The net contribution of
any such nontrivial cycle to the determinant �including the
signature of the permutation� is easily seen to be −1. It is
convenient to have a pictorial representation of each such
permutation as follows. Any cycle of type �ii� above can be
represented as a closed oriented loop on the grid by joining
each vertex to its image under the permutation. The loops
moreover avoid the removed vertex i0. Such loops are repre-
sented in blue �dark� in Fig. 6 and will be henceforth referred
to as blue loops. Each blue loop contributes a factor −1. For
the trivial cycles �i�, the contribution di of the associated
vertex i is properly accounted for by considering the di pos-
sible choices of an edge incident to that vertex. For each
choice, we mark and orient the edge away from the vertex.

Such oriented edges are represented in red �light gray� in Fig.
6 and will be referred to as red edges. Any permutation is
thus represented by a number of configurations �correspond-
ing to the different choices of red edges for trivial cycles�
made of blue loops and red edges with the only constraint
that there is exactly one outgoing �blue or red� edge from
each vertex of the grid but the removed vertex i0. Each con-
figuration is now weighted by a factor 1 per red edge and −1
per blue loop. Now clearly, any configuration in which the
red edges form a loop is canceled exactly by a similar con-
figuration where all the edges of this loop are blue. The only
configurations that remain therefore consist of red edges
forming a spanning tree, necessarily oriented toward the re-
moved vertex i0. This completes the proof. From the deter-
minant formula in Eq. �2.2�, one can easily derive a closed
formula for Ztree as a product over eigenvalues of � �16�.

The expression �2.2� is easily modified to obtain the num-
ber Zweb�i0� of spanning webs on a rectangular grid rooted at
some fixed vertex i0. We simply construct an oriented seam
from i0 to the exterior face that crosses edges only �see Fig.
7�. Each crossed edge, which we denote a seam edge, can be
oriented so as to point right when flowing along the seam.
We may then modify the Laplacian matrix into a matrix ��a�
defined as

��a�ij =�
di for i = j ,

− 1 for i, j neighbors not separated by a seam edge,

a for i, j neighbors separated by a seam edge oriented from i to j ,

1

a
for i, j neighbors separated by a seam edge oriented from j to i ,

0 otherwise.

� �2.3�

0i

FIG. 6. �Color online� A graphical representation of a term in
the expansion of the determinant in Eq. �2.2� by use of oriented
“blue” and “red” edges. There is exactly one outgoing arrow from
every vertex distinct from i0. Blue �dark� edges must form oriented
cycles, each cycles receiving a weight −1. Red �light-gray� edges
may either form oriented cycles or branches oriented toward a �blue
or red� cycle or toward i0.

(b)(a)

0i 0i

FIG. 7. �Color online� The odd white grid �a� completed with a
seam from i0 to the boundary �thick dashed line�. This seam crosses
a number of edges that we call seam edges and that we orient so as
to point to the right when flowing on the seam from i0 to the bound-
ary. In the graphical expansion of the determinant �b�, the seam
modifies the weight of the blue �dark� edges crossing it, resulting in
a new weight for blue loops. Here the blue loop that winds around
i0 passes through exactly one seam edge �with the wrong orienta-
tion�, resulting in a weight factor −1/a instead of −1 in the absence
of a seam. On the contrary, the lower-left blue loop that does not
wind around i0 passes exactly twice through seam edges, with can-
celing orientations so that its weight is unchanged.
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For any choice of the seam, the quantity

Z�y ;i0� 	 det���a�ij�i,j�i0
�2.4�

then counts the number of spanning webs with root i0 and
with a weight

y = 2 − a −
1

a
�2.5�

per loop. In particular, we recover Ztree=Z�0; i0� for a=1
while for spanning webs, the desired weight 4 per loop is
obtained by choosing a=−1, i.e.,

Zweb�i0� = Z�4;i0� = det���− 1�ij�i,j�i0
. �2.6�

To obtain this result, we simply use for the determinant the
same representation as above in terms of blue loops and red
edges. Defining the algebraic number of seam crossings as
the number of passages across seam edges in the correct
orientation minus that in the wrong orientation, this number
is zero for a loop that does not encircle i0, +1 for a loop that
encircles i0 clockwise, and −1 for a loop that encircles i0
counterclockwise. The blue loops that wind around the ver-
tex i0 now get a modified weight −a or −1/a according to
whether they are oriented clockwise or counterclockwise. As
the weight of red edges is unaffected, any clockwise �coun-
terclockwise� red loop encircling the vertex i0 combined with
the same configuration with a blue loop instead gives rise to
a weight 1−a �respectively 1−1/a�. Summing over both ori-
entation results in the weight y above.

III. FINITE SIZE ANALYSIS

A. Determinant calculations and asymptotic estimates

In this section, we shall restrict our analysis to the case of
dimers on a square grid with the vacancy in the center. We
shall consider only squares of size �4L+1�� �4L+1� so that
the center vertex i0 lies on the odd white grid, of size �2L
+1�� �2L+1�. With this geometry, we can rely on the four-
fold rotational symmetry of the problem to perform a block
diagonalization of ��a� which translates into the factoriza-
tion

Z�y ;i0� = PL���PL�− ��PL�i��PL�− i�� , �3.1�

where �4=a with a as in Eq. �2.5�, namely,

y = 2 − �4 −
1

�4 . �3.2�

Here PL��� is the determinant of a square matrix �̄��� of
size L�L+1� �compared to 4L�L+1� for ��a�� corresponding
to a modified Laplacian on a quarter grid. More precisely, we
consider the graph of Fig. 8 obtained by keeping only one
quadrant of the original odd white grid and completing it by
adding L oriented “winding edges� joining the vertices of
two consecutive sides of the quadrant as shown. The matrix

�̄��� has diagonal elements �̄���ii=di, where di is the degree
of site i on the graph of Fig. 8 completed by the vertex i0 as
shown, which is also the degree of the corresponding vertex

on the original odd white grid. The off-diagonal elements

�̄���ij are given by the sum over all edges connecting i and
j of a contribution equal to −1 for regular �nonwinding�
edges, −� �respectively −1/�� for winding edges oriented
from i to j �from j to i�.

It is interesting to note that PL��� can be interpreted as the
number of spanning web configurations rooted at the center
of the square grid of size �2L+1�� �2L+1� and which are
symmetric under � /2 rotations around the vacancy vertex.
For any such symmetric spanning web, the loops now come
with a weight y=2−�−1/�. In particular, for �=−1,
PL�−1� counts the number of fourfold symmetric dimer con-
figurations on the square grid of size �4L+1�� �4L+1�.

Using MATHEMATICA, we have computed PL��� exactly
up to L=60, corresponding to dimers on a 241�241 grid.
For L=1,2 ,3, we have

P1��� = 4 − 
� +
1

�
� ,

P2��� = 178 − 60
� +
1

�
� + 
�2 +

1

�2� ,

P3��� = 82128 − 31667
� +
1

�
� + 1160
�2 +

1

�2�
− 
�3 +

1

�3� . �3.3�

More generally, PL��� is a Laurent polynomial of � of the
form

PL��� = �
i=−L

L

�L,i�− ��i, �3.4�

where the �L,i are positive integers and satisfy �L,−i=�L,i.
Their numerical values for L=10, 20, 30, 40, 50, and 60 are
displayed in Fig. 9.

From our data, we first conjecture the amusing fact that
PL�i� counts the number of fully packed dimer configurations
on a cylinder of height 2L and circumference 2L+1. More
relevant to our study, we expect a large L behavior

i0

(a)

i

(b)

0

FIG. 8. The reduction of the odd white grid �a� to one of its
quadrants �b� completed by oriented winding edges.
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PL��� � c̃���
�L�L+1�	L

L
̃��� , �3.5�

where the area entropy factor � and the boundary entropy
factor 	 are independent of � while the prefactor c and the
exponent 
̃ depend on �. The values of � and 	 are known
to be �16�

� = exp
 1

4�2

0

2�

dk

0

2�

dl ln�4 − 2 cos k − 2 cos l��
= exp
4G

�
� = 3.209912300728158 ¯ ,

	 = �2 − 1, �3.6�

where G=�i=0
� �−1�i / �2i+1�2 is Catalan’s constant. We have

checked the consistency of our exact finite size data with
these values. For instance, the value of � can be estimated by
considering the ratio AL���= PL+2���PL��� / �PL+1����2,
which converges to �2 at large L, and applying to AL stan-
dard convergence acceleration techniques. In this paper, we
found it convenient to use a simple linear convergence algo-
rithm which consists, for any sequence UL tending at large L
to U�, in building new sequences UL

�k�=��k��LkUL /k!� for
increasing integers k, where ��k� denotes the kth iteration of
the finite difference operator �f�L�	 f�L+1�− f�L�. The se-
quence UL

�k� is expected to tend faster to U� for larger k as
long as k is kept reasonably small �in practice we used
mostly k=4 and went as far as k=11 for the jamming prob-

ability of Sec. III B below�. For instance, if UL has a Taylor
expansion in 1/L, then the Taylor expansion of UL

�k� has its
first k correction terms vanishing.

The estimates for � when �= +1 and �=−1 are plotted in
Fig. 10 as a function of L. We obtain the value �
=3.2099123�1�, fully consistent with the exact analytic ex-
pression above.

More interesting is the value of the exponent 
̃. Here we
shall be interested only in real values of y in the range �0, 4�.
This corresponds to taking complex values of � on the unit
circle. The value of 
̃ can be estimated from the quantity
BL=−�L3 /2�ln(PL+3����PL+1����3 / PL����PL+2����3), which
converges to 
̃��� at large L. Again the results are improved
by use of our convergence acceleration algorithm.

Figure 11 displays the estimated values of 
̃ as a function
of L for the various values of � corresponding to y=0 ��4

=1� and y=4 ��4=−1�. We obtain the asymptotic estimates


̃�1� = 0.749999�1� ,


̃�− 1� = − 0.249999�1� ,


̃�i� = 
̃�− i� = 0.000000�1� �3.7�

for the four roots of �4=1 and


̃ �exp�i�/4�� = 
̃ �exp�− i�/4�� = 0.3125002�2� ,
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FIG. 9. �Color online� The numerical value �a� of log10��L,i� versus i for L=10, 20, 30, 40, 50, and 60, from bottom to top. All the data
fall on the same scaling curve �b� upon using reduced variables i /L and log10��L,i� / log10��L,0�.
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FIG. 10. �Color online� Estimate for the area entropy � at
�= ±1 from the data of PL��� for L up to 60.
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FIG. 11. �Color online� Estimates of the exponent 
̃��� for, from
top to bottom, �=1, �=exp�±i� /4�, �= ± i, �=exp�±3i� /4�, and
�=−1, as obtained from the data of PL��� for L up to 60.
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̃ �exp�3i�/4�� = 
̃ �exp�− 3i�/4�� = − 0.187499�1�
�3.8�

for the four roots of �4=−1. From these estimates, we con-
jecture the exact values


̃�1� = 3/4,


̃�− 1� = − 1/4,


̃�i� = 
̃�− i� = 0,


̃�exp�i�/4�� = 
̃�exp�− i�/4�� = 5/16,


̃�exp�3i�/4�� = 
̃�exp�− 3i�/4�� = − 3/16. �3.9�

More generally, Fig. 12 displays the estimate of 
̃��� for
all values of � on the unit circle. These data are fully con-
sistent with the following analytic expression for 
̃:


̃��� =
3

4
− e�2 − e�, � = exp�i�e�, 0 � e � 2.

�3.10�

This form for the exponent, quadratic in the phase e, is fre-
quently encountered in models with statistical weights asso-
ciated to loops and will be assumed exact in all subsequent
analysis.

From Eq. �3.1�, we immediately deduce from our data the
exact generating function ZL�y�	Z�y ; i0� for a �2L+1�
� �2L+1� odd white grid with i0 in the center for L up to 60.
For instance, we get

Z1�y� = 192 + y ,

Z2�y� = 557568000 + 10474560y + y2,

Z3�y� = 19872369301840986112 + 647704492383277056y

+ 1642581444224y2 + y3. �3.11�

Note that Z60�0� and Z60�4� are 7323 digit numbers. From

Eqs. �3.1� and �3.5�, we have the following large L behavior
for Z�y ; i0�:

Z�y ;i0� � c�y�
��2L + 1�2

	4L

L
�y� , �3.12�

where 
�y�= 
̃���+ 
̃�−��+ 
̃�i��+ 
̃�−i�� with � as in Eq.
�3.2� and c�y�= c̃���c̃�−��c̃�i��c̃�−i�� /�.

In particular, for y=0 ��4=1� and y=4 ��4=−1�, we ob-
tain 
�0�=3/4−1/4+0+0=1/2 and 
�4�=5/16+5/16
−3/16−3/16=1/4, namely,

Ztree � c�0�
��2L + 1�2

	4L

L1/2 ,

Zweb�i0� � c�4�
��2L + 1�2

	4L

L1/4 . �3.13�

Note that the first exponent �1/2� can be obtained directly
from the asymptotics of the closed product formula for Ztree
�16�. As shown in Fig. 13, these values are corroborated by a
direct estimate of 
 from the exact values of ZL�0� and ZL�4�
for L up to 60. We indeed estimate 
�0�=0.499999�1� and

�4�=0.250001�1�. Taking the ratio of Ztree and Zweb�i0�, we
deduce that the delocalization probability PL of a vacancy at
the center of a �4L+1�� �4L+1� square decays at large L as

PL �
1

L1/4 , �3.14�

with some prefactor c�4� /c�0�.
More generally, we immediately get from the expression

�3.10� �with � restricted, without loss of generality, to 0
�e�1/2�:


�y� = u2 +
1

4
, y = �2 cos��u��2, −

1

2
� u �

1

2
,

�3.15�

where we have set u=1/2−2e. This expression can be alter-
natively obtained from a heuristic argument based on an ef-
fective Coulomb gas description of the model. This argument
is presented in Appendix A.

The degree of localization of the vacancy is also mea-
sured by the number L of loops of the spanning web that

3/4 − e(2 − e)
Estimate

e

γ̃
� α

=
ex

p(
iπ

e)
�
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FIG. 12. �Color online� Estimated value of 
̃��� for
�=exp�i�e� with 0�e�2, as obtained from the data of consecu-
tive values of PL��� for L near 60 �red solid line�. The green
�dashed� line indicates the conjectured exact result 
̃���=3/4
−e�2−e�.

y = 4

y = 0

L

E
st

im
at

e
fo

r
γ

6050403020100

1

0.8

0.6

0.4

0.2

0

FIG. 13. �Color online� A direct estimate of the exponents 
�0�
and 
�4� obtained from the data of ZL�0� and ZL�4� for L up to 60.
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surround it. The average of L over all spanning webs reads

�L� = y
d

dy
ln Z�y ;i0� . �3.16�

At large L, we find from the asymptotic behavior �3.12� that

�L� � − y
d

dy

�y�ln L =

u

� tan��u�
ln L , �3.17�

where we have used the explicit form �3.15� of 
�y� with y
= �2 cos��u��2. For instance, when y=4 �i.e., u→0�, we find
that the average over all possible dimer configurations of the
number of loops around the vacancy scales as

�L� �
1

�2 ln L �3.18�

at large L.
From the exact values of ZL�y�, we also have access to the

exact probability for spanning webs to have L loops on a
finite square grid with the vacancy in the center. Figure 14
displays these probabilities in the case y=4 for L=0 �which
is nothing but PL� and L=1,2, with L up to 60. Note that for
this range of grid sizes, the probability that L�3 is negli-
gible �less than 10−5�. All these probabilities are expected to
eventually decay as L−1/4 at large L.

B. Asymptotic size distribution

We have established so far that, for a finite grid, the de-
localization probability PL decreases with the system size L
as a power law with exponent 1 /4. Let us now see how to
extract from this result the value of two other exponents
which characterize the possible motion of a single vacancy in
a sea of dimers on an infinite grid. A first exponent 
 char-
acterizes the size distribution of sites accessible to a vacancy.
More precisely, let us consider again a grid of size �4L+1�
� �4L+1� covered by dimers with a vacancy at the center
and consider the probability pL�s� that the tree component of
the associated spanning web has s vertices. We expect this
probability to tend at large L to some limiting law p�s�
=limL→�pL�s�, with a finite value for all positive integers s.

This asymptotic distribution should be universal in the sense
that it should not depend on the precise initial position of the
vacancy in the bulk or on the imposed boundary conditions.

Of particular interest is the value of p�1� which measures
the probability that the vacancy is fully jammed. This value
is easily estimated from the exact values of pL�1� at finite L.
For s=1, the tree component of the spanning web is reduced
to the single vertex i0. In the determinant formulation of Sec.
II C, this simply means that no red edge points toward i0.
Imposing s=1 therefore amounts to changing di→di−1 in
Eq. �2.3� for the diagonal terms associated with the four
neighbors of i0 on the grid. Again we can rely on the fourfold
symmetry to reduce by four the size of the matrix involved.
We have computed pL�1� for L up to 50, as plotted in Fig. 15.
By applying our convergence algorithm, we estimate p�1�
=0.10786437626904951198�1� from which we conjecture
the exact value

p�1� =
57

4
− 10�2. �3.19�

This value was identified thanks to Plouffe’s inverter �17�
applied on the first 10 digits of 1 /�p�1�. We then verified
that it indeed reproduces all 20 digits of p�1� above. It would
be nice to have an analytic proof of this result.

We have also computed pL�2� exactly for L up to 34, from
which we estimate p�2�=0.055905353801942�1�. We have
not been able to guess an exact expression for p�2�.

At large s, the distribution p�s� should behave as

p�s� � s−
 �3.20�

with an exponent 
 that we shall now compute. First, since
the delocalization probability PL tends to 0 at large L, it
follows that the vacancy in an infinite system is always lo-
calized. This implies that the distribution p�s� is normalized
to 1, namely, �s=1

� p�s�=1.
To evaluate 
, we consider the probability 1−PL that the

vacancy in a finite grid is localized, i.e., cannot reach the
boundary of the grid. At large L, we can indeed estimate this
probability as the probability that s remains less than a maxi-
mal size of order 4L2, namely,
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FIG. 14. �Color online� The exact probabilities for having L
loops in a spanning web with y=4 for an odd white grid of size
�2L+1�� �2L+1� with the vacancy in the center. We represent only
the cases of L=0,1 ,2 as the other probabilities are negligible.
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FIG. 15. �Color online� The probability pL�1� that the vacancy at
the center of a �4L+1�� �4L+1� grid is strictly jammed.
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1 − PL � �
s=1

4L2

p�s�

= 1 − �
s=4L2+1

�

p�s�

� 1 − 

4L2

�

p�s�ds � 1 − const L2�1−
�. �3.21�

Comparing with Eq. �3.14�, one finds

2�1 − 
� = −
1

4
, �3.22�

from which we deduce


 =
9

8
. �3.23�

Despite the fact that the vacancy is localized on a finite tree,
the result that 
�2 implies that the mean size �s� of this tree
nevertheless diverges. For some observables, the vacancy be-
haves on average as if it were delocalized. In this sense, our
model possesses a rather unusual property which we may
call weak localization.

C. Diffusion exponent

As an illustration of this unusual property, let us now
discuss the dynamics of diffusion of a single vacancy in a
dense sea of dimers. As we discussed, the motion of the
vacancy is induced by a dimer sliding axially into it, result-
ing in a jump of the vacancy by two lattice spacings. In the
spanning web language, this simply amounts to moving the
vacancy to one of its neighbors on the tree component of the
spanning web. A natural choice of dynamics consists of
choosing, at each time step, one of the four neighbors of the
vacancy on the odd white grid at random, and moving the
vacancy to that neighbor if possible, i.e., if this neighbor
belongs to the tree component of the spanning web. We then
define S�t� as the total number of sites visited by the vacancy
after t steps. Although S�t� is clearly bounded by the size s of
the tree component of the spanning web, we expect from our
weak localization property that it can become on average
arbitrarily large, with a large time behavior of the form

�S̄�t�� � kt�, �3.24�

with some constant k. Here we first average over all possible

motions of the vacancy up to time t �S̄�t�� for a fixed initial
sea of dimers �with the vacancy in the center� and then av-
erage over uniformly chosen realizations of this initial dimer
configuration.

It is natural to compare this diffusion to that of a particle
diffusing with the same dynamical rules on a uniformly cho-
sen infinite spanning tree. This latter diffusion is character-
ized by a similar exponent �0 with

�S̄�t��0 � k0t�0, �3.25�

where the average �¯�0 is now taken over all possible �infi-
nite� spanning trees.

A simple scaling argument relates the exponents � and �0.
Denoting by s the size of the tree component of the spanning

web for a fixed dimer configuration, we expect that S̄�t�
�k0t�0 with the infinite spanning tree diffusion exponent �0

as long as k0t�0 is less than s, while it saturates at S̄�t��s for
longer times. Using Eq. �3.20� for the distribution of sizes s,
we can estimate

�S̄�t�� � 

0

k0t�0

dssp�s� + 

k0t�0

�

dsk0t�0p�s� � t�0�2−
�.

�3.26�

Note that it is crucial that 1�
�2 for the two integrals to
scale in the same way, determined by the t-dependent limits
of the integrals. In other words, the weak localization prop-
erty of our model is essential for a well defined scaling.
Taking 
=9/8, we have the relation

� =
7

8
�0, �3.27�

which measures the lowering of the diffusion exponent due
to weak localization.

IV. MONTE CARLO SIMULATIONS

A. Simulations of spanning webs

We have also found it revealing to perform numerical
simulations of our model. As we shall see, we find very good
agreement for all quantities for which we gave analytic pre-
dictions. Moreover, the simulations allow us to estimate both
diffusion exponents � and �0 independently, as well as other
dynamical exponents.

To begin with, we have simulated spanning webs using a
modification of the Propp-Wilson cycle-popping algorithm
for finding spanning trees of an arbitrary directed graph �18�.
This algorithm is presented in detail in Appendix B and
works as follows: for every vertex of the odd white grid
other than the vacancy vertex, we pick a possible outgoing
arrow at random. If the resulting graph contains one or more
cycles, we choose a cycle and “pop” it by picking a new
random outgoing arrow for every vertex on the cycle. We
then keep popping cycles until no cycle is left, resulting in a
spanning tree. Propp and Wilson were able to show that this
process terminates with probability one, and that the final
result is independent of the order in which cycles are popped
and produces trees uniformly distributed in the space of
spanning trees. To generate spanning webs, we simply modi-
fied this algorithm by not popping cycles that encircle the
vacancy. The proofs in Ref. �18� generalize straightforwardly
to show that the modified algorithm results in web configu-
rations uniform in the space of spanning webs. More pre-
cisely, this algorithm produces spanning webs with oriented
loops, hence corresponding to a weight y=2 per loop. It is
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then straightforward to correct for this weight so as to get an
arbitrary value of y.

As a preliminary check, we have confirmed that for a
number of system sizes less than 50, the algorithm produces
probabilities for the number of loops �in practice 0, 1, or 2�
in good agreement with the exact probabilities obtained for
y=2 by the methods of Sec. III A.

We generated y=2 spanning webs on odd white grids of
size �2L+1�� �2L+1� with the vacancy at the center �these
correspond to dimer grids of sizes �4L+1�� �4L+1��. Our
system sizes were 2L+1=25, 35, 51, 75, 101, 151, 201, 301,
401, 501, 701, and 1001. The number of spanning webs gen-
erated was 25 000 for all system sizes 2L+1�301, 30 000
for 2L+1=401, 10 000 for 2L+1=501, 3000 for 2L+1
=701, and 1500 for 2L+1=1101. The results were then
transformed into probabilities for y=4 spanning webs �dimer
packings� by weighting configurations with L loops by an
extra factor 2L.

The delocalization probability is measured by the fraction
of spanning trees among spanning webs. This fraction is
shown in Fig. 16 as a function of the system size and is well
fit by a power law. Dropping the two smallest system sizes
�2L+1=25 and 2L+1=35�, which are still consistent with a
power law fit but are too small to be safely in the large
system limit, we get a delocalization exponent 0.246±0.006,
in agreement with the value 1/4 predicted in Eq. �3.14�.

As for the distribution p�s�, we first checked that the prob-
ability pL�1� of a fully jammed state is in good agreement
with both the exact value that we obtained for small system
sizes �L�50� and with the asymptotic prediction of Eq.
�3.19� for p�1� �see Fig. 17�. The distribution pL�s� for L
=200 is shown in Fig. 18. At this stage, it is important to
analyze the effect of the boundary in a finite size grid, which
can be described as follows: whenever the tree component of
the spanning web touches the boundary, it must span the
whole grid, hence has size �2L+1�2. For s�L, the tree com-
ponent cannot reach the boundary so we expect pL�s� to be
an accurate estimate of the asymptotic p�s�. For L�s� �2L
−1�2, pL�s� should become significantly lower than p�s� as s
increases since configurations that contribute to pL�s� are re-
quired to avoid the boundary, a constraint that does not exist
in the asymptotic limit. Finally, the only possible value with
s� �2L−1�2 is s= �2L+1�2 and corresponds to delocalized
configurations, with a value pL��2L+1�2�=PL that is not di-

rectly relevant to estimating p��2L+1�2�. This value is not
shown in Fig. 18. By eye, the distribution appears to be a
power law over almost four decades. Upon fitting the data
however, a small but significant curvature appears for tree
sizes greater than 102.5, as expected from the above argu-
ment. To obtain the exponent, we thus fit only for tree sizes
less than 200 �trees that cannot reach the boundary�, which
gives a power law exponent 
=1.122±0.008, in good agree-
ment with the prediction 
=9/8=1.125 of Eq. �3.23�. It is
surprising that the power law fit of the data extends all the
way down to s=1. In other words, the data are well approxi-
mated by a �normalized� pure power law distribution
s−9/8 /��9/8�. For s=1, it gives a value 1/��9/8�=0.116¯, to
be compared with the exact value 0.108¯ of Eq. �3.19�.

As we mentioned above, we expect that the asymptotic
distribution p�s� should not depend on the finite size bound-
ary conditions from which it is determined. In this vein, we
have also generated dimer packings with periodic boundary
conditions, for grids of odd linear size with a single vacancy.
Note that the spanning web construction, central to this pa-
per, no longer applies as, in particular, we have lost the glo-
bal notion of distinct odd and even white grids in this case,
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FIG. 16. �Color online� Fraction of delocalized configurations
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FIG. 18. �Color online� Distribution p�s� for the size s of the
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or even the global notion of bicolorability. Still, these notions
are preserved locally and for localized configurations with
small enough s, the set of accessible sites again forms a tree
whose statistics we can analyze along the same lines as for
free boundary conditions.

One advantage of periodic boundary conditions is that one
can quickly generate many configurations, directly in the
dimer setting, with the so-called “pivot algorithm” �19,20�.
Since there is no longer the constraint for localized configu-
rations of avoiding the boundary, periodic boundary condi-
tions have the further advantage of reaching larger values of
s at fixed L, leading to smaller finite size effects. For a linear
size of 1101 �corresponding to L=275 in the spanning web
language�, the resulting tree size distribution is well fit by a
power law over a larger range �tree sizes 1�s�104.5� than
for spanning webs, with an exponent 
=1.121±0.003, in
good agreement with Eq. �3.23�. Looking at system sizes
ranging from 101 to 1101, in steps of 100, we find that the
fraction of delocalized configurations �now defined as con-
figurations in which the vacancy can reach any vertex� has a
power law exponent of 0.260±0.005, again in agreement
with Eq. �3.14�.

B. Vacancy diffusion

Let us now come to the prediction �3.27� relating the dif-
fusion exponent � for the growth with time of the number of
sites visited by a diffusing vacancy to the corresponding ex-
ponent �0 for diffusion on an infinite spanning tree. To our
knowledge, none of these exponents is known exactly and
we therefore simulated both diffusion processes.

For diffusion on uniform spanning trees, the simulations
were done for free boundary conditions on a 401�401 grid,
with the diffusing vacancy initially at the center of the lat-
tice. At each time step, the vacancy chooses one of the four
compass directions at random and attempts a move in that
direction. If there is a tree edge in that direction the move is
carried out and otherwise, the vacancy stays at the same
position. This slightly unusual random walk rule is chosen to
mimic the standard Monte Carlo dynamics for the underlying
dimers, where each time-step consists of an attempted dimer
move. This means that a vacancy that has more possible
moves should on average wait less time before moving.

An ensemble of 1000 spanning trees was generated and,
for each tree, the vacancy underwent 107 time steps. The
resulting graphs for the number of sites visited as a function
of time, and the squared displacement as a function of time,
are shown in Figs. 19 and 20. There is a relatively large
curvature at smaller times �t�100�, so such times are ex-
cluded from the fit. Both graphs show good power law be-
havior by eye over the last five decades of time. Closer in-
spection shows that both graphs do have a small but
significant curvature, which we use to estimate the error bars
of the slope �the statistical errors are negligible�.

From Fig. 19, we obtain �0=0.61±0.02, while from Fig.
20, we get �0=0.62±0.02, where we have defined the expo-
nent �0 through

�r2�t��0 � t�0, �4.1�

where r�t� is the Euclidean distance of the vacancy to the
center of the grid at time t. These estimates are consistent
with the two exponents being identical.

We then simulated the diffusion of a vacancy on spanning
webs. The spanning webs were generated with the algorithm
described in Sec. IV A. An ensemble of 10 000 spanning
webs was generated, each of the same size 401�401 as for
the spanning trees above. For each web, the vacancy moved
for the same total time and with the same dynamics as be-
fore.

Figures 21 and 22 show the number of sites visited and
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FIG. 19. �Color online� Number of distinct sites visited by a
diffusing vacancy on a 401�401 uniform spanning tree as a func-
tion of time.
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FIG. 20. �Color online� Squared displacement of a diffusing
vacancy on a 401�401 uniform spanning tree as a function of time.
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FIG. 21. �Color online� Number of distinct sites visited by a
diffusing vacancy on a 401�401 uniform spanning web as a func-
tion of time.
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the squared displacement in the case of spanning webs.
Again, we fit only for times t�100, and use the curvature to
estimate the error bars. Good power law behaviors are again
seen over five decades. We obtain �=0.54±0.03 and �
=0.56±0.01 �with � defined as �0 but for spanning webs�.
Again, these estimates are consistent with the two exponents
being identical. Finally, we estimate the ratio � /�0
=0.89±0.06, in agreement with the prediction 7/8=0.875 of
Eq. �3.27�.

V. DISCUSSION

In this paper, we have analyzed the possible motion of an
isolated vacancy in an otherwise fully packed dimer model
on the square lattice. We find that the vacancy exhibits weak
localization: the size of its accessible domain scales as a
power law with diverging average size. Exact finite size enu-
merations allowed us to identify several exponents as well as
determine the probability for strict jamming. Some of these
results are still awaiting exact and/or rigorous proofs. We
also gave a universal relation between the exponents � and
�0 for the diffusion on spanning webs �vacancy diffusion�
and that on spanning trees. We have no prediction for their
individual values but from the numerical data, �0 is consis-
tent with a simple value 5/8, which would result in a va-
cancy diffusion exponent � equal to 35/64.

The emergence of spanning webs as generalizations of
spanning trees is quite natural here and one might hope that
they will appear in other physical and mathematical prob-
lems.

There are several directions in which the present work can
be extended. Introducing multiple vacancies will lead to va-
cancy interactions whose treatment will almost certainly re-
quire more elaborate geometrical structures. The power of
the analysis in this paper relies heavily on special features of
the square lattice. Extension to other lattices will require new
insight. Key among them is the triangular lattice, for which
we expect vacancies to be localized, with the size distribu-
tion of accessible sites now decaying exponentially at a rate
determined by the known entropy mismatch between dimer
configurations and spanning tree configurations. If we as-
sume that this size is a good measure of the extent to which
a vacancy perturbs its dimer background, the localization

should be related to the exponential convergence of the
“monomer-monomer” correlation function to a plateau at
large separation �deconfinement�, as observed in Ref. �21�.
Note finally that a random lattice version of the problem
looks particularly promising for obtaining exact results.
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APPENDIX A: COULOMB GAS ARGUMENT

Let us present here a heuristic derivation of the relation
�3.15� based on a Coulomb gas formulation of the problem.
First we note that, as illustrated in Fig. 23, any spanning web
configuration with L loop components can be alternatively
coded by a configuration of 2L+1 loops on a square grid
dual to the original dimer grid. These loops are such that �i�
each loop encloses the root vertex i0, �ii� the loops are self-
and mutually avoiding and fully packed, i.e., each vertex of
the dual grid is visited by a loop, �iii� the loops can be ori-
ented consistently so as to follow a Manhattan orientation on
the dual grid. We can relax condition �i� and assign a weight
n0 for each loop that does not enclose i0 and a weight n for
each loop that does enclose i0. The correct statistics with a
weight y per loop component of the spanning web is then
recovered by choosing n0=0 and n=�y �and dividing by the
residual weight �y associated with the loop around the tree
component�. The model is expected to lie in the universality
class of the dense O�n0� model which can be described by a
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FIG. 22. �Color online� Squared displacement of a diffusing
vacancy on a 401�401 uniform spanning web as a function of
time.

(a) (b)

FIG. 23. �Color online� �a� The paths of the maze made of a
spanning web �black� and its dual web �red �light-gray� lines with
arrows� form a set of loops �thick green �light-gray� closed lines�
that completely encode the �unrooted� spanning web. �b� The loops
are fully packed, concentric around the root of the original spanning
web and can be oriented so as to follow a Manhattan orientation of
the underlying grid �as indicated by arrows�.
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one-dimensional height field.1 In terms of this height field,
the loop model is mapped onto a Coulomb gas model for
which various exponents can be obtained exactly �22�. The
anomalous weight n for the loops that enclose i0 is properly
accounted for by introducing an electric operator at i0 with
charge q such that n=2 cos���q−u0��. The dimension of
such an electric operator is

x =
q�q − 2u0�

2g0
, �A1�

where n0=2 cos��u0� �0�u0�1�, g0=1−u0, and with the
determination of q such that u0−1/2�q�u0+1/2. Here we
want n0=0, i.e., u0=1/2 and n=�y=2 cos��u� with u as in
Eq. �3.15�, i.e., q=u+1/2. We end up with

x = u2 −
1

4
. �A2�

The dimension x of the electric operator measures in particu-
lar the algebraic decay as L−x of its average in a finite geom-
etry of linear size L. For a square grid geometry, this average
is nothing but the ratio Z�y ; i0� /Z�0; i0� where the denomina-
tor is identified as the partition function of the system in the
absence of electric operator. We immediately deduce the re-
lation x=
�y�−
�0�, i.e.,


�y� = u2 −
1

4
+ 
�0� . �A3�

To end the argument and recover Eq. �3.15�, we simply rely
on a direct calculation of 
�0�=1/2, as obtained in Ref. �16�
from the exact product formula for Z�0; i0�=Ztree.

APPENDIX B: GENERATING SPANNING WEBS VIA
CYCLE POPPING

In this appendix we explain how to generate a random
spanning web using a “cycle-popping” algorithm inspired
from the Propp-Wilson algorithm for the generation of a ran-
dom spanning tree. More precisely we extend to random
webs the RANDOMTREEWITHROOT�� procedure explained in
Sec. VI of Ref. �18�.

Let us begin by recalling how the Propp-Wilson algorithm
works in our specific setting. Start with a rectangular grid on
which the spanning tree is to be constructed, with the root i0
at a given position. At each vertex distinct from i0, draw a
random incident edge uniformly and independently from the
other vertices. Pictorially the edge is marked and oriented
away from the vertex: a possible outcome of this procedure
is illustrated in Fig. 24�a�. Note the similarity with the proof
of the determinant formula �2.2�. By chance, the graph made
of the selected edges can be a spanning tree rooted at i0 �with

edges oriented towards the root�, but more likely it will con-
tain one or more �disjoint� cycles �loops� as in Fig. 24�a�.
Cycle-popping consists in choosing an arbitrary cycle and
popping it, i.e., for each vertex on the cycle, drawing a new
random outgoing edge uniformly and independently of all
previous draws. For instance, Fig. 24�b� shows a possible
outcome after the popping of the magenta �thick� cycle in
Fig. 24�a�. The resulting graph can again contain cycles
�some preexisting and some created by popping�: in that case
repeat the procedure by choosing another cycle and popping
it. Otherwise the resulting graph is a spanning tree and the
procedure terminates. In Fig. 24, the green �light-gray� edges
“flow” to the root, hence they cannot be in a cycle and they
must belong to the final tree. One then sees that the green
graph can only grow at each step, eventually covering the
whole grid.

There are several ways to choose which cycle to pop at
each step of the procedure �one could imagine doing it de-
terministically or randomly�, but Propp and Wilson have
shown that the actual procedure is �in some precise sense�
irrelevant. Furthermore, �i� the procedure terminates almost
surely, i.e., only a finite number of cycles have to be popped
before none remains and �ii� the resulting spanning tree is a
perfect sample of the uniform measure on the set of spanning
trees rooted at i0. Propp and Wilson actually deal with a
slightly more general case, not needed here, and compute
bounds on the running time, which establish that this is a
very efficient algorithm.

The modification of the algorithm to generate spanning
webs is easy. Perform the procedure as before, except that
cycles winding around the root i0 are now considered unpop-
pable and stay in the resulting graph. For instance in Fig.
24�b� the brown �dashed� cycle would be unpoppable if we
were to generate a spanning web. Only the cycles not wind-
ing around the root are popped, until none remains. Propp
and Wilson’s analysis �in Sec. VII of Ref. �18�� extends
straightforwardly to the case of the unpoppable cycles, and
we find that �i� the procedure terminates almost surely, and
�ii� the resulting graph is a now a perfect sample of the
uniform measure on graphs �made out of oriented edges,
with exactly one edge going out of every vertex, except for
the root that has none� whose cycles are all unpoppable. One

1It is known that fully packed loops are in general in a different
universality class than dense loops. In particular, on the square lat-
tice, the fully packed loop universality class is described by a three-
dimensional height variable. For the model at hand with the extra
constraint �iii� above, however, two of the height components are
eliminated, leading to an effectively one-dimensional model.

(a)

0i 0i

(b)

FIG. 24. �Color online� An example of a configuration �a� ob-
tained by drawing at random an edge from each vertex but the root
i0. A possible configuration �b� obtained from �a� by popping the
magenta �thick� cycle. The tree component flowing to i0 �here in
green �light-gray�� can only grow in the process. To generate span-
ning webs instead of spanning trees, we make all cycles winding
around i0 �such as the brown dashed cycle� unpoppable.
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sees easily that such a graph is nothing but a spanning web
rooted at i0, as defined in Sec. II B, with additional orienta-
tions such that each edge not belonging to a cycle “flows”
towards the root or an attractor cycle. Since each cycle has
two possible orientations that are equally likely, we conclude
that the probability to obtain a given unoriented spanning
web containing L loops is 2L /Z�2, i0�, where Z�2, i0� is the
generating function for spanning webs on the grid at hand,
rooted at i0 and counted with a weight y=2 per loop, as
defined in Eq. �2.4�. This is to be contrasted with the weight
y=4 per loop that arises from the correspondence with dimer
configurations with a vacancy, drawn with uniform probabil-
ity. Knowing the exact bias, it is however straightforward to
translate the statistical properties of spanning webs as mea-
sured through this algorithm into dimer statistics. Moreover,
one can correct the bias directly in the algorithm, at the price

of introducing suitable weights for edges along a seam.
In conclusion, we have provided an algorithm for the gen-

eration of random spanning webs belonging to the class of
exact or perfect algorithms �18,23�. By the correspondence
of Sec. II B, it can be used to simulate dimer configurations
on a square lattice with a vacancy. We have not performed a
detailed analysis of its efficiency, but we believe it is com-
parable to the original Propp-Wilson algorithm for rooted
spanning trees, and much better than generic CFTP-type al-
gorithms. The comparison with other Monte Carlo algo-
rithms, such as the pivot algorithm �19,20� for the case of
periodic boundary conditions is not so clear: typically, these
are designed with efficiency in mind, but without an exact
knowledge of their “randomness.” Both approaches provide
useful and mutually consistent results in our study.
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