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ABSTRACT

The MPEG Reconfigurable Video Coding (RVC) framework
is a new standard under development by MPEG that aims at
providing a unified high-level specification of current MPEG
video coding technologies. In this framework, a decoder is
built as a configuration of video coding modules taken from
the standard “MPEG toolbox library”. The elements of the
library are specified by a textual description that expresses
the 1/0 behavior of each module and by a reference software
written using the CAL Actor Language. A decoder configura-
tion is written in an XML dialect by connecting a set of CAL
modules. Code generators are fundamental supports that en-
able the direct transformation of a high level specification to
efficient hardware and software implementations. This paper
presents a synthesis tool that from a CAL dataflow program
generates C code and an associated SystemC model. Exper-
imental results of the RVC Expert’s MPEG-4 Simple Profile
decoder synthesis are reported. The generated code and the
associated SystemC model are validated against the original
CAL description which is simulated using the Open Dataflow
environment.

Index Terms— MPEG RVC, CAL Actor Language,
dataflow modeling, software synthesis

1. INTRODUCTION

A large number of successful MPEG video coding standards
have been developed since the first MPEG-1 standard in
1988. The standardization process has always aimed at pro-
viding appropriate forms of specifications for a wide and easy
deployment. While at the beginning MPEG-1 and MPEG-
2 were only specified by textual descriptions, starting with
MPEG-4 C/C++ descriptions, reference software became the
formal specification of the standard. Such descriptions are
composed of non-optimized software packages and face now
many limitations. These monolithic specifications hide the
inherent parallelism and the dataflow structure of the video
coding algorithms. For efficient implementations the refer-
ence software has to be rewritten to exploit this so-called
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parallelism. Meanwhile, the growth of video coding tech-
nologies leads to solutions that are increasingly complex and
more difficult to design. So far, no effort has been made to
profit from the significant overlap between standards.

The observation of these drawbacks of current video stan-
dard specifications led to the development of the Reconfig-
urable Video Coding (RVC) standard. The key concept be-
hind this project is to enable the design of decoders at a higher
level of abstraction. An “abstract” model focusing on modu-
larity, concurrency and reusability is a better starting point
for any design and implementation process. RVC provides
a high-level description of the MPEG standard using as new
form of reference software, for each module of the standard
library, a specific language called CAL. Once the high-level
model is available the challenge is then to develop appropri-
ate tools that implement the design flow and provide the opti-
mization steps necessary for efficient implementations. This
paper presents a non-normative (in terms of relation with the
RVC standard) software synthesis tool called Cal2C that from
a dataflow program generate C code and associated SystemC
model in a completely automated process.

The paper is organized as follows: section [2| introduces
the RVC framework. This is followed by the description of
the CAL actor simulator and synthesis tools for RVC in sec-
tion 3] Synthesis process of the CAL to C transformation
are next explained in section 4] Results on the RVC expert’s
MPEG-4 SP decoder are reported in section [5] Finally con-
clusions and future work are provided in section [6]

2. RVC FRAMEWORK

The MPEG RVC framework is currently under development
by MPEG as part of MPEG-B and MPEG-C standards. RVC
aims at providing a model of specifying existing or com-
pletely new MPEG standards at system-level [1]. An abstract
decoder is built as a block diagram in which blocks define
processing entities called Functional Units (FUs) and connec-
tions represent the data path. RVC provides both a normative
standard library of FUs and a set of decoder descriptions ex-
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Fig. 1. MPEG-4 Simple Profile decoder description

pressed as networks of FUs. Such a representation is modular
and helps the reconfiguration of a decoder by modifying the
topology of the network. RVC mainly focuses on reusability
by allowing decoder descriptions to contain common FUs
across standards.

2.1. FU specification

The CAL Actor Language [2] has been chosen as the lan-
guage of the reference software that specify the normative I/O
behaviors of the modules of the RVC standard library of FUs.
A CAL actor is a computational entity with interfaces (input
and output ports), internal state and parameters. An actor is
strongly encapsulated; it can neither access nor modify the
state of any other actor. An actor may only interact with oth-
ers by sending data (called tokens) along channels. During an
execution actions (also referred as firing an action), it can con-
sume input tokens, produce output tokens and change its in-
ternal state. Each action specifies the number of tokens it con-
sumes and produces. When an action is fired, it has been se-
lected based on the availability of input tokens and optionally
based on additional conditions (called action guards) which
may depend on token values or the current actor state. Action
selection may be further constrained using action schedules
as a Finite State Machine (FSM). Action firing is thus state-
dependent. Finally, action priorities can be used to impose a
partial order among the actions to be selected, in case more
than one action is otherwise enabled. In short, an action is
fireable if it respects the following conditions:

1 — there are the necessary tokens on input ports;
2 — guard clauses, if present, evaluate to true;

3 - the current state enables the action to fire according to the
FSM;
4 — no higher-priority action respects (1), (2) and (3).

2.2. RVC Decoder Description

An RVC decoder is described with the Decoder Description
Language (DDL), an XML dialect that enables the description
of the decoder connectivity. A decoder is a network formed
by a set of interconnected actors. DDL is hierarchical - a net-
work may be a part of a more general network - and is used
to pass parameters to actors. For instance, the graphical rep-
resentation of the macroblock-based MPEG-4 Simple Profile
decoder description is shown Figure [I| The parser and the
inverse DCT (Figure [2)) blocks are hierarchical networks of
actors (each of them described in a separate DDL file). They
are represented with a shadowed block. All other blocks are
atomic actors specified in CAL. Note that for readability, only
one edge is represented when two actors are connected by
more than one edge.

3. SUPPORT TOOLS FOR RVC

3.1. Simulator

CAL is supported by a portable interpreter infrastructure that
can simulate a hierarchical network of actors. This inter-
preter was first used in the Mose project. Moses features
a graphical network editor, and allows the user to monitor
actor execution (actor state and token values). The project
being no longer maintained, it has been superseded by the
Open Dataflow environment (OpenDFE] for short). Contrar-
ily to Moses, this project does not provide a network graph-
ical editor. Networks have been traditionally described in a
textual language called Network Language (NL), which can
be automatically converted to DDL and vice versa. It is also
possible to use the Graphiti editoﬂ to display networks in the

Uhttp://www.tik.ee.ethz.ch/ moses/
Zhttp://opendf.sourceforge.net/
3http://sourceforge.net/projects/graphiti-editor
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Fig. 2. Inverse DCT description

DDL format.

3.2. Software synthesis

It is important to be able to automatically obtain a concrete
software implementation from a dataflow description. The C
language is particularly well-suited as a target language. The
same code can be compiled on any processor, from embedded
DSPs and ARMs to general-purpose microprocessors, which
considerably eases the task of writing a software synthesis
tool. The interest of having an automatic C software synthesis
is two-folded. The code obtained can be executed, in which
case it enables a considerably faster simulation of the dataflow
program and the ability to debug the program using existing
IDEs (Visual Studio, Eclipse CDT). Moreover, the C code
description obtained may be a basis for an optimized tailor-
made decoder. For these reasons, we created the Cal2C tool
(detailed in section [)) that aims at producing functionally-
equivalent, humanly-readable C code from CAL descriptions.

3.3. Hardware synthesis

Another tool is available that converts CAL to HDL [3]. After
parsing, CAL actors are instantiated with the actual values for
their formal parameters. The result is an XML representation
of the actor which is then precompiled (transformation and
analysis steps, including constant propagation, type inference
and type checking, analysis of data flow through variables...),
represented as a sequential program in static single assign-
ment (SSA) form (making explicit the data dependencies be-
tween parts of the program).

Then follows the synthesis stage, which turns the SSA
threads into a web of circuits built from a set of basic opera-
tors (arithmetic, logic, flow control, memory accesses and the
like). The synthesis stage can also be given directives driving
the unrolling of loops, or the insertion of registers to improve
the maximal clock rate of the generated circuit.

The final result is a Verilog file containing the circuit im-
plementing the actor, and exposing asynchronous handshake-
style interfaces for each of its ports. These can be connected
either back-to-back or using FIFO buffers into complete sys-
tems. The FIFO buffers can be synchronous or asynchronous,
making it easy to support multi-clock-domain dataflow de-
signs.

4. CAL2C SOFTWARE SYNTHESIS

4.1. Semantics of CAL dataflow

The system behavior of a dataflow program is determined by
the interactions between actors (i.e. exchange of data tokens).
Such interactions are governed by a Model of Computation
(MoC) that defines which scheduling policies can be used to
fire actors. The CAL language is not related to any particular
dataflow MoCs. Indeed, several forms of dataflow exist to in-
terpret the network from the general dataflow process network
(PN) [4] model with multiple firing rules to the more restric-
tive synchronous dataflow (SDF) one [5,16]. CAL extends the
model in [4] by :

1 — state within actors,

2 — multiple overlapping (non-joinable in the parlance of [4])
firing rules, and

3 — priorities among firing rules.

CAL actors in the standard library often contain multiple
actions and priorities, FSM or guards that lead to state-
dependent or conditional execution. Therefore most of the
CAL actors in the library are closer to the PN model which
is then chosen (as a first milestone) for developing the tool
described in this paper.

transfor- code C,
CAL ||| parser | CAL AST | o — CIL ngneraﬁonﬂ G H
— — =~ _— L _—
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Fig. 3. Cal2C compilation process

When the PN model is chosen to interpret CAL networks,
any environment which supports multithreading may be cho-
sen for implementation. For instance, it can be done using
POSIX threads by translating CAL actors into threads and by
replacing connections with FIFOs. The PN model can also
be executed by a discrete-event (DE) scheduler, such as the
one provided by SystemC. Actors and FIFOs can be easily
translated using SystemC classes. Additionally, its simulation
environment permits high-level programming, well-adapted
to functional verifications. A PN-oriented SystemC model is
expressed as a network of modules communicating with each
other via blocking FIFOs (with an additional way to support



ac: action AC:[i] = OUT:[ saturate( o )]
var
int (size=SAMPLE_SZ) v =
( quant * ( lshift( abs(i), 1) + 1) ) - round,
int (size=SAMPLE_SZ) o =
if i = 0 then 0 else if i < 0 then -v else v end end
do
count
end

:= count + 1;

(a) CAL ““ac” action in the “Inversequant” actor

void Inversequant_ac(
struct Inversequant_variables x_actor_variables ,
int i , int xout )
{ int v, o ;
int _call_6, _call_9;
int _if 7, _if 8 ;
_call_6 = Inversequant_fun_abs(_actor_variables, 1i);
v = _actor_variables->quant % ((_call_6 << 1) + 1)
- _actor_variables->round;
if (1 == 0) {
_if 8 = 0;
} else {
if (i < 0) {
_if. 7 = - v;
} else {
_if 7 = v;
}
_if 8 = _if_7;

}

o= _1if_8;

(_actor_variables—->count) ++;

_call_ 9 = Inversequant_fun_saturate(_actor_variables, o);
*out = _call_9;

(b) C translation of the “ac” action in the “Inversequant” actor

Fig. 4. C translation of a CAL action

token availability). Note that Cal2C does not intend to use
SystemC as an hardware description language but only as a
convenient PN modeling and simulation environment. More-
over, this work is a first step to an efficient “pure C” code gen-
eration (closer to an SDF model than a PN one). In short, the
software synthesis from a network of CAL actors produces
several files as explained in Figure 3] Each NL network is
translated into a header file where FIFOs, modules and sub-
networks are instantiated and connected. CAL actor transla-
tion is done in 2 different parts: the actor code (actions, func-
tions, procedures) to express the functionality and the action
scheduler (priorities, FSMs, guards) to control the execution.
Finally an additional file is created to instantiate the top net-
work and to launch SystemC simulation.

4.2. C code generation: Actors
4.2.1. Actor code translation

Translating the actor code produces a single C file wherein
functions, procedures and actions are translated. The C lan-
guage and compilers impose some limitations on the trans-
lated code. For example, (1) distinct functions should have
different names to avoid linking problems, even if they are

in different actors. Another challenge is (2) the difference
of programming paradigm between the source and the target
language: CAL allows functional constructs that have no di-
rect equivalent in C. The action translation process starts with
an Abstract Syntax Tree (AST) issued from the CAL source
code, and modifies it as needed to meet the previous require-
ments. Function names are prefixed with the actor name to
prevent any potential name clashes; actor parameters are re-
placed by their values (when constant) or transformed to local
variables otherwise; actions are converted to functions where
input and output patterns become parameters. Finally, actor
declarations are ordered by dependencies between locals, so
that a variable or a function is defined before being used. At
this point, we convert the AST to A-calculus, apply Damas-
Milner W-algorithm [7]] to it, and augment the AST with the
type information returned. Types are necessary for correct C
code generation, and type-dependent transformations: we in-
line functions that return lists, and compute list sizes. The
transformed CAL AST is expressed in the C Intermediate
Language (CIL) [8], where CAL functional constructs are re-
placed by imperative ones. C code is generated by calling the
pretty-printer included in the framework.

The actor code translation process is illustrated on fig-
ure {i] Figure is an action from the Inversequant actor
of the RVC reference MPEG4-SP decoder, and figure is
the translated C code. The resulting code exhibits a function
whose name is composed of the actor name and the action
name (requirement (1)). Its parameters are the same as the
action’s, with an additional pointer to a structure containing
the actor variables. The if expression has been transformed
to assignments of temporary variables (_if_7, _if_8) (require-
ment (2)). As a matter of fact, function calls have also become
assignments of temporary variables (_call_6, _call_9) because
CIL semantics requires it. The action output expression is
translated as a pointer parameter whose value is written at
the end of the C function. The synthesized C code shown in
figure4(b)|is functionally-equivalent to the CAL code and re-
mains humanly-readable, which were two requirements listed
in section[3.21

4.2.2. Action scheduling

An action scheduler is created to control the action selection
during execution. Priorities, guards, token consumption rates
and FSM have to be translated to this end. Determining the
overall order of action execution is required to have a con-
sistent evaluation of actions that can be fired. Priorities are
resolved by sorting actions in a total order and by adding a
if-then-else statement around actions wherein the condition
is given by the availability of input tokens and the guards
conditions. FSMs are resolved using switch-case statement.
Finally, the generated file consists of a thread with an infi-
nite loop wherein its body consists of the result of the previ-
ous transformations and actions are replaced with their corre-



sponding C functions.

For instance, a downsampler by N is illustrated figure
[5(a)} It could be written in a simpler manner but this actor en-
ables to highlight key features of the action scheduling trans-
lation. The synthesized C++ code is illustrated figure [5(b)

actor downsampler (N) In = Out :

count := 1;
pass: action In: [x] = Out: [x] end
done: action = guard count = N do count := 1; end
skip: action In: [x] = do count := count + 1; end
schedule fsm pass:
copy ( pass ) —--> discard;
discard ( done ) --> copy;
discard ( skip ) --> discard;
end
priority
done > skip;
end
end
(a) CAL downsampler
struct downsampler_vars {
int count;
int N;
}i
void downsampler::process () {
int fsm_state, _call_6, _call_7,_out_1;
struct downsamplerN_vars _actor_vars;
_actor_variables.count = 1;
fsm_state = 1;
while (1) |
switch (fsm_state) {
case 1:
_call_6 = In->get();
downsampler_pass (&_actor_vars, _call_6, & out_1);

Out->put (_out_1);
fsm_state = 2;

break;
case 2:

if (_actor_vars.count == _actor_vars.N) {
downsampler_done (&_actor_vars) ;
fsm_state = 1;

} else {
_call_7 = In->get();
downsampler_skip (&_actor_vars, _call_7);

fsm_state = 2;
}
break;
}
}
}

(b) Synthesized action scheduler

Fig. 5. Action scheduling (FSM) of CAL actor

4.3. SystemC code generation: Networks

Expressing a NL network in SystemC is relatively straight-
forward: actor or network instantiations are transformed to
module instantiations. A SystemC module is declared using
the SC_MODULE macro. Its effect is that it creates a C++
class that can be used inside a SystemC simulation. For con-
venience, in Cal2C each module is translated to a definition
file (*.h) and an implementation file (*.cpp). There are two

semantic differences between the SystemC implementation
and the NL specification: FIFO channels, while implicit in
NL, must be explicitly created in SystemC. Broadcasting data
from a source to several sinks is transparent in NL, but re-
quires additional logic in SystemC, namely a generic broad-
cast module.

5. RESULTS ON THE MPEG-4 SIMPLE PROFILE
DECODER

In order to certify the correctness of Cal2C code translation,
the first case study is a two-dimensional inverse DCT. The
IDCT is a component of several MPEG standard decoders
and is specified by the new Finite Precision IDCT Specifi-
cation [9] based on [[10]. The algorithm consists of applying
one-dimensional IDCT along the row and column axis of an
8x8 pixel block. The network is composed of 2 input ports,
1 output port and 5 different actors; one actor can be instan-
tiated several times in NL. Incoming tokens from IN port are
dequantized data and a token from SIGNED enables to spec-
ify to the “clip” actor if incoming data are signed or not. The
first row of Table [T] shows the number of files of the respec-
tive programs. An actor becomes a C, a C++ and a header file;
a network simply becomes a header file; the additional C++
file is the main. The second row exhibits the corresponding
source lines of code (SLOC). The testbed consists of apply-
ing a stimulus (streamed by a C-code reference software of
MPEG#4 SP decoder) to the top network and verifying the re-
sponse against an expected result (from the CAL description
simulated compared to a “golden reference” streamed by the
C-code reference software).

IDCT CAL | NL C C++ | H
Number of files 5 1 5 6 6
Code Size (SLOC) 131 25 324 | 386 | 107

Table 1. Code size and number of files automatically gener-
ated for the IDCT

Another synthesized model of a more complex CAL
dataflow program simulated with the Open Dataflow environ-
ment also validate the Cal2C tool. The compilation process
has been successfully applied to the full MPEG-4 Simple
Profile dataflow program written by the MPEG RVC ex-
perts (Figure[T). Table[2]shows that synthesized C-software is
faster than the simulated CAL dataflow program (20 frames/s
instead of 0.15 frames/s), and close to real-time for a QCIF
format (25 frames/s). However it remains slower than the
automatically synthesized hardware description by Cal2ZHDL
[3]. Using Cal2C has also permitted to correct some actors
which had a behavior depending on one particular code gen-
erator. Indeed, they made use of nondeterminism allowed by
CAL (for instance, 2 fireable actions without priority relation-
ship). The way to solve the nondeterminism (not expressible
in C) is implementation-dependent.



MPEG4 SP || Speed | Code size

decoder kMB/S kSLOC
CAL simulator 0.015 34
Cal2C 2 104
Cal2HDL 290 4

Table 2. MPEGA4SP decoder speed and SLOC

The MPEG4 SP dataflow program is composed of 27
atomic actors; atomic actors can be instantiated several times,
for instance there are 42 actor instantiations in this dataflow
program. Its number of SLOC is shown in Table [3] All of
the generated files are successfully compiled by gcc. For
instance, the “ParserHeader” actor inside the “Parser” net-
work is the most complex actor with multiple actions. The
translated C-file (with actions and state variables) includes
1043 SLOC for actions and 1895 for action scheduling. The
original CAL file contains 962 lines of codes as a comparison.

MPEG4 SP decoder || CAL | NL C |C++ | H
Number of files 27 9 27 28 36
Code Size (kSLOC) 2.9 051 58| 37 | 09

Table 3. Code size and number of files automatically gener-
ated for MPEG4 SP decoder

6. CONCLUSION AND FUTURE WORKS

This paper presents a software synthesis tool that enables an
automatic translation of dataflow programs written in CAL,
showing the rules to translate the I/O behaviors (actions, func-
tions and procedures), the relevant control structures (priority,
guard and FSM) as well as the networks. Moreover, the pro-
cess has been successfully applied to automatically translate
the MPEG-4 SP decoder. The results obtained so far show the
efficiency and soundness of the synthezised code.

The next milestone of Cal2C concerns the static schedul-
ing of such dataflow programs. Indeed, its main purpose is to
generate efficient embedded software for multiprocessor tar-
get. Even if the PN interpretation of the network gives rele-
vant results for hardware, it is no longer adapted for software
when it comes to hard real-time implementation. Liveness
and memory boundedness are critical issues that cannot be
guaranteed. More restrictive dataflow models (like SDF mod-
els) enable static scheduling with efficient code generations.
However, only a subset of PN-actors can be scheduled stati-
cally (especially in the RVC standard library). The next step
is to identify static regions that obey SDF restrictions. In-
deed, it is sometimes straightforward to schedule actors (for
instance an actor with one action and no guard is SDF). Un-
fortunately, several actors in the RVC library are not so triv-
ial. Future work will have to provide analysis of such ac-
tors and/or CAL coding guidelines in order to achieve static

scheduling of (parts of) standard decoders.

Once this work is done, it may be possible to generate
both hardware and software for implementation onto hetero-
geneous platforms with processors and programmable logic
devices. Moreover, we are in the process of integrating Cal2C
within the Open Dataflow framework, which should make
various heterogeneous implementations easier to obtain.
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