
HAL Id: hal-00336518
https://hal.science/hal-00336518

Submitted on 4 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synthesizing hardware from dataflow programs: An
MPEG-4 simple profile decoder case study

Jörn W. Janneck, Ian D. Miller, David B. Parlour, Ghislain Roquier,
Matthieu Wipliez, Mickael Raulet

To cite this version:
Jörn W. Janneck, Ian D. Miller, David B. Parlour, Ghislain Roquier, Matthieu Wipliez, et al.. Syn-
thesizing hardware from dataflow programs: An MPEG-4 simple profile decoder case study. Signal
Processing Systems, 2008. SiPS 2008. IEEE Workshop on, Oct 2008, Washington, United States.
pp.287 - 292, �10.1109/SIPS.2008.4671777�. �hal-00336518�

https://hal.science/hal-00336518
https://hal.archives-ouvertes.fr


SYNTHESIZING HARDWARE FROM DATAFLOW PROGRAMS:
AN MPEG-4 SIMPLE PROFILE DECODER CASE STUDY

Jörn W. Janneck1, Ian D. Miller1, David B. Parlour1,
Ghislain Roquier2, Matthieu Wipliez2, Mickäel Raulet2

1Xilinx Inc, San Jose, CA 95123, U.S.A.
2IETR/INSA. UMR CNRS 6164, F-35043 Rennes, France

ABSTRACT

The MPEG Reconfigurable Video Coding working group is
developing a new library-based process for building the ref-
erence codecs of future MPEG standards, which is based on
dataflow and uses an actor language called CAL . The paper
presents a code generator producing RTL targeting FPGAs
for CAL , outlines its structure, and demonstrates its perfor-
mance on an MPEG-4 Simple Profile decoder. The resulting
implementation is smaller and faster than a comparable RTL
reference design, and the second half of the paper discusses
some of the reasons for this counter-intuitive result.

Index Terms— Dataflow, CAL, Reconfigurable Video
Coding, MPEG, high-level synthesis

1. INTRODUCTION

The increasing complexity of video codecs has made it in-
creasingly difficult to accompany video standards with re-
liable reference implementations built from scratch. For
this reason, MPEG has decided to explore a library-based
approach—a library of video coding modules defines the
basic capabilities of a standard, and future standards, rather
than building an independent new library, extend the existing
code base with new functionality. MPEG’sReconfigurable
Video Codingeffort is in the process of constructing and
standardizing this library.

In addition to the library itself, RVC is also concerned
with the language for describing individual modules, and
the way in which they are composed into working decoders.
Adopting dataflow as the fundamental design methodology,
they have decided to use the CAL actor language [1] for build-
ing the modules, which are composed using an XML format
calledDDL [2, 3].

The use of dataflow as a specification language for video
codecs opens interesting new opportunities. In the past, the
reference code was at best a starting point for actual imple-
mentations. Especially hardware implementations could not
directly be derived from the sequential software that served
as an executable reference. Dataflow programs, on the other
hand, are naturally concurrent, and a much better starting

point for a range of efficient implementations, from sequential
software, to multi-core architectures, to programmable hard-
ware to ASICs.

This paper presents a tool that translates dataflow pro-
grams written in CAL into RTL descriptions suitable for im-
plementation in programmable hardware, and its application
to the construction of an MPEG-4 Simple Profile decoder. Af-
ter reviewing the dataflow programming model and some ba-
sic properties of the CAL actor language in section 2 and the
tools supporting MPEG’s RVC effort in section 3, we present
the MPEG-4 decoder design and its translation to hardware
in section 4, explaining the various stages in the translation
process. The quality of the resulting decoder implementation
turns out to be better than that of a VHDL reference design,
and section 5 discusses how some aspects of the dataflow de-
sign process contribute to this surprising result. Finally, sec-
tion 6 closes with a discussion of the work and some conclu-
sions.

2. DATAFLOW AND CAL

The dataflow programming model presented in this paper
composes systems from computational kernels calledactors
by connecting them using lossless directed FIFO channels.
Through these channels they send each other packets of data,
calledtokens. Depending on the implementation platform, the
FIFOs may be bounded or unbounded, and size constraints
may or may not apply to individual tokens. Our model is a
slight generalization of the one presented in [4], permitting
actors that are non-deterministic and not prefix-monotonic.

Actors themselves are written in the CAL actor lan-
guage [1]. A detailed discussion of CAL is beyond the scope
of this paper, but for our purposes it is sufficient to say that
it provides the syntactical constructs to specify the essential
pieces of an actor, viz. its input ports and output ports, a
definition of the variables containing its internal state, and a
number of transition rules calledactions. Each actor executes
by making discrete, atomicstepsor transitions. In each step,
it picks exactly one action from its set of actions (according to
the conditions associated with that action), and then executes



it, which consists of a combination of the following things:

1. consume input tokens,

2. produce output tokens,

3. modify the state of the actor.

The state of an actor is strictly local, i.e. it is not visibleto
any other actor. The absence of shared state is what allows
the actors in a system to execute their actions without being
concerned about race conditions on their state.

Actors are similar to objects in object-oriented program-
ming in the sense that they encapsulate some state and asso-
ciate it with the code manipulating it (the actions). They differ
from objects in that actors cannotcall each other—there is no
transfer of control from one actor to another, each actor can
be thought of as its own independent thread.

3. DATAFLOW TOOLS FOR RVC

3.1. Simulator

CAL is supported by a portable interpreter infrastructure that
can simulate a hierarchical network of actors. This inter-
preter was first used in the Moses1 project. Moses features
a graphical network editor, and allows the user to monitor
actors execution (actor state and token values). The project
being no longer maintained, it has been superseded by the
Open Dataflow environment (OpenDF2 for short). Contrar-
ily to Moses, this project does not provide a network graph-
ical editor. Networks have been traditionally described ina
textual language called Network Language (NL), which can
be automatically converted to DDL and vice versa. It is also
possible to use the Graphiti editor3 to display networks in the
DDL format.

3.2. Hardware synthesis

The work presented here is an available tool that converts
CAL to HDL. After parsing, CAL actors are instantiated with
the actual values for their formal parameters. The result isan
XML representation of the actor which is then precompiled
(transformation and analysis steps, including constant propa-
gation, type inference and type checking, analysis of data flow
through variables...), represented as a sequential program in
static single assignment (SSA) form (making explicit the data
dependencies between parts of the program).

Then follows the synthesis stage, which turns the SSA
threads into a web of circuits built from a set of basic opera-
tors (arithmetic, logic, flow control, memory accesses and the
like). The synthesis stage can also be given directives driving

1http://www.tik.ee.ethz.ch/ moses/
2http://opendf.sourceforge.net/
3http://sourceforge.net/projects/graphiti-editor

the unrolling of loops, or the insertion of registers to improve
the maximal clock rate of the generated circuit.

The final result is a Verilog file containing the circuit im-
plementing the actor, and exposing asynchronous handshake-
style interfaces for each of its ports. These can be connected
either back-to-back or using FIFO buffers into complete sys-
tems. The FIFO buffers can be synchronous or asynchronous,
making it easy to support multi-clock-domain dataflow de-
signs.

3.3. Software synthesis

It is important to be able to automatically obtain a concrete
software implementation from a dataflow description. The C
language is particularly well-suited as a target language.The
same code can be compiled on any processor, from embedded
DSPs and ARMs to general-purpose microprocessors, which
considerably eases the task of writing a software synthesis
tool. The interest of having an automatic C software syn-
thesis is two-folded. The code obtained can be executed, in
which case it enables a considerably faster simulation of the
dataflow program and the ability to debug the program using
existing IDEs (Visual Studio, Eclipse CDT). The C code de-
scription may be a basis for a tailor-made decoder. For these
reasons, we created the Cal2C tool [5] that aims at producing
functionally-equivalent, humanly-readable C code from CAL
descriptions.

The Cal2C compilation process has been successfully ap-
plied to the MPEG-4 Simple Profile dataflow program written
by the MPEG RVC experts (Fig. 1). The synthesized model is
compared to CAL dataflow program simulated with the Open
Dataflow environment so as to validate the Cal2C tool. The
synthesized software is faster than the CAL dataflow sim-
ulated (20 frames/s instead of 0.15 frames/s), and close to
real-time for a QCIF format (25 frames/s). It is interesting
to note that the model is scalable: the number of macro-
blocks decoded per second remains constant when dealing
with larger image sizes. Using Cal2C has also permitted to
correct some actors which had an implementation-dependent
behavior, such as the assumption of a particular action sched-
ule.

Fig. 1. Top-level view of the MPEG decoder, depicting parser,
AC/DC reconstruction, IDCT, and motion compensation.



4. SYNTHESIZING AN MPEG-4 SP DECODER

The MPEG-4 Simple Profile decoder discussed in this work
is a computational engine consuming a stream of bits on its
input (the MPEG bitstream), and producing video data on its
output. At 30 frames of 1080p per second, this amounts to
30 ∗ 1920 ∗ 1080 = approx. 62.2 million pixels per second.
In the common YUV420 format, each pixel requires 1.5 bytes
on average, which means the decoder has to produce approx.
93.3 million bytes of video data (samples) per second.

Fig. 1 shows a top-level view of the dataflow program de-
scribing the decoder.4 The main functional blocks include a
parser, an reconstruction block, a 2-D inverse discrete cosine
transform (IDCT) block, and a motion compensator. All of
these large functional units are themselves hierarchical com-
positions of actors—the entire decoder comprises of about 60
basic actors.

The parser analyzes the incoming bitstream and extracts
the data from it that it feeds into the rest of the decoder. It is by
far the most complex block of the decoder, more than a third
of the code is used to build the parser. The reconstruction
block performs some decoding that exploits the correlationof
pixels in neighboring blocks. The IDCT, even though it is the
locus of most of the computation performed by the decoder,
is structurally rather regular and straightforward compared to
the other main functional components. Finally, the task of
the motion compensator is to selectively add the blocks issu-
ing from the IDCT to blocks taken from the previous frame.
Consequently, the motion compensator needs to store the en-
tire previous frame of video data, which it needs to address
into with a certain degree of random access. This data storage
and movement results in a few interesting design challenges,
some of which are discussed in section 5.

4.1. Hardware synthesis

When generating hardware implementations from networks
of CAL actors (specified in some format, such as DDL men-
tioned above), we currently translate each actor separately,
and connect the resulting RTL descriptions with FIFOs. Con-
sequently, we currently do not employ any cross-actor opti-
mizations.

Actors interact with FIFOs using a handshake protocol,
which allows them to sense when a token is available or when
a FIFO is full. We also do not synthesize any schedule be-
tween actors, which means that the resulting system is entirely
self-scheduling based on the flow of tokens through it.

The translation of each CAL actor into a hardware de-
scription follows a three-step process:5

1. instantiation

4The decoder discussed in this paper is publicly available at
http://opendf.sf.net.

5The code for instantiation and precompilation is available on
http://opendf.sf.net.

2. precompilation
3. RTL code generation

This is followed by the synthesis of the network that connects
the actor instances.

Instantiation. The elaboration of the network structure
yields a number of actorinstances, which are references to
CAL actor descriptions along with actual values for its for-
mal parameters. From this, instantiation computes aclosed
actor description, i.e. one without parameters, by moving the
parameters along with the corresponding actual values into
the actor as local (constant) declarations. It then performs
constant propagation on the result.

Precompilation. After some simple actorcanonical-
ization, in which several features of the language are trans-
lated into simpler forms, precompilation performs some basic
source code transformations to make the actor more amenable
to hardware implementation, such as e.g. inlining procedure
and function calls. Then the canonical, closed actors are
translated into a collection of communicating threads.

In the current implementation, an actor withN actions
is translated intoN + 1 threads, one for each action and an-
other one for theaction scheduler. The action scheduler is the
mechanism that determines which action to fire next, based on
the availability of tokens, the guard expression of each action
(if present), the finite state machine schedule, and action pri-
orities.

To facilitate backend processing for both hardware and
software code generation, the threads are represented in static
single-assignment (SSA) form. They interact with the envi-
ronment of the actor through asynchronous token-based FIFO
channels. Their internal communication happens through
synchronous unbuffered signals (this is, for instance, how
the scheduler triggers actions to fire, and how actions report
completion), and they also have shared access to the state
variables of the actor.

RTL code generation. The next phase of the translation
process generates an RTL implementation (in Verilog) from a
set of threads in SSA form. The first step simply substitutes
operators in expressions for hardware operators, creates the
hardware structures required to implement the control flow
elements (loops, if-then-else statements), and also generates
the appropriate muxing/demuxing logic for variable accesses,
including theΦ elements in the SSA form.

The resulting basic circuit is then optimized in a sequence
of steps.

1. Bit-accurate constant propagation. This step elimi-
nates constant or redundant bits throughout the circuit,
along with all wires transmitting them. Any part of the
circuit that does not contribute to the result will also
be removed, which roughly corresponds to dead code
elimination in traditional software compilation.

2. Static scheduling of operators.By default, operators
and control elements interact using a protocol of ex-



plicit activation—e.g., a multiplier will get triggered
by explicit signals signifying that both its operands are
available, and will in turn emit such a signal to down-
stream operators once it has completed multiplication.
In many cases, operators with known execution times
can be scheduled statically, thus removing the need for
explicit activation and the associated control logic. In
case operands arrive with constant time difference, a
fixed small number of registers can be inserted into the
path of the operand that arrives earlier.

3. Memory access optimizations. Arrays are mapped
to RAM primitives for FPGA implementation. Typi-
cal FPGA RAM resources range in size from 16 bits
(lookup table memory) to 18 kBit or more (block
RAM). RAM primitives can be ganged up to form
larger memories, or a number of small arrays may be
placed into one RAM. Furthermore, these RAM prim-
itives usually provide two or more ports, which allows
for concurrent accesses to the same memory region.
Based on an analysis of the sizes of arrays and the
access patterns, the backend maps array variables to
RAM primitives, and accesses to specific ports.

4. Pipelining, retiming. In order to achieve a desired
clock rate, it may be necessary to add registers to the
generated circuit in order to break combinatorial paths,
and to give synthesis backends more opportunity for re-
timing.

Network synthesis.The RTL implementations of all the
actors in the system are connected by a network that is ob-
tained from a straightforward translation of the original graph
structure into HDL, replacing every dataflow connection with
the appropriate handshaking signals that mediate the token
traffic between actors. Also, during this step the FIFO buffers
are instantiated, sized according to the annotations the user
provided in the network description.

The network description also allows the user to add an-
notations that declare actors to be running in different clock
domains. Network synthesis will recognize those and gener-
ate the appropriate clock network. It will also use either syn-
chronous or asynchronous FIFO implementations depending
on whether the two actors connected by the FIFO are in the
same or in different clock domains.

Size Speed Code size Time
slices, BRAM kMB/S kLOC MM

CAL 3872, 22 290 4 3
VHDL 4637, 26 180 15 12

The above table shows the quality of the result produced
by the RTL synthesis engine for the MPEG decoder. Note
that the code generated from the high-level dataflow descrip-
tion actually outperforms the VHDL design in terms of both
throughput and silicon area—and this in spite of the fact that
our synthesis engine does not perform a number of potential

optimizations, such as those involving more than one actor.
The next section illustrates some of the reasons for this result.

Fig. 2. Basic motion compensator in an MPEG decoder.

5. DATAFLOW DEVELOPMENT PROCESS

In order to illustrate some of the practical aspects of dataflow
development, consider the motion compensator subsystem in
Fig. 2. Motion vectors come in on itsMV input port, and
from those theaddress actor generates addresses into the
frame buffer (in theframebuf actor), which retrieves the
data, andinterpolate andadd proceed to build the final
video data.

The engineering challenge is the result of a number of
technical constraints. First, we need to produce no fewer than
93.3 million bytes of video data per second in order to do
1080p at 30 frame per second. Furthermore, say we aim for
a target clock rate of about 120 MHz. Together with the re-
quirement of 93.3 million samples per second for 1080p at
30 frames per second, this leaves on average no more than
1.29 cycles for each sample. Finally, let us assume we have
DRAM with a setup time of 10 cycles, followed by bursts of
4 bytes per cycle.6

Motion compensation happens on 8x8 blocks, separately
for the Y, U, and V components. For each of those blocks, we
need to read a 9x9 block from the frame buffer (because of
potential half-pixel interpolation). In a straightforward line-
by-line frame buffer organization, we thus need to read, for
each block of 8x8=64 samples, 9 bursts of length 3 words
(each of those being 4 bytes). This takes at least9∗(10+3) =
117 cycles—with 64 samples produced, this comes to 1.83
cycles per sample, which is too much. In order to meet the
requirement of 1.29 cycles per sample, we need to exploit the
locality of the motion compensation, i.e. the fact that adjacent
blocks tend to refer to similar regions in the previous frame.

5.1. Caching

One approach might be to use a cache in front of the frame
buffer, which reads data from the previous frame in larger
bursts and stores them in local memory. The cached image
data can be retrieved at a higher rate and single-cycle latency,

6To simplify the discussion, we assume the DRAM is dual-ported,so that
reading and writing to it can be treated independently.



Fig. 3. Motion compensator with caching.

thereby reducing the impact of the setup latency of the frame
buffer memory. Fig. 3a shows the modified motion compen-
sator design, with the cache inserted in front of the frame
buffer.

In order to test this design, we insert the test cache in
Fig. 3. This small actor is parametric in the cache size (num-
ber and length of cache lines), logs cache accesses and records
the percentage of misses for a given configuration. As a typ-
ical result, for 16 lines of 32 samples, we thus obtain a miss
rate of 8.3%. Because of the relatively regular access pat-
terns, that rate does not go down significantly by increasing
the cache size.

Unfortunately, each of these 8.3% cache misses incurs
an 18 cycle penalty (10 cycles setup, 8 cycles per 32-sample
burst). Even if the remaining 91.7% of cache hits were in-
finitely fast, this amounts to18 ∗ .083 = 1.49 cycles per
sample—better than without the cache, but still not good
enough.

Fig. 4. Motion compensator with prefetch block.

5.2. Prefetch

Besides statistical locality, motion compensation has two
other properties that we can exploit: (1) It is always limited
to a relatively small search window, and (2) it happens in a
predictable and fixed order as we scan down the video frame
block by block. In addition, the search windows for neighbor-
ing frames mostly overlap, which means that as the decoder
advances from one block to the next, the search window shifts
some blocks from the previous frame out, and some new ones
in, while most data remains.

In our case, the search window is 3x3 macroblocks, where
each macroblock consists of 6 blocks of 8x8 samples, or 384
samples. Reading a macroblock from the frame buffer takes

10 + (384/4) = 106 cycles, thus reading three macroblocks
takes 318 cycles.7 This has to be done once per macroblock
of data, or once every 384 samples—consequently, we spend
318/348 = 0.83 cycles per sample reading data from the
frame buffer, which conveniently meets our requirements.
Note that reading the next set of macroblocks can be concur-
rent with the processing related to the current search window.

5.3. Summary

The design narrative above is intended to illustrate two impor-
tant aspects of building systems such as the MPEG decoder as
dataflow programs. First, the analysis of the cache approach,
and its subsequent rejection, happened without ever synthe-
sizing the system to hardware, purely by interactive and quick
untimed simulation. In this way we obtained quantitative data
(the cache miss rate), which together with some of the engi-
neering constraints (target clock, target sample rate) ledus to
reject the cache approach. Using high-level tools enabled us
to quickly experiment with, and falsify, a design idea without
long development cycles, or tedious analyses. The result of
this as far as the development process is concerned, is that the
dataflow design undergoes many more design cycles than the
RTL design—in spite of being done in a quarter of the time.
Most of the time in RTL design is spent on getting the system
to work correctly. By contrast, a much higher proportion of
the dataflow design time is spent on optimizing system perfor-
mance. At least in the current case study, the positive effects
of the shorter design cycles seem to outweigh the inefficien-
cies introduced through high-level synthesis, and the reduced
control of the designer over specific implementation details.

Second, comparing the original design of the motion com-
pensator in Fig. 2 with the design incorporating the prefetched
search window in Fig. 4, the difference is exactly one actor,
and a few slightly altered connections. None of the other ac-
tors in the motion compensator, and of course none of those in
the rest of the decoder, were ever touched or modified by this
design change. The asynchrony of the programming model,
and its realization in hardware, assured that the rest of the
system would continue to work in spite of the significantly
modified temporal behavior. Any design methodology re-
lying on a precise specification of the timing aspects of the
computation—such as RTL, where designers specify behav-
ior cycle-by-cycle—would have resulted in changes rippling
throughout the design.

6. DISCUSSION AND CONCLUSION

The central points of this paper can be summarized as follows:

7This assumes that the frame buffer is structured by macroblocks, so that
each macroblock can be read in one burst. This organization would not have
made much sense previously, but with the complete prefetched search win-
dow in local storage, it can be arranged in this manner.



1. We presented a tool that translates dataflow programs
like those in the MPEG RVC framework into efficient
implementations in programmable hardware.

2. The high-level design methodology based on dataflow
and the CAL actor language has been shown to rival
RTL design in terms of the implementation quality, at
least in the case we have studied here.

3. We have attributed the surprising quality of the result-
ing implementation to properties of the dataflow design
process, rather than to, e.g., the quality of the transla-
tion tool or any particularly sophisticated set of opti-
mizations.

The first point may change the role of the MPEG refer-
ence code in future implementation flows—especially when
building designs on parallel machines or hardware, dataflow-
based reference code is a much better starting point, and
the existence of an efficient translation to the target platform
means that future video codec implementations may be closer
to gradual refinement and optimization of the reference code,
rather than from-scratch redesigns of the same functionality.
This could drastically improve the productivity of designers
in this space, as well as the quality of the resulting designs.

The other two points may be surprising to RTL design-
ers, so they merit closer inspection. Fundamentally, the use
of low-level tools seems to create anillusion of optimality
simply because of the range and detail of control these tools
provide to the designer: if we can control every aspect of the
design, how could the result be anything but optimal? The an-
swer seems to be that for sufficiently complex designs, there
are in facttoo manythings that can be controlled. As a re-
sult, a real-world designer with limited time and limited re-
sources will introduce abstractions to make the task intellec-
tually manageable (and, if a group of designers is involved,
modularizable), effectively waiving some control in favorof
design efficiency.

High-level tools do the same—however, their abstractions
are pervasive, consistent, enforced and checked by the tools,
and often presented in the form of languages that make it dif-
ficult or impossible to break the abstractions. The ad hoc ab-
stractions created by designers may be geared to the specific
requirements of an application, but they lack all of the other
benefits provided by high-level tools, and often exist only as
more or less informal conventions.

The key benefits of the dataflow methodology presented
in this paper are the fast design cycles (mostly through elimi-
nating hardware synthesis from the cycle by providing a high-
level simulation capability), and a model of strongly encapsu-
lated asynchronously communicating components. Fast de-
sign cycles provide a lot of feedback for the designer and
frequent opportunity for debugging and performance tuning.
The design gets functional sooner, and more time can be spent
on optimization.

The dataflow model of strongly encapsulated components
that communicate asynchronously has a number of bene-

fits for building complex concurrent systems. In this paper
we demonstrated one: asynchronous communication makes
components naturally less sensitive to the timing properties of
their environment, and consequently changes in those proper-
ties are less likely to ripple through the rest of the system.A
related aspect of the dataflow actor component model is that
actors are very flexible with respect to their implementation.
For instance, the parser might not need to run at the same
speed as the rest of the decoder, as it has much less data to
process. Therefore we might consider implementing it in
software on a processor. As long as the overall throughput
remains sufficient, we can be confident that this choice will
not affect the functional correctness of the decoder; the thin
FIFO-style interfaces through which actors communicate pro-
vide complete abstraction from the specific implementation
of an actor.

The work presented in this paper is only the starting point
for many potential directions of research. As we have pointed
out, the implementation tools themselves provide many op-
portunities for improvement, involving sophisticated analy-
ses, static scheduling of those parts of a system that can be
statically scheduled, cross-actor optimizations, folding, and
other program transformations and refactorings such as au-
tomatic multi-channelization (i.e. multiplexing the samede-
sign for multiple streams of data). Constructing efficient soft-
ware code generation for CAL (such as the one in [5]), and
combining it with the RTL generation to build families of
hardware/software systems from one common source is an-
other direction of work, as is the construction of backends
that translate dataflow programs to other parallel platforms,
such as multi-core architectures.

7. REFERENCES

[1] J. Eker and J. Janneck, “CAL Language Report,” Tech.
Rep. ERL Technical Memo UCB/ERL M03/48, Univer-
sity of California at Berkeley, Dec. 2003.

[2] J. Thomas-Kerr, J. W. Janneck, M. Mattavelli, I. Bur-
nett, and C. Ritz, “Reconfigurable Media Coding: Self-
describing multimedia bitstreams,” inProceedings of
SIPS’07, Oct. 2007.

[3] C. Lucarz, M. Mattavelli, J. Thomas-Kerr, and J. W. Jan-
neck, “Reconfigurable Media Coding: a new specifica-
tion model for multimedia coders,” inProceedings of
SIPS’07, Oct. 2007.

[4] Edward A. Lee and Thomas M. Parks, “Dataflow Process
Networks,” Proceedings of the IEEE, vol. 83, no. 5, pp.
773–801, May 1995.

[5] G. Roquier, M. Wipliez, M. Raulet, J. Janneck, I. Miller,
and D. Parlour, “Automatic software synthesis of
dataflow program: an MPEG-4 Simple Profile decoder
case study,” inProceedings of SiPS’08, 2008.


