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Variational Approaches to the
Estimation, Regularization and
Segmentation of Diffusion Tensor
Images

R. Deriche, D. Tschumperlé, C. Lenglet and
M. Rousson

ABSTRACT Diffusion magnetic resonance imaging probes and quantifies
the anisotropic diffusion of water molecules in biological tissues, making
it possible to non-invasively infer the architecture of the underlying struc-
tures. In this chapter, we present a set of new techniques for the robust
estimation and regularization of diffusion tensor images (DTI) as well as a
novel statistical framework for the segmentation of cerebral white matter
structures from this type of dataset. Numerical experiments conducted on
real diffusion weighted MRI illustrate the techniques and exhibit promising
results.

1 Introduction

Diffusion magnetic resonance imaging is a relatively new modality [20] that
acquires, at each voxel, data allowing the reconstruction of a probabil-
ity density function characterizing the average motion of water molecules.
As of today, it is the only non-invasive method that allows to distinguish
the anatomical structures of the cerebral white matter. Well-known exam-
ples are the corpus callosum, the arcuate fasciculus or the corona radiata.
These are commissural, associative and projective neural pathways, the
three main types of fiber bundles, respectively connecting the two hemi-
spheres, regions of a given hemisphere or the cerebral cortex with subcorti-
cal areas. Diffusion MRI is particularly relevant to a wide range of clinical
applications related to pathologies such as acute brain ischemia, stroke,
Alzheimer’s disease or schizophrenia. It is also extremely useful in order
to identify the neural connectivity patterns of the human brain [21] and
references therein.

In 1994, Basser et al |3]| proposed to model the probability density function
(pdf) of the three-dimensional molecular motion r, at each voxel of a diffu-
sion MR image, by a Gaussian distribution whose covariance matrix is given
by the diffusion tensor. Diffusion tensor imaging (DTT) thus produces a vo-
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lumic image containing, at each voxel, a 3 x 3 symmetric positive-definite
matrix. The estimation of these tensors requires the acquisition of diffusion
weighted images in several non-collinear sampling directions as well as a
T2-weighted image. Numerous algorithms have been proposed to perform
a robust estimation and regularization of these tensors fields [41], [43], |49],
[24], [48], [46], [47], [11], [42], [4], [9], [25],]34]. Among all these works, it is
worth pointing out that [47] was the first to use the original Stejskal-Tanner
equation, and not the linearized form, in the data term. The authors showed
the importance of this model and relied on the Cholesky decomposition to
estimate the symmetric, positive-definite tensors. In sections [2] and [3, we
will tackle the estimation and regularization tasks within a common vari-
ational framework while taking into account the symmetry and positive
definiteness constraints.

Moreover, it is well-known that normal brain functions require specific cor-
tical regions to communicate through fiber pathways. Based on DTT, most
of the existing techniques addressing the issue of the anatomical connec-
tivity mapping work on a fiber-wise basis. In other words, they do not take
into account the global coherence that exists among fibers of a given tract.
Recent work by Corouge et al [10] has proposed to cluster and align fibers
by local shape parameterization so that a statistical analysis of the tract
geometrical and physiological properties can be carried out. This work re-
lies on the extraction of a set of streamlines from diffusion tensor images
by the method proposed in [27] which is known to be sensitive to noise and
unreliable in areas of fibers crossings.

For these reasons, we propose, in section 4] to directly perform the segmen-
tation of diffusion tensor images in order to extract neural fibers bundles.
Contrary to the methods proposed in [51], [50], [14],[45], [44] and [18], our
approach is grounded on the expression of statistics in the space of multi-
variate Gaussian distributions [37], [22], [23]. We use this information in a
level-set and region-based framework to evolve a surface while maximizing
the likelihood of the region to extract. The central point in the develop-
ments of section 4] will be the choice of the probability metric, e.g. the
dissimilarity measure used to compare any two probability density func-
tions.

2 Estimation of Diffusion Tensor Images

2.1 Data acquisition

Our dataset consists of 30 diffusion weighted images Sy : Q CR® = R, k =
1,...,30 as well as a single image Sy corresponding to the signal intensity
in the absence of any diffusion-sensitizing gradient. They were obtained on
a GE 1.5 T Signa Echospeed with standard 22 mT/m gradient field. The
echoplanar images were acquired on 56 evenly spaced axial planes with
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128 x 128 pixels in each slice. Voxel size is 1.875 mm x 1.875 mm X 2.8 mm.
6 gradient directions g, each with 5 different b-factors and 4 repetitions
were used. Imaging parameters were: b-factors between 0 and 1000 s.mm =2,
TR =255, TE = 84.4ms and a square field of view of 24 cm [32'

2.2  Linear estimation

We recall that the estimation of a field of 3 x 3 symmetric positive definite
matrices D is performed by using the Stejskal-Tanner equation [40] for
anisotropic diffusion.

Sp(x) = So(x) exp (—bgl D(z)gr) Vz € Q (1.1)

where g are the normalized non-collinear gradient directions and b the
diffusion weighting factor. Many approaches have been derived to estimate
the tensor field D.

If we effectively restrict ourselves to 6 gradient directions, Westin et al.
derived in [49] a compact analytical solution to equation 1.1 and, by doing
so, eliminated the need to solve it for every single data point. The idea
relies on the introduction of a dual tensor basis By, computed from the
tensor basis By = grg}, and which can be used to decompose any given
tensor D(z). We then end up with the closed-form solution:

D= 26: %m (E—D B (1.2)

This method turns out to be sensitive to noise and easily influenced by
potential outliers. This is due to the low number of measurements intrinsi-
cally used by this approach and by the choice of the minimization function
(see |24] where the Geman-McLure M-estimator is used in order to reduce
outlier-related artifacts). Moreover resulting tensors may not be positive
definite, which requires a subsequent reprojection step [42].

2.8 Variational estimation

In order to deal with a more complete estimation approach, we propose to
incorporate some important priors such as tensor positivity and regularity
into a variational formulation of the estimation problem by minimizing the
following energy on the manifold of real 3 x 3 symmetric positive-definite

matrices ST(3, R):
ln( ”)—@ﬂmm@

s e (o (5

z)eSH(3,R)JQ .

) +ap(VD@))ds
(1.3)

!Data courtesy of J.F. Mangin and J.B Poline, CEA/SHFJ, Orsay, France
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where 9 controls the robust estimation and the Lagrange multiplier «,
together with the scalar function p, drives the anisotropic regularity of the
solution. Minimizing this criterion, in the constrained tensor space, leads
to the following evolution equation:

D(,—p) = 1d

D — (G + G")D? + D*(G + G7)
where G corresponds to the gradient of the unconstrained criterion de-
fined as G;; = 27, ¥’ (|vx|)sign(vk) (gkng)ij+adiv (%VD@) with

Vg = ln(So/Sk) - bngng.

Note that if ¥(v) = v? and a = 0, the criterion reduces to a simple mul-
tilinear regression by least square that generalizes the linear estimation
method of Westin et al [49] and provides a positive definite solution since
the minimization is done in the constrained space St(3,R). This varia-
tional method converges to a much more consistent solution thanks to its
global behavior. Concerning the implementation part, a carefully designed
numerical scheme, based on manifold integration, to ensure that the esti-
mate stays on ST (3, R) at each step of the gradient descent, is used to solve
the associated Euler-Lagrange equations:

D14y = ATD(HA with A =exp (D) (G + GT)dt)

Our iterative method starts from a field of isotropic tensors that are evolv-
ing in S*(3,R) and are morphing until their shapes fit the measured data
So, Sk- Enforcing the positiveness and regularity constraints has a large
interest for DTI estimation, and leads to more accurate results than with
classical methods. For more details, we refer the interested readers to the
article [42].

3 Regularization of Diffusion Tensor Images

The variational estimation method naturally brings some spatial coherence
and smoothness into the generated tensor field. However, the fundamental
properties of diffusion tensors, like diffusivities and principal orientations,
are contained in their spectral features. It can then be interesting to regu-
larize the tensor field with regard to those spectral elements. This will bring
more coherence into the tensor structural information and thus improve any
subsequent processing such as the tracking of neural fibers.

3.1  On some non-spectral methods and their limitations

Non-spectral methods are based on a direct anisotropic smoothing of the
diffusion weighted data Sk or consider each tensor as 6 independent scalar
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components D(z);; (by symmetry) with possible coupling. We thus evolve
each D(z);; by minimizing the following quantity:

B(D) = [ $ID() = Do(o) +p(IVD())ds (14)

where Dy designates the initial noisy tensor field and the field gradient
norm |VD| behaves as a coupling term between the tensors components.
However, eigenvalues tend to diffuse faster than eigenvectors, resulting in
a swelling effect on the tensors.

Spectral methods separately consider the eigen-elements of the tensors.
Eigenvalues smoothing is typically performed by a vector-valued anisotropic
PDE (|38] and references therein) satisfying the maximum principle in or-
der to preserve the positiveness. The three orthonormal eigenvectors define
a matrix of O(3) which can be regularized by acting only on the principal
eigenvector u' and then reconstructing the associated tensor [11]. The field
of orthonormal matrices can also be evolved under a scheme preserving the
eigenvectors norms and angles [41]. This boils down to solving a system
of coupled and constrained PDEs. However, all these approaches require a
time-consuming step of eigenvectors realignment since a given vector and
its opposite are both solution of the same singular value decomposition and
thus yield artificially discontinuous vectors fields.

3.2 A fast isospectral method

In [9], we proposed an efficient alternative to the previous spectral tech-
niques, which does not require any spectral decomposition, by building
flows acting on a given submanifold of the linear set of matrix-valued func-
tions and preserving some constraints. We showed that this amounts to
characterizing the velocity of the flows (ie. the tangent space of the sub-
manifold) at each point of that submanifold. Actually, the relevant con-
straints (orthogonality, eigenvalues conservation ...) can be expressed by
simply working with the proper Lie group or homogeneous space. For ex-
ample, an isospectral flow acts on a field of real symmetric matrices and
preserves their eigenvalues. Moreover, its velocity is directly derived from
the matrices field gradient, hence no need for realignment. If [X,Y] de-
notes the Lie bracket of X and Y, e.g. XY —Y X, the general form for our
isospectral flow is given by:

oD

= = D, [D, (G + G™)]| (1.5)

where G prescribes the desired regularization process, such as

. (P(VD])
G,‘j = div (WVD”'
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FIGURE 1. DTT regularization in the genu of the corpus callosum ([TOP LEFT|:
Annotated fractional anisotropy axial slice, [TOP RIGHT]|: Original tensors, [BOT-
TOM LEFT|: Non-spectral regularization, [BOTTOM RIGHT]: Isospectral flow)

p denotes the same scalar function as in section2.3/and preserves important
structures of the tensor field. A specific reprojection-free scheme based on
the exponential map can also be used to implement the PDE (1.5):

D(t+dt) = ATD(t)A with A =exp (dt[G + GT, D(t)])

Results of non-spectral smoothing and isospectral flow on diffusion tensors
estimated in the genu of the corpus callosum are presented in figure[I.

4 Segmentation of Diffusion Tensor Images

The previous sections described algorithms for the estimation and the reg-
ularization of diffusion tensor images. We now focus on the segmentation
of these tensor-valued images, seen as fields of Gaussian probability density
functions. We first set up the level-set and region-based surface evolution
framework that will be used throughout this section. We then progressively
introduce the various statistical parameters associated with the probability
metrics derived from the Euclidean distance, the Kullback-Leibler diver-
gence and finally, the geodesic distance between probability density func-
tions.
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4.1 Level-set and region-based surface evolution

Our ultimate goal is to compute the optimal 3D surface separating an
anatomical structure of interest from the rest of a diffusion tensor image.
The region-based front evolution, as developed in [35], is an efficient and
well-suited framework for our segmentation problem. We hereafter summa-
rize the basic notions of this technique.

Let T' be the optimal boundary between the object to extract €2; and
the background Q,. We introduce the level-set [12], |[13] and |28] function
¢ : 2 — R, defined as follows:

¢($) = DEucl($7F>, ifxe Ql
¢($) = _DEucl(x, F)7 ifxe QQ

where Dgyc(z,T') stands for the Euclidean distance between z and I' and
Q = O U Qy. Furthermore, let H.(.) and é.(.) be regularized versions of
the Heaviside and Dirac functions as defined in [8].

Let g(x,7) be the probability density function of our random vector r of R?
describing the water molecules average motion at a given voxel z of a DTI
dataset. We also denote by p; and p- the probability distributions of the
pdfs q(x, .) respectively in 5 or Qa. Then, according to the Geodesic Active
Regions model [29], and by adding a regularity constraint on the interface,
the optimal partitioning of 2 in two regions ; and 2 is obtained by
minimizing:

EG.pp) =v [ IVH(O)lds = [ H(9)ogpi(ala. )da
@ @ (1.6)

‘/Q(l — H.($))log pa(q(x, .))da

We have reached the point where we need to express p; and ps, e.g. the
probability distributions in the space of probability density functions ¢(., 7).
This is the purpose of the next sections.

4.2  Multivariate Gaussian distributions as a linear space

When dealing with diffusion tensor images, we recall that the molecular
motion is assumed to follow a Gaussian law of zero mean. The diffusion
tensor can indeed be interpreted as the covariance matrix of the under-
lying Brownian motion. As proposed in [37], we start by considering the
parameters space of three-dimensional Gaussian pdfs ¢(.,r) as linear, which
boils down to reducing a diffusion tensor image to a vector-valued volume,
each voxel being assigned with the 6-dimensional vector of the variances
and covariances, and the probability metric being Euclidean.
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Let u(z) be the vector representation of a tensor D(z), the probability
distributions of u(x) in the regions s = 1,2 are defined as:

L bew) AT -
(2m)3|A['/2

The Euclidean mean vectors uw, and covariance matrices A; have to be
estimated. They can simply be introduced as unknown in (1.6) and opti-
mized for during the front evolution process. Our objective function [1.6
then becomes:

E(¢. T2, A12}) = v / VH.(6)|dx — / H, (8)10g pi (u(x) 1, Ar )

ps(ulﬂm As) =

- /Q (1 — H.(6))log pa(u(x) [z, As)da

This type of energy was studied in [35], |36], the Euler-Lagrange equa-
tions for ¢ yield the following evolution equation for the level-set function

o(z) Vo € i
(o) = 8.0) (v v T8 + F1og [ 2= L ute) = 1) (u(o) - m)

+%(u(m) — Ez)TAz_l(U(x) - E2)>

while it can be shown that the statistical parameters must be updated by
their empirical estimates [37]. Adequate implementation schemes for this
type of optimization can be found in [8]. If we restrict the covariance matri-
ces to the identity, these equations simplify and the likelihoods in equation
(1.6) simply become the Euclidean distance between the vectors w and
Us=1,2, which is equivalent to the Frobenius norm of the difference between
the corresponding tensors, as studied in [45].

Figure [2|illustrates this method on a synthetic dataset where the Y-shape
region to be segmented only differs from the background by the orientation
of its tensors. A crossing area with low fractional anisotropy was created
and Gaussian noise was separately added on the eigenvalues and eigenvec-
tors to stress the algorithm.

Motivated by the method proposed by Wang and Vemuri in [44], we now
derive the statistics and the associated evolution equation based on a more
natural and widely used measure of dissimilarity between pdfs, known as
the Kullback-Leibler divergence or relative entropy.

4.8 Information-theoric statistics between distributions

We will show that this approach is not only more natural, in the sense that
it is strongly rooted and used in the information theory community, but
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FIGURE 2. Segmentation (with Euclidean probability metric) of a noisy ten-
sor field composed by two regions with same scales but different orientations
([rop LEFT]: 2D-cut of the tensor field, [Top RIGHT]: Final segmentation, [BOT-
TOM]|: Surface evolution)

also more versatile since it enables the segmentation algorithm to work on
fields of Gaussian densities as well as on non-parametric densities [22].
We consider a general probability density function g(z,7) of the random
vector r of R3. The symmetrized Kullback-Leibler divergence can be used to
express the dissimilarity between diffusion processes at different locations
of Q. With ¢(z,.),q(y,.) Vz,y € Q two probability density functions from
R3 onto R*, their symmetrized Kullback-Leibler divergence is given by:

_1 q(z,r) q(y,r)
Du(q(@,-),a(y,-)) = 3 /RS (Q(%T) log W) + q(y,7)log m) ?: )

We denote by g; and g, the mean probability density functions over ;
and Qq verifying equation [1.10. In this section, we make the assumption
that the pdfs in Q; and €, have respective Gaussian distributions pf!, p&!

with means §,, g, and variances o?,02:

1 -D3,(4,7,)
kil — 2 ki\1)4s

Ps—1,2(4]T,,05) = \/—exp 3

’ 2m o2 207

We can then rewrite our objective function as follows:
B {ti20ta}) = v [ IVH@)do — | ()10t (a(o)lar, o)z

—AU—mWW%ﬁ%@Ww@W
(1.8)
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K =

FIGURE 3. Segmentation of a noisy tensor field composed by two regions with
same scales but different orientations ([TopP LEFT]|: 2D-cut of the tensor field,
[TOP CENTER]: Segmentation obtained from [44], [TOP RIGHT|: Segmentation
based on the Kullback-Leibler probability metric and associated statistics, [BOT-
TOM:| Respective surface evolutions)

In the case where the o2 are equal to 1, this energy is equivalent to the

one proposed in [44]. As for the Euclidean probability metric, the Euler-
Lagrange equations yield the following evolution equation:

VO | 1og p’é’(q(w)lﬁg,og))
Vol pi'(a(@)[dy, 07)
Moreover, it can be shown that the variance must be updated by its em-

pirical estimation with respect to the Kullback-Leibler divergence, whereas
some more work is needed for g, defined as:

61(2) = 8(6) (v (19)

. 1
Qs—1,2 = Argmin m/ﬂ D3, (q(x),qs)dx (1.10)

qs

Indeed, for a general probability density function ¢(.,7), the variance is
easily computed as in [36] but the estimation of the g, might require the
use of numerical approximation techniques if no closed-form expression
is available. It turns out that, for Gaussian pdfs ¢(.,r), the energy [1.8
simplifies as follows:

E(¢a {61,27 0%,2}) =

v [ IVH@)de + 3 [ H(@)og(2nad) + Dhlata).a)or e ()

1 -

+3 [ (1= (@) og(2r0?) + Dis(a(o).Bo)oy*)da

Using the closed-form expressions provided in [44] for the symmetrized
Kullback-Leibler divergence between two Gaussian pdfs and for the asso-
ciated mean density g, parameterized by the mean diffusion tensor D,
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the Euler-Lagrange equations for our energy yield (the dependence on z is
omitted for the sake of clarity):

. Vo 1/3(c? —o2) o2
= 6.(0)( va S (2 9) . %2
o= o) (vivieh + 5 (P +los )+
: (tr (Dlﬁg + ﬁ;lD) o5 —tr (Dlﬁl + ﬁfD) 0;2»

(1.12)

Notice that we obtain additional terms (the o2 coefficients) in equation

1.12/if compared to the Euler-Lagrange equations proposed in [44].
Figure [3]illustrates the importance of the variance in our model.

The symmetrized Kullback-Leibler divergence, although it does not sat-
isfy the triangle inequality, has many useful properties and is widely used
to measure dissimilarities between pdfs. However, for particular densities
like multivariate Gaussian distributions of fixed mean, better probability
metrics are available. In the next section, we show how a Riemannian metric
can be associated with the 6-dimensional parameters space of these densi-
ties using the Fisher information matrix. The geodesic distance, intrinsic
mean and covariance matrix of multivariate Gaussian distributions, as well
as curvature information, can be efficiently computed to yield a generalized
Gaussian distribution of multivariate Gaussian densities. This generalized
distribution can then be used in our segmentation framework.

4.4 A Riemannian approach to DTI segmentation

We now consider the Riemannian manifold M of the family of three-
dimensional Gaussian probability density functions parameterized by the
6 components of their covariance matrix ¥ (in other words, the diffusion
tensor D). Following the work by Rao [33] and Burbea-Rao [6], where a Rie-
mannian metric was introduced in term of the Fisher information matrix,
we wish to define the notion of geodesic distance and intrinsic statistics on
this 6-dimensional manifold whose coordinate system, in some local chart,
is given by a real vector parameter § = (01,...,05) € R® such that for
all random vector r € R, M = {q(r|f), 6 € R%}. In the following, we
first show the main limitation of the Kullback-Leibler divergence together
with its impact on the segmentation process. Then, we present the closed-
form expression of the geodesic distance as well as original computational
methods to approximate a generalized Gaussian distribution of multivari-
ate Gaussian densities with common mean.

The Fisher information matrix: The manifold (M, g) equipped with
the Fisher information matrix g = g;;, 4,7 = 1, ...,6 has the structure of a
Riemannian manifold [33], [39] when ¢ is non-degenerate. We recall that ¢
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is defined as follows:

) _/ dlog q(r|0) dlogq(r|6)
g“ - R3 801 60]

By plugging the definition of a Gaussian pdf into equation the 6 x 6
metric tensor, as presented in |23], can be expressed in terms of the param-
eters 6;, i = 1,...,6 used to describe the pdfs. Thus, instead of considering
the parameterized pdfs as living in the linear space R®, we do take into
account the Riemannian structure of the underlying manifold. Moreover,
the Kullback-Leibler divergence Dy; turns out to be a Taylor approxima-
tion of the geodesic distance between two nearby distributions ¢(r|@) and
q(r|6 + df), given suitable technical conditions. Indeed, as summarized in
[2], it can be shown that:

q(r|0)dr (1.13)

1 1 1
Dau(6,0 +db) = L& | V1AL D08 4TV gy g,
% J

This means that the infinitesimal squared geodesic distance gy (df,df) is
twice the Kullback-Leibler divergence (this is also true for its symmetrized
form). In other words, the method presented in the previous section as-
sumes that we always compute distances between nearby elements of M,
which, in general, does not hold. For general pdfs, we may have no other
choice but, in the more particular case of multivariate Gaussian densities
with common mean, a closed-form solution of the geodesic distance is avail-
able, thus allowing the comparison of any two of these distributions. We
now introduce this geodesic distance and derive the associated intrinsic
statistical parameters.

Geodesic distance and intrinsic statistics: We recall that S*(m,R)
denotes the set of m x m real symmetric positive-definite matrices 3 (here
m = 3). A detailed study on the definition of a statistical model on this
nonlinear space was presented by the authors in [23]. Another recent work
by Pennec et al [31] relies on a comparable approach to derive tensor fields
filtering techniques. Following [23], |39], [5], |7], |16], |26] and |15], ST (m, R)
can be characterized as an affine symmetric space for which the geodesic
distance D, between any two elements ¥; and ¥ was derived by Jensen.

Theorem 4.1 (S.T. Jensen, 1976 [1])

Consider the family of multivariate Gaussian distributions with common
mean vector but different covariance matrices. The geodesic distance be-
tween two members of the family with covariance matrices X1 and Yo is:

3 log?(A)
=1

where the A; are the roots of the determinantal equation [AX; — Xa| = 0.

Dy (51, 55) = \tr(log (577 5,57 /%) =
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FIGURE 4. Segmentation of the corpus callosum with the Riemannian probabil-
ity metric ([LEFT]: 3D view with an axial slice of diffusion tensors, [RIGHT|: A:
Anterior, P: Posterior)

We now explain how to estimate the empirical mean, as proposed by Fréchet
[17], Karcher [19] and Pennec [30], as well as the empirical covariance ma-
trix.

Definition 4.1 The Gaussian distribution parameterized by ¥ € St(m,R)
and defined as the empirical mean of N distributions ¥, k = 1,...,N,
achieves a local minimum of the function o : St(m,R) — Rt known as
the empirical variance and defined as:

N
0*(S1, Bn) = 1 Y DA(SK, ) = EID (54, T)
k=1

Karcher proved in |19] that such a mean exists and is unique for mani-
folds of non-positive sectional curvature. This was shown to be the case for
ST (m,R) in [39]. A closed-form expression of the mean cannot be obtained
[26] but a gradient descent algorithm was proposed in [23]. A flow is de-
rived from an initial guess ¥ toward the mean of a subset of ST(m,R).
The following evolution was obtained:

N
= =1/2 1 =172 1= \—=—1/2,=1/2
Yip1 = Et/ eXP(—NEt/ E log(Zklzt)Et / )Et/ (1.14)

k=1

The empirical covariance matrix A9 relative to the mean ¥ is defined as:
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Definition 4.2 Given N elements of LS:F(mJR) and a mean value 3, the
empirical covariance matriz relative to ¥ is defined as:

1 N
A= BBl

k=1

where B, = flog(E;lf) is the gradient of the squared geodesic distance
VD2(Z, X) in vector form.

Finally, as detailed in [23], the Ricci curvature tensor R can be computed
at the mean Y. Putting everything together and following Theorem 4 of
[30], we have:

Theorem 4.2 The generalized Gaussian distribution in ST(m,R) for a
covariance matriz A9 of small variance o® = tr(A9) is of the form:

_ 1400 +el0/8)  =pT1

g S A9
P! ([T, A9) N RGN exp —

VS € §*(m, R)

where B = X 1og(X7'Y) is expressed in vector form and the concentration
matriz is v = (A9)™L —=R/3+ O0(0) +e(a /€). £ is the injection radius at 2
and € is such that limg+ 2 Pe(x) =0 V3 € RY.

Implementation: We can use the very same variational framework as the
one described in section[4.2 in order to maximize the likelihoods of the dif-
fusion tensors distributions in Q; and Q5. This can now be achieved with
respect to the geodesic distance by using pl_, ,(Z|Z., A9) and by accord-
ingly evolving the level-set function ¢ toward the optimal segmentation.
Figure [4 illustrates how well this approach performs on a real diffusion
tensor image.

5 Conclusion

Diffusion magnetic resonance imaging gives a direct insight into the micro-
structure of biological tissues through the measurement of hindered molecu-
lar motion. In this chapter, we have described efficient and versatile numeri-
cal methods for the estimation and the regularization of the diffusion tensor
images. We have also presented a novel statistical and geometric approach
to the segmentation of DTI data. The central point of this front evolution
framework relies on the definition of dissimilarity measures and statistics
between diffusion tensors, seen as the covariance matrices of Gaussian prob-
ability density functions. The major contribution of this set of techniques
is related to the robust extraction of anatomical structures in the brain
white matter.
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