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Résumé

On considère une équation aux dérivées partielles stochastique possédant une non-linéarité de
type logarithmique (ou une puissance négative), avec une reflexion en zéro sous la contrainte de
conservation de masse. L’équation, dirigée par un bruit blanc en espace et en temps, contient un
double Laplacien. L’absence de principe de maximum pour le double Laplacien pose des difficultés
pour l’utilisation d’une méthode classique de pénalisation, pour laquelle une importante propriété
de monotonie est utilisée. Etant inspiré par les travaux de Debussche et Zambotti, on emploie une
méthode basée sur les équations en dimension infinie, utilisant l’approximation par des équations
regulières et la convegence des semi-groupes de transition liés aux équations régularisées. On
démontre l’existence et l’unicité de solutions pour des données initiales positives, et on donne
plusieurs resultats sur les mesures invariantes et les mesures de réflexion.

Abstract

We consider a stochastic partial differential equation with logarithmic (or negative power) nonlin-
earity, with one reflection at 0 and with a constraint of conservation of the space average. The
equation, driven by the derivative in space of a space-time white noise, contains a bi-Laplacian in
the drift. The lack of the maximum principle for the bi-Laplacian generates difficulties for the clas-
sical penalization method, which uses a crucial monotonicity property. Being inspired by the works
of Debussche and Zambotti, we use a method based on infinite dimensional equations, approxima-
tion by regular equations and convergence of the approximated semi-group. We obtain existence
and uniqueness of solution for nonnegative intial conditions, results on the invariant measures, and
on the reflection measures.

Introduction and main results

The Cahn-Hilliard-Cook equation is a model to describe phase separation in a binary alloy (see
[6], [7] and [8]) in the presence of thermal fluctuations (see [11] and [25]). It takes the form:











∂tu = −1

2
∆ (∆u− ψ(u)) + ξ̇, on Ω ⊂ R

n,

∇u · ν = 0 = ∇(∆u) · ν, on ∂Ω,

(0.1)

where t denotes the time variable and ∆ is the Laplace operator. Also u ∈ [−1, 1] represents the
ratio between the two species and the noise term ξ̇ accounts for the thermal fluctuations. The
nonlinear term ψ has the double-logarithmic form:

ψ : u 7→ ln

(

1 + u

1 − u

)

− κu. (0.2)

The deterministic equation has been extensively studied first in the case where ψ is replaced by
a polynomial function (see [7], [25] and [30]) and then for non smooth ψ (see [5] and [15]). Fur-
thermore, this model has been used successfully for describing phase separation phenomena, see
for example the survey [29], and the references therein, or others recent results on spinodal decom-
position and nucleation in [1, 4, 23, 27, 28, 33, 34, 35]. In the polynomial case, the concentration
u is not constricted to remain between −1 and 1 and the logarithmic nonlinearity might seem
preferable.
Up to our knowledge, only the polynomial nonlinearity has been studied in the stochastic case
(see [2, 3, 9, 10, 12, 18]). This article is a step toward the mathematical comprehension of the full
model with double-logarithmic term and noise. We consider the one dimensional case and consider
a nonlinear term with only one singularity. Clearly, due to the noise, such an equation cannot have
a solution, and a reflection measure should be added to the equation. Thus the right stochastic

2



equation to study is:











∂tX = −1

2
∆
(

∆X + f(X) + η
)

+ ∂θẆ , with θ ∈ [0, 1] = Ω,

∇X · ν = 0 = ∇(∆X) · ν, on ∂Ω,

(0.3)

where f is defined below, and where the measure is subject to the contact condition almost surely:

∫

Xdη = 0. (0.4)

Stochastic partial differential equations with reflection can model the described problem or the
evolution of random interfaces near a hard wall (see [21] and [38]). For other results on fluctuations
of random interfaces, see [22]. For a detailled study of the contact set {(t, θ) : X(t, θ) = 0} and
of the reflection measure η, see [14], [36] and [37]. The equation (0.3) has been studied when no
nonlinear term is taken into account in [16]. In this paper, the authors have introduced various
techniques needed to overcome the lack of comparison principle for fourth order equations. Indeed,
the case of a second order equation was studied in [31] where an extensive use of monotonicity is
used, as well as in all the articles treating with the second order case.
This article is in the spirit of [37] where a nonlinear term is taken into account for the second order
equation. We study existence and uniqueness of solution for equation (0.3) with f of the form:

f(x) := fln(x) :=

{

− lnx, for all x > 0
+∞, for all x ≤ 0,

(0.5)

or for α > 0:

f(x) := fα(x) :=

{

x−α, for all x > 0
+∞, for all x ≤ 0.

(0.6)

Moreover we characterize the case when the measure η vanishes. Our method mixes ideas from
[16] and [37]. Additional difficulties are overcome, the main one being to understand how to deal
with the nonlinear term. Again in [37], this term is not difficult to consider thanks to monotonicy
arguments.
Our main results state that equations (0.3), (0.4) together with an initial condition have an unique
solution (see 2.1 and 2.2). It is constructed thanks to the gradient structure of (0.3) and Strong
Feller property. Furthermore, we prove that the measure η vanishes only for f described in (0.6)
with α ≥ 3 (see 3.4).
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1 Preliminaries

1.1 Notation

We denote by 〈·, ·〉 the scalar product in L2(0, 1):

for all h, k ∈ L2(0, 1) 〈h, k〉 =

∫ 1

0

h(θ)k(θ)dθ.

We denote by A the realization in L2(0, 1) of the Laplace operator with Neumann boundary
condition, i.e.:

D(A) = Domain of A = {h ∈W 2,2(0, 1) : h′(0) = h′(1) = 0}

where the space W 2,2(0, 1) is the classical Sobolev space. Below we use the notation Wn,p and
||.||W n,p to denote the Sobolev space Wn,p(0, 1) and its associated norm. Remark that A is self-
adjoint on L2(0, 1) and we have a complete orthonormal system of eigenvectors (ei)i∈N in L2(0, 1)
associated to the eigenvalues λi := (−(iπ)2)i∈N where we define:

e0(θ) = 1, ei(θ) =
√

2 cos(iπθ), for all i ∈ N
∗, for all θ ∈ [0, 1].

We denote by h̄ the mean of h ∈ L2(0, 1):

h̄ =

∫ 1

0

h(θ)dθ = 〈h, e0〉.

Then we define for all c ∈ R :
L2

c = {h ∈ L2(0, 1) : h̄ = c},
and L2 = L2(0, 1). We remark that (−A)−1 : L2

0 → L2
0 is well defined. We denote by Q this

operator. We can extend the definition of Q to L2(0, 1) (we denote this operator Q̄) by the
formula:

Q̄h = Q(h− h̄) + h̄, for all h ∈ L2(0, 1)

For γ ∈ R, we define (−A)γ by setting

(−A)γh =
+∞
∑

i=1

(−λi)
γhiei, when h =

+∞
∑

i=0

hiei.

The domain of (−A)γ/2 is

Vγ := D((−A)γ/2) =
{

h =

+∞
∑

i=0

hiei :

+∞
∑

i=1

(−λi)
γh2

i < +∞
}

.

It is endowed with the seminorm

|h|γ =

(

+∞
∑

i=1

(−λi)
γh2

i

)1/2

,

and with the norm
‖h‖γ =

(

|h|2γ + h̄2
)1/2

,

associated to the scalar product defined for all h, k ∈ Vγ by (h, k)γ .

For γ = −1, V−1 = D((−A)−1/2) is the completion of the space of functions h ∈ L2 such that

〈Q̄h, h〉 = 〈Q(h− h̄) + h̄, h〉 = 〈(−A)−1(h− h̄), h− h̄〉 + h̄2

= 〈(−A)−1/2(h− h̄), (−A)−1/2(h− h̄)〉
= |h|2−1 + h̄2 < +∞.
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To lighten notations, we set (·, ·) := (·, ·)−1 for the inner product of V−1. The average plays
an important role and we often work with functions with a fixed average c ∈ R. We define
Hc = {h ∈ H, h̄ = c} for all c ∈ R. We set

D(B) = W 1,2
0 (0, 1), B =

∂

∂θ
,D(B∗) = W 1,2(0, 1) and B∗ = − ∂

∂θ
.

We remark that BB∗ = −A. Finally, we denote by Π the orthogonal projector of V−1 onto H0.
We have:

Π : V−1 → H0

h 7→ h− h̄.

Notice that Π is also an orthogonal projector of L2 onto L2
0. Moreover:

−AQ̄h = Πh, for all h ∈ L2(0, 1). (1.1)

We denote by Bb(Hc) the space of all Borel bounded functions and Cb(Hc) the space of continous
bounded functions. We set Os,t := [s, t]× [0, 1] for s, t ∈ [0, T ] with s < t and T > 0, and Ot = O0,t

for 0 ≤ t ≤ T . Given a measure ζ on Os,t and a continuous function v on Os,t, we set

〈

v, ζ
〉

Os,t
:=

∫

Os,t

vdζ.

In order to solve the equation (0.3), we use a Lipschitz approximation of this equation. We denote
by {fn}n∈N the sequence of Lipschitz functions which converges to the function f on (0,+∞),
defined for n ∈ N by:

fn(x) := f(x+ + 1/n), for all x ∈ R.

When f = fln is the logarithmic function (0.5), we use the following positive antiderivative of
−fn = −fn

ln

Fn(x) = Fn
ln(x) := (x + 1/n) ln(x+ + 1/n) − x+ + 1 − 1/n, for all x ∈ R,

and the following positive antiderivative of −f = −fln defined only on R
+ by:

F (x) = Fln(x) := x ln(x) − x+ 1, for all x ∈ R
+.

When f = fα is the negative α-power function (0.6) with α 6= 1, we use the following antiderivative
of −fn = −fn

α

Fn(x) = Fn
α (x) :=

(x+ + 1/n)1−α

α− 1
+ nαx−, for all x ∈ R,

and the following antiderivative of −f = −fα defined only on R
+ by:

F (x) = Fα(x) :=
x1−α

α− 1
, for all x ∈ R

+.

Finally when α = 1, we use the following antiderivative of −fn = −fn
α

Fn(x) = Fn
α (x) := − ln(x+ + 1/n) + nx−, for all x ∈ R,

and the following antiderivative of −f = −fα defined only on R
+ by:

F (x) = Fα(x) := − lnx, for all x ∈ R
+.

We use the notation f, fn, F, Fn when the result holds both for fln and fα. Otherwise we use
fln, f

n
ln, Fln, F

n
ln or fα, f

n
α , Fα, F

n
α .

With these notations, we rewrite (0.3) in the abstract form:


























dX = −1

2
(A2X +Af(X))dt+BdW,

〈X, η〉OT
= 0,

X(0, x) = x for x ∈ V−1.

(1.2)

Finally, in all the article, C denotes a constant which may depend on T and α and its value may
change from one line to another.
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1.2 The linear equation

The linear equation is given by










dZ(t, x) = −1

2
A2Z(t, x)dt+BdW, for all t ∈ [0, T ],

Z(0, x) = x.

where x ∈ V−1. We have

Z(t, x) = e−tA2/2x+

∫ t

0

e−(t−s)A2/2BdWs.

As easily seen this process is in C([0,+∞[;L2(0, 1)) (see [13]). In particular, the mean of Z is
constant and the law of the process Z(t, x) is the Gaussian measure:

Z(t, x) ∼ N
(

e−tA2/2x,Qt

)

,

where

Qt =

∫ t

0

e−sA2/2BB∗e−sA2/2ds = (−A)−1(I − e−tA2

).

�

If we let t→ +∞, the law of Z(t, x) converges to the Gaussian measure on L2:

µc := N (ce0, Q), where c = x̄.

Notice that the kernel of Q is {te0, t ∈ R} and µc is concentrated on L2
c . It is important to remark

that the measure µc is linked to the Brownian motion. Indeed, let (Bθ)θ∈[0,1] be a Brownian

motion, then the law of Yc(θ) = B(θ) − B + c is µc (see [16]).

1.3 Lipschitz Approximation

For n ∈ N, we study for the following Lipschitz approximation of (1.2) with an initial condition
x ∈ V−1:











dXn +
1

2
(A2Xn +Afn(Xn))dt = BdW,

Xn(0, x) = x.

(1.3)

We prove existence and uniqueness of solution in a suitable space for the equation (1.3). We
then follow standard arguments to show existence and uniqueness of an invariant measure for the
equation (1.3) with fixed n ∈ N, and the strong Feller property of the semigroup. First we have to
define the definition of a weak solution to (1.3).
We say Xn is a mild solution of (1.3) if it is satisfied for all t ≥ 0:

Xn(t, x) = Z(t, x) −
∫ t

0

Ae−(t−s)A2/2fn(Xn(s, x))ds. (1.4)

Lemma 1.1 Fix n ∈ N, 0 < ε < 2/3 and p = 4(1 − ε). For all x ∈ L2(0, 1) there exists a unique
adapted process Xn ∈ C([0, T ];V−1) ∩ Lp([0, T ];L2(0, 1)) solution of equation (1.4). Moreover for
all t ≥ 0:

〈Xn(t, x), e0〉 = 〈x, e0〉. (1.5)

Proof : The proof is classical and left to the reader. It is based on the following inequalities

||(−A)1/2e−tA2/2h||0 ≤ C||h||0t−1/4, t > 0, h ∈ L2 (1.6)

||Ae−tA2/2h||0 ≤ C||h||0t−1/2, t > 0, h ∈ L2 (1.7)

||e−tA2/2h||0 ≤ C|h|−1t
−1/4, t > 0, h ∈ L2. (1.8)

6



�

It is also standard to prove

Lemma 1.2 For n ∈ N and c ∈ R, for all t > 0:

|Xn(t, x) −Xn(t, y)|−1 ≤ exp(−tπ4/2)|x− y|−1, for all x, y ∈ L2
c . (1.9)

Proof : We consider for N ∈ N and x, y ∈ L2
c the process :

SN(t, x, y) =
N
∑

i=0

〈Xn(t, x) −Xn(t, y), ei〉ei, for all t ≥ 0.

then t 7→ SN (t, x, y) is C1 with values in a (N + 1)-dimensional subspace of D(A) such that
ΠSN = SN . Indeed

ΠSN (t, x, y) =

N
∑

i=1

〈Xn(t, x) −Xn(t, y), ei〉Πei + 〈Xn(t, x) −Xn(t, y), e0〉Πe0

=

N
∑

i=1

〈Xn(t, x) −Xn(t, y), ei〉ei

= SN − 〈Xn(t, x) −Xn(t, y), e0〉e0.

And by (1.5) and since x and y are in L2
c

〈Xn(t, x) −Xn(t, y), e0〉 = 〈x− y, e0〉 = 0.

By (1.1) we have −AQ̄h = Πh for all h ∈ L2(0, 1), then −AQ̄SN = SN . Using the spectral
behavior of A given in section 1, we have the following computation:

d

dt
|SN (t, x, y)|2−1 =

d

dt
〈Q̄SN (t, x, y), SN (t, x, y)〉

= 2〈 d
dt
SN (t, x, y), Q̄SN (t, x, y)〉

= 〈−A2SN(t, x, y), Q̄SN (t, x, y)〉
+〈−A(fn(Xn(t, x)) − fn(Xn(t, y))), Q̄SN (t, x, y)〉

= 〈ASN (t, x, y), SN (t, x, y)〉
+〈fn(Xn(t, x)) − fn(Xn(t, y)), SN (t, x, y)〉

≤ −π4|SN(t, x, y)|2−1

+〈fn(Xn(t, x)) − fn(Xn(t, y)), SN (t, x, y)〉

This differential inequality implies :

|SN (t, x, y)|2−1 ≤ e−tπ4 |x− y|2−1 +

∫ t

0

e−(t−s)π4〈fn(Xn(s, x)) − fn(Xn(s, y)), SN (s, x, y)〉ds.

Moreover by letting N → +∞ we have |SN (t, x, y)|2−1 → |Xn(t, x) −Xn(t, y)|2−1, and since fn is
monotone non-increasing we obtain

〈fn(Xn(s, x)) − fn(Xn(s, y)), SN (s, x, y)〉
−→

N→+∞
〈fn(Xn(s, x)) − fn(Xn(s, y)), Xn(s, x) −Xn(s, y)〉 ≤ 0.

Then the limit of the integral is nonpositive, and we obtain the expected inequality (1.9).
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It is classical that Xn ∈ C([0, T ];V−1) ∩Lp([0, T ];L2(0, 1)) satisfies (1.4) if and only if it is a weak
solution of (1.3) in the sense

Definition 1.1 For n ∈ N, 0 < ε < 2/3 and p = 4(1− ε), let x ∈ C([0, 1],R+) with x > 0. We say
that (Xn(t, x))t∈[0,T ], defined on a stochastic basis linked to (W (t))t∈[0,T ], is a solution to (1.3) on
[0, T ] if :

(a) almost surely Xn(·, x) ∈ C([0, T ];V−1) ∩ Lp([0, T ];L2(0, 1)),

(b) for all h ∈ D(A2) and for all 0 ≤ t ≤ T :

〈Xn(t, x), h〉 = 〈x, h〉 −
∫ t

0

〈Xn(s, x), A2h〉ds

−
∫ t

0

〈Ah, fn(Xn(s, x))〉ds −
∫ t

0

〈Bh, dW 〉.

We now describe an important property of equation (1.3). It can be described as a gradient system
in V−1 with a convex potential, and can be rewritten as:











dXn − 1

2
A(−AXn + ∇Un(Xn))dt = BdW,

Xn(0, x) = x ∈ L2(0, 1),

(1.10)

where ∇ denotes the gradient in the Hilbert space L2(0, 1), and :

Un(x) :=

∫ 1

0

Fn(x(θ))dθ, x ∈ L2(0, 1). (1.11)

Notice that ∇Un(x) = −fn(x) which is dissipative, then Un is a convex potential. Finally, we
define the probabilty measure on L2

c :

νn
c (dx) =

1

Zn
c

exp(−Un(x))µc(dx), (1.12)

where Zn
c is a normalization constant. By Lemma 1.2, we easily obtain that the equation (1.3)

in Hc has a unique ergodic invariant measure and it is not difficult to prove that this measure is
precisely νn

c . Since the potential Un is convex, we can prove that the transition semigroup is strong
Feller. Let (Pn,c

t )n∈N be the sequence of transition semigroup for an initial condition in Hc such
that

Pn,c
t φ(x) = E[φ(Xn,c(t, x)], for all t ≥ 0, x ∈ Hc, φ ∈ Bb(Hc) and n ∈ N

∗,

where Xn,c(t, x) is the solution of the equation (1.10).

Proposition 1.1 For abitrary T > 0, there exists a constant CT > 0 such that for all φ ∈ Bb(Hc),
for all n ∈ N and for all t ∈ [0, T ]:

|Pn,c
t φ(x) − Pn,c

t φ(y)| ≤
√
CT√
t
‖φ‖∞‖x− y‖−1, for all x, y ∈ Hc. (1.13)

Proof : We now consider the following process :

H0 → H0

x 7→ Xn,c(t, x) = Xn(t, x+ ce0) − ce0

which solves the following equation :

{

dXn,c − 1

2
A(−AXn,c + ∇Un(ce0 + Xn,c))dt = BdW,

Xn,c(0, x) = x ∈ H0.
(1.14)
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This equation describes a gradient system in H0 with non-degenerate noise and with a convex
potential. We fix c > 0 and n ∈ N, and denote Pn,c

t the markov transition semigroup defined by :

Pn,c
t ψ(x) = E[ψ(Xn,c(t, x))], for all t ≥ 0, for all x ∈ H0, for all ψ ∈ Bb(H0).

For all c ∈ R, for all x ∈ Hc and ψ ∈ Bb(H0), if we set

φ : Hc → R

u 7→ ψ(u− ce0),

we have the following equality:

Pn,c
t ψ(x− ce0) = Pn,c

t φ(x). (1.15)

Then for all c ∈ R, for all x ∈ Hc and ψ ∈ Bb(H0), the following Bismut-Elworthy formula holds:

DPn,c
t ψ(x− ce0) · h =

1

t
E

[

ψ(Xn,c(t, x− ce0))

∫ t

0

〈(DXn,c(s, x− ce0) · h), dW 〉
]

. (1.16)

Then by (1.14) and (1.16),

|DPn,c
t φ(x) · h|2 ≤ 1

t2
‖φ‖2

∞E

[
∫ t

0

‖DXn,c(s, x) · h‖2
−1ds

]

. (1.17)

Let x and y be arbitrary elements in Hc, then by the mean value theorem, for σ(y) ∈ [0, T ]

Pn,c
t φ(x) − Pn,c

t φ(y) = DPn,c
t φ(x + σ(y)(x− y)) · (x− y). (1.18)

We use an estimate on ‖DXn,c(s, x+ σ(y)(x− y)) · (x− y)‖2
−1, (1.17) and (1.18), and we have the

expected result for all x, y ∈ Hc

|Pn,c
t φ(x) − Pn,c

t φ(y)| ≤
√
CT√
t
‖φ‖∞‖x− y‖H .

�

As usual some computations below are formal and would be difficult to justify rigourously in our infinite
dimensionnal setting. However the final result is easy to justify by Galerkin approximation (see [12], section 3.2).
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2 Solutions of equation with a reflection measure

For all n ∈ N we have a unique solution Xn of (1.3). We want to know if these solutions converge
to a solution of the equation (0.3). First we describe the definition of a weak solution for (0.3) :

Definition 2.1 Let x ∈ C([0, 1],R+) and x > 0. We say that
(

(X(t, x))t∈[0,T ] , η,W
)

, defined on

a filtered complete probability space
(

Ω,P,F , (Ft)t∈[0,T ]

)

, is a weak solution to (0.3) on [0, T ] for
the initial condition x if:

(a) a.s. X ∈ C(]0, T ]× [0, 1]; R+) ∩ C([0, T ];V−1) and X(0, x) = x,

(b) a.s. η is a positive measure on (0, T ] × [0, 1], such that η(Oδ,T ) < +∞ for all δ ∈ (0, T ],

(c) W is a cylindrical Wiener process on L2(0, 1),

(d) the process (X(·, x),W ) is (Ft)-adapted,

(e) a.s. f(X(·, x)) ∈ L1(OT ),

(f) for all h ∈ D(A2) and for all 0 < δ ≤ t ≤ T :

〈X(t, x), h〉 = 〈X(δ, x), h〉 −
∫ t

δ

〈X(s, x), A2h〉ds−
∫ t

δ

〈Ah(θ), f(X(s, x))〉ds

−
〈

Ah, η
〉

Oδ,t
−
∫ t

δ

〈Bh, dW 〉, a.s.,

(g) a.s. the contact property holds : supp(η) ⊂ {(t, θ) ∈ OT /X(t, x)(θ) = 0}, that is,

〈

X, η
〉

OT
= 0.

Finally, a weak solution (X, η,W ) is a strong solution if the process t 7→ X(t, x) is adapted to the
filtration t 7→ σ(W (s, .), s ∈ [0, t])

Remark 2.1 In (f), the only term where we use the function f is well defined. Indeed, by (e) we
have f(X(·, x)) ∈ L1(OT ) and by Sobolev embedding Ah ∈ D(A) ⊂ L∞(OT ). Hence the notation
〈·, ·〉 should be interpreted as a duality between L∞ and L1.

2.1 Pathwise uniqueness

We want to prove that for any pair (X i, ηi,W ), i = 1, 2, of weak solutions of (0.3) defined on the
same probability space with the same driving noise W and with X1

0 = X2
0 , we have (X1, η1) =

(X2, η2). This pathwise uniqueness will be used in the next subsection to construct stationary
strong solutions of (0.3).

Proposition 2.1 Let x ∈ C([0, 1],R+) with x > 0. Let (X i, ηi,W ), i = 1, 2 be two weak solutions
of (0.3) with X1

0 = x = X2
0 . Then (X1, η1) = (X2, η2).

Proof : We use the following Lemma from [16]. For the sake of completeness, we recall the proof.

Lemma 2.1 Let ζ be a finite signed measure on Oδ,T , V ∈ C(Oδ,T ) and c > 0. Suppose that:

i) for all r ∈ [δ, T ], for all h ∈ C([0, 1]), such that h̄ = 0, 〈h, ζ〉Or,T
= 0,

ii) for all r ∈ [δ, T ], V (r, ·) = c with 〈V, ζ〉Or,T
= 0,

then ζ is the null measure.
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Proof : Let k ∈ C([0, 1]). Since ζ is a finite measure, by i) we obtain for all δ ≤ s ≤ t ≤ T :

〈k, ζ〉Os,t
= 〈k̄, ζ〉Os,t

= k̄ζ(Os,t), for all k ∈ C([0, 1]).

This implies ζ can be decomposed as ζ = γ⊗ dθ, where γ is a measure on [0, T ]. By ii), we obtain:

0 = 〈V, ζ〉Os,t
=

∫ t

s

(

∫ 1

0

V (s, θ)dθ
)

dγ = cγ([s, t]).

We conclude that for all δ ≤ s ≤ t ≤ T , γ([s, t]) = 0, since c > 0. Thus ζ is the null measure.

�

We now prove the proposition. Let Y (t) = X1(t, x) −X2(t, x) and ζ = η1 − η2, Y is the solution
of the following equation:











dY = −1

2

(

A2Y +A(f(X1) − f(X2))
)

dt,

Y (0) = 0.

(2.1)

We consider now the following approximation of Y :

Y N (t, .) =
1

N

N
∑

n=0

n
∑

i=0

〈Y (t), ei〉ei.

Since Y is continous, then Y N converges uniformly to Y on OT . Notice that for all i ≥ 0, the
process t 7→ 〈Y (t), ei〉 has bounded variation, and in particular the process t 7→ Y N (t) has bounded
variation as process with values in a finite-dimensional subspace ofD(A). Taking the scalar product
in V−1 between Y and Y N , we obtain:







d(Y, Y N ) = 2(Y N , dY ) = −
(

Y N , A2Y +A(f(X1) − f(X2)) +Aζ
)

dt,

(Y, Y N )(0) = 0.
(2.2)

Moreover for all t ≥ 0, 〈Y (t), e0〉 = 0, so ΠY N (t) = Y N (t). So we have for all 0 < δ ≤ t ≤ T :

(Y (t), Y N (t)) = (Y (δ), Y N (δ)) +

∫ t

δ

〈AY N (s), Y (s)〉ds

+

∫ t

δ

〈Y N (s), f(X1(s, x)) − f(X2(s, x))〉ds +
〈

Y N (s), ζ
〉

Oδ,t

= (Y (δ), Y N (δ)) − 1

N

N
∑

n=0

n
∑

i=0

(iπ)2
∫ t

δ

〈Y (s), ei〉2ds+
〈

Y N (s), ζ
〉

Oδ,t

+
1

N

N
∑

n=0

n
∑

i=0

∫ t

δ

〈Y (s, .), ei〉〈f(X1(s, x)) − f(X2(s, x)), ei〉ds

≤ (Y (δ), Y N (δ)) +
〈

Y N (s), ζ
〉

Oδ,t

+
1

N

N
∑

n=0

n
∑

i=0

∫ t

δ

〈Y (s, .), ei〉〈f(X1(s, x)) − f(X2(s, x)), ei〉ds. (2.3)

For all s ∈ [δ, t],

1

N

N
∑

n=0

n
∑

i=0

〈Y (s), ei〉〈f(X1(s, x)) − f(X2(s, x)), ei〉 − 〈Y (s), f(X1(s, x)) − f(X2(s, x))〉

= 〈 1

N

N
∑

n=0

n
∑

i=0

〈Y (s), ei〉ei − Y (s), f(X1(s, x)) − f(X2(s, x))〉

= 〈Y N (s) − Y (s), f(X1(s, x)) − f(X2(s, x))〉
≤ ‖Y N (s) − Y (s)‖L∞([0,1])‖f(X1(s, x)) − f(X2(s, x))‖L1([0,1]),
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where ‖ · ‖L∞([0,1]) and ‖ · ‖L1([0,1]) are the classical norm on the space [0, 1]. The latter term

converges to zero since Y N (s) converges uniformly to Y (s) on [0, 1]. Taking the negative part, we
have by Fatou’s lemma:

lim inf
N→+∞

∫ t

δ

(

1

N

N
∑

n=0

n
∑

i=0

〈Y (s), ei〉〈f(X1(s, x)) − f(X2(s, x)), ei〉
)−

ds

≥
∫ t

δ

lim inf
N→+∞

(

1

N

N
∑

n=0

n
∑

i=0

〈Y (s), ei〉〈f(X1(s, x)) − f(X2(s, x)), ei〉
)−

ds

=

∫ t

δ

(

〈Y (s), f(X1(s, x)) − f(X2(s, x))〉
)−

ds

= 0,

since f is nonincreasing. Taking the limit in (2.3) as N grows to infinity, we obtain by the contact
condition

‖Y (t)‖2
−1 − ‖Y (δ)‖2

−1 ≤
〈

Y, ζ
〉

Oδ,t

= −
〈

X1, η2
〉

Oδ,t
−
〈

X2, η1
〉

Oδ,t

≤ 0.

Letting δ → 0, we have Y (t) = 0 for all t ≥ 0 and X1(t, x) = X2(t, x) for all t ≥ 0. Moreover, with
the definition of a weak solution, we see that :

for all h ∈ D(A2),
〈

Ah, ζ
〉

Oδ,t
= 0.

By density, we obtain ζ and V = X1 = X2 satisfy the hypothesis of Lemma 2.1, and therefore ζ
is the null measure, i.e. η1 = η2.

�

2.2 Convergence of invariants measures

Let :
K = {x ∈ L2(0, 1), x ≥ 0},

then we know that µc is the law of Y c = B − B + c. We remark the following inclusion :

{Bθ ∈ [−c/2, c/2], for all θ ∈ [0, 1]} ⊂ {Y c ∈ K},

therefore µc(K) > 0 with c > 0. Let us define U the potential associated to the function f . If
f = fln is the logarithmic function, U is defined by:

U(x) = Uln(x) :=







∫ 1

0

Fln(x(θ))dθ if x ∈ K,

+∞ else.

If f = fα is the negative α-power function, U is defined by:

U(x) = Uα(x) :=







∫ 1

0

Fα(x(θ))dθ if

∫ 1

0

∣

∣

∣
Fα(x(θ))

∣

∣

∣
dθ < +∞ and x ∈ K,

+∞ else.

Remark 2.2 Note that, for α < 1, Fα(x(θ)) = − 1

1 − α
x(θ)1−α. By Hölder inequality:

∫ 1

0

|Fα(x(θ))|dθ < +∞, for all x ∈ K.
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We have the following result :

Proposition 2.2 For c > 0,

νn
c ⇀ νc :=

1

Zc
exp−U(x) 1x∈Kµc(dx), when n→ +∞,

where Zc is a normalization constant.

Proof : Let ψ ∈ C0
b (L2,R). We want to prove that

∫

H

ψ(x) exp(−Un(x))µc(dx) −→
n→+∞

∫

H

ψ(x) exp(−U(x))1x∈Kµc(dx). (2.4)

Case 1 f = fln is the logarithmic function.
We have that for a fixed x ∈ H ,

exp(−Un(x)) −→
n→+∞

exp(−U(x))1x∈K . (2.5)

Indeed, for all x /∈ K there exists δx > 0 small such that λ({θ ∈ [0, 1]/x(θ) ≤ −δx}) > 0 and we
have:

∫ 1

0

Fn
ln(x(θ))1{x<0}dθ >

∫ 1

0

Fn
ln(x(θ))1{x≤−δx}dθ > 0, for all n ≥ 1.

Then, since Fn
ln is nonincreasing on (−∞, 0):

0 ≤ exp(−Un
ln(x)) ≤ exp

(

−
∫ 1

0

Fn
ln(x(θ))1{x≤−δx}dθ

)

≤ exp
(

−
∫ 1

0

Fn
ln(−δx)1{x≤−δx}dθ

)

≤ exp
(

− Fn
ln(−δx)λ({x ≤ −δx})

)

≤ exp
(

(

(1/n− δx) lnn− 1 + 1/n
)

λ({x ≤ −δx})
)

.

And this latter term converges to zero as n grows to infinity.
Now for x ∈ K, Fn

ln(x(θ)) converges to Fln(x(θ)) almost everywhere as n grows to infinity. Moreover
Fn

ln(x̃(θ)) ≤ 1x≤1 +F 1
ln(x̃(θ))1x>1, and the right-hand side is clearly integrable. By the dominated

convergence Theorem, we deduce (2.5).
Since Un

ln ≥ 0, (2.4) follows by dominated convergence Theorem.
Case 2 f = fα is negative α-power function.
For a fixed x ∈ L2, the potentials are increasing as n grows to infinity, we deduce:

exp(−Un
α (x)) ≤ exp(−U1

α(x)), for all n ≥ 1, for all x ∈ L2. (2.6)

The right-hand side is integrable on H , thus it suffices to prove that for a fixed x ∈ H ,

exp(−Un
α (x)) −→

n→+∞
exp(−Uα(x))1x∈K , (2.7)

where

exp(−Uα(x))1x∈K =







exp(−Uα(x)) if

∫ 1

0

|Fα(x(θ))| dθ < +∞ and x ∈ K,

0 else.
(2.8)

For x /∈ K, there exists δx > 0 small such that λ({θ ∈ [0, 1]/x(θ) ≤ −δx}) > 0 and we have:

for all n ∈ N
∗,

∫ 1

0

Fn
α (x(θ))1{x<0}dθ >

∫ 1

0

Fn
α (x(θ))1{x≤−δx}dθ > 0.
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Then

0 ≤ exp−Un
α (x) ≤ exp

(

−
∫ 1

0

Fn
α (x(θ))1{x≤−δx}dθ

)

≤ exp

(

−
∫ 1

0

Fn
α (−δx)1{x≤−δx}dθ

)

= exp (−Fn
α (−δx)λ ({x ≤ −δx})) .

And this latter term converges to zero as n grows to infinity. Thus (2.7) holds.

For x ∈ K, such that

∫ 1

0

|Fα(x(θ))| dθ < +∞, Fn
α (x(θ)) converges almost everywhere to Fα(x(θ))

as n grows to infinity. Moreover F 1
α(x(θ)) ≤ Fn

α (x(θ)) ≤ Fα(x(θ)) for all θ ∈ [0, 1], and by the
dominated convergence Theorem (2.7) holds.

If

∫ 1

0

|Fα(x(θ))| dθ = +∞, necessarily α ≥ 1. For α > 1, Fn
α ≥ 0 and (2.7) follows from monotone

convergence. If α = 1, we write

∫ 1

0

Fn
α (x(θ))dθ =

∫ 1

0

Fn
α (x(θ))1x(θ)≤1/2dθ +

∫ 1

0

Fn
α (x(θ))1x(θ)>1/2dθ.

The first term converges to

∫ 1

0

Fα(x(θ))1x(θ)≤1/2 by monotone convergence, and the second term

converges to

∫ 1

0

Fα(x(θ))1x(θ)<1/2 by uniform integrability. We have proved that (2.7) always

holds, (2.4) follows.

�

2.3 Existence of stationary solutions

In this section, we prove the existence of stationary solutions of equation (0.3) and that they are
limits of stationary solutions of (1.3), in some suitable sense. Fix c > 0 and consider the unique
(in law) stationary solution of (1.3) denote X̂n

c in Hc. We are going to prove that the laws of X̂n
c

weakly converge as n grows to infinity to a stationary strong solution of (0.3).

Theorem 2.1 Let c > 0 and T > 0. Almost surely X̂n
c converges as n grows to infinity to a

process X̂c in C(OT ). Moreover f(X̂c) ∈ L1(OT ) almost surely, and setting

dηn = fn(X̂n
c (t, θ))dtdθ − f(X̂c(t, θ))dtdθ,

then (X̂n
c , η

n,W ) converges in law to (X̂c, η,W ) stationary strong solution of (0.3).

The proof of 2.1 requires arguments that differ significantly in the logarithmic case and in the
negative α-power case. We thus have chosen to do two separated proofs. Some arguments however
are similar and are not repeated.
Proof in the logarithmic case:

The proof is splitted in 4 steps. In step 1, assuming that a subsequence of X̂n
c converges in law.

Its limit X̂c is shown to satisfy fln(X̂c) ∈ L1(OT ) almost surely. Then in step 2, under the same
assumption as in step 1, we prove that up to a further extraction the measures ηn converges to a
positive measure η and that (X̂c, η) is a weak solution in the probabilistic sense. It then remains
to prove tightness of X̂n

c in step 3 and to use pathwise uniqueness to conclude in step 4.
Step 1.

Let us assume that (nk)k∈N is a subsequence such that (X̂nk
c )n∈N converges in law in C(OT ) to a

process X̂c.
By Skorohod’s theorem, we can find a probability space and a sequence of processes (V k,Wk)k∈N

on that probability space such that (V k,Wk) → (V,W) in C(OT ) almost surely and (V k,Wk) has
the same distribution as (X̂nk

c ,W) for all k ∈ N. Notice that V ≥ 0 almost surely since for all
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t ≤ T the law of V (t, .) is νc which is concentrated on K. Let now ξk and ρk be the following
measures on OT :

dξk := fnk

ln (V k(t, θ))1V k<1dtdθ,

and
dρk := fnk

ln (V k(t, θ))1V k≥1dtdθ.

Let y ∈ D(A) with ȳ = 0, taking h ∈ D(A2) such that y = Ah as a test function in (b) of Definition
1.1, we deduce that, for all 0 ≤ t ≤ T ,

〈

y, ξk + ρk
〉

Ot
has a limit when n → +∞. Moreover by the

uniform convergence in C(OT ) of V k to V , we have

fnk

ln (V k(t, θ))1V k≥1 −→
k→+∞

fln(V (t, θ))1V ≥1, for all (t, θ) ∈ OT , (2.9)

and the convergence is uniform. We obtain for all 0 ≤ t ≤ T and for all h ∈ D(A):

〈

h, ρk
〉

Ot
−→

k→+∞

∫

Ot

h(θ)fln(V (s, θ))1V ≥1dsdθ. (2.10)

Note that fln(x)1x≥1 is a continuous function so that fln(V )1V ≥1 ∈ L1(OT ). Moreover, for any
y ∈ D(A) with ȳ = 0, for all 0 ≤ t ≤ T ,

〈

y, ξk
〉

Ot
has a limit when k → +∞. (2.11)

Notice that almost surely:

fnk

ln (V k(t, θ))1V k<1 −→
k→+∞

{

+∞ if V (t, θ) ≤ 0,
fln(V (t, θ)) if V (t, θ) ∈ (0, 1].

(2.12)

Thus the limit of this term is not trivial. Let us now prove that the total mass ξn(OT ) is bounded.
We use the following Lemma whose proofs is postponed to the end of this section.

Lemma 2.2 Let T > 0, and {µk}k∈N be a sequence of finite positive measures on OT . Suppose
there exists {wk}k∈N a sequence of functions in C(OT ) such that wk converges uniformly to w, when
k grows to infinity. Suppose also there exist a function MT : C(OT ) → R

+ and two nonnegative
constants mT and cT such that

for all h ∈ D(A) such that h̄ = 0,
〈

h, µk
〉

OT
≤MT (h), for all k ∈ N, (2.13)

for all t ∈ OT ,

∫ 1

0

w(t, θ)dθ = cT > 0 (2.14)

and
〈

wk, µk
〉

OT
≤ mT . (2.15)

Then there exists a constant M̃T such that

for all h ∈ C(OT ),
〈

h, µk
〉

OT
≤ M̃T ‖h‖∞, for all k ∈ N. (2.16)

and in particular µk(OT ) is bounded uniformly for k ∈ N.

Let us denote by :

MT (h) = sup
k∈N

∣

∣

∣

〈

h, ξk
〉

OT

∣

∣

∣
(2.17)

for h ∈ D(A) such that h̄ = 0. By (2.11), we know that MT is well defined. Moreover we have

〈

(V k)+, ξk
〉

OT
=

∫

OT

(V k(t, θ))+fnk

ln (V k(t, θ))1V k<1dtdθ. (2.18)

Since (x)+fnk

ln (x)1x<1 is uniformly bounded in k ∈ N, there exists a positive constant mT such
that

〈

(V k)+, ξk
〉

OT
≤ mT . (2.19)
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Since V is almost surely positive, (V k)+ converges uniformly to V and V (t, .) = cT > 0 for all
t ∈ [0, T ]. We use Lemma 2.2 and obtain lim sup

k→+∞
ξk(OT ) < +∞.

Thanks to Fatou Lemma, we can write :

∫

OT

[

fln(V (s, θ))1V <1

]

dsdθ =

∫

OT

lim inf
k→+∞

[

fnk

ln (V k(s, θ))1V n<1dsdθ
]

≤ lim inf
k→+∞

∫

OT

[

fnk

ln (V k(s, θ))1V k<1

]

dsdθ (2.20)

< +∞.

It follows that almost surely fln(V ) ∈ L1(OT ).

�

Step 2.

We again assume that we have (nk)k∈N a subsequence such that (X̂nk
c )k∈N converges in law to

a process X̂c. Again, by Skorohod’s theorem, we can find a probability space and a sequence of
processes (V k,Wk)k∈N such that almost surely (V k,Wk) → (V,W) in C(OT ) as k grows to infinity,
and (V k,Wk) has the same distribution as (X̂nk

c ,W ) for all k ∈ N.
By step 1, the total mass ξk(OT ) is bounded and there exists (nkm

)m∈N a sub-subsequence such
that the measures

ξkm := f
nkm

ln (V km(t, θ))1V km <1dtdθ

converge to a measure ξ.
We denote by λ the following measure:

dλ := fln(V (t, θ))1V <1dtdθ, (2.21)

and ζm := ξkm − λ. Thus ζm converges to the measure ζ := ξ − λ. Let u be a continuous
nonnegative function on OT , we have

〈

u, ζ
〉

OT
= lim

m→+∞

〈

u, ζm
〉

OT

= lim
m→+∞

〈

u, ξkm
〉

OT
−
〈

u, λ
〉

OT
.

And this is positive, thanks to (2.20). Therefore ζ is a positive measure. Taking the limit as
m grows to infinity in the approximated equation, we obtain that for all h ∈ D(A2) and for all
0 ≤ t ≤ T :

〈V (t, .), h〉 = 〈x, h〉 −
∫

Ot

V (s, θ)A2h(θ)dsdθ −
∫

Ot

fln(V (s, θ))Ah(θ)dsdθ

−
〈

Ah, ζ
〉

Ot
−
∫ t

0

〈Bh, dW〉.

This is the expected equation. Let us now show that the contact condition holds for (V, ζ). We
prove in fact that for all β non negative:

0 ≤
〈

V, ζ
〉

OT
≤ β. (2.22)

The key is to study the behavior of f
nkm

ln (V km(t, θ))1V km <1 near points (t, θ) ∈ OT such that
V (t, θ) is small. Fix β > 0, there exists ε > 0 such that −Tε ln(ε) ≤ β. Let us define the following
measures for all m ∈ N.

dξm
ε := f

nkm

ln (V km(t, θ))1V km <εdtdθ, dτm
ε := f

nkm

ln (V km(t, θ))1ε≤V km <1dtdθ,

dλε := fln(V (t, θ))1V <εdtdθ, dτε := fln(V (t, θ))1ε≤V <1dtdθ.
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Clearly τm
ε converges to τε, it follows

lim sup
m→+∞

〈V km , ζm
〉

OT
= lim sup

m→+∞

(

〈

V km , ξkm
ε

〉

OT
−
〈

V km , λε

〉

OT
+
〈

V km , τm
ε

〉

OT
−
〈

V km , τε
〉

OT

)

= lim sup
m→+∞

(
∫

OT

V kmf
nkm

ln (V km)1V km <εdtdθ −
∫

OT

V kmfln(V )1V <εdtdθ

)

≤ lim sup
m→+∞

(
∫

OT

V kmf
nkm

ln (V km)10≤V km <εdtdθ

)

+ lim sup
m→+∞

(
∫

OT

(V km)−fln(V )1V <εdtdθ

)

Since (V km)− converges uniformly to zero, we deduce:

lim sup
m→+∞

〈V km , ζm
〉

OT
≤ T lim sup

m→+∞
sup

x∈[0,ε]

∣

∣

∣

∣

−x ln

(

x+
1

nkm

)∣

∣

∣

∣

≤ T lim sup
m→+∞

(

−ε ln

(

ε+
1

nkm

))

≤ −Tε ln (ε) .

Thus the contact condition holds.

�

Step 3.

By the convergence of the family (νn
c )n∈N, we know that the initial distribution of X̂n

c converges
to νc. We now follow the same argument as in [16], to prove for all T > 0, the laws of (X̂n

c )n∈N

are tight in C(OT ). Fix n ≥ 1 and T > 0, by the Lyons-Zheng’s decomposition (see theorem 5.7.1
in [20]), we can find Mh, respectively Nh, two orthogonal martingales with respect to the natural

filtration of
(

X̂n
c (t)

)

0≤t≤T
, respectively the natural filtration of

(

X̂n
c (T − t)

)

0≤t≤T
, such that for

all t ∈ [0, T ] and for all h ∈ H :

(h, X̂n
c (t) − X̂n

c (0)) =
1

2
Mh

t − 1

2
(Nh

T −Nh
T−t). (2.23)

Moreover, the quadratic variations are both equal to 〈〈Mh〉〉t = 〈〈Nh〉〉t = t‖Πh‖2
−1. Let ui =

Qγ−1ei for all i ≥ 1. To simplify the notations, we denote M i and N i the martingales Mui and
Nui defined in (2.23). Then we have:

E

[

∥

∥

∥
X̂n

c (t) − X̂n
c (s)

∥

∥

∥

2

−γ

]

= E

[

+∞
∑

i=1

(

(X̂n
c (t) − X̂n

c (s), vi)
)2

−γ

]

= E

[

+∞
∑

i=1

(

(X̂n
c (t) − X̂n

c (0), ui)−1 − (X̂n
c (s) − X̂n

c (0), ui)
)2

−1

]

=
1

4
E

[

+∞
∑

i=1

(

M i
t +N i

T−t −M i
s −N i

T−s

)2

−1

]

=
1

4

+∞
∑

i=1

E
[

〈〈M i〉〉t−s + 〈〈N i〉〉t−s

]

=
1

2

+∞
∑

i=1

|t− s|‖ui‖2
−1

=
|t− s|

2

+∞
∑

i=1

(iπ)2−2γ

≤ |t− s|
2

K2
−γ ,
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where K−γ is the Hilbert-Schmidt’s norm of inclusion of V−1 in V−γ which is finite for γ > 3/2.
So we have found a constant C > 0 such that for all t, s ∈ [0, T ]:

(

E

[

∥

∥

∥
X̂n

c (t) − X̂n
c (s)

∥

∥

∥

2

−γ

])
1
2

≤ C|t− s| 12 . (2.24)

Furthermore, for 0 < δ < 1/2 and r ≥ 1, since X̂n
c is a stationary solution, there exists C such

that for all t, s ∈ [0, T ]:

(

E

[

∥

∥

∥
X̂n

c (t) − X̂n
c (s)

∥

∥

∥

2

W δ,r(0,1)

])
1
2

≤
(

E

[

∥

∥

∥
X̂n

c (t)
∥

∥

∥

2

W δ,r(0,1)

])
1
2

+

(

E

[

∥

∥

∥
X̂n

c (s)
∥

∥

∥

2

W δ,r(0,1)

])
1
2

≤ 2

(
∫

H

‖y‖2
W δ,r(0,1)ν

n
c (dy)

)
1
2

≤ C

(
∫

H

‖y‖2
W δ,r(0,1)µc(dy)

)
1
2

, (2.25)

since Un ≥ 0. And this latter term is finite.

Let κ ∈ [0, 1] and set λ = κδ − (1 − κ)γ,
1

q
= κ

1

r
+ (1 − κ)

1

2
. Then by interpolation for all

t, s ∈ [0, T ]:

(

E

[

∥

∥X̂n
c (t) − X̂n

c (s)
∥

∥

2

W λ,q(0,1)

])
1
2

≤
(

E

[

∥

∥

∥
X̂n

c (t) − X̂n
c (s)

∥

∥

∥

2

W δ,r(0,1)

])
κ
2
(

E

[

∥

∥

∥
X̂n

c (t) − X̂n
c (s)

∥

∥

∥

2

−γ

])

(1−κ)
2

.

We use (2.24), (2.25) and Sobolev embedding to conclude. Indeed, for any β ∈ (0, 1/2), we can
choose δ ∈ (0, 1/2), γ > 2, r ≥ 1 and κ ∈ (0, 1) such that (λ− β)q > 1. It follows that there exists
C such that for all s, t ∈ [0, T ]:

(

E

[

∥

∥

∥
X̂n

c (t) − X̂n
c (s)

∥

∥

∥

2

Cβ([0,1])

])
1
2

≤ C|t− s| 1−κ
4 ,

Finally, we can conclude by the theorem 7.2 in chapter 3 of [19] that the laws of (X̂n
c )n∈N are tight

in C(OT ).

�

Step 4.

We use a Lemma in [24]. This lemma allows to get the convergence of the approximated solutions
in probability in any space in which these approximated solutions are tight.

Lemma 2.3 Let {Zn}n≥1 be a sequence of random elements on a Polish space E endowed by its
borel σ-algebra. Then {Zn}n≥1 converges in probability to an E-valued random element if and any
if from every pair of subsequences {(Zn1

k
, Zn2

k
)k≥1, one can extract a subsequence which converges

weakly to a random element supported on the diagonal {(x, y) ∈ E × E, x = y}.

For any subsequence (nk)k∈N, we have convergence of ξk to a finite measure ξ on OT along some
sub-subsequence (km)m∈N. Let ξi, i = 1..2 be two such limits. By the second step, and the
uniqueness of the reflexion measure, we know ζ1 := ξ1 −λ and ζ2 := ξ2 −λ are equals. So the limit
of (ξk)k∈N is unique, and ξk converges to its limit ξ.
Assume (n1

k)k∈N and (n1
k)k∈N are two arbitrary subsequences. In the notations of the second step

and by the third step, the process
(

X̂
n1

k
c , X̂

n2
k

c ,W
)

is tight in a suitable space. By Skorohod’s

therorem, we can find a probability space and a sequence of processes (V k
1 , V

k
2 ,Wk) such that

(V k
1 , V

k
2 ,Wk) → (V1, V2,W) almost surely in C(OT ), and (V k

1 , V
k
2 ,Wk) as the same distribution as

18



(

X̂
n1

k
c , X̂

n2
k

c ,W
)

for all k ∈ N. In the Skorohod’s space, the approximated measures respectively

converge to two contact measures ζ1 and ζ2. By the second step, (V1, ζ1,W) and (V2, ζ2,W)
are both weak solutions of (0.3). By uniqueness, necessarily V1 = V2 and ζ1 = ζ2. Therefore

the subsequence
((

X̂
n1

k
c , ηn1

k ,W
)

,
(

X̂
n2

k
c , ηn2

k ,W
))

k∈N

converges in law to a process supported on

the diagonal. We use Lemma 2.3 to prove that the sequence (X̂n
c , η

n,W ) converges in law to
(X̂c, η,W ) stationary weak solution of (0.3). Moreover by pathwise uniqueness and existence of
strong solutions, we obtain that every weak solution is also a strong solution.

�

Proof in negative α-power case:

We again split the proof in four steps.
Step 1.

Let us assume that (nk)k∈N is a subsequence such that (X̂nk
c )n∈N converges in law in C(OT ) to a

process X̂c.
By Skorohod’s theorem, we can find a probability space and a sequence of processes (V k,Wk)k∈N

on that probability space such that (V k,Wk) → (V,W) in C(OT ) almost surely and (V k,Wk) has
the same distribution as (X̂nk

c ,W) for all k ∈ N. Notice that V ≥ 0 almost surely since for all
t ≤ T the law of V (t, .) is νc which is concentrated on K. Let now ξk be the following measure on
OT :

dξk := fnk
α (V k(t, θ))dtdθ.

Let y ∈ D(A) with ȳ = 0, taking h ∈ D(A2) such that y = Ah as a test function in (b) of Definition
1.1, we deduce that, for all 0 ≤ t ≤ T ,

〈

y, ξk
〉

Ot
has a limit when k → +∞. (2.26)

Like in the logarithmic case, we now prove that the total mass ξn(OT ) is bounded. Let us denote
by :

MT (h) = sup
k∈N

∣

∣

∣

〈

h, ξk
〉

OT

∣

∣

∣
(2.27)

for h ∈ D(A) such that h̄ = 0. By (2.26), we know that MT is well defined. Therefore by Lemma
2.2 it suffices to find a function w, such that w(t, .) = cT > 0, and a sequence (wk)k∈N such that
for a positive constant mT , wk converges uniformly to w such that

〈

wk, ξk
〉

OT
≤ mT . (2.28)

Denote by wk := ((V k)+ + 1/nk)
α, it converges uniformly to w := V α. Since wkfnk

α (V k(t, θ)) = 1,
(2.28) holds with mT = T . As in the logarithmic case, by Fatou Lemma, it follows that almost
surely fα(V ) ∈ L1(OT ).

�

Step 2. We again assume that we have (nk)k∈N a subsequence such that (X̂nk
c )k∈N converges

in law to a process X̂c. Again, by Skorohod’s theorem, we can find a probability space and a
sequence of processes (V k,Wk)k∈N such that almost surely (V k,Wk) → (V,W) in C(OT ) as k
grows to infinity, and (V k,Wk) has the same distribution as (X̂nk

c ,W ) for all k ∈ N.
By step 1, the total mass ξk(OT ) is bounded and there exists (nkm

)m∈N a sub-subsequence such
that the measures

ξkm := f
nkm
α (V km(t, θ))1V km <1dtdθ

converges to a measure ξ.
We denote by λ the following measure:

dλ := fα(V (t, θ))dtdθ, (2.29)
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and ζm := ξm − λ. Thus ζm converges to the measure ζ := ξ − λ. Thanks to Fatou Lemma, ζ is a
positive measure. Taking the limit as m grows to infinity in the approximated equation, we obtain
that for all h ∈ D(A2) and for all 0 ≤ t ≤ T :

〈V (t, .), h〉 = 〈x, h〉 −
∫

Ot

V (s, θ)A2h(θ)dsdθ −
∫

Ot

fα(V (s, θ))Ah(θ)dsdθ

−
〈

Ah, ζ
〉

Ot
−
∫ t

0

〈Bh, dW〉.

This is the expected equation. Let us now show that the contact condition holds for (V, ζ).
Case 1 : 0 ≤ α < 1.
As in the second step of the logarithmic case, fix β > 0, so there exists ε > 0 such that Tε1−α ≤ β.
Let us define the following measures for all m ∈ N:

dξm
ε := f

nkm
α (V km(t, θ))1V km <εdtdθ, dτm

ε := f
nkm
α (V km(t, θ))1ε≤V km dtdθ,

dλε := fα(V (t, θ))1V <εdtdθ, dτε := fα(V (t, θ))1ε≤V dtdθ.

Since τm
ε converges to τε, we have

lim sup
m→+∞

〈V km , ζm
〉

OT
= lim sup

m→+∞

(

〈

V km , ξkm
ε

〉

OT
−
〈

V km , λε

〉

OT
+
〈

V km , τm
ε

〉

OT
−
〈

V km , τε
〉

OT

)

= lim sup
m→+∞

(
∫

OT

V kmf
nkm
α (V km)1V km <εdtdθ −

∫

OT

V kmfα(V )1V <εdtdθ

)

≤ lim sup
m→+∞

(
∫

OT

V kmf
nkm
α (V km)10≤V km <εdtdθ

)

+ lim sup
m→+∞

(
∫

OT

(V km)−fα(V )1V <εdtdθ

)

.

It follows

lim sup
m→+∞

〈V km , ζm
〉

OT
≤ T lim sup

m→+∞
sup

x∈[0,ε]

∣

∣

∣

∣

∣

∣

x
(

x+ 1
nkm

)α

∣

∣

∣

∣

∣

∣

≤ T lim sup
m→+∞

∣

∣

∣

∣

∣

∣

ε
(

ε+ 1
nkm

)α

∣

∣

∣

∣

∣

∣

≤ Tε1−α.

Thus the contact condition holds.
Case 2 : α ≥ 1.
Let γ > 0, we prove that for all nonegative β, 0 ≤

〈

V α+γ , ζ
〉

OT
≤ β and conclude that the contact

condition holds by Hölder inequality.
Fix β > 0, so there exists ε > 0 such that Tεγ ≤ β. Let us define the following measures for all
m ∈ N:

dξm
ε := f

nkm
α (V km(t, θ))1V km <εdtdθ, dτm

ε := f
nkm
α (V km(t, θ))1ε≤V km dtdθ,

dλε := fα(V (t, θ))1V <εdtdθ, dτε := fα(V (t, θ))1ε≤V dtdθ.
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Since τm
ε converges to τε, we have

lim sup
m→+∞

〈
(

V km
)α+γ

, ζm
〉

OT
= lim sup

m→+∞

(

〈 (

V km
)α+γ

, ξkm
ε

〉

OT
−
〈 (

V km
)α+γ

, λε

〉

OT

+
〈 (

V km
)α+γ

, τm
ε

〉

OT
−
〈 (

V km
)α+γ

, τε
〉

OT

)

= lim sup
m→+∞

(

∫

OT

(

V km
)α+γ

f
nkm
α (V km)1V km <εdtdθ

−
∫

OT

(

V km
)α+γ

fα(V )1V <εdtdθ

)

≤ lim sup
m→+∞

(
∫

OT

(

V km
)α+γ

f
nkm
α (V km)10≤V km <εdtdθ

)

+ lim sup
m→+∞

(
∫

OT

(

(

V km
)−
)α+γ

fα(V )1V <εdtdθ

)

.

It follows

lim sup
m→+∞

〈
(

V km
)α+γ

, ζm
〉

OT
≤ T lim sup

m→+∞
sup

x∈[0,ε]

∣

∣

∣

∣

∣

∣

xα+γ

(

x+ 1
nkm

)α

∣

∣

∣

∣

∣

∣

≤ T lim sup
m→+∞

∣

∣

∣

∣

∣

∣

εα+γ

(

ε+ 1
nkm

)α

∣

∣

∣

∣

∣

∣

≤ Tεγ.

Thus the contact condition holds.

�

Step 3 and step 4 are strictly identical to the logarithmic case and we do not repeat them. This
ends the proof of Theorem 2.1. Now we give the proof of the Lemma 2.2.
Proof of the Lemma 2.2:

We prove this Lemma thanks to the previous Lemma 2.1. If µk(OT ) is bounded uniformly for
k ∈ N, then the constant

M̃T = sup
k∈N

µk(OT ) (2.30)

satisfies (2.16). Suppose µk(OT ) is unbounded, then there exists k0 ∈ N such that µk(OT ) > 0 for
all k ≥ k0, we denote for all k ≥ k0

νk := µk/µk(OT ).

{νk}k≥k0 is a sequence of probability measure on OT , and we can extract a subsequence {νkm}m∈N

such that there exists a probability measure ν with νkm ⇀ ν when m grows to infinity. Therefore,
by the uniform convergence of wk

〈

wkm , νkm
〉

OT
−→

l→+∞

〈

w, ν
〉

OT
. (2.31)

And by the uniform boundedness in (2.15), we have

〈

wkm , νkm
〉

OT
≤ mT

µkm(OT )
−→

l→+∞
0, (2.32)

therefore
〈

w, ν
〉

OT
= 0. (2.33)
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Moreover, for all h ∈ D(A) such that h̄ = 0
〈

h, νkm
〉

OT
−→

l→+∞

〈

h, ν
〉

OT
, (2.34)

and by the uniform boundedness in (2.13), for all h ∈ D(A) such that h̄ = 0, we have

〈

h, νkm
〉

OT
≤ MT (h)

µkm(OT )
−→

l→+∞
0. (2.35)

So that for all h ∈ D(A) such that h̄ = 0, we have
〈

h, ν
〉

OT
= 0. (2.36)

Since ν is a probability measure, we deduce that (2.36) holds in fact for any h ∈ C(OT ) such that
h̄ = 0. The hypothesis of Lemma 2.1 are satisfied, and we can conclude that the measure ν is null.
This is a contradiction since ν is a probability measure. Then the sequence µk(OT ) is bounded
uniformly for k ∈ N, and the constant M̃T in (2.30) fulfills (2.16).

�

2.4 Convergence of the semigroup

First we state the following result which is a corollary of Theorem 2.1.

Corollary 2.1 Let c > 0.

i) There exists a continuous process (X(t, x), t ≥ 0, x ∈ K ∩Hc) with X(0, x) = x and a set K0

dense in K ∩Hc, such that for all x ∈ K0 there exists a unique strong solution of equation

(0.3) given by
(

(X(t, x))t≥0 , η
x,W

)

.

ii) The law of (X(t, x)t≥0, η
x) is a regular conditional distribution of the law of

(

X̂c, η
)

given

X̂c(0) = x ∈ K ∩Hc.

Proof : By Theorem 2.1, we have a stationary strong solution X̂c in Hc, such that W and X̂c(0)

are independent. Conditioning
(

X̂c, η
)

on the value of X̂c(0) = x, with c = x, we obtain for

νc-almost every x a strong solution that we denote (X(t, x), ηx) for all t ≥ 0 and for all x ∈ K∩Hc.
This process is the desired process. Indeed, since the support of νc is K ∩Hc, we have a strong
solution for a dense set K0 in K ∩Hc.
Notice that all processes (X(t, x))t≥0 with x ∈ K0 are driven by the same noise W and are
continuous with values in H . Arguing as in the proof of Lemma 2.1 we see that for all x, y ∈ K0,
for all t ≥ 0:

‖X(t, x) −X(t, y)‖−1 ≤ ‖x− y‖−1.

Then by density, we obtain a continuous process (X(t, x))t≥0 in Hc for all x ∈ K ∩Hc.

�

We want to prove that for any deterministic initial condition x ∈ K ∩ Hc where c > 0, there
exists a strong solution of equation (0.3), necessarily unique and that the process X constructed in
Corollary 2.1 is a realization of such solution. We have proved this result only for x in a dense set
K0, but thanks to the convergence of the transition semigroup Pn,c, we will be able to conclude.
First we prove that the transition semigroup converges on K ∩Hc. This result is explained by the
following proposition :

Proposition 2.3 Let c > 0, for all φ ∈ Cb(H) and x ∈ K ∩Hc:

lim
n→+∞

Pn,c
t φ(x) = E[φ(X(t, x))] =: P c

t φ(x). (2.37)

Moreover the Markov process (X(t, x), t ≥ 0, x ∈ K ∩ Hc) is strong Feller and its transition
semigroup P c is such that:

|P c
t φ(x) − P c

t φ(y)| ≤ ‖φ‖∞√
t

‖x− y‖H , for all x, y ∈ K ∩Hc, for all t > 0. (2.38)
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Proof : By proposition 2.1 Xn is strong Feller on Hc and for all φ : Hc → R bounded and Borel
we have :

|Pn,c
t φ(x) − Pn,c

t φ(y)| ≤ ‖φ‖∞√
t

‖x− y‖H , for all x, y ∈ K ∩Hc, for all t > 0. (2.39)

Since (νn
c )n≥1 is tight in Hc, then there exists an increasive sequence of compact sets (Jp)p∈N in

H such that:
lim

p→+∞
sup
n≥1

νn
c (H \ Jp) = 0. (2.40)

Set J := ∪
p∈N

Jp∩K. Since the support of νc is in K∩Hc and νc(J) = 1, then J is dense in K∩Hc.

Fix t > 0, by (2.39), for any φ ∈ Cb(H) :

sup
n∈N

(‖Pn,c
t φ‖∞ + [Pn,c

t φ]Lip(Hc)) < +∞. (2.41)

Let (nj)j∈N be any sequence in N. With a diagonal procedure, by Arzelà-Ascoli Theorem, there
exists (njl

)l∈N a subsequence and a function Θt : J → R such that:

lim
l→+∞

sup
x∈Jp

|Pnjl
,c

t φ(x) − Θt(x)| = 0, for all p ∈ N. (2.42)

By density, Θt can be extended uniquely to a bounded Lipschitz function Θ̃t on K ∩Hc such that

Θ̃t(x) = lim
l→+∞

P
njl

,c
t φ(x), for all x ∈ K ∩Hc. (2.43)

Note that the subsequence depends on t. Therefore, we have to prove that the limit defines a
semigroup and does not depend on the chosen subsequence.
By the theorem 2.1, we have for all φ, ψ ∈ Cb(H) :

E

[

ψ
(

X̂c(0)
)

φ
(

X̂c(t)
)]

= lim
l→+∞

E

[

ψ
(

X̂
njl
c (0)

)

φ
(

X̂
njl
c (t)

)]

= lim
l→+∞

∫

H

ψ(y)E
[

φ
(

X̂
njl
c (t)

) ∣

∣

∣
X̂

njl
c (0) = y

]

ν
njl
c (dy)

= lim
l→+∞

∫

H

ψ(y)P
njl

,c
t φ(y)ν

njl
c (dy)

=

∫

H

ψ(y)Θ̃t(y)νc(dy).

Thus, by Corollary 2.1, we have the following equality:

E [φ (X(t, x))] = Θ̃t(x), for νc-almost every x. (2.44)

Since E[φ(X(t, .))] and Θ̃t are continuous on K ∩Hc, and νc(K ∩Hc) = 1, the equality (2.44) is
true for all x ∈ K ∩Hc. Moreover the limit does not depend on the chosen subsequence, and we
obtain (2.37). Since the semigroups are equi-Lipschitz, we deduce (2.38).

�

2.5 Existence of solutions

We have proved that there exists a continous process X which is a strong solution of equation (0.3)
for an x in a dense space. In this section, we prove existence for an initial condition in K ∩ Hc

with c > 0.

Theorem 2.2 Let ξ be a K-valued random value with ξ > 0 almost surely and (ξ,W ) independent,
then there exists a continuous process denoted (X(t, ξ))t≥0 and a measure ηξ such that:

(a)
(

(X(t, ξ))t≥0 , η
ξ,W

)

is the unique strong solution of (0.3) with X(0, ξ) = ξ almost surely.
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(b) The Markov process (X(t, x), t ≥ 0, x ∈ K ∩ Hc) is continous and has P c for transition
semigroup which is strong Feller on Hc.

(c) For all c > 0, x ∈ K ∩Hc and 0 = t0 < t1 < · · · < tm, (X(ti, x), i = 1, . . . , n) is the limit in
distribution of (Xn(ti, x))i=1,...,m.

(d) If ξ has distribution νc with c > 0, then (X(t, ξ))t≥0 is equal in distribution to
(

X̂c(t)
)

t≥0
.

Proof : By Corollary 2.1 we have a process (X(t, x), t ≥ 0, x ∈ K∩Hc), such that for all x in a set

K0 dense in K ∩Hc we have a strong solution
(

(X(t, x))t≥0 , η
x,W

)

of (0.3) with initial condition

x. By proposition 2.3, we have that the Markov process X has transition semigroup Pc on Hc.
The strong Feller property of P c implies that for all x ∈ K ∩ Hc and s > 0 the law of X(s, x)
is absolutely continous with respect to the invariant measure νc. Indeed, if νc(Γ) = 0, then
νc(P

c
s (1Γ)) = νc(Γ) = 0. So P c

s (1Γ)(x) = 0 for νc-almost every x and by continuity for all
x ∈ K ∩Hc.
Therefore almost surely X(s, x) ∈ K0 for all s > 0 and x ∈ K ∩ Hc. Fix s > 0, denote for all
θ ∈ [0, 1]:

X̃ := t 7→ X(t+ s, x), W̃ (·, θ) := t 7→W (t+ s, θ) −W (s, θ)),

and the measure η̃x such that for all T > 0, and for all h ∈ C(OT ):

〈

h, η̃x
〉

OT
:=

∫

OT +s
s

h(t− s, θ)ηx(dt, dθ)

So we have a process X̃ ∈ C([0, T ];H)∩C(OT ) and a mesure η̃x on OT which is finite on [δ, T ]×[0, 1]

for all δ ≥ 0, such that
(

(X̃(t, x))t≥0, η̃
x, W̃

)

is a strong solution of (0.3) with initial condition

X(s, x). By continuity X(s, x) → x in H as s → 0, so ((X(t, x))t≥0, η
x,W ) is a strong solution of

(0.3) with initial condition x in the sense of the definition 2.1.
Thanks to the previous results, (b), (c) and (d) are obvious.

�
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3 Reflection and Revuz measures

We have proved the existence of solution to (0.3) with a reflection measure. In [37], L. Zambotti
uses an integration by parts formula to prove that, in some cases, the reflection measure vanishes.
Moreover, L. Zambotti proves that, in some other cases, the reflection measure does not vanish. He
uses the theory of the Continuous Additive Functionnals described in [20]. We adapt his arguments
and prove similar results for our case.

3.1 Integration by parts formula

For all φ ∈ C1
b (Hc) we denote by ∂hφ the directional derivative of φ along h ∈ H :

∂hφ : x 7→ lim
t→0

1

t
(φ(x + th) − φ(x)), x ∈ H.

For all φ ∈ C1
b (H), we have:

〈∇φ(x), h〉 = ∂hφ(x).

We have the following classical result (see [16] for details): We denote by (M, M̂) two indepedant
copies of the standard Brownian meander (see [32] and [17]), and we set for all r ∈ (0, 1):

Ur(θ) :=















√
rM

(

r − θ

r

)

, θ ∈ [0, r],

√
1 − rM̂

(

θ − r

1 − r

)

, θ ∈]r, 1].
(3.1)

The starting point is the Theorem 7.1 in [16] where the following formula has been proved for a
process Y whose the law is µ.

Theorem 3.1 For all Φ in C1
b (H,R) and h ∈ D(A):

E [∂hΦ(Y )1Y ∈K ] = −E
[(

〈Y,Ah〉 − Y · h
)

Φ(Y )1Y ∈K

]

(3.2)

−
∫ 1

0

h(r)
1

√

2π3r(1 − r)
E

[

Φ(Ur)e
−(1/2)(Ur)2

]

dr.

We denote by pUr
: R

+ → [0, 1] the continuous version of the density of Ur. By conditioning on

Y = c, we obtain:

E [∂ΠhΦ(Yc)1Yc∈K ] = −E [〈Yc, Ah〉Φ(Yc)1Yc∈K ] (3.3)

−
∫ 1

0

Πh(r)
pUr

(c)

π
√

r(1 − r)
E
[

Φ(Ur)|Ur = c
]

dr,

where Yc has been defined in the section 1. Moreover, notice that we have the following classical
and easy to prove integration by parts formula for the measures (νn

c )n∈N. For all Φ in C1
b (H) and

h ∈ D(A):
∫

H

∂ΠhΦ dνn
c = −

∫

H

〈x,Ah〉Φ(x)νn
c (dx) −

∫ 1

0

Πh(r)

∫

H

Φ(x)fn(x(r))νn
c (dx)dr. (3.4)

We define γn : x 7→ 1

Zn
c

exp(−Un(x)) for all x ∈ H , where Zn
c is the constant of normalization

defined in (1.12). Then γn ∈ C1
b (H) and for all x, h ∈ K:

〈∇γn(x), h〉 = γn(x)〈∇ log γn(x), h〉 = γn(x)

∫ 1

0

h(θ)fn(x(θ))dθ. (3.5)

Let φ be in C1
b (H). We use (3.3), with Φ = φ · γn. So we obtain:

∫

H

∂Πh(φ · γn) dµc = −
∫

H

〈x,Ah〉φ(x)γn(x)1x∈Kµc(dx) (3.6)

−
∫ 1

0

Πh(r)
pUr

(c)

π
√

r(1 − r)
E
[

φ(Ur)γ
n(Ur)|Ur = c

]

dr.
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We compute the derivative of the product, and obtain:

∫

H

(∂Πhφ) · γn dµc = −
∫

H

(

〈x,Ah〉 + 〈∇ log γn(x),Πh〉
)

φ(x)γn(x)1x∈Kµc(dx) (3.7)

−
∫ 1

0

Πh(r)
pUr

(c)

π
√

r(1 − r)
E
[

φ(Ur)γ
n(Ur)|Ur = c

]

dr.

We want to let n go to infinity. We have to study the convergence of all the terms.
By section 2.2, the left-hand side converges to:

∫

H

(∂Πhφ)dνc.

Denote now by In
r the following term:

In
r :=

pUr
(c)

π
√

r(1 − r)
E
[

φ(Ur)γ
n(Ur)

∣

∣Ur = c
]

.

Since Zn
c converges, there exists C such that for all r ∈ (0, 1):

|In
r | ≤ C

pUr(c)
√

r(1 − r)
‖φ‖∞Jn

r

where Jn
r is defined by:

Jn
r := E

[

exp

(

−
∫ 1

0

Fn(Ur(θ))dθ

)]

.

In the logarithmic case and in the negative α-power case, as in section 2.2 and by dominated
convergence, we have for all r ∈ (0, 1):

lim
n→+∞

Jn
r = E

[

exp

(

−
∫ 1

0

F (Ur(θ))dθ

)]

. (3.8)

Therefore, in the logarithmic case and in the negative α-power case for α > 1, since |Jn
r | < 1, by

dominated convergence, the last term in (3.7) has a limit when n grows to infinity.
In the negative α-power case for α ≤ 1, since

|Jn
r | ≤ E

[

exp

(

−
∫ 1

0

F 1
α(Ur(θ))dθ

)]

,

by dominated convergence, the last term in (3.7) has a limit when n grows to infinity.
Moreover, if α ≥ 3, by the law of the iterated logarithm, almost surely and for all r ∈ (0, 1):

∫ 1

0

dθ

(Ur(θ))α−1
= +∞.

Thus, in this case
lim

n→+∞
Jn

r = 0, (3.9)

and, by dominated convergence, the last term in (3.7) converges to 0.
Now we use the representation described in [16] in order to prove the convergence of the first term
in the right-hand side of (3.7). Denote by Sn the following

Sn := −
∫

H

(〈x,Ah〉 + 〈∇ log γn(x),Πh〉)φ(x)γn(x)1x∈Kµc(dx)

= −E [(〈Yc, Ah〉 + 〈∇ log γn(Yc),Πh〉)φ(Yc)γ
n(Yc)1Yc∈K ]

(3.10)

We use the following Theorem whose proof is in Appendix A in [16].
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Theorem 3.2 For all Ψ : C([0, 1]) → R bounded and Borel

E[Ψ(Y )] =

∫

R

E

[

Ψ(y + B)

√

4

3
exp

(

−1

2
(y + B)2 +

3

8
y2

)

]

exp
(

− 3
8y

2
)

√

2π4/3
dy

=

∫

R

E [Ψ(y + B)ρ(y + B)] dy,

(3.11)

where we set ρ : C([0, 1]) → R,

ρ(u) :=
1√
2π

exp

(

−1

2
u2

)

.

Thanks to this Theorem, we can write:

Sn = −
∫

R

E

[

(〈y + B, Ah〉 + 〈∇ log γn(y + B),Πh〉)

×φ(y + B)γn(y + B)ρ(y + B)1y+B∈K

∣

∣

∣
B = c− y

]

dy

We set Vr = −√
rM(1) + Ur. Notice that Vr is 0 at time 0, then run backwards the path of M on

[0, r] and then runs the path of M̂ on ]r, 1]. Almost surely since M > 0 on ]0, 1], then Vr attains
the minimum −√

rM(1) only at time r. Let (τ,M, M̂) be an independent triple, such that τ has
the arcsine law, then Vτ has the same law as B (see [17]). We can write:

Sn = −
∫ 1

0

1

π
√

r(1 − r)

∫

R

E

[

(

〈y + Vr, Ah〉 +

〈

f

(

1

n
+ y + Vr

)

,Πh

〉)

×φ(y + Vr)γ

(

1

n
+ y + Vr

)

ρ(y + Vr)1y+Vr∈K

∣

∣

∣
Vr = c− y

]

dy dr

= −
∫ 1

0

1

π
√

r(1 − r)

∫

R

E

[

(

〈z − 1

n
+ Vr, Ah〉 + 〈f (z + Vr) ,Πh〉

)

×φ(z − 1

n
+ Vr)γ (z + Vr) ρ(z −

1

n
+ Vr)1z− 1

n
+Vr∈K

∣

∣

∣
Vr = c− z +

1

n

]

dz dr.

Now we use the proposition 3.3 which is stated in the next section 3.3. Thus, we can used Fatou
Lemma to prove that for all h ∈ D(A):

1

π
√

r(1 − r)
[〈f(z + Vr),Πh〉 ‖φ‖∞γ (z + Vr)1z+Vr∈K ]

is integrable on Ω × R × [0, 1]. Thus, we can used the dominated convergence Theorem to see:

lim
n→+∞

Sn = −
∫ 1

0

1

π
√

r(1 − r)

∫

R

E

[(

〈z + Vr, Ah〉 +
〈

f
(

z + Vr

)

,Πh
〉)

×φ(z + Vr)γ (z + Vr) ρ(z + Vr)1z+Vr∈K

∣

∣

∣
Vr = c− z

]

dz dr

= −
∫

R

E

[(

〈z + Vτ , Ah〉 + 〈f (z + Vτ ) ,Πh〉
)

×φ(z + Vτ )γ (z + Vτ ) ρ(z + Vτ )1z+Vτ∈K

∣

∣

∣
Vτ = c− z

]

dz

= −E

[(

〈Y,Ah〉 + 〈f(Y ),Πh〉
)

φ(Y )γ (Y )1Y ∈K

∣

∣

∣
Y = c

]

= −E

[(

〈Yc, Ah〉 + 〈f(Y ),Πh〉
)

φ(Yc)γ (Yc)1Yc∈K

]

= −
∫

H

(

〈x,Ah〉 + 〈f(x),Πh〉
)

φ(x)νc(dx)

(3.12)
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For all r ∈ (0, 1), denote Σc
r such that:

Σc
r(dω) :=

1

µc(K)

pUr
(c)

π
√

r(1 − r)
P
(

Ur ∈ dω|Ur = c
)

, (3.13)

thus we have the following Theorem:

Theorem 3.3 For all φ in C1
b (H) and h ∈ D(A):

∫

H

∂Πhφ(x)1x∈Kνc(dx) = −
∫

H

(

〈x,Ah〉 + 〈f(x),Πh〉
)

φ(x)νc(dx) (3.14)

−
∫ 1

0

Πh(r)

∫

φγdΣc
r dr.

Moreover, for α ≥ 3, the last term vanishes.

3.2 Dirichlet forms

We now describe the Dirichlet Forms and the resolvent associated to X̂n
c , in order to obtain the

Dirichlet Forms and the resolvent associated to X̂c. The first result is the following description of
the generator of Z. Let ψh : x 7→ exp(i(x, h)−1) for x ∈ Hc and h ∈ D(A2), then the generator of
Z is such that

Lψh(x) :=
d

dt
E[ψh(Z(t, x))]

∣

∣

∣

t=0
= −1

2
ψh(x)

(

i(A2h, x)−1 + ‖Πh‖2
−1

)

We define for all φ ∈ Cb(Hc) the resolvent of X̂n
c on Hc:

Rn,c
λ φ(x) :=

∫ ∞

0

e−λt
E

[

φ(X̂n
c (t, x))

]

dt, x ∈ Hc, λ > 0. (3.15)

We define ExpA(Hc) ⊂ Cb(Hc) as the linear span of {cos((h, ·)); sin((h, ·)), h ∈ D(A2)}. Then we
define the symmetric bilinear form:

En,c(φ, ψ) :=
1

2

∫

H

〈−A∇φ,∇ψ〉dνn
c , for all φ, ψ ∈ ExpA(H). (3.16)

The following result is standard.

Proposition 3.1 (En,c, ExpA(Hc)) is closable in L2(νn
c ): we denote by (En,c, D(En,c)) the closure.

(Rn,c
λ )λ>0 is the resolvent associated with En,c, that is, for all λ > 0 and ψ ∈ L2(νn

c ), Rn,c
λ ψ ∈

D(En,c) and:

λ

∫

H

Rn,c
λ ψφ dνn

c + En,c(Rn,c
λ ψ, φ) =

∫

H

ψφ dνn
c , for all φ ∈ D(En,c). (3.17)

Let ψh : x 7→ exp(i(x, h)) for x ∈ Hc and h ∈ D(A2). By Itô formula

Lnψh(x) :=
d

dt
E[ψh(X̂n

c (t, x))]
∣

∣

∣

t=0
= Lψh(x) +

i

2
〈fn(x),Πh〉ψh(x). (3.18)

After an easy computation, we have (Ln, ExpA(Hc)) is symmetric in L2(νn
c ) and:

∫

H

Lnφψ dνn
c = −1

2

∫

H

〈−A∇φ,∇ψ〉dνn
c , for all φ, ψ ∈ ExpA(Hc). (3.19)

Moreover we define for all φ ∈ Cb(Hc) the resolvent of X̂c on K ∩Hc:

Rc
λφ(x) :=

∫ ∞

0

e−λt
E

[

φ
(

X̂c(t, x)
)]

dt, x ∈ K ∩Hc, λ > 0. (3.20)
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We also define the symmetric bilinear form:

Ec(φ, ψ) :=
1

2

∫

H

〈−A∇φ,∇ψ〉dνc, for all φ, ψ ∈ C1
b (H). (3.21)

Proceeding as in the proposition 8.1 in [16], we can prove that for all φ, ψ ∈ C1
b (Hc), En,c(φ, ψ) →

Ec(φ, ψ) and Rn,c
λ φ → Rc

λφ uniformly as n grows to infinity. Let ψ ∈ Cb(Hc), we can write for all
h ∈ D(A2):
∫

H

ψφhdνc = lim
n→+∞

∫

H

ψφhdν
n
c = lim

n→+∞

∫

H

Rn,c
λ ψ(λφh − Lnφh)dνn

c

=

∫

H

Rc
λψ(λφh − Lφh)dνc −

i

2
lim

n→+∞

∫

H

Rn,c
λ ψ(x)φh(x)〈fn(x),Πh〉dνn

c .

(3.22)

Then, with the proposition 3.3 below:
∫

H

ψφhdνc =

∫

H

Rc
λψ(λφh − Lφh)dνc −

i

2

∫

H

Rc
λψ(x)φh(x)〈f(x),Πh〉dνc

− i

2

∫ 1

0

Πh(r)

∫

H

Rc
λψφhγ dΣ

c
r dr

= λ

∫

H

Rc
λψφhdνc −

i

2

∫

H

Rc
λψφh〈Ah, x〉dνc +

1

2

∫

H

Rc
λψφh‖Πh‖2

−1dνc

− i

2

∫

H

Rc
λψ(x)φh(x)〈f(x),Πh〉dνc −

i

2

∫ 1

0

Πh(r)

∫

H

Rc
λψφhγ dΣ

c
r dr.

(3.23)

Thanks to the integration by parts formula applied to Rc
λψφh , we have:

∫

H

ψφhdνc = λ

∫

H

Rc
λψφhdνc + Ec(Rc

λψ, φh). (3.24)

By linearity and by density, we obtain for all λ > 0 and ψ ∈ Cb(H):

λ

∫

H

Rc
λψφ dνc + Ec(Rc

λψ, φ) =

∫

H

ψφ dνc, for all φ ∈ D, (3.25)

where we denote D := {Rc
λφ, φ ∈ Cb(Hc), λ > 0}. We use classical results from [26], and obtain the

following proposition:

Proposition 3.2 Let c > 0.
i) (Ec, ExpA(Hc)) is closable in L2(νc): we denote by (Ec, D(Ec)) the closure.
ii) (Ec, D(Ec)) is a symmetric Dirichlet form such that Lip(Hc) ⊂ D(Ec) and Ec(φ, φ) ≤ |φ|2Lip(Hc).

iii) (Rc
λ)λ>0 is the resolvent associated with Ec, that is, for all λ > 0 and ψ ∈ L2(νc), R

c
λψ ∈ D(Ec)

and:

λ

∫

H

Rc
λψφ dνc + Ec(Rc

λψ, φ) =

∫

H

ψφ dνc, for all φ ∈ D(Ec). (3.26)

iv) (P c
t )t≥0 is the semigroup associated with (Ec, D(Ec)).

3.3 Total mass of the reflection measure

We now state and prove the proposition 3.3 used above.

Proposition 3.3 For all φ ∈ Cb(Hc), for all h ∈ D(A):
∫

H

〈fn(x), h〉φ(x)γn(x)µc(dx) (3.27)

has a limit when n grows to infinity.
Moreover for all 0 < δ ≤ s ≤ t ≤ T , E [η(Os,t)] < +∞.

29



Proof : Denote σn
r,c the measure such that for all r ∈ [0, 1], for all c > 0:

σn
r,c(dx) := fn (x(r)) γn(x)µc(dx)

It suffices to prove that:

lim sup
n→+∞

∣

∣

∣

∣

∫ 1

0

∫

H

dσn
r,c dr

∣

∣

∣

∣

< +∞. (3.28)

By symetry, it suffices to prove convergence of
∣

∣

∣

∣

∣

∫ 1/2

0

∫

H

dσn
r,c dr

∣

∣

∣

∣

∣

< +∞. (3.29)

The idea is to study an integration by parts formula for the law of Yc on the path space

K̃ := {h ∈ C([0, 1]), h(θ) ≥ 0 for all θ ∈ [0, 1/2]}.

The crucial tool is that, on this space, the processes that we consider have no more fixed mean,
and we can have an integration by parts formula without the constraint of zero mean. We set for
all r ∈ (0, 1/2):

Tr(θ) :=



















√
rM

(

r − θ

r

)

, θ ∈ [0, r],
√

(

1

2
− r

)

M̂

(

θ − r
1
2 − r

)

, θ ∈]r, 1/2].

Moreover we set
χ : θ 7→ 1[0,1/2](θ),

and for u ∈ C([0, 1/2])

m(u) :=

∫ 1/2

0

(u(θ) + u(1/2))dθ.

The starting point is the Lemma B.1 in [16] where the following formulae have been proved.

Lemma 3.1 For all Ψ : C([0, 1/2]) → R bounded and Borel:

E [Ψ(Yc)] =
√

32 E

[

Ψ(b+ B) exp

(

−12(m(b+ B) − c)2 +
3

8
b2
)]

(3.30)

=

∫

R

E [Ψ(y + B)ρ̃(y + B)] dy, (3.31)

where we set ρ̃ : C([0, 1/2]) → R,

ρ̃(u) :=

√

12

π
exp

(

−12(m(u) − c)2
)

.

Moreover, for all c > 0 and Φ ∈ C1
b (L2(0, 1/2)):

E
[

∂χΦ(Yc)1Yc∈K̃

]

= E
[

24 (m(Yc) − c)Φ(Yc)1Yc∈K̃

]

(3.32)

−
∫ 1/2

0

√

12

π3
√

r(1/2 − r)
E

[

Φ(Tr)e
−12(m(Tr)−c)2

]

dr.

We have writen Φ(Yc) for Φ(Yc|[0,1/2]) with a slight abuse of notation. We set now for n ≥ 1,
r ∈ (0, 1/2):

Ũn(x) :=

∫ 1/2

0

Fn(x(θ))dθ, x ∈ L2(0, 1).

We define γ̃n : x 7→ exp(−Ũn(x)) for all x ∈ H . Then γ̃n ∈ C1
b (L2(0, 1/2)) and for all x, h ∈ K̃:

〈∇γ̃n(x), h〉 = γ̃n(x)〈∇ log γ̃n(x), h〉 = γ̃n(x)

∫ 1/2

0

h(θ)fn(x(θ))dθ. (3.33)

30



Moreover we define for n ≥ 1, r ∈ (0, 1/2) and Ψ ∈ C1
b (L2(0, 1/2)):

Σ̃n,c
r (Ψ) :=

√

12

π3
√

r(1/2 − r)
E

[

Ψ(Tr)γ̃
n(Tr)e

−12(m(Tr)−c)2
]

.

Let φ be in C1
b (L2(0, 1/2)). We use (3.32), with Φ = φ · γn. So we obtain:

∫

H

∂χ(φ · γ̃n)1K̃dµc = E
[

24 (m(Yc) − c)φ(Yc)γ̃
n(Yc)1Yc∈K̃

]

−
∫ 1/2

0

Σ̃n,c
r (φ)dr. (3.34)

We compute the derivative of the product, and take φ ≡ 1, then we obtain:

E
[

〈∇ log γ̃n(x), χ〉γ̃n(Yc)1Yc∈K̃

]

= E
[

24 (m(Yc) − c) γ̃n(Yc)1Yc∈K̃

]

−
∫ 1/2

0

Σ̃n,c
r (1)dr. (3.35)

Define now for n ≥ 1, r ∈ (0, 1/2):

Ũ(x) :=

∫ 1/2

0

F (x(θ))dθ, x ∈ L2(0, 1).

We also define γ̃ : x 7→ exp(−Ũ(x)) for all x ∈ H . Moreover we define for n ≥ 1, r ∈ (0, 1/2) and
Ψ ∈ C1

b (L2(0, 1/2)):

Σ̃c
r(Ψ) :=

√

12

π3
√

r(1/2 − r)
E

[

Ψ(Tr)γ̃(Tr)e
−12(m(Tr)−c)2

]

.

Finally, we denote σ̃n
r,c the measure such that for all r ∈ [0, 1], for all c > 0:

σ̃n
r,c(dx) := fn (x(r)) γ̃n(x)µc(dx)

We easily prove the following result:

Lemma 3.2 For all c > 0:

lim
n→+∞

∫ 1/2

0

∫

H

dσ̃n
r,c = E

[

24 (m(Yc) − c) γ̃(Yc)1Yc∈K̃

]

−
∫ 1/2

0

Σ̃c
r(1)dr.

Moreover, for α ≥ 3 the last term vanishes.

We set now for n ≥ 1:

Ũ ′
n
(x) :=

∫ 1

1/2

Fn(x(θ))dθ = Un(x) − Ũn(x), x ∈ L2(0, 1).

We also define γ̃,n : x 7→ exp(−Ũ ′
n
(x)) for all x ∈ H .

We notice now that we can compute explicitly the conditional distribution of Yc given (Yc(θ), θ ∈
[0, 1/2]). Indeed, we have for all u ∈ C([0, 1/2]) and Ψ ∈ Cb(L

2(0, 1))

E [Ψ(Yc)|Yc = u on [0, 1/2]] = E[Ψ(B̃(c, u))],

where

B̃(c, u) :=











u(θ), θ ∈ [0, 1/2],

u(1/2) + Bθ−1/2 − 12(1/2− θ)(θ − 1/2)

(

∫ 1/2

0

B(r)dr +m(u) − c

)

, θ ∈]1/2, 1].

Then we have:
∫ 1/2

0

∫

H

Ψdσn
r,c dr =

1

Zn
c

∫

H

∫ 1/2

0

E

[

Ψ × fn × γ̃,n
(

B̃(c, u)
)]

γ̃n(u)µc(du) dr,

=
1

Zn
c

∫

H

∫ 1/2

0

E

[

Ψ × γ̃,n
(

B̃(c, u)
)]

fn(u(r))γ̃n(u)µc(du) dr,

=
1

Zn
c

∫

H

∫ 1/2

0

E

[

Ψ × γ̃,n
(

B̃(c, u)
)]

σ̃n
r,c(du).
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Arguing as in the proof of section 2.2, it is easy to conclude that the limit exists, which proves
(3.29) and (3.27).
Recall η is the limit of dηn := fn(X̂n

c (t, θ))dtdθ − f(X̂c(t, θ))dtdθ. We just proved that for all
δ ≤ s ≤ t ≤ T

E [η(Os,t)] ≤ lim inf
n→+∞

E [ηn(Os,t)]

≤ lim inf
n→+∞

E

[

∫

Os,t

fn(X̂n
c (u, θ))du dθ

]

≤ lim inf
n→+∞

∫

H

∫

Os,t

fn(x(θ))du dθγn(x)µc(dx)

= (t− s) lim inf
n→+∞

∫

H

∫ 1

0

dσn
r,c dr

< +∞.

(3.36)

Thus the total mass of Os,t for the reflection measure η has a finite expectation.

�

3.4 Reflection and Revuz measures

Theorem 3.4 For all c > 0, for all x ∈ K ∩Hc:
i) For α ≥ 3, the reflection measure ηx of the strong solution ((X(t, x))t≥0, η

x,W ) vanishes.
ii) For α < 3, the reflection measure ηx of the strong solution ((X(t, x))t≥0, η

x,W ) does not
vanishes.

Proof : Let c > 0, x ∈ K ∩ Hc, and α ≥ 3. We take the expectation of equation (0.3) for the
stationnary solution. We obtain for all 0 < δ ≤ s ≤ t ≤ T , for all h ∈ D(A2):

E

[
∫ t

s

〈X̂c(u), A
2h〉du+

∫ t

s

〈Ah(θ), f(X̂c(u))〉du +
〈

Ah, η
〉

Os,t

]

= 0. (3.37)

Thanks to Proposition 3.3, the expectation of each term of (3.37) is finite. So let k ∈ D(A)
with k̄ = 0, taking h ∈ D(A2) such that k = Ah as a test function in (3.37), we obtain for all
0 < δ ≤ s ≤ t ≤ T , for all k ∈ D(A):

E

[

〈

Πk, η
〉

Os,t

]

= −E

[
∫ t

s

〈X̂c(u), Ak〉du+

∫ t

s

〈Πk(θ), f(X̂c(u))〉du
]

= (s− t) E

[

〈X̂c(0), Ak〉 + 〈Πk(θ), f(X̂c(0))〉
]

= (s− t)

∫

H

(

〈x,Ak〉 + 〈f(x),Πk〉
)

νc(dx).

We use (3.14) with φ = 1, and prove that for all k ∈ D(A), for all 0 < δ ≤ s ≤ t ≤ T :

E

[

〈

Πk, η
〉

Os,t

]

= 0. (3.38)

Now, as in Lemma 2.1, η ⊗ P can be decomposed as η ⊗ P = Γ ⊗ dθ, where Γ is a measure on
[0, T ]× Ω, so we obtain that for all 0 < δ ≤ s ≤ t ≤ T , for all A ⊂ Ω:

0 = E

[

〈X̂c, η〉Os,t
1A

]

=

∫

Ω

(
∫ t

s

(

∫ 1

0

X̂c(u)(θ)dθ
)1A

)

dΓ(u, .) = c× Γ([s, t],A).

Since c > 0, we conclude that for all 0 < δ ≤ s ≤ t ≤ T , for all A ⊂ Ω, Γ([s, t],A) = 0. Thus η ⊗ P

is the null measure. Since η is a positive measure, we obtain that η is the null measure almost

surely. Since the law of (X(t, x)t≥0, η
x) is a regular conditional distribution of the law of

(

X̂c, η
)

given X̂c(0) = x ∈ K ∩Hc, we have proved i) in the Theorem 3.4.
We consider now the logarithmic case and the negative α-power case for α < 3.
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Proposition 3.4 The process {Xc(t, x), t ≥ 0, x ∈ Hc∩K} is a continuous Hunt process on K with
infinite life-time and strong Markov, properly associated with the Dirichlet Form Ec. In particular,
Ec is quasi-regular.

The last assertion is a consequence of Theorem IV.5.1 in [26], which describes the necessity of quasi
regularity of a Dirichlet Form associated with a Markov process. We now recall the definitions of
the theory of Additive Functionals of a Markov process (see [20]). Consider {Yc(t, x), t ≥ 0, x ∈
Hc ∩ K} a Hunt process with infinite life-time and strong Markov, properly associated with the
Dirichlet Form Ec. We first describe the minimum admissible filtration and the minimum completed
admissible filtration. We set:

F0
∞ = σ{Yc(s), s ∈ [0,+∞)},

F0
t = σ{Yc(s), 0 ≤ s ≤ t}, for all 0 ≤ t ≤ +∞.

These filtrations are called the minimum admissible filtrations. We define E := C([0, T ], Hc), and
denote by Px the law of t 7→ Yc(t, x) on the filtered space (E,F0

∞) for all x ∈ Hc ∩ K. We also
define P the set of all probability measures on Hc ∩ K ∩ C([0, 1]). For all m ∈ P , we define the
probability measure:

Pm : F0
∞ → R

Λ 7→
∫

Hc∩K∩C([0,1])

Px(Λ)m(dx).

We then denote by Fm
∞ (respectively Fm

t ) the completion of F0
∞ (respectively the completion of

F0
t in Fm

∞) with respect to Pm. Finally we set

F∞ =
⋂

m∈P

Fm
∞ and Ft =

⋂

m∈P

Fm
t , for all 0 ≤ t ≤ +∞.

These filtrations are the minimum completed admissible filtrations. It is now possible to define
the Additive Functionals for the Markov process Yc. To avoid useless definitions, we just recall the
definition of a continuous additive functional (CAF in abreviation) in the strict sense of Yc.

Definition 3.1 A family of real valued functions A := (At)t≥0 is called a continuous additive
functionnal in the strict sense of Yc if it satisfies the following conditions:

(a) At is Ft-adapted for all t ≥ 0.

(b) There exists Λ ∈ F∞ with Px(Λ) = 1, for all x ∈ Hc ∩K ∩ C([0, 1]), such that θt(Λ) ⊂ Λ for
all t ≥ 0, for all ω ∈ Λ, t 7→ At(ω) is continuous, A0(ω) = 0 and for all t, s ≥ 0:

At+s(ω) = As(ω) +At(θsω),

where (θs)s≥0 is the time-translation semigroup on E.

Moreover, by a positive continuous additive functional (PCAF in abreviation) in the strict sense
of Yc, we mean a CAF in the strict sense of Yc such that:

(c) For all ω ∈ Λ, t 7→ At(ω) is non-decreasing.

If A is a linear combination of PCAFs in the strict sense of Yc , the Revuz-measure of A is a Borel
signed measure m on K such that for all Φ,Ψ ∈ Cb(Hc):

∫

Hc

Φ(x) E

[
∫ +∞

0

exp(−t)Ψ(Yc(t, x))dAt

]

νc(dx) =

∫

Hc

E

[
∫ +∞

0

exp(−t)Φ(Yc(t, x))dt

]

Ψ(x)m(dx).

Notice that there exists a correspondence between Revuz-measures and PCAF. We refer to Chapter
5 in [20] and Chapter VI in [26] for all basic definitions and details. In particular the definition of
a martingale additive functional (MAF in abreviation), the notion of the energy of an AF, and the
quasi-sets.
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Xc does not satisfy suitable properties to compute Revuz-measures of PCAFs in the strict sense
of Xc. Thus we will use a family of process (Y δ

c )δ>0 such that:

Y δ
c (t, x) = Xc(t+ δ, x), for all x ∈ Hc ∩K, for all t ≥ 0, for all δ > 0.

Set δ > 0. Let k ∈ D(A2), set h ∈ D(A) such that Ak = h and set V : Hc ∩K 7→ V(x) := 〈x, k〉.
Since the Dirichlet form (Ec, D(Ec)) is quasi-regular, we can apply the Fukushima decomposition
(see Theorem VI.2.5 in [26]). We state that there exists a MAF of finite energy M [V] and a CAF
of zero energy N [V] such that for Ec-quasi every x:

V(Y δ
c (t, x)) − V(Y δ

c (0, x)) = M
[V]
t +N

[V]
t , t ≥ 0, P

δ
x − a.s, (3.39)

with obvious notations for P
δ
x. M [V] and N [V] can be extended to CAF and MAF in the strict

sense of Xc, which we still denote M [V] and N [V], such that M [V] is a Px-martingale and (3.39)
holds for all x ∈ Hc ∩K. We have he following expression:

1

2

∫ t

δ

〈Bh, dW 〉 = M
[V]
t (Y δ

c (·, x)), for all t ≥ 0, x ∈ K, almost surely.

Moreover N [V] is a linear combination of PCAFs in the strict sense of Y δ
c such that for all t ≥ 0,

x ∈ K, almost surely:

1

2

∫ t

δ

(〈Xc(s, x), Ah〉 + 〈f(Xc(s, x),Πh〉) ds+
1

2

∫ 1

0

Πh(θ)ηx([δ, t], dθ) = N
[V]
t (Y δ

c (·, x))

and its Revuz measure is:

1

2
(〈z,Ah〉 + 〈f(z),Πh〉) νc(dz) +

1

2

∫ 1

0

Πh(r)dr γ dΣc
r. (3.40)

To prove the last assertion, it suffices to remark that for all Φ,Ψ ∈ Cb(Hc):

2

∫

Hc

Φ(x) E

[
∫ +∞

0

exp(−t)Ψ(Y δ
c (t, x))dN

[V]
t

]

νc(dx)

=

∫

Hc

Ψ(x) E

[
∫ +∞

0

exp(−t)Φ(Y δ
c (t))dt

](

〈x,Ah〉 + 〈f(x),Πh〉 +

∫ 1

0

Πh(r)dr γ dΣc
r

)

νc(dx).

Using the same arguments, we remark that there exists a CAF in the strict sense of Y δ
c whose

Revuz-measure is
1

2
(〈z,Ah〉 + 〈f(z),Πh〉) νc(dz). (3.41)

Since Xc is a solution of the equation (0.3) in the sense of Definition 2.1, we obtain that there
exists A[V] a linear combination of PCAFs in the strict sense of Xc such that:

1

2

∫ 1

0

Πh(θ)ηx([δ, t], dθ) = A[V]
t (Y δ

c (·, x)), for all t ≥ 0, x ∈ K, almost surely,

and its Revuz-measure is:
1

2

∫ 1

0

Πh(r)dr γ dΣc
r. (3.42)

Finally, we have the following equality:

∫

H

E

[
∫ +∞

0

exp(−t)
∫ 1

0

Πh(θ)ηx(δ + dt, dθ)

]

νc(dx) =

∫ 1

0

∫

H

Πh(r)γdΣc
r dr. (3.43)

And the reflection measure ηx cannot be identically equal to zero.
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