N
N

N

HAL

open science

Synthesizing hardware from dataflow programs: An
MPEG-4 simple profile decoder case study
Jorn W. Janneck, Ian D. Miller, David B. Parlour, Ghislain Roquier,
Matthieu Wipliez, Mickael Raulet

» To cite this version:

Jorn W. Janneck, lan D. Miller, David B. Parlour, Ghislain Roquier, Matthieu Wipliez, et al.. Syn-
thesizing hardware from dataflow programs: An MPEG-4 simple profile decoder case study. Signal
Processing Systems, 2008. SiPS 2008. IEEE Workshop on, Oct 2008, Washington, United States.
pp.287 - 292, 10.1109/SIPS.2008.4671777 . hal-00336518

HAL Id: hal-00336518
https://hal.science/hal-00336518
Submitted on 4 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00336518
https://hal.archives-ouvertes.fr

SYNTHESIZING HARDWARE FROM DATAFLOW PROGRAMS:
AN MPEG-4 SIMPLE PROFILE DECODER CASE STUDY

Jorn W. Janneck lan D. Miller', David B. Parlout,
Ghislain Roquiet, Matthieu Wipliez, Mickagl Raulet

IXilinx Inc, San Jose, CA 95123, U.S.A.
2IETR/INSA. UMR CNRS 6164, F-35043 Rennes, France

ABSTRACT point for a range of efficient implementations, from seqignt

The MPEG Reconfigurable Video Coding working group igSoftware, to multi-core architectures, to programmablelha

developing a new library-based process for building the refVare o ASICs.

erence codecs of future MPEG standards, which is based on ThiS paper presents a tool that translates dataflow pro-
dataflow and uses an actor language called CThe paper 9rams written in CAL into RTL descriptions suitable for im-
presents a code generator producing RTL targeting FPGARlementation in_ programmable har_dware, an_d its applinatio
for CAL, outlines its structure, and demonstrates its perfort0 the construction of an MPEG-4 Simple Profile decoder. Af-
mance on an MPEG-4 Simple Profile decoder. The resultinéf' réviewing the dataflow programming model and some ba-
implementation is smaller and faster than a comparable RTBIC Properties of the &L actor language in section 2 and the

reference design, and the second half of the paper discusd@8'S supporting MPEG's RVC effort in section 3, we present
some of the reasons for this counter-intuitive result. the MPEG-4 decoder design and its translation to hardware

_ in section 4, explaining the various stages in the trarsiati
Index Terms— Dataflow, CAL, Reconfigurable Video nrqcess. The quality of the resulting decoder implemeanati

Coding, MPEG, high-level synthesis turns out to be better than that of a VHDL reference design,
and section 5 discusses how some aspects of the dataflow de-
1. INTRODUCTION sign process contribute to this surprising result. Finagc-

tion 6 closes with a discussion of the work and some conclu-
The increasing complexity of video codecs has made it insjons.

creasingly difficult to accompany video standards with re-

liable reference implementations built from scratch. For

this reason, MPEG has decided to explore a library-based 2. DATAFLOW AND CAL

approach—a library of video coding modules defines the

basic capabilities of a standard, and future standardserat The dataflow programming model presented in this paper

than building an independent new library, extend the eagsti composes systems from computational kernels caltedrs

code base with new functionality. MPEGReconfigurable by connecting them using lossless directed FIFO channels.

Video Codingeffort is in the process of constructing and Through these channels they send each other packets of data,

standardizing this library. calledtokens Depending on the implementation platform, the
In addition to the library itself, RVC is also concerned FIFOs may be bounded or unbounded, and size constraints

with the language for describing individual modules, andmay or may not apply to individual tokens. Our model is a

the way in which they are composed into working decodersslight generalization of the one presented in [4], permyti

Adopting dataflow as the fundamental design methodologygctors that are non-deterministic and not prefix-monotonic

they have decided to use the Cactor language [1] for build- Actors themselves are written in theAC actor lan-
ing the modules, which are composed using an XML formaguage [1]. A detailed discussion ofaC is beyond the scope
calledDDL [2, 3]. of this paper, but for our purposes it is sufficient to say that

The use of dataflow as a specification language for vided provides the syntactical constructs to specify the esslen
codecs opens interesting new opportunities. In the past, ttpieces of an actor, viz. its input ports and output ports, a
reference code was at best a starting point for actual impledefinition of the variables containing its internal stated a
mentations. Especially hardware implementations coutd naaumber of transition rules callexttions Each actor executes
directly be derived from the sequential software that sgrveby making discrete, atomitepsor transitions In each step,
as an executable reference. Dataflow programs, on the othiépicks exactly one action from its set of actions (accogdim
hand, are naturally concurrent, and a much better startintpe conditions associated with that action), and then @gecu

it, which consists of a combination of the following things: the unrolling of loops, or the insertion of registers to i
the maximal clock rate of the generated circuit.

The final result is a Verilog file containing the circuit im-
plementing the actor, and exposing asynchronous handshake
style interfaces for each of its ports. These can be condecte

3. modify the state of the actor. either back-to-back or using FIFO buffers into complete sys

tems. The FIFO buffers can be synchronous or asynchronous,
The state of an actor is strictly local, i.e. itis not visiite making it easy to support multi-clock-domain dataflow de-
any other actor. The absence of shared state is what allovgigns.
the actors in a system to execute their actions without being
concerned about race conditions on their state.

Actors are similar to objects in object-oriented program-3.3. Software synthesis
ming in the sense that they encapsulate some state and asso-
ciate it with the code manipulating it (the actions). Thefjedi It is important to be able to automatically obtain a concrete
from objects in that actors canncall each other—there is no software implementation from a dataflow description. The C
transfer of control from one actor to another, each actor calanguage is particularly well-suited as a target langudge.
be thought of as its own independent thread. same code can be compiled on any processor, from embedded
DSPs and ARMs to general-purpose microprocessors, which
considerably eases the task of writing a software synthesis
tool. The interest of having an automatic C software syn-
thesis is two-folded. The code obtained can be executed, in
which case it enables a considerably faster simulationef th
CAL is supported by a portable interpreter infrastructinat t dataflow program and the ability to debug the program using
can simulate a hierarchical network of actors. This interexisting IDEs (Visual Studio, Eclipse CDT). The C code de-
preter was first used in the Mosgsroject. Moses features scription may be a basis for a tailor-made decoder. For these
a graphical network editor, and allows the user to monitoreasons, we created the Cal2C tool [5] that aims at producing
actors execution (actor state and token values). The projetunctionally-equivalent, humanly-readable C code fromL.CA
being no longer maintained, it has been superseded by tltescriptions.

Open Dataflow environment (OpenBFor short). Contrar- The Cal2C compilation process has been successfully ap-
ily to Moses, this project does not provide a network graphyplied to the MPEG-4 Simple Profile dataflow program written
ical editor. Networks have been traditionally describe@in by the MPEG RVC experts (Fig. 1). The synthesized model is
textual language called Network Language (NL), which carcompared to CAL dataflow program simulated with the Open
be automatically converted to DDL and vice versa. It is alsdataflow environment so as to validate the Cal2C tool. The
possible to use the Graphiti editdp display networks in the synthesized software is faster than the CAL dataflow sim-

1. consume input tokens,

2. produce output tokens,

3. DATAFLOW TOOLS FOR RVC

3.1. Simulator

DDL format. ulated (20 frames/s instead of 0.15 frames/s), and close to
real-time for a QCIF format (25 frames/s). It is interesting
3.2. Hardware synthesis to note that the model is scalable: the number of macro-

blocks decoded per second remains constant when dealing
The work presented here is an available tool that convertgith larger image sizes. Using Cal2C has also permitted to
CAL to HDL. After parsing, CAL actors are instantiated with correct some actors which had an implementation-dependent
the actual values for their formal parameters. The resalhis behavior, such as the assumption of a particular actiordsche
XML representation of the actor which is then precompiledyle.
(transformation and analysis steps, including constaopapr

gation, type inference and type checking, analysis of dewa fl MV MV
through variables...), represented as a sequential progra R R STYPE VIDIPVID
static single assignment (SSA) form (making explicit theada —parser motion
dependencies between parts of the program). \‘BTYPE J‘

Then follows the synthesis stage, which turns the SSA DATA OUT >IN ouT
threads into a web of circuits built from a set of basic opera- oS 9o

tors (arithmetic, logic, flow control, memory accesses ded t
like). The synthesis stage can also be given directivesngriv
Fig. 1. Top-level view of the MPEG decoder, depicting parser,

1 . 7 . . .
http://www.tik.ee.ethz.ch/ moses/ AC/DC reconstruction, IDCT, and motion compensation.
2http://opendf.sourceforge.net/

Shitp://sourceforge.net/projects/graphiti-editor

4. SYNTHESIZING AN MPEG-4 SP DECODER 2. precompilation
3. RTL code generation

The MPEG-4 'Slmple P.rof|le decod'er discussed in th's Wo.rkl'his is followed by the synthesis of the network that consect
is a computational engine consuming a stream of bits on |tt'~‘he actor instances

input (the MPEG bitstream), and producing video data on its Instantiation. The elaboration of the network structure

output. At 30 frames of 1080p per second, this amounts tg. . .
- . iel number of nceswhich are referen
30 * 1920 * 1080 = approx. 62.2 million pixels per second. yields a number of actanstances which are references to

.) CAL actor descriptions along with actual values for its for-
In the common YUV420 format, each pixel requires 1.5 byte%nal parameters. From this, instantiation computesoaed
on average, which means the decoder has to produce aPP" %L tor description, i.e. one without parameters, by movag t
93.3 million bytes of video datasémple¥per second. ' :

. . arameters along with the corresponding actual values into
Fig. 1 shows a top-level view of the dataflow program de-p 9 P 9

. . . . the actor as local (constant) declarations. It then perform
scribing the decodér.The main funcuonal blockg mchde a constant propagation on the resut.
parser, an reconstruction block, a 2-D inverse discretmeos

. Precompilation. After some simple actocanonical-
transform (IDCT) block, and a motion compensator. All of ization, in which several features of the language are trans-

thes_te_ Iarge}fur:ctlonatlLunltst_aredthergselves hl_erarcr;mznl-ctg ted into simpler forms, precompilation performs somedas
positions of actors—the entiré aecoder Comprises of about 04, oo code transformations to make the actor more amenable

basic actors, to hardware implementation, such as e.g. inlining procedur

The parser analyzes the incoming bitstream and eXtraCliyg function calls. Then the canonical, closed actors are
the data from it that it feeds into the rest of the decodes b nslated into a collection of communicat'ing threads

. tra
far the most complex block of the decoder, more than a thlré In the current implementation, an actor witi actions

gr thke co;je 's used tg bm(qul thfh ptarse:. 'tTrt]r? reconT;;Lfg:no[% translated intaV + 1 threads, one for each action and an-
OCK periorms Some decoding that exploits the corre N sther one for thaction schedulerThe action scheduler is the

pixels in neighboring blocks. T.he IDCT, even though itis themechanism that determines which action to fire next, based on
!OCUS of most of the computation pe.rformed by the dGCOderfhe availability of tokens, the guard expression of eacloact

is structurally rather regular and straightforward coneplaio if present), the finite state machine schedule, and actien p
the other main functional components. Finally, the task Oé)rities. ' '

the motion compensator is to selectively add the blocks issu To facilitate backend processing for both hardware and

ing from the IDCT to b.IOCkS taken from the previous frame'sof’tware code generation, the threads are representetim st
Consequently, the motion compensator needs to store the eé]hgle-assignment (SSA) form. They interact with the envi-
tire previous frame of video data, which it needs to addres

. . . : Fonment of the actor through asynchronous token-based FIFO
into with a certain degree of random access. This data $Horagy - \nels. Their internal communication happens through
and movem_ent resul_ts in afeV_V inter_esting design Challe’mge§ynchronous unbuffered signals (this is, for instance, how
some of which are discussed in section 5. the scheduler triggers actions to fire, and how actions tepor

completion), and they also have shared access to the state
4.1. Hardware synthesis variables of the actor.

. . . RTL code generation. The next phase of the translation
When generating hardware implementations from networks . T .
process generates an RTL implementation (in Verilog) from a

of CAL actors (specified in some format, such as DDL men- et of threads in SSA form. The first step simply substitutes

tioned above), we currently translate each actor sepgrate : .
: e : operators in expressions for hardware operators, crelages t
and connect the resulting RTL descriptions with FIFOs. Con; . .
.hardware structures required to implement the control flow
sequently, we currently do not employ any cross-actor opti- :
mizations elements (loops, if-then-else statements), and also gtaser

Actors interact with FIFOs using a handshake protocolthe appropriate muxing/demuxing logic for variable acesss

which allows them to sense when a token is available or whe‘rﬁ1CIUding the® elements in the SSA form.
The resulting basic circuit is then optimized in a sequence

a FIFO is full. We also do not synthesize any schedule be-

tween actors, which means that the resulting system isséntir of steps.
self-scheduling based on the flow of tokens through it. 1. Bit-accurate constant propagation. This step elimi-
The translation of each CAL actor into a hardware de- nates constant or redundant bits throughout the circuit,
scription follows a three-step process: along with all wires transmitting them. Any part of the
) o circuit that does not contribute to the result will also
1. instantiation be removed, which roughly corresponds to dead code
4The decoder discussed in this paper is publicly available at elimination in traditional software compilation.

http://opendf.sf.net. . .
5The code for instantiation and precompilation is available o 2. Static scheduling of operators.By default, operators

http://opendf.sf.net. and control elements interact using a protocol of ex-

plicit activation—e.g., a multiplier will get triggered optimizations, such as those involving more than one actor.
by explicit signals signifying that both its operands areThe next section illustrates some of the reasons for thidtres
available, and will in turn emit such a signal to down-

stream operators once it has completed multiplication. I_;:’aDmebuf
In many cases, operators with known execution times | = - wAl-lwa rol—|rD
can be scheduled statically, thus removing the need for RAIRA MOT [——[MOT
.. L . . BTYPE HPEL HPEL BTYPE VID VvID
explicit activation and the associated control logic. In ’) o —r rTEX
case operands arrive with constant time difference, asrvrer r add

TEXD

fixed small number of registers can be inserted into the
path of the operand that arrives earlier.

3. Memory access optimizations. Arrays are mapped Fig. 2. Basic motion compensator in an MPEG decoder.

to RAM primitives for FPGA implementation. Typi-
cal FPGA RAM resources range in size from 16 bits
(lookup table memory) to 18 kBit or more (block 5. DATAFLOW DEVELOPMENT PROCESS
RAM). RAM primitives can be ganged up to form
larger memories, or a number of small arrays may bgn order to illustrate some of the practical aspects of datafl
placed into one RAM. Furthermore, these RAM prim- development, consider the motion compensator subsystem in
for concurrent accesses to the same memory regiofom those theaddr ess actor generates addresses into the
Based on an analysis of the sizes of arrays and thgame buffer (in thef r amebuf actor), which retrieves the
access patterns, the backend maps array variables ¢ta, and nt er pol at e andadd proceed to build the final
RAM primitives, and accesses to specific ports. video data.

The engineering challenge is the result of a number of
technical constraints. First, we need to produce no fewaer th

clock rate, it may be necessary to add registers to th83.3 million bytes of video data per second in order to do

generated circuit in order to break combinatorial paths .
and to give synthesis backends more opportunity for re—1080p at 30 frame per second. Furthermore, say we aim for
timing a target clock rate of about 120 MHz. Together with the re-

quirement of 93.3 million samples per second for 1080p at

Network synthesis. The RTL implementations of all the 30 frames per second, this leaves on average no more than
actors in the system are connected by a network that is oB-29 cycles for each sample. Finally, let us assume we have
tained from a straightforward translation of the originedgh ~ DRAM with a setup time of 10 cycles, followed by bursts of
structure into HDL, replacing every dataflow connectiortwit 4 bytes per cyclé.
the appropriate handshaking signals that mediate the token Motion compensation happens on 8x8 blocks, separately

traffic between actors. Also, during this step the FIFO bsffe for the Y, U, and V components. For each of those blocks, we
are instantiated, sized according to the annotations the usneed to read a 9x9 block from the frame buffer (because of

provided in the network description. potential half-pixel interpolation). In a straightforvaaline-

The network description also allows the user to add anby-line frame buffer organization, we thus need to read, for
notations that declare actors to be running in differenticlo €ach block of 8x8=64 samples, 9 bursts of length 3 words
domains. Network synthesis will recognize those and genefeach of those being 4 bytes). This takes at leagt0+3) =
ate the appropriate clock network. It will also use either-sy 117 cycles—with 64 samples produced, this comes to 1.83
chronous or asynchronous FIFO implementations dependirgycles per sample, which is too much. In order to meet the
on whether the two actors connected by the FIFO are in theequirement of 1.29 cycles per sample, we need to exploit the

4. Pipelining, retiming. In order to achieve a desired

same or in different clock domains. locality of the motion compensation, i.e. the fact that edja
Size Speed | Code size| Time blocks tend to refer to similar regions in the previous frame
slices, BRAM | kMB/S kLOC MM
CAL 3872, 22 290 4 3 5.1. Caching
VHDL 4637, 26 180 15 12

ne approach might be to use a cache in front of the frame

uffer, which reads data from the previous frame in larger

ursts and stores them in local memory. The cached image
data can be retrieved at a higher rate and single-cycledaten

The above table shows the quality of the result produce
by the RTL synthesis engine for the MPEG decoder. Not
that the code generated from the high-level dataflow descri
tion actually outperforms the VHDL design in terms of both
throughput and silicon area—and this in spite of the fact that ey simpiity the discussion, we assume the DRAM is dual-possedhat
our synthesis engine does not perform a number of potentigtading and writing to it can be treated independently.

PR 10 + (384/4) = 106 cycles, thus reading three macroblocks
[5;% Woo D o takes 318 cycle$.This has to be done once per macroblock

vy WA|WA Rao+{RA — of data, or once every 384 samples—consequently, we spend
BTYPE HPEL weel MOT—fwor — 1 318/348 = 0.83 cycles per sample reading data from the
BTYPE . . .
BTYPEI address interpoate FTEX frame buffer, which conveniently meets our requirements.
< add

TEX P

Note that reading the next set of macroblocks can be concur-
rent with the processing related to the current search windo

Fig. 3. Motion compensator with caching.
5.3. Summary

thereby reducing the impact of the setup latency of the fram&he design narrative above is intended to illustrate twaomp
buffer memory. Fig. 3a shows the modified motion compeniant aspects of building systems such as the MPEG decoder as
sator design, with the cache inserted in front of the framelataflow programs. First, the analysis of the cache approach
buffer. and its subsequent rejection, happened without ever synthe
In order to test this design, we insert the test cache isizing the system to hardware, purely by interactive andiqui
Fig. 3. This small actor is parametric in the cache size (numuntimed simulation. In this way we obtained quantitativeada
ber and length of cache lines), logs cache accesses andsecofthe cache miss rate), which together with some of the engi-
the percentage of misses for a given configuration. As a typaeering constraints (target clock, target sample ratejisetd
ical result, for 16 lines of 32 samples, we thus obtain a misseject the cache approach. Using high-level tools enatded u
rate of 8.3%. Because of the relatively regular access pate quickly experiment with, and falsify, a design idea witho
terns, that rate does not go down significantly by increasingpng development cycles, or tedious analyses. The result of
the cache size. this as far as the development process is concerned, idthat t
Unfortunately, each of these 8.3% cache misses incumataflow design undergoes many more design cycles than the
an 18 cycle penalty (10 cycles setup, 8 cycles per 32-sampRTL design—in spite of being done in a quarter of the time.
burst). Even if the remaining 91.7% of cache hits were in‘Most of the time in RTL design is spent on getting the system
finitely fast, this amounts ta8 * .083 = 1.49 cycles per to work correctly. By contrast, a much higher proportion of
sample—better than without the cache, but still not goodhe dataflow design time is spent on optimizing system perfor

enough. mance. At least in the current case study, the positive tsffec
of the shorter design cycles seem to outweigh the inefficien-
&frmbuf cies introduced through high-level synthesis, and theaedu
RA ccorchindon control of the designer over specific implementation detail
wr—fuy WAMWA FORD Raol) e Second, comparing the original design of the motion com-
Brvee e f— [see Roopfro] pensator in Fig. _2wr_[h the de&g_n mcorpo_ratlng the préfett
j' address HPEL [—{BTvPE VD [+>ViD search window in Fig. 4, the difference is exactly one actor,
e PUIE and a few slightly altered connections. None of the other ac-

tors in the motion compensator, and of course none of those in
the rest of the decoder, were ever touched or modified by this
Fig. 4. Motion compensator with prefetch block. design change. The asynchrony of the programming model,
and its realization in hardware, assured that the rest of the
system would continue to work in spite of the significantly
5.2. Prefetch modified temporal behavior. Any design methodology re-
lying on a precise specification of the timing aspects of the
Besides statistical locality, motion compensation has tw@omputation—such as RTL, where designers specify behav-
other properties that we can exploit: (1) It is always lirdite ior cycle-by-cycle—would have resulted in changes rippling
to a relatively small search window, and (2) it happens in ahroughout the design.
predictable and fixed order as we scan down the video frame
block by block. In addition, the search windows for neighbor
ing frames mostly overlap, which means that as the decoder 6. DISCUSSION AND CONCLUSION
advances from one block to the next, the search window shifts
some blocks from the previous frame out, and some new ondd1€ central points of this paper can be summarized as follows
in, while most data remains. — _
In our case, the search window is 3x3 macroblocks, where_ TS assumes that the frame buffer is structured by macrobleokhat
. each macroblock can be read in one burst. This organizatiodwmt have
each macroblock consists of 6 blocks of 8x8 samples, or 38fade much sense previously, but with the complete prefetchedtsein-
samples. Reading a macroblock from the frame buffer takesow in local storage, it can be arranged in this manner.

1. We presented a tool that translates dataflow progranits for building complex concurrent systems. In this paper
like those in the MPEG RVC framework into efficient we demonstrated one: asynchronous communication makes
implementations in programmable hardware. components naturally less sensitive to the timing propexf

2. The high-level design methodology based on dataflowheir environment, and consequently changes in those prope
and the QL actor language has been shown to rivalties are less likely to ripple through the rest of the systéam.
RTL design in terms of the implementation quality, atrelated aspect of the dataflow actor component model is that
least in the case we have studied here. actors are very flexible with respect to their implementatio

3. We have attributed the surprising quality of the result-For instance, the parser might not need to run at the same
ing implementation to properties of the dataflow designspeed as the rest of the decoder, as it has much less data to
process, rather than to, e.g., the quality of the translaprocess. Therefore we might consider implementing it in
tion tool or any particularly sophisticated set of opti- software on a processor. As long as the overall throughput
mizations. remains sufficient, we can be confident that this choice will

The first point may change the role of the MPEG refer_not affect the functional correctn.ess of the decoder', tire th

ence code in future implementation flows—especially whenF.”:O'Style interfaces th_rough which actors communicate pr

buildina desians on parallel machines or hardware dataflowV'de complete abstraction from the specific implementation
9 g para R of an actor.
based reference code is a much better starting point, an The work presented in this paper is only the starting point

the existence of an efficient translation to the target ptaif for manv botential directions of research. As we have pdinte
means that future video codec implementations may be clos&? ypP . ' . P
out, the implementation tools themselves provide many op-

to gradual refinement and optimization of the reference code

rather than from-scratch redesigns of the same functitynali portunitie_s for impr_ovement, involving sophisticated lgna
This could drastically improve the productivity of designe ses, static scheduling of those parts of a system that can be

in this space, as well as the quality of the resulting designs ztt‘:]‘g(rja"r{) Srcgridtl:;ends'fgrrr?]zst;:ﬁ;og:gtgzgg?ias’Sf?ljjc'ings au-
The other two points may be surprising to RTL design- Prog g

ers, so they merit closer inspection. Fundamentally, tlee ustomatlc multi-channelization (i.e. multiplexing the sane
of low-level tools seems to create dlusion of optimality
simply because of the range and detail of control these too
provide to the designer: if we can control every aspect of th ardware/software systems from one common source s an-
design, how could the result be anything but optimal’? The an_ther direction of work, as is the construction of backends
swer seems to be that for sufficiently complex designs, ther ’

are in facttoo manythings that can be controlled. As a re- that translate_ dataflow programs to other parallel platiorm
sult, a real-world designer with limited time and limited re such as multi-core architectures.

sources will introduce abstractions to make the task extell
tually manageable (and, if a group of designers is involved,
modularizable), effectively waiving some control in favafr
design efficiency.

High-level tools do the same—however, their abstractions
are pervasive, consistent, enforced and checked by thg, tool
and often presented in the form of languages that make it dif»
ficult or impossible to break the abstractions. The ad hoc ab-
stractions created by designers may be geared to the specific
requirements of an application, but they lack all of the othe
benefits provided by high-level tools, and often exist ordy a
more or less informal conventions. (3]

The key benefits of the dataflow methodology presented
in this paper are the fast design cycles (mostly throughielim
nating hardware synthesis from the cycle by providing a-high
level simulation capability), and a model of strongly ersap

sign for multiple streams of data). Constructing efficiesft-s
jyare code generation forAC (such as the one in [5]), and
ombining it with the RTL generation to build families of

7. REFERENCES

[1] J. Eker and J. Janneck, “CAL Language Report,” Tech.
Rep. ERL Technical Memo UCB/ERL M03/48, Univer-
sity of California at Berkeley, Dec. 2003.

] J. Thomas-Kerr, J. W. Janneck, M. Mattavelli, I. Bur-
nett, and C. Ritz, “Reconfigurable Media Coding: Self-
describing multimedia bitstreams,” iRroceedings of
SIPS’07 Oct. 2007.

C. Lucarz, M. Mattavelli, J. Thomas-Kerr, and J. W. Jan-
neck, “Reconfigurable Media Coding: a new specifica-
tion model for multimedia coders,” iRroceedings of
SIPS’07 Oct. 2007.

lated asynchronously communicating components. Fast dg}]
sign cycles provide a lot of feedback for the designer and
frequent opportunity for debugging and performance tuning
The design gets functional sooner, and more time can be spe5
on optimization.

The dataflow model of strongly encapsulated components
that communicate asynchronously has a number of bene-

Edward A. Lee and Thomas M. Parks, “Dataflow Process
Networks,” Proceedings of the IEEEvol. 83, no. 5, pp.
773-801, May 1995.

G. Roquier, M. Wipliez, M. Raulet, J. Janneck, |. Miller,

and D. Parlour, “Automatic software synthesis of
dataflow program: an MPEG-4 Simple Profile decoder
case study,” irProceedings of SiPS’02008.

