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Abstract. Background modeling is a key step of background subtraction meth-
ods used in the context of static camera. The goal is to obtain a clearrbankg
and then detect moving objects by comparing it with the current frametulkdix

of Gaussians Model [1] is the most popular technique and presents|guita-
tions when dynamic changes occur in the scene like camera jitter, illumination
changes and movement in the background. Furthermore, the MGM idizaitia
using a training sequence which may be noisy and/or insufficient to ntodel
rectly the background. All these critical situations generate false claggificn

the foreground detection mask due to the related uncertainty. To take atorac
this uncertainty, we propose to use a Type-2 Fuzzy Mixture of Gaussiadsl.
Results show the relevance of the proposed approach in preseraraafxjitter,
waving trees and water rippling.

1 Introduction

The common approach for discriminating moving objects ftbi background is the
background subtraction which is used in the field of videwsillance [2], optical mo-
tion capture [3-5] and multimedia applications [6]. In tbintext, background model-
ing is the first key step to obtain a clean background. The Isishpvay to model the
background is to acquire a background image which doesiitde any moving object.
In some environments, the background isn’'t available andabaays be changed under
critical situations like camera jitter, illumination chges, objects being introduced or
removed from the scene. To take into account these problénobastness and adap-
tation, many background modeling methods have been dexetlapd the most recent
surveys can be found in [2, 7, 8]. These background modelettous can be classified
in the following categories: Basic Background Modeling12}; Statistical Background
Modeling [12, 1, 13], Fuzzy Background Modeling [14, 15] &atkground Estimation
[16-18]. The models the most used are the statistical orfesfilst way to represent
statistically the background is to assume that the histogy ime of intensity values
of a pixel can be modeled by a single Gaussian [9]. Howevenjrmaadal model cannot
handle dynamic backgrounds when there are waving treegr wippling or moving
algae. To solve this problem, the Mixture of Gaussians Mo{@dIGM) has been used
to model dynamic backgrounds [1]. This model has some d&#dges. Background
having fast variations cannot be accurately modeled wihgufew Gaussians (usually
3 to 5), causing problems for sensitive detection. So, aparametric technique was



developed for estimating background probabilities at gl from many recent sam-
ples over time using Kernel density estimation [13] but itilse consuming. Finally,

due to a good compromise between robustness and time/mesuwpryements MGM

are the most used.

In the MGM initialization, an expectation-maximization NE algorithm is used
and allows to estimate MGM parameters from a training secgi@ccording to the
maximum-likelihood (ML) criterion. The MGM is completelyedtain once its parame-
ters are specified. However, because of insufficient or niéds in training sequence,
the MGM may not accurately reflect the underlying distribotof the observations ac-
cording to the ML estimation. It may seem problematical te likelihoods that are
themselves precise real numbers to evaluate MGM with uaiceparameters. To solve
this problem, we propose to model the background by usingpa-ByFuzzy Mixture of
Gaussians Model (T2 FMGM). T2 FMGM was recently developedémgg et al. [19]
to introduce descriptions of uncertain parameters in theMM&2 FMGM has proved
their superiority in pattern classification [19].

The rest of this paper is organized as follows: In the sec®powe presented the
basis of T2 FMGM. Then, the T2 FMGM is used for background nfinden section
3. In the section 4, experiments on indoor and outdoor scenew that T2 FMGM
outperform the crisp MGM when dynamic changes occurs.

2 Type-2 Fuzzy Mixture of Gaussians Model

This section reviews the principle of T2 FMGM developed i8][IMixture of Gaus-

sians Models (MGMs) have been widely used in density maugland clustering.
They have universal approximation ability because theyneadel any density function
closely provided that they contain enough mixture comptsdrhe MGM is composed
of K mixture components of multivariate Gaussian as follows

k
P (0) = Z win (Oa Hi, Ez) (1)
=1
wherer=1 w; = 1 andw; > 0. The multivariate Gaussian distribution is:
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where is the mean vectory | is the covariance matrix andl is the dimensionality

of o. For the sake of simplicity}_ is considered as a diagonal covariance matrix. So,
the MGM (Equation 1) is expressed as a linear combination wfivariate Gaussian
distribution.

To take into account the uncertainty, Zeng et al. [19] prepagcently T2 membership
functions to represent multivariate Gaussian with un@ergean vector or covariance
matrix, and replace the corresponding parts in (Equatidio pyoduce the T2 FMGM
with uncertain mean vector (T2 FMGM-UM) or uncertain vadar(T2 FMGM-UV).
Given ad—dimensional observation vectet the mean vectop, and the diagonal



covariance matrixy_ = diag (0%, ...,03), the multivariate Gaussian with uncertain

mean vector is:
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In the case of uncertain covariance matrix, it's defined as:

0 (o,u,ij) - W@xp [—; (01;“1)21 ..exp [—; (Oda_d“d)jm)
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wherefi andé denote uncertain mean vector and covariance matrix raégplyctBe-
cause, there is no prior knowledge about the parameter tainttyr practically Zeng et
al. [19] assume that the mean and standard deviation vamnaittervals with uniform
possibilities, i.e.u € [,u,ﬁ] oro € [o,7]. Each exponential component in Equation
3 and Equation 4 is the Gaussian primary membership fun€hti¥) with uncertain
mean or standard deviation as shown in Fig.1. The shadedrrégithe footprint of
uncertainty (FOU). The thick solid and dashed lines dentmddwer and upper MFs.
In the Gaussian primary MF with uncertain mean, the upper $4F i

f(o;ﬁ,o), ifo<p
h(o) =<1, ifp<o<m (5)

floim,o), ifo>n

wheref (o; p1, o) = exp {—% (O;M)T andf (o; i, 0) = exp [—; (Ogﬂ)g].

The lower MF is:
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In the Gaussian primary MF with uncertain standard deviattbe upper MF is
h (o) = f (o; u,@) and the lower MF ig (o) = f (0; u, o).

The factork,, andk, control the intervals in which the parameter vary as follows

p=p—kno, O=p+kno, kyel0,3], (7)
1
oc=k,o, T= 0 k, €0.3,1]. (8)

Because a one-dimensional gaussian has 99.7% of its plitpaiass in the range
of [u — 30, u+ 30], Zeng et al. [19] constraif,, € [0,3] andk, € [0.3,1]. These
factors also control the area of the FOU. The bigggror the smallek,,, the larger the
FOU, which implies the greater uncertainty.



a) b)

Fig. 1.a): Atthe left, the Gaussian primary MF with uncertain mean. b): At the,rtgh Gaussian
primary MF with uncertain std having uniform possibilities. The shaded reigithe FOU. The
thick solid and dashed lines denote the lower and upper MFs. Picture fi@m [

3 Application to Background Modeling

Each pixel is characterized by its intensity in the RGB cslmce. So, the observation
is a vectorX, in the RGB space andl= 3. Then, the MGM is composed & mixture
components of multivariate Gaussian as follows:

P(Xi) = zk:wi,m (quzgt» Em) 9)
i=1

where the parameters akeis the number of distributionsy; ; is a weight associated to
the it» Gaussian at time with meany, , and standard deviatioEi’t. 7 is a Gaussian
probability density function:
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For the T2 FMGM-UM, the multivariate Gaussian with unceartaiean vector is:
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with p. € {Hc’ﬁc} andc € {R, G, B}.
For the T2 FMGM-UV, the multivariate Gaussian with uncerte@riance vector is:

W(XtuiI):;H@wp 1 (Xtc_“cf 12)
ST et 2\ o

whereo. € [o.,7.] andc € {R, G, B}.

Both the T2 FMGM-UM and T2 FMGM-UV can be used to model the lggiokind
and we can expect that the T2 FMGM-UM will be more robust thHem T2 FMGM-
UV. Indeed, only the means are estimated and tracked clyrmar time in the MGM
maintenance. The variance and the weights are unstableraelibble as explained by
Greiffenhagen et al. [20].



3.1 Training

Training a T2 FMGM consists to estimate the parameteds’ and the factok,,, or k,,.
Zeng et al. [19] set the facto#s,, andk, as constants according to prior knowledge.
In our work, they are fixed depending to the video (see Sea)oifhus, parameters
estimation of T2 FMGM includes three steps:

— Step 1: Choose K between 3 and 5.

— Step 2: Estimate MGM parameters by an EM algorithm.

— Step 3: Add the factok,,, or k, to MGM to produce T2 FMGM-UM or T2 FMGM-
uv.

Once the training is made, a first foreground detection cgrbeessed.

3.2 Foreground Detection

Foreground detection consists in classifying the curréxgl@as background or fore-
ground. By using the ratie= 7, = w;/0;, we firstly ordered théx Gaussians as in
[1]. This ordering supposes that a background pixel comedp to a high weight with
a weak variance due to the fact that the background is moseptrehan moving ob-
jects and that its value is practically constant. The fitsbaussian distributions which
exceed certain threshold are retained for a background distribution:

B = argminy, (Zle Wit > T) (13)

The other distributions are considered to represent afovegl distribution. When the
new frame incomes at timeést 1, a match test is made for each pixel. For this, we use
the log-likelihood, and thus we are only concerned with émgth between two bounds
of the log-likelihood interval, i.e.H (X;) = |In (h(X;)) — In (h(X¢))|. In Fig 1.a),

the Gaussian primary MF with uncertain mean has:

o | Xemp| if X, <p—k X; >
o 5 S H m0 Ol t = MU + kmo'
H(X) =0 Xl | klXeml | (14)
ooz + e e i — ko < Xy < p+kpo
In Fig 1.b), the Gaussian primary MF with uncertain standbdation has
1 X, — uf?
H(X;) = 15

1 ando are the mean and the std of the original certain T1 MF withogeutainty.
Both (14) and (15) are increasing functions in terms of theal®n | X, — pu|. For
example, given a fixed,,, the farther theX; deviates fromu, the largerH (X;) is
in (12), which reflects a higher extent of the likelihood unamty. This relation-ship
accords with the outlier analysis. If the outli& deviates farther from the center of the
class-conditional distribution, it has a largér(.X,) showing its greater uncertainty to
the class model. So, a pixel is ascribed to a Gaussian if:

H(X,) < ko (16)



wherek is a constant threshold determined experimentally andleq@as. Then,
two cases can occurs: (1) A match is found with one ofAh&aussians. In this case,
if the Gaussian distribution is identified as a backgroune, dine pixel is classified as
background else the pixel is classified as foreground. (2nitch is found with any of
the K Gaussians. In this case, the pixel is classified as foregrdrthis step, a binary
mask is obtained. Then, to make the next foreground detedtie parameters must be
updated.

3.3 Maintenance

The T2 FMGM Maintenance is made as in the original MGM [1] dkfes:

— Case 1: A match is found with one of the K Gaussians. For themedtcomponent,
the update is done as follows:

Wi t+1 = (1 — Oz) Wit + o (17)
whereq is a constant learning rate.

pip+1 = (1= p) pie + pXea (18)
071 =1 =p) o, +p(Xeg1 — i) (Xeg1 — firr)” (19)

wherep = an (Xiy1, i, 32;).
For the unmatched componentsando are unchanged, only the weight is replaced
by wj i1 = (1 — a)wj.

— Case 2: No match is found with any of thi€¢ Gaussians. In this case, the least
probable distribution k is replaced with a new one with paeters:

wg,t+1 = Low Prior Weight (20)
M1 = Xeg (21)
oi .41 = Large Initial Variance (22)

Once a background maintenance is made, another foregretection can be pro-
cessed and so on.

4 Experimental Results

We have applied the T2 FMGM-UM and T2 FMGM-UV algorithms talaor and
outdoor videos where different critical situations occke lcamera jitter, movement in
the background, illuminations change and shadows. Theriexpets are conducted to
compare the results of T2 FMGM with the crisp MGM [1]. Notetttize best results
were obtained with the valu@sand0.9, respectively for the factors,, andk,,.



4.1 Indoor Scene Videos

PETS 2006 dataset [21] provides several video presentishgoinsequence in video
surveillance context. In these video sequences, theréarenation changes and shad-
ows. Fig.2 presents the results obtained by the MOG [1], &&WMGM-UM and the
T2 FMGM-UV. It is noticed that the results obtained using T.eFMGM-UM and the
T2 FMGM-UV are better than using the crisp MOG. The silhoetire well detected
with the T2 FMGM-UM. T2 FMGM-UV is more sensitive because tagiance is more
unstable over time.

Fig. 2. Background subtraction with illumination changes (PETS 2006 dataseth left to right
respectively, the original image (Frame 165), the segmented image&dtay the MGM, the
result obtained using the T2 FMGM-UM and the T2 FMGM-UV

4.2 Outdoor Scene videos

We have chosen three videos presenting different dynaneigbaunds: camera jitter,
waving trees and water rippling. The first outdoor sequeheé was tested involved
a camera mounted on a tall tripod and comes from [22]. The wiagsed the tripod
to sway back and forth causing nominal motion in the scenéigr3, the first row
shows different current image. The second row and the thiedstow respectively the
ground truth and the results obtained by the MGM proposetiint[is evident that the
motion causes substantial degradation in performancefdureh and fith rows show
respectively the results obtained by the T2 FMGM-UM and tRFMGM-UV. As for
indoor scene, the T2 FMGM-UM and T2 FMGM-UV give better réstihan the crisp
MOG. Numerical evaluation has been done in term of falsetipesand false negative.
In Table.1 we can see that the T2 FMGM-UM and T2 FMGM-UV givesl¢otal error
than the MGM. Furthermore, as shows in Fig.4, the T2 FMGM-UMerates the least
false positive which is important in the context of targetedéion. We have also
tested our method to the sequences Campus and Water Sutfaxtecome from [23].
Fig.5 shows the robustness of T2 FMGM-UM against wavingstseed water rippling.

5 Conclusion

Type 2 Fuzzy Mixture of Gaussians Model (T2 FMGM) is an elégachnique to
model the background and allows to handle critical situegtidke camera jitter, illumi-
nation changes, movement in the background and shadow. ZR&GM-UM is more



Frame 271 Frame 373 Frame 410 Frame 465

3

Fig. 3. The first row are the original images, the second row are the groutiditnages, the third
row are the results obtained by using the MGM, the fourth row are the m@stalined using the
T2 FMGM-UM and the firth row are the result obtained by using the T2 FMGWI-

Algorithm

T2 FMGNM-UN LN

T2 FNMGNM-UNMN

MGM [1]

Total errors

O 5000 10000 15000 20000

Fig. 4. Overall performance



robust than the T2 FMGM-UV due to a better estimation of thamihan the variance.
One future direction of this work is an adaptive version & pitoposed method which
allows to determine dynamically the optimal number of Gaurss

Sequence: Campus Sequence: Water Surface

Frame 1110 Frame 1210 Frame 1120 Frame 1590

Fig. 5.Background subtraction with dynamic background. The first row sttbevoriginal frames
for Campus and Water Surface sequences. The second row fgrédseisegmented images ob-
tained by the MGM. The Third and the fourth rows illustrate the result obtairsény the T2
FMGM-UM and the T2 FMGM-UV respectively
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