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Abstract. We prove the discontinuity for the weak L2(T)-topology of the flow-
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well-posedness result obtained in [12].
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1 Introduction

In this paper we continue our study of the Cauchy problem associated with
the Benjamin-Ono equation on the one-dimensional torus (cf. [11], [12])
by proving the ill-posedness character of this Cauchy problem in Sobolev
spaces with negative index. Our ill-posedness result is a strong one in the
sense that for any T > 0 and any non constant function ϕ ∈ L2(T), there
exist an infinite numbers of times t ∈]0, T [ such that the map u0 7→ u(t) is
discontinuous in Hs(T), s < 0, at ϕ. Recall that in [12] it is proven that this
Cauchy problem is globally well-posed in Hs(T) for s ≥ 0 with a flow-map
that is real analytic on hyperplans of functions with a given mean value.
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The Benjamin-Ono equation describes the evolution of the interface be-
tween two inviscid fluids under some physical conditions (see [2]). It reads

ut +Huxx + uux = 0 . (1)

In the periodic setting u = u(t, x) is a function from R× T to R, with T :=
R/2πZ, and H is the Hilbert transform defined for 2π-periodic functions
with mean value zero by

Ĥ(f)(0) = 0 and Ĥ(f)(k) = −i sgn(k)f̂(k), k ∈ Z∗ .

This equation enjoys the same dilation symmetry : u(t, x) 7→ λu(λ2t, λx)
as the cubic Schrödinger equation. Recall that the homogeneous Sobolev
space Ḣ−1/2(R) stays invariant by this symmetry. This suggests that the
associated Cauchy problem should be ill-posed at least in Sobolev spaces
with index less than s∗c = −1/2. On the other hand, as far as the author
knows and contrary to the cubic Schrödinger equation, no other symmetry
is known for this equation.

The Benjamin-Ono equation is integrable (cf [1]) and so it seems interest-
ing to compare our result to the ones for other classical integrable equations
on the one-dimensional torus. For this let us introduce another index, s∞c ,
that is the index of the Sobolev space above which the Cauchy problem is
well-posed with a flow-map1 that is of class C∞. For the KdV equation ,
s∗c = −3/2 and s∞c = −1/2 (cf. [10]) but using integrability, Kappeler and
Topalov [8] recently proved that the flow-map can be continuously extended
in H−1(T). For mKdV, s∗c = −1/2 and s∞c = 1/2, and the situation is even
more intrinquing. Indeed, it was proved by Tsutsumi and Takaoka that
mKdV is still well-posed in Hs(T), s > 1/4, but with a flow-map that is not
uniformly continuous on bounded set for 1/4 < s < 1/2. Moreover, it was
also proved by Kappeler and Topalov (cf. [9]) that, as for KdV, the flow-
map can be continuously extended in L2(T). So for these both integrable
equations, the flow-map can be continuously extended below s∞c . As proved
in [4] (see also [13]), this is not the case for the cubic Schrödinger equation
and, as our result shows, this is also not the case for the Benjamin-Ono
equation for which s∗c = −1/2 and s∞c = 0.

1For dispersive periodic equations whose nonlinear term is of the form uqux the smooth-
ness of the flow-map holds not for the original equation but for the equation satisfied by
ũ(t, x) = u(t, x −

∫ t

0

∫
−uq). Note, however, that for q = 1, since the mean-value of u is

conserved, the smoothness of the flow-map associated with ũ ensures the smoothness of
the flow-map associated with the original equation on hyperplans of functions with a given
mean-value.
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Our proof deeply relies on the well-posedness result in L2(T) established
in [11]. Recall that the proof of this result used in a crucial way that some
gauge transform of the solution, first introduced by T. Tao (cf. [14]), satisfies
the equation (13) (see Section 3.1) which enjoys better smoothing effects
that the original one (see [7] for a note on the bad behavior of the original
equation with respect to classical bilinear estimates). Here we will also
used the special structure of this equation. We proceed by contradiction.
Assuming that the flow-map associated with the Benjamin-Ono equation
is continuous from L2(T) equipped with its weak topology into the space
of distributions (C∞(T))∗ we will first check directly from the expression
of the gauge transform that the flow-map associated with it should also be
continuous with respect to these topologies. Then, proceeding as in [13] we
will pass to the limit on the equation (13) for some subsequence of gauge
transforms by separating resonant and non resonant parts of the nonlinear
terms. We will prove that its limit does not satisfy exactly (13) but a
modified version of this equation. This will lead to the desired contradiction.

1.1 Main results

Our main theorem is a result of discontinuity of the flow-map associated
with (1) for the weak L2(T)-topology. Since L2(T) is compactly embedded
in Hs(T) for s < 0, it ensures the ill-posedness of the periodic Benjamin-Ono
equation in Hs(T) with s < 0 (see Remark 1.2 below).

Theorem 1.1 Let u0 ∈ L2(T) be a non constant function and {ũ0,n} be
any sequence of L2(T) converging strongly in L2(T) to u0. We set u0,n :=
ũ0,n + cos(nx) so that u0,n ⇀ u0 in L2(T) and denote respectively by un
and u the solution of the Benjamin-Ono equation (1) emanating respectively
from u0,n and u0. Then for any T > 0 there exists t ∈]0, T [ such that {un(t)}
does not converge towards u(t) in the distribution sense.

Remark 1.2 Since L2(T) is compactly embedded in Hs(T) for s < 0, The-
orem 1.1 ensures that for all non constant function ϕ ∈ L2(T) and all
T > 0, there exists t ∈]0, T [ such that the map u0 7→ u(t) associated with the
Benjamin-Ono equation is discontinuous at ϕ in any Sobolev space with neg-
ative index. This proves the strong ill-posedness of the periodic Benjamin-
Ono equation in Hs(T) with s < 0.

Remark 1.3 Note that taking ũ0,n := u0, for all n ∈ N, this ensures that
the discontinuity result holds also on hyperplans of functions with a given
mean value.
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2 Function spaces and notation

Let us first introduce some notations and function spaces we will work with.
For x, y ∈ R, x ∼ y means that there exists C1, C2 > 0 such that C1|x| ≤
|y| ≤ C2|x| and x . y means that there exists C2 > 0 such that |x| ≤ C2|y|.
[x] will denote the entire part of a real number x.
For a 2π-periodic function ϕ, we define its space Fourier transform by

ϕ̂(k) := Fx(ϕ)(k) :=
1

2π

∫

T

e−ikx ϕ(x) dx, ∀k ∈ Z

and denote by V (·) the free group associated with the linearized Benjamin-
Ono equation,

V̂ (t)ϕ(k) := e−ik|k|t ϕ̂(k), k ∈ Z .

The Sobolev spaces Hs(T) for 2π-periodic functions are defined as usually
and endowed with

‖ϕ‖Hs(T) := ‖〈k〉sϕ̂(k)‖L2(Z) = ‖Js
xϕ‖L2(T) ,

where 〈·〉 := (1+ | · |2)1/2 and Ĵs
xϕ(k) := 〈k〉sϕ̂(k). We will denote by Hs

0(T)
the closed subspace of Hs(T) that contains the functions of Hs(T) with
mean value zero.
For a function u(t, x) on R × T, we define its space-time Fourier transform
by

û(τ, k) := Ft,x(u)(τ, k) :=
1

(2π

∫

R×T

e−i(τt+kx) u(t, x), ∀(τ, k) ∈ R× Z

and define the Bourgain spaces Xb,s, Zb,s, Ab and Y s of functions on T2

endowed with the norm

‖u‖Xb,s := ‖〈τ + |k|k〉b〈k〉sû‖L2(R×Z) = ‖〈τ〉b〈k〉sFt,x(V (−t)u)‖L2(R×Z) (2)

‖u‖Zb,s := ‖〈τ + |k|k〉b〈k〉sû‖l2(Z;L1(R)) = ‖〈τ〉b〈k〉sFt,x(V (−t)u)‖l2(Z;L1(R)) , (3)

‖u‖Ab := ‖〈τ + |k|k〉bû‖L1(R×Z) = ‖〈τ〉bFt,x(V (−t)u)‖L1(R×Z) (4)

and
‖u‖Y b,s := ‖u‖Xb,s + ‖u‖Zb−1/2,s , (5)
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where we will denote the Wiener algebre A0 simply by A. Recall that
Y 1/2,s →֒ Z0,s →֒ C(R;Hs).
Lp(R;Lq(T)) will denote the Lebesgue spaces endowed with the norm

‖u‖Lp(R;Lq(T)) :=
(∫

R

‖u(t, ·)‖pLq(T) dt
)1/p

with the obvious modification for p = ∞.
Let u =

∑
j≥0∆ju be a classical smooth non homogeneous Littlewood-

Paley decomposition in space of u, Supp Fx(∆0u) ⊂ R× [−2, 2] and

Supp Fx(∆ju) ⊂ R× [−2j+1,−2j−1] ∪ R× [2j−1, 2j+1]), j ≥ 1 .

We defined the Besov type space L̃4
t,λ by

‖u‖L̃4(R×T) :=
(∑

k≥0

‖∆ku‖
2
L4(R×T)

)1/2
. (6)

Note that by the Littlewood-Paley square function theorem and Minkowski
inequality,

‖u‖L4(R×T) ∼
∥∥∥
( ∞∑

k=0

(∆ku)
2
)1/2∥∥∥

L4(R×T)
.

( ∞∑

k=0

‖∆ku‖
2
L4(R×T)

)1/2
= ‖u‖L̃4(R×T)

and thus L̃4(R × T) →֒ L4(R × T).
We will denote by P+ and P− the projection on respectiveley the positive
and the negative spatial Fourier modes. Moreover, for a ≥ 0, we will denote
by Pa, Qa, P>a and P<a the projection on respectively the spatial Fourier
modes of absolute value equal or less than a, the spatial Fourier modes of
absolute value greater than a, the spatial Fourier modes larger than a and
the spatial Fourier modes smaller than a.
We will need the function spaces N and Rθ respectively defined by

‖u‖N := ‖u‖Z0,0 + ‖Q3u‖X7/8,−1 + ‖u‖L̃4(R×T)

and

‖F‖Rθ := ‖F‖Xθ,0 + ‖F‖L∞(R;H1(T)) + ‖Fx‖L̃4(R×T) + ‖F‖A ,

Finally, for any function space B and any 0 < T ≤ 1, we denote by BT the
corresponding restriction in time space endowed with the norm

‖u‖BT
:= inf

v∈B
{‖v‖B , v(·) ≡ u(·) on ]− T, T [ } .

It is worth noticing that the map u 7→ u is an isometry in all our function
spaces.

5



3 Well-posedness result, gauge transform and lin-

ear estimates

The proof of Theorem 1.1 uses in a crucial way the well-posedness theorem
proved in [12].

Theorem 3.1 For all u0 ∈ Hs(T) with 0 ≤ s ≤ 1/2 and all T > 0, there
exists a solution u of the Benjamin-Ono equation (BO) satisfying

u ∈ NT and w := ∂xP+(e
−i∂−1

x ũ/2) ∈ X
1/2,s
T (7)

where

ũ := u(t, x− t

∫
−u0)−

∫
−u0 and ∂̂−1

x :=
1

iξ
, ξ ∈ Z∗ .

This solution is unique in the class (7).
Moreover u ∈ C(R;Hs(T)) ∩ Cb(R;L

2(T)) and the map u0 7→ (u,w) is

continuous from Hs(T) into (C([0, T ];Hs(T)) ∩NT )×X
1/2,s
T and Lipschitz

on every bounded set from Hs
0(T) into H

s(T) into (C([0, T ];Hs(T))∩NT )×

X
1/2,s
T follows

Note that the fact that u0 7→ w is continuous from Hs(T) into X
1/2,s
T is

not explicitly stated in Theorem 1.1 of [12] but follows directly from the
estimate (106) page 674 in [12].

3.1 The gauge transform

As indicated in the introduction, we plan to study the behavior of the flow-
map constructed in the above theorem with respect to the weak topology of
L2(T). To do so we will use in a crucial way the equation satisfied by the
gauge transform

w := P+(e
−i∂−1

x ũ/2ũ)

of the solution u. Let us thus first recall how to get this equation.
Let u be a smooth 2π-periodic solution of (BO) with initial data u0. In

the sequel, we assume that u(t) has mean value zero for all time. Otherwise
we do the change of unknown :

ũ(t, x) := u(t, x− t

∫
−u0)−

∫
−u0 , (8)

where
∫
−u0 := P0(u0) = 1

2π

∫
T
u0 is the mean value of u0. It is easy to

see that ũ satisfies (BO) with u0 −
∫
−u0 as initial data and since

∫
− ũ is
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preserved by the flow of (BO), ũ(t) has mean value zero for all time. We
define F = ∂−1

x u which is the periodic, zero mean value, primitive of u,

F̂ (0) = 0 and F̂ (ξ) =
1

iξ
û(ξ), ξ ∈ Z∗ .

Following T. Tao [14], we introduce the gauge transform

W := P+(e
−iF/2) . (9)

Since F satisfies

Ft +HFxx =
F 2
x

2
−

1

2

∫
−F 2

x =
F 2
x

2
−

1

2
P0(F

2
x ) ,

we can check that w :=Wx = − i
2P+(e

−iF/2Fx) = − i
2P+(e

−iF/2u) satisfies

wt − iwxx = −∂xP+

[
e−iF/2

(
P−(Fxx)−

i

4
P0(F

2
x )
)]

= −∂xP+

(
WP−(ux)

)
+
i

4
P0(F

2
x )w . (10)

On the other hand, one can write u as

u = eiF/2e−iF/2Fx = 2i eiF/2∂x(e
−iF/2) = 2ieiF/2w+2ieiF/2∂xP−(e

−iF/2) .
(11)

Recalling that u is real-valued, we get

u = u = −2ie−iF/2w − 2ie−iF/2∂xP−(e−iF/2)

and thus

P−(u) = −2iP−

(
e−iF/2w

)
− 2iP−

(
e−iF/2∂xP+(e

iF/2)
)

(12)

since P−(v) = P+(v) for any complex-valued function v. Substituing (12) in
(10), we obtain the following equation satisfied by w :

wt − iwxx = 2i∂xP+

(
W∂xP−(e

−iF/2w)
)

+2i∂xP+

[
W∂xP−

(
e−iF/2∂xP+(e

iF/2)
)]

+
i

4
P0(F

2
x )Wx

= A(G,W ) +B(G,W ) +
i

4
P0(F

2
x )Wx . (13)

where G := e−iF/2. Note already that the last term in (13) can be rewritten
as

i

4
P0(F

2
x )Wx =

i

8π
(

∫

T

u20)w , (14)

since
∫
T
u2 is a constant of the motion for (1).
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3.2 Linear estimates

Let us state some estimates for the free group and the Duhamel operator.
Let ψ ∈ C∞

0 ([−2, 2]) be a time function such that 0 ≤ ψ ≤ 1 and ψ ≡ 1 on
[−1, 1]. The following linear estimates are well-known (cf. [3], [5]).

Lemma 3.2 For all ϕ ∈ Hs(T), it holds :

‖ψ(t)V (t)ϕ‖X1/2,s . ‖ϕ‖Hs , (15)

‖ψ(t)V (t)ϕ‖Y 1/2,s . ‖ϕ‖Hs , (16)

‖ψ(t)V (t)ϕ‖A . ‖ϕ̂‖l1(Z) . (17)

Proof. (15) and (16) are classical. (17) can be obtained in the same way.
Since V (t) commutes with any time function and

Ft,x(V (t)w(t, ·))(τ, k) = ŵ(τ − k|k|, k) ,

we infer that

‖ψ(t)V (t)ϕ‖A = ‖V (t)ψ(t)ϕ‖A = ‖Ft,x(ψϕ)‖L1(R×Z)

= ‖ψ̂‖L1(R)‖ϕ̂‖l1(Z) . ‖ϕ̂‖l1(Z) .

Lemma 3.3 For all G ∈ X−1/2,s ∩ Z−1,s, it holds

‖ψ(t)

∫ t

0
V (t− t′)G(t′) dt′‖Y 1/2,s . ‖G‖X−1/2,s + ‖G‖Z−1,s , (18)

‖ψ(t)

∫ t

0
V (t− t′)G(t′) dt′‖A . ‖G‖A−1 (19)

and for any 0 < δ ≤ 1 and any 0 ≤ b < 1/2,

‖ψ(t/δ)

∫ t

0
V (t− t′)G(t′) dt′‖Y 1/2,s . δ(1/2−b)−‖G‖X−b,s . (20)

Let us recall that (18)-(19) are direct consequences of the following one
dimensional (in time) inequalities (cf. [5] and [6]): for any function f ∈
S∞(R), it holds

‖ψ(t)

∫ t

0
f(t′) dt′‖

H
1/2
t

. ‖f‖
H

−1/2
t

+
∥∥∥Ft(f)

〈τ〉

∥∥∥
L1(R)
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and ∥∥∥Ft

(
ψ(t)

∫ t

0
f(t′) dt′

)∥∥∥
L1(R)

.
∥∥∥Ft(f)

〈τ〉

∥∥∥
L1(R)

.

Finally to handle with the nonlinear terms we will make use of the following
linear estimate due to Bourgain [3] (Actually, the result in [3] is proven for
Bourgain’s spaces of functions on T2 associated with the Schrödinger group
but the result for functions on R × T can be obtained in exactly the same
way and the result for Bourgain’s spaces associated with the Benjamin-Ono
group follows directly by projecting on the positive and negative modes) .

‖v‖L4(R×T) . ‖v‖X3/8,0 . (21)

Note that according to [6] this ensures that for 0 < T < 1 and 3/8 ≤ b < 1/2,

‖v‖L4(]−T,T [×T) . T b−3/8‖v‖
Xb,0

T
. (22)

4 Proof of Theorem 1.1

Let {u0n} := {ũ0,n + cos(nx)}, where {ũ0,n} is any sequence converging
strongly in L2(T) to some non constant function u0 ∈ L2(T), and let un
and u be the associated emanating solutions constructed in Theorem 3.1. It
is clear that {u0,n} converges to u0 weakly but not strongly in L2(T). We
want to prove that there exists no T > 0 such that the sequences {un(t)} do
converge weakly in the sense of distributions towards u(t) for all t ∈]0, T [. In
the sequel we will restrict ourselves to the case where the functions ũ0,n and
u0 have mean value zero. Indeed it is obvious that u0,n −

∫
−u0,n converges

also weakly but not strongly in L2(T) to u0 −
∫
−u0 and since the solution

emanating from u0−
∫
−u0, is given by u(t, x− t

∫
−u0)−

∫
−u0, it is clear that

the result for the projections on H0
0 (T) ensures the desired result for {u0,n}.

Theorem 1.1 will be a consequence of the following key proposition.

Proposition 4.1 Let u0 ∈ H0
0 (T) and {u0,n} ⊂ H0

0 (T) be a sequence con-
verging weakly in L2(T) towards u0. Then there exist v ∈ N1 and a subse-
quence {unk

} of solutions to (1) emanating from {u0,n} such that unk
(t)⇀

v(t) for all t ∈ [−1, 1].

Moreover, if we assume that v satisfies (1) on ]0, T [, with 0 < T < 1,
then the following assertions hold on the sequence of gauge functions {wnk

:=

∂xP+(e
−i∂−1

x unk )} :

i) wnk
⇀ ∂xP+(e

−iF/2) in X
1/2,0
1 that is continuous from [0, T ] into

L2(T) and satisfies (13) on ]0, T [.

9



ii) There exists an increasing subsequence {nk′} of {nk} such that wnk′
⇀

w in X
1/2,0
1 that is solution of





wt − iwxx =2i∂xP+

(
W∂xP−(e

−iF/2w)
)

+2i∂xP+

[
W∂xP−

(
e−iF/2∂xP+(e

iF/2)
)]

+ i
4P0(v

2)w on ]0, T [,

+
i

8π

(
(α2 − ‖u0‖

2
L2(T))− 8(a(t)− ‖w(t)‖2L2(T))

)
w

w(0) = ∂xP+(e
i∂−1

x u0/2)
(23)

where F := ∂−1
x v, W := ∂−1

x w, α2 := lim
nk→+∞

∫

T

|u0,nk′
|2

and t 7→ a(t) := lim
nk→+∞

∫

T

|wnk′
(t)|2 is a continuous function.

The proof of this proposition is the aim of the next section. The first part
will follow directly from Theorem 3.1. Then assuming that v satisfies (1)
on ]0, T [ we will prove the two assertions in the following way. On one
hand, we will observe that due to the expression of the gauge transform, the

sequence {wn} has to converge weakly in X
1/2,0
1 to ∂xP+(e

−i∂−1
x v/2) which

must satisfy equation (13) on ]0, T [. On the other hand, passing to the limit
in the equation (13) for some subsequence of {wn} we prove that its weak

limit in X
1/2,0
1 must satisfy the equation (23) which is a kind of perturbation

of (13) by some terms that measure some defect of strong L2(T)-convergence.
From Proposition 4.1 we deduce that there exists v ∈ N1 and a subse-

quence of emanating solutions {unk
} such that unk

(t)⇀ v(t) in L2(T) for all
t ∈ [−1, 1]. If there exists no T > 0 such that v ≡ u on [0, T ] then Theorem
1.1 is proven and so we are done. We can thus assume that v ≡ u on [0, T ]
and thus v verifies (1) on ]0, T [. Let us now prove that the assertions i) and
ii) cannot hold in the same time. For this, let us compute the defect terms
at the initial time for our sequence of initial data. First, since ũ0,n → u0 in
L2(T), it is obvious that

lim
n→∞

∫

T

|u0,n|
2 =

∫

T

|u0|
2 + lim

n→∞

∫

T

| cos(nx)|2 =

∫

T

|u0|
2 + 2π . (24)

The computation of the second term is done in the following lemma.

Lemma 4.2 Setting w0,n := ∂xP+(e
−iF0,n/2) and w0 := ∂xP+(e

−iF0/2) with
F0,n := ∂−1

x u0,n and F0 := ∂−1
x u0 , it holds :

lim
n→∞

∫

T

|w0,n|
2 =

∫

T

|w0|
2 + π/2 . (25)
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Proof. We observe that

∫

T

|w0,n|
2 =

∫

T

∣∣∣P+(u0,ne
−iF0,n/2)

∣∣∣
2

=

∫

T

∣∣∣P+(ũ0,ne
−iF0,n/2)

∣∣∣
2
+

∫

T

∣∣∣P+(cos(nx)e
−iF0,n/2)

∣∣∣
2

+2ℜ

∫

T

P+(cos(nx)e
−iF0,n/2)P+(ũ0,ne−iF0,n/2)

= An +Bn + Cn .

where F0,n = ∂−1
x ũ0 +

sin(nx)
n .

Now, since u0,n ⇀ u0 in L2(T), F0,n and e−iF0,n/2 converge respectively
to F0 and e

−iF0/2 in any Hs(T) with s < 1 and thus in L∞(T). It is then easy
to check that ũ0,ne

−iF0,n/2 → u0e
−iF0/2 in L2(T) and thus An →

∫
T
|w0|

2.
To compute the limit of Cn we notice that Cn can be rewritten as

Cn = 2ℜ

∫

T

cos(nx)e−iF0,n/2P+(ũ0,ne−iF0,n/2)

and thus, in the same way, Cn → 0 since cos(nx)⇀ 0 in L2(T). Finally, for
the same reasons, we get

lim
n→∞

Bn = lim
n→∞

∫

T

∣∣∣P+(cos(nx)e
−iF0/2)

∣∣∣
2
= lim

n→∞

∫

T

∣∣∣e
inx

2
e−iF0/2

∣∣∣
2
= π/2 ,

where we used that for any g ∈ L2(T), it holds

lim
n→∞

∫

T

∣∣∣P−

(
einxg

)∣∣∣
2
= lim

n→∞

∫

T

∣∣∣P+

(
e−inxg

)∣∣∣
2
= 0 .

�

Gathering (24) and (25) we infer that for our choice of the sequence {u0,n}
it holds

i

8π
(α2 − ‖u0‖

2
L2(T))−

i

π
(a(0) − ‖w(0)‖2L2(T)) = −

i

4π
.

Since t 7→ a(t) and t → ∂xP+(e
−iF/2) are continuous functions from [0, T ]

into respectively R+ and L2(T), this leads to a contradiction between the

assertions i) and ii) of Proposition 4.1 as soon as ∂xP+(e
−i∂−1

x u0/2) 6= 0. But
this is always the case as shown in the following lemma which completes the
proof of the theorem.

11



Lemma 4.3 For any non identically vanishing u0 ∈ L2(T) with mean-value
zero, it holds

P+(e
−i∂−1

x u0/2) 6= Cst .

Proof. Since ∂−1
x u0 ∈ H1(T) and P+(g) = P−(g) for any complex-valued

function g, it is equivalent to prove that P−(e
if ) 6= Cst for any non identi-

cally vanishing function f ∈ H1(T) with mean-value zero. We proceed by
contradiction by assuming that there exists such f for which P−(e

if ) = Cst.
We could then write

eif =

∞∑

n=0

ane
inθ

and thus eif(θ) = F (eiθ) where

F (z) :=

∞∑

n=0

anz
n

is an holomorphic function on the unit disk. It is well known that the number
of zeros in the unit disk of an holomorphic function H is given by

1

2πi

∫

C1

H ′(z)

H(z)
dz

where C1 is the unit circle. Noticing that ∂θ(F (e
iθ)) = eif(θ)if ′(θ) on one

hand and ∂θ(F (e
iθ)) = F ′(eiθ)eiθ on the other hand, we infer that

1

2πi

∫

C1

F ′(z)

F (z)
dz =

1

2π

∫ 2π

0
f ′(θ) dθ =

1

2π
(f(2π) − f(0)) = 0 .

Hence, F does not vanish in the unit disk and thus there exists an holomor-
phic function G on the unit disk such that F = eiG. It follows that

G(eiθ) = f(θ) mod 2π, ∀θ ∈ [0, 2π],

and, since f is continuous, this implies that actually G(eiθ) = f(θ) + Cst.
Therefore G is an holomorphic function on the unit disk that takes only
real-values on the unit circle. This is clearly impossible unless G ≡ Cst
which forces f = Cst = 0 since f has mean-value zero. �
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5 Proof of Proposition 4.1

First we observe that, on account of Banach-Steinhaus theorem and The-
orem 3.1, the sequence of emanating solutions {un} is bounded in N1 and

the corresponding sequence of gauge functions {wn} is bounded in X
1/2,0
1 .

Therefore, up to the extraction of a subsequence, {unk
} converges weakly

in L̃4(] − 2, 2[×T)) and weakly star in L∞(] − 2, 2[;L2(T)) to some v in
L∞(] − 2, 2[;L2(T)) ∩ L̃4(] − 2, 2[×T)). Let us check that v ∈ N1. To do
this, we take time extensions ˜̃un of un such that ‖˜̃un‖N ≤ 2‖un‖N1 and set
ũn := ψ˜̃un where ψ is the bump time function defined in Section 3.2. Obvi-
ously Q3ũn ⇀ Q3ṽ in X7/8,−1 where ṽ is a time extension of v. It remains
to prove that ṽ ∈ Z0,0. Since L̃4(]− 2, 2[×T)) →֒ L2(] − 2, 2[×T), it follows
from Parseval theorem that Ft,x(ũn)⇀ Ft,x(ṽ) in l

2(Z;L2(R)). On the other
hand, since {ũn} is bounded in Z0,0, we infer that this convergence holds also
weakly in l2(Z;M(R)). Therefore, Ft,x(ṽ) ∈ l2(Z;M(R)) ∩ l2(Z;L2(R)) →֒
l2(Z;L1(R)). This ensures that v ∈ N1. Moreover in view of (1) it is easy to
check that for any smooth space function φ, the sequence {t 7→ (unk

(t), φ)L2}
is bounded in C([−1, 1]) and uniformly equi-continuous. Hence, from As-
coli’s theorem, (unk

(t), φ) converges towards (v(t), φ)L2 in C([−1, 1]) and
thus unk

(t) ⇀ v(t) in L2(T) for any t ∈ [−1, 1]. Hence, in particular,
v(0) = u0.

We will now assume that v satisfies (1) on ]0, T [ for some 0 < T < 1 and
prove the assertions i) and ii).

5.1 Proof of the first assertion

We set Fn := ∂−1
x un. From the hypotheses, {∂xFn} is bounded in N1 and

thus {Fn} is bounded in X0,1
1 . Since from the equation,

∂tFn +H∂2xFn = F 2
n,x/2−

1

2

∫
−F 2

n,x (26)

and {∂xFn} is bounded in L4(] − 1, 1[×T), it follows that {Fn} is also
bounded in X1,0

1 . By interpolation with the bound above, it follows that

{Fn} is bounded in X
1/2,1/2
1 . Since Lp(] − 1, 1[×T) is compactly included

into X
1/2,1/2
1 , we deduce that {Fn} converges to ∂−1

x v in Lp(] − 1, 1[×T),
2 ≤ p < ∞ and thus also almost everywhere in [−1, 1] × T. Therefore,
{e−iFn/2} converges almost everywhere to e−iF/2 and since it is obviously
bounded by 1 in L∞(] − 1, 1[×T), the convergence also holds in D′ by the
dominated convergence theorem. This ensures that Wn := P+(e

−iFn/2) con-

verges to P+(e
−i∂−1

x v/2) in D′ and thus wn, which is bounded in X
1/2,0
1 ,

13



converges to ∂xP+(e
−i∂−1

x v/2) weakly in X
1/2,0
1 . Moreover, since v ∈ N1 →֒

C([−1, 1];L2(T)) and v 7→ ∂xP+(e
−i∂−1

x v/2) is clearly continuous in L2(T),
t 7→ ∂xP+(e

−iF/2) belongs to C([0, T ];L2(T)).

Let us check that ∂xP+(e
−i∂−1

x v/2) satisfies the equation (13) on ]0, T [ with
F := ∂−1

x v (note that this is implicitly contains in Theorem 3.1 since v sat-
isfies (1) and belongs to the class of uniqueness). Since v ∈ C([0, T ];L2(T))
and satisfies (BO) on ]0, T [, vt ∈ C([0, T ];H−2(T)). Therefore F ∈ C([0, T ];H1(T))∩
C1([0, T ];H−1(T)) and the following calculations are thus justified:

∂tP+(e
−iF/2) = −

i

2
P+(Fte

−iF/2)

= −
i

2
P+

(
e−iF/2(−HFxx + F 2

x/2 − P0(F
2
x )/2)

)

and
∂xxP+(e

−iF/2) = P+

(
e−iF/2(−F 2

x/4− iFxx/2)
)

.

Since (11) and (12) also make sense for v, we conclude that ∂xP+(e
−i∂−1

x v/2)
satifies (13) in D′(]0, T [×T). �

5.2 Two product lemmas

In the sequel we will have to make use of the two following lemmas that are
respectively proven in the appendix of [12] and [11].

Lemma 5.1 Let z ∈ L∞(R;H1(T)) and let v ∈ L̃4(R× T) then

‖zv‖L̃4(R×T) . (‖z‖L∞(R×T) + ‖zx‖L∞(R;L2(T))‖v‖L̃4(R×T) . (27)

Lemma 5.2 Let α ≥ 0 and 1 < q <∞ then
∥∥∥Dα

xP+

(
fP−∂xg

)∥∥∥
Lq(T)

. ‖Dγ1
x f‖Lq1 (T) ‖D

γ2
x g‖Lq2 (T) , (28)

with 1 < qi <∞, 1/q1 + 1/q2 = 1/q and

{
γ1 ≥ α, γ2 ≥ 0
γ1 + γ2 = α+ 1

.

5.3 Proof of the second assertion

As announced, we plan now to pass to the limit in (13). For this our first
task consists in proving that the sequence {Gn} := {e−iFn} is bounded in

R
7/8
1 and converges weakly in (X

1/2,0
1 ∩X0,1

1 ) to G = e−i∂−1
x v/2 (see in Section

2 the definition of the space R
7/8
1 ). Then, in view of the linear estimates

of Section 3.2 we will study the behavior of A(Gn,Wn) and B(Gn,Wn) in

Y
−1/2,0
1 and in some spaces continuously embedded in X

−1/2+,−2
1 .
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Lemma 5.3 The sequences {Fn} and {Wn} associated with {un} are re-

spectively bounded in R1
1 and X

1/2,1
1 ∩ L∞(]− 1, 1[;H1(T).

Proof. First, note that the result for {Wn} follows directly from the bound-

edness of {Fn} and {wn} in respectively L∞(] − 1, 1[;H1(T)) and X
1/2,0
1

together with the continuity of the map F 7→ P+(e
−iF/2) in H1(T). Let us

now prove the result for {Fn}. We set F̃n := ψ2Fn where ψ ∈ C∞
0 ([−2, 2])

is a time function such that 0 ≤ ψ ≤ 1 and ψ ≡ 1 on [−1, 1]. From Theo-
rem 3.1 and (26) we already know that {F̃n} is bounded in X0,1 ∩X1,0 and
that {∂xF̃n} is bounded in L̃4(R × T) ∩ Z0,0. In particular, {Ft,x(∂xF̃n)}
is bounded in l2(Z;L1(R)) and applying Cauchy-Schwarz in k it follows di-
rectly that {Q3∂xF̃n} is bounded in A. On the other hand multiplying (26)
by ψ2 and using Lemmas 3.2-3.3 we infer that

‖̂P3F̃n‖L1(R×Z) . ‖P̂3F0,n‖l1(Z)+
∥∥∥χ{|k|≤3}

ψ̂un ∗ ψ̂u

〈σ〉

∥∥∥
L1(R×Z)

+
∥∥∥
Ft

(
P0((ψun)

2)
)

〈σ〉

∥∥∥
L1(R)

Applying Cauchy-Schwarz inequality in τ and k , it follows that

‖̂P3F̃n‖L1(Z2) . ‖P̂3F0,n‖l1(Z) +
∥∥∥ψ̂un ∗ ψ̂un

∥∥∥
L2(R×Z)

+ ‖P0((ψun)
2)‖L2(R)

. ‖P̂3u0,n‖l2(Z) + ‖ψun‖
2
L4(R×T)

. ‖u0,n‖L2(T) + ‖un‖
2
N .

This ensures that {P3F̃n} is bounded in A and completes the proof of the
lemma.

Lemma 5.4 Let {Fn} be a sequence bounded in R1
1 that converges in (C∞(]−

1, 1[×T))∗ to F then the sequences {Gn := e−iFn/2} and {Gn = eiFn/2} are

bounded in R
7/8
1 and converge in (C∞(] − 1, 1[×T))∗ to respectively e−iF/2

and eiF/2.

Proof . Since the sign in front of iF we not play any role in the analysis we
choose the positive sign and thus we prove the statement for F 7→ G. We

start by proving the continuity of the map F 7→ eiF/2 from R1
1 into R

7/8
1 .

Let F̃ be a time extension of F such that ‖F̃‖R1 ≤ 2‖F̃‖R1
1
. To simplify the

notations we drop the˜in the remaining of the proof. Expanding eiF/2 as

eiF/2 =

∞∑

k=0

ik

2kk!
F k
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it suffices to check that this serie is absolutely convergent in R7/8. First we
notice that thanks to Lemma 5.1, for i ≥ 2,

‖∂x(F
i)‖L̃4(R×T) . i ‖F i−1∂xF‖L̃4(R×T) . i2‖∂xF‖L̃4(R×T)‖F‖

i−2
L∞(R×T)(1+‖F‖L∞(R;H1(T)))

and thus
∞∑

i=0

∥∥∥ 1

2ii!
∂x(F

i)
∥∥∥
L̃4(R×T)

. ‖∂xF‖L̃4(R×T)(1 + ‖F‖L∞(R;H1(T)))e
‖F‖A .

Next, using that A and L∞(T;H1(T)) are algebras, it clearly holds

∞∑

i=0

∥∥∥ 1

2ii!
F i

∥∥∥
A
.

∞∑

i=0

1

2ii!
‖F‖iA . e‖F‖A .

and
∞∑

i=0

∥∥∥ 1

2ii!
F i

∥∥∥
L∞(R;H1(T))

. e
‖F‖L∞(R;H1(T)) .

It thus remains to estimate

Ii := ‖F i‖X7/8,0 =
∥∥∥〈σ〉7/8

∑

q1+..qi=q, k1+..ki=k

F̂ (q1, k1)...F̂ (qi, ki)
∥∥∥
L2(R×Z)

where i ≥ 2 and σ = σ(q, k) := q + k2. Since we do not have a control
on ‖Ft,x(|kF̂ |)‖L4

t,x
but on ‖∂xF‖L4

t,x
we have to use a Littlewood-Paley

decomposition. We can write F i as

F i =
∑

j1≥0

[j1−2−ln i/ ln 2]∑

j2=0

∆j1F ∆j2F
∑

0≤j3,..,ji≤j2

n(j1, .., ji)

i∏

q=3

∆jqF

+
∑

j1≥0

j1∑

j2=[j1−2−ln i/ ln 2]+1

∆j1F ∆j2F
∑

0≤j3,..,ji≤j2

n(j1, .., ji)

i∏

q=3

∆jqF

=
∑

j1≥0

[j1−2−ln i/ ln 2]∑

j2=0

T i
j1,j2 +

∑

j1≥0

j1∑

j2=[j1−2−ln i/ ln 2]+1

T i
j1,j2 (29)

where n(j1, .., ji) ∈ {1, .., i(i − 1)}.
• Contribution of the first term of (29). Setting αi

j1,j2
:= 8+j1+j2+ln i/ ln 2,

we first write

‖T i
j1,j2‖X7/8 .

∥∥∥χ
{|σ|≤2

αi
j1,j2 }

〈σ〉7/8Ft,x(T
i
j1,j2)

∥∥∥
L2

+
∥∥∥χ

{|σ|>2
αi
j1,j2 }

〈σ〉7/8Ft,x(T
i
j1,j2)

∥∥∥
L2

. 2
7αi

j1,j2
/8
‖T i

i,j‖L2 +
∥∥∥χ

{|σ|>2
αi
j1,j2 }

〈σ〉7/8Ft,x(T
i
j1,j2)

∥∥∥
L2
. (30)
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Noticing that

∑

0≤j3,..,ji≤j2

∥∥∥
i∏

q=3

∆jqF
∥∥∥
L∞(R×T)

.
( ∞∑

j=0

‖∆jF‖L∞(R×T)

)i−2

. ‖F‖i−2
A

and that by frequency localization,

‖∆jF‖L4(R×T) . 2−j
(
‖F‖L4(R×T) + ‖Fx‖L4(R×T)

)

we infer that

∑

j1≥0

[j1−2−ln i/ ln 2]∑

j2=0

2
7αi

j1,j2
/8
‖T i

i,j‖L2(R×T)

. i2(i− 1)
∑

j1≥0

∑

j2≥0

27j1/8‖∆j1F‖L4(R×T)2
7j2/8‖∆j2F‖L4(R×T)‖F‖

i−2
A

. i2(i− 1)
∑

j1≥0

∑

j2≥0

2−j1/82−j2/8(‖F‖L4(R×T) + ‖Fx‖L4(R×T))
2‖F‖i−2

A

. i2(i− 1)(‖F‖L4(R×T) + ‖Fx‖L4(R×T))
2‖F‖i−2

A .

To estimate the second term of the right-hand side of (30) we notice that,
since j2 ≤ j1 − 2− ln i/ ln 2,

|Ft,x(T
i
j1,j2)(τ, k)| . i(i− 1)

∑

Bq,k
i,j1

|F̂ (τ1, k1)| F̂ (τ2, k2)|

i∏

p=3

|F̂ (τp, kp)|

where

Bq,k
i,j1

:=
{
(τ1, .., τi, k1, .., ki) ∈ Ri × Zi,

i∑

p=1

τp = τ,
i∑

p=1

kp = k, |k1| ∈ Ij1 ,

i|k2| ≤ |k1| and |kp| ≤ min(2|k2|+ 2, |k1|/i), p = 3, .., i
}

with I0 := [0, 2] and Ik := [2k−1, 2k+1] for k ≥ 1. Now, setting σi :=
σ(τi, ki) = τi + |ki|ki, the resonant relation gives

σ −

i∑

j=1

σj = k|k| −

i∑

j=1

kj |kj | = (

i∑

j=1

kj)|

i∑

j=1

kj| −

i∑

j=1

kj |kj | (31)

17



and, since k and k1 have the same sign in Bq,k
i,j1,j2

, it is not too hard to check
that

|σ −

i∑

j=1

σj| ≤ 8i|k1|(|k2|+ 1) .

For |σ| ≥ 28+j1+j2+ln i/ ln 2 ≥ 10i|k1|(|k2|+ 1) it thus results that

〈σ〉 . i max
j=1,,i

〈σj〉 .

and thus

∑

j1≥0

[j1−2−ln i/ ln 2]∑

j2=0

∥∥∥χ
{|σ|>2

αi
j1,j2 }

〈σ〉7/8Ft,x(T
i
j1,j2)

∥∥∥
l2(Z)

.
∑

j1≥0

j1−2−ln i/ ln 2∑

j2=0

2−j1/82−j2/8
∥∥∥χ

{|σ|>2
αi
j1,j2 }

〈σ〉Ft,x(T
i
j1,j2)

∥∥∥
l2(Z)

. i2(i− 1)‖F‖X1,0‖F‖i−1
A . (32)

• Contribution of second term of (29) . We proceed in a similar way. We
set βij1,j2 := 8 + j1 + j2 + 2 ln i/ ln 2 and notice that

∑

j1≥0

j1∑

j2=[j1−2−ln i/ ln 2]+1

∥∥∥χ{|σ|≤βi
j1,j2

}〈σ〉
7/8Ft,x(T

i
j1,j2)

∥∥∥
L2(R×Z)

.
∑

j1≥0

[j1−2−ln i/ ln 2]∑

j2=0

2
7βi

j1,j2
/8
‖T i

i,j‖L2(R×Z)

. i3(i− 1)
∑

j1≥0

∑

j2≥0

27j1/8‖∆j1F‖L4(R×T)2
7j2/8‖∆j2F‖L4(R×T)‖F‖

k−1
A

. i3(i− 1)(‖F‖L4(R×T) + ‖Fx‖L4(R×T))
2‖F‖k−1

A .

On the other hand, since this time j2 > j1 − 2− ln i/ ln 2, we have

|Ft,x(S
i
j1,j2)(τ, k)| . i(i− 1)

∑

Cτ,k
i,j1

|F̂ (τ1, k1)| F̂ (τ2, k2)|

i∏

p=3

|F̂ (τp, kp)|

where

Cq,k
i,j1

:=
{
(τ1, .., τi, k1, .., ki) ∈ Ri × Zi,

i∑

p=1

τp = τ,

i∑

p=1

kp = k, |k1| ∈ Ij1 ,
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10i|k2| ≥ |k1| and |kp| ≤ 2|k2|+ 2, p = 3, .., i
}
.

(31) then ensures that in Cτ,k
i,j1

it holds

|σ −

i∑

j=1

σj | ≤ 100i2 max(2, |k1|)max(|k2|, 2) .

For |σ| ≥ 2
βi
j1,j2 ≥ 200i2 max(2, |k1|)max(|k2|, 2) it results that

〈σ〉 . i max
j=1,,i

〈σj〉 .

and we thus obtain an estimate similar to (32). Since
∑∞

i=1
i3(i−1)
2ii!

< ∞,
this completes the proof of the strong continuity of the map F 7→ G from

R1
1 into R

7/8
1 .

Let us now prove the convergence result. On account of the continuity

result proved above, the sequence {eiFn/2} is bounded inR
7/8
1 . Therefore it is

relatively compact in (C∞(]−1, 1[×T))∗ and thus it remains to check that the

only possible limit is eiF/2. Since the serie
∑

k=0∞
ikF k

2kk!
converges absolutely

in L4(]−1, 1[×T), by the Lebesgue dominated convergence theorem it suffices
to check that for any fixed k, the map F 7→ F k is strongly continuous from a
function space E, where R1

1 is compactly embedded, into (C∞(]−1, 1[×T))∗.
Obviously E = Lmax(2,k)(R×T) answers the question for 1 ≤ k <∞. Indeed

X
1/2,1/2
1 is compactly embedded in Lk(] − 1, 1[×T) for 2 ≤ k < ∞ and

F 7→ F k is continuous from Lmax(2,k)(]− 1, 1[×T) into L1(]− 1, 1[×T). �

Let us now prove the desired continuity result on B.

Lemma 5.5 Let {(Gn,Wn)} be a sequence bounded in R
7/8
1 × X

1/2,1
1 that

converges in the sense of distributions to (G,W ) . Then B(Gn,Wn) con-

verges weakly in X
−1/2+,0
1 to B(G,W ).

Proof . Let (G,W ) belonging to R
7/8
1 ×X

1/2,1
1 . We take extensions G̃ and

W̃ of G andW , supporting in time in ]−2, 2[, such that ‖G̃‖N7/8 . ‖G‖
N

7/8
1

and ‖W̃‖X1/2,1 . ‖W‖
X

1/2,1
1

, that we still denote by G and W to simplify

the notation. From (21) we infer by duality that

‖B(G,W )‖X−1/2+,0 . ‖B(G,W )‖L4/3(R×T) .

According to Lemma 5.2 it results that

‖B(G,W )‖X−1/2+,0 . ‖w‖L4(R×T)

∥∥∥∂xP−

(
G∂xP+G

)∥∥∥
L2(R×T)

. ‖w‖L4(R×T)‖∂xG‖L4(R×T)‖∂xG‖L4(R×T) . (33)
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This proves that B(Gn,Wn) remains bounded inX−1/2+,0. Now to prove the
convergence result, we will argue as in the preceding lemma by proving the

strong continuity of B from a function space, where (X
1/2,0
1 ∩X0,1

1 ) ×X
1/2,1
1

is compactly embedded, into X
−1/2,−1
1 . Since X

1/3,1/3
1 = [X

1/2,0
1 ,X0,1

1 ]2/3 is
compactly embedded in L6(]− 1, 1[×T), we infer by interpolating with ux ∈

L4(] − 1, 1[×T) that R
7/8
1 is compactly embedded in the space of functions

u ∈ L2(] − 1, 1[×T) such that D
2/3
x u belongs to L9/2(] − 1, 1[×T). On the

other hand, using again Lemma 5.2 and (21) we observe that

‖B(G,W )‖X−1/2,−1 .
∥∥∥P+

(
W∂xP−(G∂xP+G)

)∥∥∥
L4/3(R×T)

. ‖D2/3
x W‖

L
36
11 (R×T)

∥∥∥D1/3
x P−

(
G∂xP+G

)∥∥∥
L9/4(R×T)

. ‖W‖X3/8,2/3‖D2/3
x G‖L9/2(R×T)‖D

2/3
x G‖L9/2(R×T) .

This concludes the proof since X
1/2,1
1 is obviously compacty embedded in

X
3/8,2/3
1 . �

Let us now study the continuity of A.

Lemma 5.6 The operator A is continuous from R
7/8
1 ×X

1/2,1
1 into Y

−1/2,0
1 .

Proof. Let (G,W ) belonging to R
7/8
1 ×X

1/2,1
1 . We take extensions G̃ and W̃

of G and W , such that ‖G̃‖R7/8 ≤ 2‖G‖
R

7/8
1

and ‖W̃‖X1/2,1 ≤ 2‖W‖
X

1/2,1
1

,

that we still denote by G and W to simplify the notation. We decompose
A(G,W ) as

A(G,W ) = 2i
∑

j,p∈N

∂xP+

(
W∂xP−(∆jw∆pG

)

=2i
∑

0≤j<p+5

∂xP+

(
W∂xP−(∆jw∆pG

)

+2i
∑

0≤p≤j−5

∂xP+

(
W∂xP−(∆jw∆pG

)

=A1 +A2 . (34)

To estimate the first term we use again (21) and Lemma 5.2 to get

‖A1(G,W )‖X−1/2+,0 . ‖A1(G,W )‖L4/3(R×T)

. ‖w‖L4R×T)

∥∥∥
∑

p

∂xP−(

p+4∑

j=0

∆jw∆pG)
∥∥∥
L2(R×T)
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and the last term of the above right-hand side can be estimated in the
following way ( we set ∆̃j := ∆j−1 +∆j +∆j+1 for j ≥ 1)

C :=
∥∥∥
∑

p≥0

∂xP−(

p+4∑

j=0

∆jw∆pG)
∥∥∥
L2(R×T)

.
∥∥∥

1∑

p=0

2∑

i=0

∆i

(
∂xP−(

p+4∑

j=0

∆jw∆pG)
)∥∥∥

L2(R×T)

+
∥∥∥
∑

p≥2

∆̃p

(
∂xP−(

p−2∑

j=0

∆jw∆pG)
)∥∥∥

L2(R×T)

+
∥∥∥
∑

p≥2

4∑

i=−1

∂x

(
P−(∆p+iw∆pG)

)∥∥∥
L2(R×T)

. ‖G‖L4(R×T)‖w‖L4(R×T) +
[∑

p≥2

∥∥∥∆̃p

(
∂xP−(

p−2∑

j=0

∆jw∆pG)
)∥∥∥

2

L2(R×T)

]1/2

+
∑

p≥2

4∑

i=−1

∥∥∥∂x
(
P−(∆p+iw∆pG)

)∥∥∥
L2(R×T)

where in the last step we use the quasi-orthogonality of the ∆̃j in L
2(R×T).

Applying Cauchy-Schwarz in p for the last term of the above right-hand side
member, we finally get

C . ‖G‖L4(R×T)‖w‖X1/2,0 +
(∑

p

‖∂x∆pG‖
2
L4(R×T)

)1/2[
‖w‖L4(R×T) +

(∑

p

‖∆pw‖
2
L4(R×T)

)1/2]

.
(
‖G‖L4(R×T) + ‖∂xG‖L̃4(R×T)

)
‖w‖X1/2,0 .

Now setting

Hp =
∑

j≥p+5

∆jw∆pG (35)

A2 can be rewritten as

A2(G,W ) =
∑

p≥0

∂xP+

(
W∂xP−Hp

)
.

We thus have to estimate

I :=
∣∣∣
(
A2(G,W ), h

)
L2

∣∣∣
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.
∑

p≥0

∫

R2

∑

B

χ{k≤2p+5}|ĥ(τ, k)||k||Ŵ (τ1, k1)||k − k1||Ĥp(τ2, k2)| dτ1dτ2

+
∑

p≥0

∫

R2

∑

B

χ{k>2p+5}|ĥ(τ, k)||k||Ŵ (τ1, k1)||k − k1||Ĥp(τ2, k2)| dτ1dτ2

= I1 + I2

where k = k1 + k2, τ = τ1 + τ2 and

B := {(k1, k2) ∈ Z2, k1 > 0, k2 < 0 and k1 + k2 > 0 } .

The idea of this dichotomy is the following : In the domain of integration
of I1, |k| is controlled by 2p which is the order of the modes of ∆pG. On
the other hand, in the domain of integration of I2 the modes of h and w are
very large with respect to the modes of ∆pG and then the resonant relation
will give a smoothing effect.
We use that k1 ≥ |k2| on B and a Littlewood-Paley decomposition of h to
get thanks to (21) and Cauchy-Schwarz inequality in p,

I1 .
∑

p≥0

∫

R2

∑

B

p∑

i=−6

2p−i|∆̂p−ih(τ, k)||Ŵ (τ1, k1)||k2||Ĥp(τ2, k2)|

.

∫

R2

∑

B

∞∑

i=−6

2−i
∑

p≥max(0,i)

|∆̂p−ih(τ, k)||ŵ(τ1, k1)|2
p|Ĥp(τ2, k2)|

. sup
i≥−6

∑

p≥max(0,i)

∫

R2

∑

B

|∆̂p−ih(τ, k)||ŵ(τ1, k1)|2
p|Ĥp(τ2, k2)|

. ‖F−1(|ŵ|)‖L4(R×T)

(∑

p≥0

‖F−1(|ĥ|)‖2L4(R×T)

)1/2(∑

p≥0

22p‖F−1(|Ĥp|)‖
2
L4(R×T)

)1/2
.

Note that X3/8,0 →֒ L̃4(R× T). Moreover, since

∆iHp = ∆i

( ∑

j≥p+5
i−2≤j≤i+2

∆jw∆pG
)
,

we infer that

‖Hp‖
2
L2 ∼

∑

i≥0

‖∆iHp‖
2
L2(R×T) .

∑

i≥0

‖∆iw‖
2
L4(R×T)‖∆pG‖

2
L4(R×T)

. ‖w‖2
X3/8,0‖∆pG‖

2
L4(R×T)
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and thus

I1 . ‖w‖2
X3/8,0‖h‖X3/8,0(‖G‖X1/2,0 + ‖∂xG‖L̃4(R×T)) . (36)

On the other hand,

I2 .

∫

R3

∑

B2

|k||ĥ(τ, k)||Ŵ (τ1, k1)||k − k1||ŵ(τ2, k2)||Ĝ(τ3, k3)| dτ1dτ2dτ3

where τ := τ1 + τ2 + τ3, k := k1 + k2 + k3 and

B2 :=
{
(k1, k2, k3) ∈ Z3, k1 > 0, k2 < 0, k1 + k2 + k3 > 0

k2 + k3 < 0 and min(|k|, |k2|) ≥ 10|k3|+ 1
}
.

Note that on B2 we have 100k23 ≤ |k2|k and |k − k1| = |k2 + k3| ≤ 2|k2|.
Hence, |k1| ≤ 2max(|k|, |k − k1|) ≤ 4max(|k|, |k2|) and thus on B2, it holds

|σ − σ1 − σ2 − σ3|=
∣∣∣(

3∑

i=1

ki)
2 − k21 + k22 − k3|k3|

∣∣∣

=
∣∣∣2k2k + 2k1k3 + k23 − k3|k3|

∣∣∣
≥ |k2k| . (37)

Therefore, since clearly k1 ≥ k on B2,

I2 .

∫

R3

∑

B2

|k|1/2|k2|
1/2|ĥ(τ, k)||ŵ(τ1, k1)||ŵ(τ2, k2)||Ĝ(τ3, k3)|, dτ1dτ2dτ3

.

∫

R3

∑

B2

max(〈σ〉1/2, 〈σi〉
1/2) |ĥ(τ, k)||ŵ(τ1, k1)||ŵ(τ2, k2)||Ĝ(τ3, k3)| dτ1dτ2dτ3 .

This last estimate together with (36) ensure that out of the domain B3 :=
B2 ∩ {|σ| ≥ max(|σi|)/10} the following estimate holds :

‖A2(F,W )‖X−1/2+,0 . ‖W‖2
X1/2,1

(
‖∂xG‖L̃4(T) + ‖G‖A + ‖G‖X7/8,0

)
(38)

and that on the domain B3, it holds

‖A2(F,W )‖X−1/2,0 . ‖W‖2
X1/2,1(‖∂xG‖L̃4(T) + ‖G‖A) . (39)
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Since X−1/2+,0 is continuously embedded in Z−1,0, it thus remains to esti-
mate the Z−1,0-norm of A2(G,W ) on B3. We proceed as in [12]. Note that
here we will replace W by Wδ := ψ(·/δ)W with 0 < δ ≤ 1 and make appear
a contraction factor in δ > 0 ( we will need it in Lemma 5.10). By (37), in
this region we have :

〈σ〉 ∼ 〈k k2〉 . (40)

We thus have to estimate

I :=
∥∥∥
∫

C(τ,k)
χ{k≥1}

〈|k|k−1
1 |ŵδ(τ1, k1)||k − k1||ŵδ(τ2, k2)||Ĝ(τ3, k3)|

〈σ〉

∥∥∥
l2kL

1
q

(41)
where τ3 := τ − τ1 − τ2, k3 := k − k1 − k2 and

C(τ, k) :=
{
(τ1, τ2, k1, k2) ∈ R2 × Z2, k1 ≥ 1, k2 ≤ −1,

min(k, |k2|) ≥ 10|k − k1 − k2|+ 1, |σ| ≥ (k|k2|)
}
.

Note that in C(τ, k) with k ≥ 0 it holds, as in B2, k1 ≥ max(k, |k− k1|) and
k1 ≤ 4max(k, |k2|). We divide B3 into 2 subregions.

• The subregion max(|σ1|, |σ2|) ≥ (k|k2|)
1
16 . We will assume that max(|σ1|, |σ2|) =

|σ1| since the other case can be treated in exactly the same way. Then, by
(40), we get

I .
∥∥∥χ{k≥1}

∫

C̃(τ,k)

|ŵδ(τ1, k1)||ŵδ(τ2, k2)|〈k3〉
−1/128|Ĝ(τ3, k3)|

〈σ〉1/2+
1

256 〈σ1〉−1/8

∥∥∥
l2kL

1
q

(42)

where
C̃(τ, k) = {(τ1, τ2, k1, k2) ∈ C(τ, k), |σ1| ≥ (k|k2|)

1
16 } .

and by applying Cauchy-Schwarz in τ we obtain thanks to (22),

I .
∥∥∥
∫

C̃(τ,k)
〈σ1〉

1/8|ŵδ(τ1, k1)||ŵδ(τ2, k2)|〈k3〉
−1/128|Ĝ(τ3, k3)|

∥∥∥
L2(R×Z)

. ‖F−1(〈σ1〉
1/8|ŵδ|)‖L4(R×T)‖F

−1(|ŵδ |)‖L4(R×T)‖F
−1(〈k3〉

−1/128|Ĝ|)‖L∞(R×T)

. δ1/16‖wδ‖
2
X1/2,0 (‖G‖X0,0 + ‖G‖X0,1) , (43)

where in the last step we used that for a function v ∈ X0,0 ∩X0,1,

‖F−1(〈k〉−1/128|v̂|)‖L∞(R×T) . ‖v‖X1/2+,1/2− . ‖v‖X0,0 + ‖v‖X0,1 .
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• The subregion max(|σ1|, |σ2|) ≤ (k|k2|)
1
16 . Changing the τ, τ1, τ2 summa-

tion in τ1, τ2, τ3 summation in (41) and using (40), we infer that

I .
∥∥∥
∑

C(k)

k−1
1

∫

τ1=−k21+O(|k k2|1/16)
|ŵδ(τ1, k1)|

∫

τ2=k22+O(|k k2|1/16)
|ŵδ(q2, k2)|

∫

τ3∈Z
|Ĝ(τ3, k3)|

∥∥∥
l2k

with C(k) = {k1 ≥ 1, k2 ≤ −1 and k − k1 ≤ −1 }. Applying Cauchy-
Schwarz inequality in τ1 and τ2 and recalling that k1 ≥ 1 we get

I .
∥∥∥χ{k≥1}

∑

C(k)

〈k1〉
−1(k|k2|)

1
16K1(k1)K2(k2)

∫

R

|Ĝ(τ3, k3)| dτ3

∥∥∥
l2k

where

K1(k) = (

∫

R

|ŵδ(τ, k)|
2 dτ)1/2 and K2(k) = (

∫

R

|ŵδ(τ, k)|
2 dτ)1/2 .

Therefore, by Hölder and then Cauchy-Schwarz inequalities,

I .
∥∥∥〈k〉− 3

4

∫

R

∑

k3∈Z

|Ĝ(τ3, k3)|
∑

k1∈Z

K1(k1)K2(k − k1 − k3) dτ3

∥∥∥
l2k

.
∥∥∥
∑

k3∈Z

∫

R

|Ĝ(τ3, k3)| dτ3
∑

k1∈Z

K1(k1)K2(k − k1 − k3)
∥∥∥
l∞k

.
(∑

k∈Z

K1(k)
2
)1/2 (∑

k∈Z

K2(k)
2
)1/2 ∑

k3∈Z

∫

R

|Ĝ(τ3, k3)| dτ3

. ‖wδ‖
2
L2(R×T)

∑

k3∈Z

∫

R

|Ĝ(q3, k3)| dτ3

. δ1/16‖G‖A‖wδ‖
2
X1/2,0 . (44)

This completes the proof of the lemma. �

We will now decompose A(G,W ) in another way to study the behavior
of A with respect to weaker topologies. First we note that

A(G,W ) = 2i∂2xP+

(
WP−(wG)

)
− 2i∂xP+

(
wP−(wG)

)

=A1(G,W ) +A2(G,W ) . (45)

The following lemma ensures that A1 behaves well for our purpose.

Lemma 5.7 The operator A1(G,W ) is continuous from X
3/8,1/8
1 ×X

3/8,7/8
1

into X
−3/8,−2
1 .
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Proof. Up to the use of classical time extension ofW and G, it is equivalent
to prove that

I :=
∣∣∣
∫

R3

∑

D̃

k2ĥ(τ, k)Ŵ (τ1, k1)ik2Ŵ (τ2, k2)Ĝ(τ3, k3) dτ1dτ2dτ3

∣∣∣

. ‖h‖X1/2,2‖W‖2
X3/8,7/8‖G‖X3/8,1/8

with τ = τ1 + τ2 + τ3, k = k1 + k2 + k3 and

D̃ := {(k1, k2, k3) ∈ Z3, k1 > 0, k2 < 0, k2 + k3 ≤ 0, k1 + k2 + k3 > 0 } .

Noticing that on D̃ it holds |k2 + k3| ≤ k1 and thus |k2| ≤ k1 + |k3|, it is
straightforward using (21) to see that

I .

∫

R3

∑

D̃

k2|ĥ(τ, k)||k1|
1/8|Ŵ (τ1, k1)||k2|

7/8|Ŵ (τ2, k2)||k3|
1/8|Ĝ(τ3, k3)| dτ1dτ2dτ3

. ‖h‖X3/8,2‖W‖X3/8,1/8‖W‖X3/8,7/8‖G‖X3/8,1/8 .

�

We continue the decomposition of A by decomposing A2(W,G) as

A2(W,G) =−2i∂xP+

(
wP−(wG

)

=2
∑

D

(k1 + k2 + k3)ŵ(k1)ŵ(k2)Ĝ(k3)e
i(k1+k2+k3)x

+2
∑

0<k≤k1

kŵ(k1)ŵ(−k1)Ĝ(k)eikx

=A21(G,W ) +A22(G,W ) (46)

where

D :=
{
(k1, k2, k3) ∈ Z3, k1 > 0, k2 < 0, k2+k3 ≤ 0, k1+k2+k3 > 0 and k1+k2 6= 0

}
.

Lemma 5.8 A21 is continuous from (X
7/16,0
1 ∩X

3/8,1/8
1 )×X

7/16,31/32
1 into

X
−7/16,−2
1 .

Proof . Up to the choice of suitable time extensions of w and G we have to
estimate

I :=
∣∣∣
∫

R3

∑

D

kĥ(τ, k)ŵ(τ1, k1))ŵ(τ2, k2)Ĝ(τ3, k3) dτ1dτ2dτ3

∣∣∣
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where k = k1 + k2 + k3 and τ = τ1 + τ2 + τ3. We divide D into 3 regions.
• D1 := {(k1, k2, k3) ∈ D, k2 ≥ 1

10 max(k1, |k2|)}. In this region we get

I/D1
.

∫

R3

∑

D1

|k|2|ĥ(τ, k)||k1|
−1/4|ŵ(τ1, k1))||k2|

−1/4|ŵ(τ2, k2)||Ĝ(τ3, k3)| dτ1dτ2dτ3

. ‖h‖X3/8,2‖W‖2
X3/8,3/4‖G‖X3/8,0 .

• D2 := {(k1, k2, k3) ∈ D, k23 ≥ 1
10 max(k1, |k2|)}. In this region we get

I/D2
.

∫

R3

∑

D2

|k||ĥ(τ, k)||k1|
−1/32|ŵ(τ1, k1))||k2|

−1/32|ŵ(τ2, k2)||k3|
1/8|Ĝ(τ3, k3)| dτ1dτ2dτ3

. ‖h‖X3/8,1‖W‖2
X3/8,31/32‖G‖X3/8,1/8 .

• D3 := {(k1, k2, k3) ∈ D, max(k2, k23) <
1
10 max(k1, |k2|)}. In this region we

use the resonant relation. Setting σ = σ(τ, k) := q + |k|k and σi = σ(τi, ki),
we have

σ − σ1 − σ2 − σ3 = k2 − k21 + k22 − |k3|k3 .

Since on D3, |k1| 6= |k2|, it holds

|k21 − k22 | ≥ max(k1, |k2|)

and thus
max(|σ|, |σi|) & max(k1, |k2|) .

Therefore in D3 we get

I/D3
.

∫

R3

∑

D2

|k|〈σ〉1/16|ĥ(τ, k)|〈σ1〉
1/16|k1|

−1/32|ŵ(τ1, k1))|

〈σ2〉
1/16|k2|

−1/32|ŵ(τ2, k2)|〈σ3〉
1/16|Ĝ(τ3, k3)| dτ1dτ2dτ3

. ‖h‖X7/16,1‖W‖2
X7/16,31/32‖G‖X7/16,0 .

This completes the proof of the lemma. �

We rewritte now A22(G,W ) in the following way :

A22(G,W ) =−2i
∑

k1>0, k>0

ŵ(k1)ŵ(−k1)(ik)Ĝ(k)eikx

−2
∑

0<k1<k

ŵ(k1)ŵ(−k1)kĜ(k)eikx

=−
i

π
‖w‖2L2(T)w +A221(G,W ) (47)

since w = ∂xP+G. Finally, we notice that A221 is a good term on account
of the following lemma.
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Lemma 5.9 A221 is continuous from X
3/8,0
1 ×X

3/8,1/2
1 into X

−3/8,−2
1 .

Proof. Up to the choice of suitable time extensions of W and G it suffices
to estimate

I :=

∫

R3

∑

0<k1<k

|k||ĥ(τ, k)||ŵ(τ1, k1)||ŵ(τ2,−k1)||Ĝ(τ3, k)| dτ1dτ2dτ3

.

∫

R3

∑

0<k1<k

|k|2|ĥ(τ, k)||k1|
−1/2|ŵ(q1, k1)||k1|

−1/2|ŵ(τ2,−k1)||Ĝ(τ3, k)| dτ1dτ2dτ3

. ‖h‖X3/8,2‖W‖2
X3/8,1/2‖G‖X3/8,0 . (48)

�

Let us set now

Λ(G,W ) := A1(G,W ) +A21(G,W ) +A221(G,W )

so that

Λ(G,W ) = A(G,W ) +
i

π
‖w‖2L2(T)w . (49)

Note that the map W 7→ ‖Wx‖
2
L2(T)Wx is clearly continuous from L∞(] −

1, 1[;H1(T)) into L2(] − 1, 1[×T). We thus deduce from Lemma 5.6 that Λ

is continuous from R
7/8
1 × (X

1/2,1
1 ∩ L∞(] − 1, 1[;H1(T)) into Y

−1/2,0
1 . On

the other hand, gathering Lemmas 5.7-5.9 we get that Λ is continuous from

(X
7/16,0
1 ∩X

3/8,1/8
1 )×X

7/16,31/32
1 into X

−7/16,−2
1 .

Since X
1/2,0
1 ∩X0,1

1 →֒ R
7/8
1 and (X

1/2,0
1 ∩X0,1

1 )×X
1/2,1
1 is clearly com-

pactly embedded in (X
7/16,0
1 ∩ X

3/8,1/8
1 ) × X

7/16,31/32
1 we thus infer from

Lemmas 5.3-5.4 that Λ(Gn,Wn) is bounded in Y
−1/2,0
1 and converges in

the sense of distributions towards Λ(G,W ). Moreover, according to (18),

f 7→
∫ t
0 V (t − t′)f(t′) dt′ is continuous from Y

−1/2,s
1 into X

1/2,s
1 and thus

(G,W ) 7→
∫ t
0 V (t− t′)Λ(G(t′),W (t′)) dt′ is continuous from R

7/8
1 × (X

1/2,1
1 ∩

L∞(]−1, 1[;H1(T)) intoX
1/2,0
1 and from2 (X

7/16,1/16
1 ∩X

3/8,1/8
1 )×X

7/16,31/32
1

into X
1/2,−2
1 . It follows that

∫ t

0
V (t−t′)Λ(Gn(t

′),Wn(t
′)) dt′ ⇀

∫ t

0
V (t−t′)Λ(G(t′),W (t′)) dt′ in X

1/2,0
1 .

(50)

2Note that X
−7/16,−2
1 →֒ Y

−1/2,−2
1
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According to Lemmas 5.4, 5.5 and (18) it is clear that the same convergence
results hold for B(Gn,Wn). In particular,

∫ t

0
V (t−t′)B(Gn(t

′),Wn(t
′)) dt′ ⇀

∫ t

0
V (t−t′)B(G(t′),W (t′)) dt′ in X

1/2,0
1 .

(51)
Finally, to identify the limit of the terms ‖wn‖

2
L2(T)wn we will need the

following compactness result on sequences of gauge functions {wn}.

Lemma 5.10 Let {u0,n} ⊂ H0
0 (T) be a sequence of initial data that is

bounded in L2(T). Then the associated sequence of norm of gauge functions
{t 7→ ‖wn(t)‖L2(T )} is bounded in C([−1, 1]) and uniformly equi-continuous
on [−1, 1].

Proof. The boundedness follows directly from Theorem 3.1 since u(t) 7→

∂xP+(e
−i∂−1

x u(t)) is clearly continuous on H0
0 (T). Moreover, from (16), (18)

and the Duhamel formulation of (13) we infer that for any t0 ∈ [−1, 1] and
δ > 0 small enough,

‖wn(·)− V (· − t0)wn(t0)‖L∞(t0−δ,t0+δ;L2(T))

.
∥∥∥ψ(t− t0

δ
)

∫ t

t0

V (t− t′)
[
A(Gn, ψ(·/δ)Wn) +B(Gn,Wn) +

i

4
P0(F

2
n,x)wn

]
(t′) dt′

∥∥∥
Y 1/2,0

.

Therefore, combining (18), (20), (33), (38), (44) and the fact that obviously
{P0(F

2
n,x)wn} is bounded in X0,0

3/2, we infer that

‖wn(·)− V (· − t0)wn(t0)‖L∞(t0−δ,t0+δ;L2(T)) . δν ,

for some ν > 0. Since V (·) is unitary in L2(T), it thus results that

sup
t∈[t0−δ,t0+δ]

∣∣∣‖wn(t)‖L2 − ‖wn(t0)‖L2(T)

∣∣∣ . δν .

This ensures that {t 7→ ‖wn(t)‖L2(T )} is uniformly equi-continuous on [−1, 1].
�

5.4 End of the proof

Note that, by Banach-Steinhaus theorem, {‖u0,n‖L2} is bounded in R+ and
thus admits at least one adherence value. Let us denote by α ≥ 0 such
an adherence value of {‖u0,n‖L2} and let us denote by {‖u0,nk

‖L2} a sub-

sequence that converges towards α. Setting w0,n := ∂xP+(e
−i∂−1

x u0,n/2) and
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recalling that the L2(T)-norm is a constant of the motion for (1) we infer
from (13), (49) and the Duhamel formula that

wnk
(t) = V (t)w0,nk

−

∫ t

0
V (t− t′)

(
Λ(Gnk

,Wnk
)(t′) +B(Gnk

,Wnk
)(t′)

)
dt′

+
i

8π
‖u0,n‖

2
L2

∫ t

0
V (t− t′)wnk

(t′) dt′

−
i

π

∫ t

0
V (t− t′)(‖wnk

‖2L2wnk
)(t′) dt′ , ∀t ∈]− 1, 1[ . (52)

Note that Lemma 5.10 ensures that up to another extraction of a subse-
quence, the sequence of functions {t 7→ ‖wnk

(t)‖2L2(T )} converges to some

positive continuous function t 7→ a(t) in C([−1, 1]). Moreover, since ob-
viously {∂−1

x u0,n} converges strongly in L∞(T) towards ∂−1
x u0, it is easy

to check that {w0,n} converges towards w0 := ∂xP+(e
−i∂−1

x u0/2) weakly in
L2(T). From the linear estimates of Lemmas 3.2-3.3 and (50)-(51), it thus
follows that

w(t) = V (t)w0 −

∫ t

0
V (t− t′)

(
Λ(G,W )(t′) +B(G,W )(t′)

)
dt′

+
i

8π
α2

∫ t

0
V (t− t′)w(t′) dt′

−
i

π

∫ t

0
V (t− t′)(a(t′)w(t′)) dt′ , ∀t ∈]0, 1[ . (53)

with G := e−i∂−1
x v/2 andW := ∂−1

x w. Moreover w is solution of the following
Cauchy problem on ]0, 1[ :




wt − iwxx + (Λ +B)(G,W )−

i

π

(α2

8
− a(t)

)
w = 0

w(0) = ∂xP+(e
−i∂−1

x u0/2)
. (54)

Finally, since v ∈ N1 and satisfies (1) on ]0, T [ with 0 < T < 1, the L2(T)-
norm of v is conserved on [0, T ]. The equation for w can thus clearly be
rewritten on ]0, T [ as

wt − iwxx =2i∂xP+

(
W∂xP−(e

−iF/2w)
)

+2i∂xP+

[
W∂xP−

(
e−iF/2∂xP+(e

iF/2)
)]

+
i

4
P0(v

2)w

+
i

8π
(α2 − ‖u0‖

2
L2(T))w −

i

π
(a(t)− ‖w(t)‖2L2(T))w

that concludes the proof.
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