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ABSTRACT

In this paper, a general multi-valued image regularization method

based on LIC’s (Line Integral Convolutions [4]) is proposed. From

the investigation of recent approaches based on multi-valued dif-

fusion PDE’s, we show how a regularization process is naturally

decomposed, first as the estimation of its underlying smoothing

geometry, and then, as the application of a locally and spatially

oriented smoothing. Performing this last part using LIC’s signi-

ficatively improves the overall regularization process both in vi-

sual quality and processing time. We illustrate three different ap-

plications of our general regularization framework : Color image

denoising, inpainting and magnification.

1. INTRODUCTION

Obtaining regularized versions of noisy or scratched data

has always been a desirable goal in the fields of computer

vision and image processing. It is useful, either to restore

images corrupted by noise (which is the most direct appli-

cation of image regularization) or - more indirectly - as a

pre-processing step that eases further analysis of the consid-

ered data. Since the pioneering work of Perona-Malik [8],

anisotropic diffusion PDE’s (Partial Differential Equations)

raised a strong interest for this purpose : such equations

have the ability to smooth data in a nonlinear way, allowing

the preservation of important image features (contours, cor-

ners or other discontinuities). Thus, many diffusion PDE’s

have been proposed so far for the restoration of scalar and

multi-valued images ([1, 6, 9, 10, 11, 14, 17] and references

therein). Despite this wide range of existing formalisms, all

methods have something in common : they locally smooth

the image along one or several directions that are different

at each image point. Typically, the principal smoothing di-

rection is often parallel to the contours within the image,

resulting then in an anisotropic regularization process.

Thus, defining a correct smoothing behavior is one of the

key point of a good regularization algorithm. Recently, au-

thors of [14, 17] proposed general frameworks able to de-

sign a specific regularization process from a given underly-

ing local smoothing geometry : one first retrieves the ge-

ometry of the structures inside the image (generally by the

computation of the so-called structure tensor field). Then,

a local geometry of the desired smoothing is defined by the

mean of a second field of diffusion tensors (depending on

the first one). Finally, one step of the smoothing process

itself is performed through a specific diffusion PDE.

In this paper, we first review these efficient regularization

methods. Then, keeping in mind the idea of separating the

regularization process from the design of its smoothing ge-

ometry, we propose a new LIC-based framework that reg-

ularizes a multi-valued image according to a defined local

smoothing geometry. Our method has two main advantages

compared to classical PDE implementations : In one hand,

it better preserves the orientations of small image structures.

In the other hand, it runs up to three times faster.

Finally, we illustrate the effectiveness of our generic LIC-

based regularization method, with results on color image

restoration, inpainting and non-linear magnification, among

all possible applications.

2. PDE-BASED REGULARIZATION

Let us consider a corrupted multi-valued image I : Ω → R
n

(n = 3 for color images) defined on a domain Ω ⊂ R
2.

We denote by Ii : Ω → R, the particular channel i of the

image I : ∀X ∈ Ω, I(X) =
(

I1(X) I2(X) ... In(X)

)T
.

Regularization algorithms in [14, 17] consist in computing

firstly the smoothed structure tensor field Gσ = G ∗ Gσ ,

where Gσ is a 2D gaussian kernel (with a variance σ) and

G : Ω → P(2) is the field of the symmetric and positive

matrices defined as : ∀X, G(X) =
∑n

i=1 ∇Ii(X)∇IT
i(X).

As noticed in [5, 17], Gσ(X) is a good estimator of the local

multi-valued geometry of I at X : its spectral elements give

at the same time the vector (color) variations (eigenvalues

λ1, λ2 of Gσ) and the orientation (edges) of the local struc-

tures (eigenvectors u⊥v of Gσ) of I at each point X ∈ Ω.

The convolution of G by Gσ allows the estimation of a more

coherent multi-valued geometry.

Starting from this simple geometric measure Gσ of the im-

age, authors of [14, 17] design then a tensor field T : Ω →
P(2) which defines the desired local smoothing behavior of

the regularization process :

∀X, T(X) = f1(λ1, λ2) uu
T + f2(λ1, λ2) vv

T (1)

where v corresponds to the principal eigenvector of T(X).



Basically, f1 and f2 define the strengths of the desired smooth-

ing along corresponding directions u and v, at X. The regu-

larization process itself is then done by evolving a diffusion

PDE, either

∂Ii

∂t = div(T∇Ii) [17] or ∂Ii

∂t = trace(THi) [14]

where Hi stands for the hessian matrix of Ii(X). Compar-

isons between these two equations is discussed in [14] and

is out of the scope of this paper. Nevertheless, we remind

the key idea that the smoothing is performed after the de-

sign of a local smoothing geometry defined by a field T of

diffusion tensors. Note also that T might be updated during

the process (after one or several PDE iterations).

Applying such diffusion equations is very time consuming :

I is regularized little by little since PDE-based processing is

very local, even with recent and fast implementations [16].

3. LIC-BASED REGULARIZATION

In order to speed up the smoothing process itself, we rather

propose to replace the application of diffusion PDE’s by a

specific LIC-based method. Nevertheless, the first step (i.e.

the computation (1) of the tensor field T defining the local

smoothing geometry) is preserved.

3.1. LIC and single direction smoothing

LIC’s (Line Integral Convolutions) have been first intro-

duced in [4] as a technique to create a textured represen-

tation of a vector field w : Ω → R
2. The general idea, orig-

inally expressed in a discrete form, was to smooth an image

I
noise - containing only noise - by averaging the pixel val-

ues along the integral lines of w for all points X ∈ Ω. A

continuous formulation of a LIC is then :

I
LIC
(X) =

1

N

∫ σ

−σ

f(a) I
noise(C(X,a)) da (2)

where f : R → R is an even function (decreasing on R
+,

typically a 1D gaussian) and C : Ω × R → Ω defines the

integral curve of w starting from X and parameterized by

a ∈ R, such that :
{

C(X,0) = X
∂C
∂a (X, a) = w(C(X,a))

The normalization factor is N =
∫ σ

−σ
f(a) da. The σ pa-

rameter controls the smoothing length (size of the neighbor-

hood used on the integral line by the LIC filter). Intuitively,

eq.(2) actually smoothes the image along the vector field w.

This vector flow visualization problem has been also re-

cently tackled by PDE-based methods in [2, 14]. It is basi-

cally based on the regularization methods described in sec-

tion 2, with a field T of diffusion tensors defined as : ∀X ∈
Ω, T(X) = w(X)w

T
(X).

Note that these smoothing methods are not strictly equiva-

lent, but they are based on the same rough idea : smoothing

an image along given directions defined by a vector field w.

We investigate the theoretical link between diffusion PDE’s

and LIC-based methods in [15].

3.2. Multi-directional smoothing

The similarity between these two techniques performing sin-

gle direction smoothing naturally suggests to replace the

smoothing phase of general regularization PDE algorithms

by a LIC-filtering process. Naturally, this implies that we

have to extend the LIC principle (that considers only one

single direction) to deal with general tensor fields T : Ω →
P(2) instead of vector fields w. We propose to do so by

averaging multiples LIC’s starting from the same point X,

but following different paths.

Let us denote by Uθ the vector Uθ = (cos θ sin θ)T .

Then, the vector w
θ
(X) = T(X) Uθ verifies :

• If T(X) is isotropic then w
θ
(X) = αUθ.

• If T(X) is anisotropic and directed along Uθ, then

w
θ
(X) ' αUθ.

• If T(X) is anisotropic and orthogonal to Uθ, then

w
θ
(X) '

~0.

That can be understood as follows : the more Uθ represents

a part of T, the higher will be the norm ‖wθ
(X)‖.

For a given θ, we propose to compute a LIC-filtering start-

ing from X and directed by the vector field w
θ, then we

average all these “atomic” LIC filters for all θ ∈ [0, π]. This

range is sufficient to reach the entire plane since LIC’s are

computed backward and forward along the integral lines Cθ.

Finally, our regularization equation, computing an anisotrop-

ically smoothed version I
regul of an image I

noisy is : ∀X,

I
regul
(X) =

1

N

∫ π

0

∫ σ‖wθ
(X)‖

−σ‖wθ
(X)

‖

f(a) I
noisy(Cθ

(X,a)) da dθ

(3)

where the normalization factor is N =
∫ ∫

f(a) da dθ,

w
θ
(X) = T(X) U(θ) and f(a) = exp

(

−
a2

2σ

)

σ is a user-defined parameter setting the global strength of

the smoothing filter. Cθ : Ω×R → Ω represents the integral

line of the field w
θ starting from X and parameterized by

a :
{

Cθ
(X,0) = X

∂Cθ

∂a (X, a) = w
θ(Cθ

(X,a)) = T(Cθ
(X,a)) U(θ)

It is easy to verify that :

• The equation (3) respects the extremum principle, since

only pixel averaging is performed.

• For points X ∈ Ω where T(X) is isotropic, the smooth-

ing is also isotropic (averaging along all directions of the



plane), since ∀θ, ‖wθ
(X)‖ is constant.

• For points X where T(X) is highly anisotropic, the smooth-

ing is done only along the principal eigenvector of T(X).

These properties are also verified by most of the proposed

anisotropic regularization PDE’s, and ensure that the smooth-

ing process is indeed driven by the tensor field T.

• The algorithme is very stable, even with very large time

step dt, since only pixel averaging is performed. Moreover,

the rotational invariance of the scheme is ensured from a

numerical point of view.

4. APPLICATIONS

The Fig.1 illustrates different applications of our LIC-based

regularization algorithm on color images. Processing time

is mentionned on the figure captions. Experiments have

been done on a Sun Sparc 1.5 Ghz. Results are obtained

quite fastly compared to PDE techniques. Actually, one of-

ten needs only one iteration to achieve the regularization

since the LIC-based scheme is stable by construction. For

our experiments, we defined T with eq.(1) and

f1/2(λ1, λ2) = 1
(ε+λ1+λ2)

p
1/2

(4)

where ε = 0.01, p1 = 0.5 and p2 = 2 (for denoising pur-

pose) or p2 = 10 (for inpainting and magnification pur-

poses). The discretization is done with classical finite dif-

ferences to compute the smoothed structure tensor field Gσ

(updated at each iteration), and discrete sums to approxi-

mate the two integrals of (3). The discretization of θ is

quite large (dθ = 30o) while a is more precisely approx-

imated (da = 0.2). We applied eq.(3) for :

• Color image denoising (Fig.1a,b,c) : Only one iteration

of our algorithm has been necessary to obtain the results.

Note how the noise is removed while the variously oriented

image structures are well preserved (rotational invariance

property of the scheme).

• Color image inpainting (Fig.1d) : For this application,

we applied eq.(3) only on the points inside a user-defined

mask (a checkerboard mask in our case). 100 iterations have

been needed to get the results.

• Non-linear interpolation for magnification (Fig.1e) :

These two examples shows how our LIC-based regulariza-

tion technique (3) can perform super-resolution. A linear

interpolation of the small image is regularized while keep-

ing the know points unchanged (similar to inpainting with a

very sparse grid mask).

You can get more results and the algorithm executable at :

http://www.greyc.ensicaen.fr/˜dtschump/greycstoration/

5. CONCLUSION

We have proposed a very generic and efficient regularization

algorithm acting on multi-valued images. It gathers the best

of classical filtering techniques used in the field of diffusion

PDE’s and LIC’s. This allows us to propose a new regular-

ization framework that improve result quality and process-

ing time. Our LIC-based method is simple to implement and

potentially handles a very wide range of image processing

applications.
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[14] D. Tschumperlé, R. Deriche Vector-Valued Image Regularization

with PDE’s : A Common Framework for Different Applications.

Computer Vision and Pattern Recognition, Madison/USA, June 2003.
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(a) Removing grain noise from a 512× 512 color image.

(detail, 1 iteration, processing time : 19 seconds)

(b) Removing pattern noise from a 555× 367 color image.

(detail, 1 iteration, processing time: 11 seconds)

(c) Removing JPG artefacts from a 300× 300 color image.

(1 iteration, processing time : 13 seconds)

(d) 290× 290 color image inpainting.

(100 iterations, processing time : 1 minute 26 s)

(e) Non-linear image magnification (1 iteration, processing time : respectively 20 seconds)

From left to right : original color image, nearest-neighbor interpolation, bicubic interpolation, our LIC-based interpolation (3).

Fig. 1. Results of our LIC-filtering method applied to various image processing issues.


