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Abstract. Background modeling is a key step of background subtraction meth-
ods used in the context of static camera. The goal is to obtain a clean background
and then detect moving objects by comparing it with the current frame. Mixture
of Gaussians Model [1] is the most popular technique and presents some limita-
tions when dynamic changes occur in the scene like camera jitter, illumination
changes and movement in the background. Furthermore, the MGM is initialized
using a training sequence which may be noisy and/or insufficient to modelcor-
rectly the background. All these critical situations generate false classification in
the foreground detection mask due to the related uncertainty. To take into account
this uncertainty, we propose to use a Type-2 Fuzzy Mixture of GaussiansModel.
Results show the relevance of the proposed approach in presence of camera jitter,
waving trees and water rippling.

1 Introduction

The common approach for discriminating moving objects fromthe background is the
background subtraction which is used in the field of video surveillance [2], optical mo-
tion capture [3–5] and multimedia applications [6]. In thiscontext, background model-
ing is the first key step to obtain a clean background. The simplest way to model the
background is to acquire a background image which doesn’t include any moving object.
In some environments, the background isn’t available and can always be changed under
critical situations like camera jitter, illumination changes, objects being introduced or
removed from the scene. To take into account these problems of robustness and adap-
tation, many background modeling methods have been developed and the most recent
surveys can be found in [2, 7, 8]. These background modeling methods can be classified
in the following categories: Basic Background Modeling [9–11], Statistical Background
Modeling [12, 1, 13], Fuzzy Background Modeling [14, 15] andBackground Estimation
[16–18]. The models the most used are the statistical ones: The first way to represent
statistically the background is to assume that the history over time of intensity values
of a pixel can be modeled by a single Gaussian [9]. However, a unimodal model cannot
handle dynamic backgrounds when there are waving trees, water rippling or moving
algae. To solve this problem, the Mixture of Gaussians Models (MGM) has been used
to model dynamic backgrounds [1]. This model has some disadvantages. Background
having fast variations cannot be accurately modeled with just a few Gaussians (usually
3 to 5), causing problems for sensitive detection. So, a non-parametric technique was



developed for estimating background probabilities at eachpixel from many recent sam-
ples over time using Kernel density estimation [13] but it istime consuming. Finally,
due to a good compromise between robustness and time/memoryrequirements MGM
are the most used.

In the MGM initialization, an expectation-maximization (EM) algorithm is used
and allows to estimate MGM parameters from a training sequence according to the
maximum-likelihood (ML) criterion. The MGM is completely certain once its parame-
ters are specified. However, because of insufficient or noisydata in training sequence,
the MGM may not accurately reflect the underlying distribution of the observations ac-
cording to the ML estimation. It may seem problematical to use likelihoods that are
themselves precise real numbers to evaluate MGM with uncertain parameters. To solve
this problem, we propose to model the background by using a Type-2 Fuzzy Mixture of
Gaussians Model (T2 FMGM). T2 FMGM was recently developed byZeng et al. [19]
to introduce descriptions of uncertain parameters in the MGM. T2 FMGM has proved
their superiority in pattern classification [19].

The rest of this paper is organized as follows: In the section2, we presented the
basis of T2 FMGM. Then, the T2 FMGM is used for background modeling in section
3. In the section 4, experiments on indoor and outdoor scenesshow that T2 FMGM
outperform the crisp MGM when dynamic changes occurs.

2 Type-2 Fuzzy Mixture of Gaussians Model

This section reviews the principle of T2 FMGM developed in [19]. Mixture of Gaus-
sians Models (MGMs) have been widely used in density modelling and clustering.
They have universal approximation ability because they canmodel any density function
closely provided that they contain enough mixture components. The MGM is composed
of K mixture components of multivariate Gaussian as follows:
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whereµ is the mean vector,
∑

is the covariance matrix andd is the dimensionality
of o. For the sake of simplicity,

∑

is considered as a diagonal covariance matrix. So,
the MGM (Equation 1) is expressed as a linear combination of multivariate Gaussian
distribution.
To take into account the uncertainty, Zeng et al. [19] proposed recently T2 membership
functions to represent multivariate Gaussian with uncertain mean vector or covariance
matrix, and replace the corresponding parts in (Equation 1)to produce the T2 FMGM
with uncertain mean vector (T2 FMGM-UM) or uncertain variance (T2 FMGM-UV).
Given ad−dimensional observation vectoro, the mean vectorµ, and the diagonal
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In the case of uncertain covariance matrix, it’s defined as:
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σ1 ∈ [σ1, σ1] , . . . , µd ∈ [σd, σd]

whereµ̃ and σ̃ denote uncertain mean vector and covariance matrix respectively. Be-
cause, there is no prior knowledge about the parameter uncertainty, practically Zeng et
al. [19] assume that the mean and standard deviation vary within intervals with uniform
possibilities, i.e.,µ ∈

[

µ, µ
]

or σ ∈ [σ, σ]. Each exponential component in Equation
3 and Equation 4 is the Gaussian primary membership function(MF) with uncertain
mean or standard deviation as shown in Fig.1. The shaded region is the footprint of
uncertainty (FOU). The thick solid and dashed lines denote the lower and upper MFs.
In the Gaussian primary MF with uncertain mean, the upper MF is:
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The lower MF is:
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In the Gaussian primary MF with uncertain standard deviation, the upper MF is
h (o) = f (o;µ, σ) and the lower MF ish (o) = f (o;µ, σ).

The factorkm andkν control the intervals in which the parameter vary as follows:

µ = µ − kmσ, µ = µ + kmσ, km ∈ [0, 3] , (7)

σ = kνσ, σ =
1

kν

σ, kν ∈ [0.3, 1] . (8)

Because a one-dimensional gaussian has 99.7% of its probability mass in the range
of [µ − 3σ, µ + 3σ], Zeng et al. [19] constrainkm ∈ [0, 3] andkν ∈ [0.3, 1]. These
factors also control the area of the FOU. The biggerkm or the smallerkν , the larger the
FOU, which implies the greater uncertainty.



a) b)

Fig. 1.a): At the left, the Gaussian primary MF with uncertain mean. b): At the right, the Gaussian
primary MF with uncertain std having uniform possibilities. The shaded region is the FOU. The
thick solid and dashed lines denote the lower and upper MFs. Picture from [19]

3 Application to Background Modeling

Each pixel is characterized by its intensity in the RGB colorspace. So, the observationo
is a vectorXt in the RGB space andd = 3. Then, the MGM is composed ofK mixture
components of multivariate Gaussian as follows:
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where the parameters areK is the number of distributions,ωi,t is a weight associated to
the ith Gaussian at timet with meanµi,t and standard deviation

∑

i,t. η is a Gaussian
probability density function:
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For the T2 FMGM-UM, the multivariate Gaussian with uncertain mean vector is:
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andc ∈ {R,G,B}.

For the T2 FMGM-UV, the multivariate Gaussian with uncertain variance vector is:
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whereσc ∈ [σc, σc] andc ∈ {R,G,B}.
Both the T2 FMGM-UM and T2 FMGM-UV can be used to model the background
and we can expect that the T2 FMGM-UM will be more robust than the T2 FMGM-
UV. Indeed, only the means are estimated and tracked correctly over time in the MGM
maintenance. The variance and the weights are unstable and unreliable as explained by
Greiffenhagen et al. [20].



3.1 Training

Training a T2 FMGM consists to estimate the parametersµ,
∑

and the factorkm or kν .
Zeng et al. [19] set the factorskm andkν as constants according to prior knowledge.
In our work, they are fixed depending to the video (see Section4). Thus, parameters
estimation of T2 FMGM includes three steps:

– Step 1: Choose K between 3 and 5.
– Step 2: Estimate MGM parameters by an EM algorithm.
– Step 3: Add the factorkm or kν to MGM to produce T2 FMGM-UM or T2 FMGM-

UV.

Once the training is made, a first foreground detection can beprocessed.

3.2 Foreground Detection

Foreground detection consists in classifying the current pixel as background or fore-
ground. By using the ratio= rj = ωj/σj , we firstly ordered theK Gaussians as in
[1]. This ordering supposes that a background pixel corresponds to a high weight with
a weak variance due to the fact that the background is more present than moving ob-
jects and that its value is practically constant. The firstB Gaussian distributions which
exceed certain thresholdT are retained for a background distribution:

B = argminb

(

∑b

i=1
ωi,t > T

)

(13)

The other distributions are considered to represent a foreground distribution. When the
new frame incomes at timest + 1, a match test is made for each pixel. For this, we use
the log-likelihood, and thus we are only concerned with the length between two bounds
of the log-likelihood interval, i.e.,H (Xt) =

∣
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In Fig 1.b), the Gaussian primary MF with uncertain standarddeviation has
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µ andσ are the mean and the std of the original certain T1 MF without uncertainty.
Both (14) and (15) are increasing functions in terms of the deviation |Xt − µ|. For
example, given a fixedkm, the farther theXt deviates fromµ, the largerH (Xt) is
in (12), which reflects a higher extent of the likelihood uncertainty. This relation-ship
accords with the outlier analysis. If the outlierXt deviates farther from the center of the
class-conditional distribution, it has a largerH (Xt) showing its greater uncertainty to
the class model. So, a pixel is ascribed to a Gaussian if:

H (Xt) < kσ (16)



wherek is a constant threshold determined experimentally and equal to 2.5. Then,
two cases can occurs: (1) A match is found with one of theK Gaussians. In this case,
if the Gaussian distribution is identified as a background one, the pixel is classified as
background else the pixel is classified as foreground. (2) Nomatch is found with any of
theK Gaussians. In this case, the pixel is classified as foreground. At this step, a binary
mask is obtained. Then, to make the next foreground detection, the parameters must be
updated.

3.3 Maintenance

The T2 FMGM Maintenance is made as in the original MGM [1] as follows:

– Case 1: A match is found with one of the K Gaussians. For the matched component,
the update is done as follows:

ωi,t+1 = (1 − α) ωi,t + α (17)

whereα is a constant learning rate.

µi,t+1 = (1 − ρ) µi,t + ρXt+1 (18)

σ2
i,t+1 = (1 − ρ) σ2

i,t + ρ (Xt+1 − µi,t+1) (Xt+1 − µi,t+1)
T (19)

whereρ = αη (Xt+1, µi,
∑

i).
For the unmatched components,µ andσ are unchanged, only the weight is replaced
by ωj,t+1 = (1 − α) ωj,t.

– Case 2: No match is found with any of theK Gaussians. In this case, the least
probable distribution k is replaced with a new one with parameters:

ωk,t+1 = Low Prior Weight (20)

µk,t+1 = Xt+1 (21)

σ2
k,t+1 = Large Initial Variance (22)

Once a background maintenance is made, another foreground detection can be pro-
cessed and so on.

4 Experimental Results

We have applied the T2 FMGM-UM and T2 FMGM-UV algorithms to indoor and
outdoor videos where different critical situations occur like camera jitter, movement in
the background, illuminations change and shadows. The experiments are conducted to
compare the results of T2 FMGM with the crisp MGM [1]. Note that the best results
were obtained with the values2 and0.9, respectively for the factorskm andkν .



4.1 Indoor Scene Videos

PETS 2006 dataset [21] provides several video presenting indoor sequence in video
surveillance context. In these video sequences, there are illumination changes and shad-
ows. Fig.2 presents the results obtained by the MOG [1], the T2 FMGM-UM and the
T2 FMGM-UV. It is noticed that the results obtained using theT2 FMGM-UM and the
T2 FMGM-UV are better than using the crisp MOG. The silhouettes are well detected
with the T2 FMGM-UM. T2 FMGM-UV is more sensitive because thevariance is more
unstable over time.

Fig. 2.Background subtraction with illumination changes (PETS 2006 dataset). From left to right
respectively, the original image (Frame 165), the segmented image obtained by the MGM, the
result obtained using the T2 FMGM-UM and the T2 FMGM-UV

4.2 Outdoor Scene videos

We have chosen three videos presenting different dynamic backgrounds: camera jitter,
waving trees and water rippling. The first outdoor sequence that was tested involved
a camera mounted on a tall tripod and comes from [22]. The windcaused the tripod
to sway back and forth causing nominal motion in the scene. InFig.3, the first row
shows different current image. The second row and the third one show respectively the
ground truth and the results obtained by the MGM proposed in [1]. It is evident that the
motion causes substantial degradation in performance. Thefourth and fith rows show
respectively the results obtained by the T2 FMGM-UM and the T2 FMGM-UV. As for
indoor scene, the T2 FMGM-UM and T2 FMGM-UV give better results than the crisp
MOG. Numerical evaluation has been done in term of false positive and false negative.
In Table.1 we can see that the T2 FMGM-UM and T2 FMGM-UV give less total error
than the MGM. Furthermore, as shows in Fig.4, the T2 FMGM-UM generates the least
false positive which is important in the context of target detection. We have also
tested our method to the sequences Campus and Water Surface which come from [23].
Fig.5 shows the robustness of T2 FMGM-UM against waving trees and water rippling.

5 Conclusion

Type 2 Fuzzy Mixture of Gaussians Model (T2 FMGM) is an elegant technique to
model the background and allows to handle critical situations like camera jitter, illumi-
nation changes, movement in the background and shadow. The T2 FMGM-UM is more



Frame 271 Frame 373 Frame 410 Frame 465

Fig. 3.The first row are the original images, the second row are the ground truth images, the third
row are the results obtained by using the MGM, the fourth row are the resultobtained using the
T2 FMGM-UM and the firth row are the result obtained by using the T2 FMGM-UV

Fig. 4. Overall performance



robust than the T2 FMGM-UV due to a better estimation of the mean than the variance.
One future direction of this work is an adaptive version of the proposed method which
allows to determine dynamically the optimal number of Gaussians.

Sequence: Campus Sequence: Water Surface

Frame 1110 Frame 1210 Frame 1120 Frame 1590

Fig. 5.Background subtraction with dynamic background. The first row shows the original frames
for Campus and Water Surface sequences. The second row presents the segmented images ob-
tained by the MGM. The Third and the fourth rows illustrate the result obtainedusing the T2
FMGM-UM and the T2 FMGM-UV respectively
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