
HAL Id: hal-00336487
https://hal.science/hal-00336487v1

Submitted on 4 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Code generation for the MPEG Reconfigurable Video
Coding framework: From CAL actions to C functions
Matthieu Wipliez, Ghislain Roquier, Mickael Raulet, Jean François Nezan,

Olivier Déforges

To cite this version:
Matthieu Wipliez, Ghislain Roquier, Mickael Raulet, Jean François Nezan, Olivier Déforges. Code
generation for the MPEG Reconfigurable Video Coding framework: From CAL actions to C func-
tions. Multimedia and Expo, (ICME) 2008 IEEE International Conference on, Jun 2008, Hannover,
Germany. pp.1049 - 1052, �10.1109/ICME.2008.4607618�. �hal-00336487�

https://hal.science/hal-00336487v1
https://hal.archives-ouvertes.fr

CODE GENERATION FOR THE MPEG RECONFIGURABLE VIDEO CODING
FRAMEWORK: FROM CAL ACTIONS TO C FUNCTIONS

Matthieu Wipliez, Ghislain Roquier, Mickaël Raulet, Jean-François Nezan, Olivier Déforges

IETR laboratory, UMR CNRS 6164, Image and Remote Sensing Group
INSA de Rennes, 20 Avenue des Buttes de Coësmes, 35043 RENNES Cedex, FRANCE

Contacts: {mwipliez, groquier, mraulet, jnezan, odeforge}@insa-rennes.fr

ABSTRACT

The MPEG Reconfigurable Video Coding (RVC) framework
aims to provide a unified specification of all video technol-
ogy. In the RVC framework, a decoder is build in a modu-
lar manner as a configuration of video tools taken from the
MPEG toolbox library. The elements of the library are spec-
ified using the CAL Actor Language (CAL). CAL is a data
flow based language providing computation models that are
concurrent and modular. This paper describes a synthesis tool
that from a CAL specification generates an executable SW
module. Code generators are fundamental supports for the
deployment and success of the MPEG RVC framework. This
paper focuses on the automatic translation of a CAL action,
which is the first step to a complete actor translation. The
techniques described here is capable of automatically gener-
ating C executable code according to a finite set of rules. This
approach has been used to obtain a C implementation of the
IDCT module which is one element of the RVC library. The
generated code is validated versus the original CAL descrip-
tion and simulated using the Open Dataflow environment.

Index Terms— MPEG RVC, Caltrop Actor Language

1. INTRODUCTION

A large number of successful MPEG video coding standards
have been developed since the first MPEG-1 standard final-
ized in 1988. The standardization process has always aimed
to provide appropriate forms of specifications for a wide
and easy deployment. While at the beginning MPEG-1 and
MPEG-2 were only specified by textual descriptions, starting
with MPEG-4 C/C++ descriptions, called reference software,
became the formal specification of the standard and the tex-
tual part became an additional component with the aim of
clarifing the reference SW descriptions. Such descriptions
are composed of non-optimized software packages and face
now many serious limitations. For real implementations all
reference SW have to be re-written from the beginning to
optimize performances and to adapt it to current design flow
methodologies. Such monolithic specifications hide the in-
herent parallelism and data flow structure of the video coding

algorithms, features that are necessary to be exploited for
efficient implementations. In the meanwhile the growth of
video coding technologies leads to solutions that are increas-
ingly complex to be designed and present significant overlap
between standards. Moreover, several codecs and associated
profile levels have to coexist in a single product. This is the
result of the standardization process: adding tools in a stan-
dard involves a new process in which all the technology is
modified. In short, the process has to be improved to face its
limitations and to avoid bottlenecks in the future.

The observation of these drawbacks of current video stan-
dard specification formalism led to the development of the
Reconfiguration Video Coding (RVC) standard. The key con-
cept was to design a decoder at high system level to avoid low-
level implementation considerations during the system spec-
ification stage. An ”abstract” model focusing on function-
ality and concurrency is the specification formalism chosen,
which is the best starting point for any design and implemen-
tation process. RVC provides a high-level description of the
MPEG standard using a specific language called CAL. Once
the high level model/specification is available the challenge is
then to develop appropriate tools providing optimized imple-
mentations. Indeed, efficient SW/HW implementations need
hardware and software code generators. Some work have be
done to directly generate HDL from a CAL model [1]. The
work presented here aims to automatically generate optimized
software for multiprocessor and multicore targets. To achieve
these ambitious objectives the first step is to provide a non-
normative software synthesis tool called Cal2C. It is designed
to become a tool available in the RVC framework. The main
issue is to deal with various syntaxes allowed in the CAL lan-
guage. This paper proposes a safe process to handle CAL
operators, analyze them and generate functional C code. The
paper is organized as follows: sections 2 and 3 introduce the
RVC framework. This is followed by a description of Cal2C
functionalities. As part of the MPEG-4 SP decoder, the IDCT
case study is reported in section 5. Finally conclusions and
several perspectives are given in section 6.

2. RVC FRAMEWORK

2.1. Scope

The MPEG RVC framework is currently under development
by MPEG as the part of MPEG-B and MPEG-C standards. It
aims to provide a new interoperable model of defining MPEG
standards at system-level [?]. An abstract decoder is built in
a block diagram manner in which blocks define processing
entities called Functional Units (FUs) and connections repre-
sent the data path. RVC provides both a normative standard
library of FUs and a set of decoder descriptions as a network
of FUs. Such a representation is modular and helps the re-
configuration of a decoder by modifying the topology of the
network or adding new FUs to describe new standards. RVC
mainly focuses on reusability by allowing decoder descrip-
tions to contain common FUs across standards.

2.2. FU specification

The Cal Actor Language (CAL) has been chosen as the nor-
mative language to specify the standard library of FUs. CAL
is a suitable language for the modular approach of RVC. CAL
is a dataflow oriented language created as part of the Ptolemy
project [4]. A CAL actor is a computational entity with in-
terfaces (input and output ports), internal state and parame-
ters. An actor is strongly encapsulated; an actor can neither
access nor modify the state of any other actor. An actor may
only interact with others by sending data (called tokens) along
communication channels. When an actor is executed (fired),
it consumes tokens from input ports, changes its internal state
and produces tokens on the output ports. An actor is executed
in a sequence of steps called actions. An action is a piece of
computation that an actor performs during firing. An action is
specified by the number of tokens it consumes and produces.
An actor may contain any number of actions. When an actor
is fired, it has to select one of them based on the availability
of input tokens and optionally based on conditions relating
to their values or the current state. In addition, it may also
contain constructs that constrain action selection. An action
guard enables conditional action firing according to input to-
kens or state variables. A finite state machine (FSM) allows
actions to be scheduled according to the current state of the
actor and action priorities enabled to order action selection.
In short, an action is fireable if it respects the following con-
ditions:
√

there are sufficient tokens on input ports and adequate
room on output ports;

√
guard clauses evaluate to true;

√
the current state enables the action to fire according to
the FSM;

√
no higher-priority action may fire.

2.3. RVC Decoder Description

On the other hand, the Decoder Description Language (DDL)
enables the description of the decoder structure. A decoder is
a network formed by a set of interconnected actors. DDL is an
XML-based language that can be used to specify the topology
of the network. DDL is hierarchical - a network may be a part
of a more general network - and is used to pass parameters
to actors. Decoder descriptions may be generated automati-
cally by a graphical composition tool called Moses1 that is a
CAL editing and simulation framework. The Open Dataflow
project2 is an environment for building and simulating CAL
actor models with a textual description of the network (using
the Network Language) that may be automatically translated
into an RVC decoder description. This non-normative tool
also provides an automatic HDL synthesis from a CAL net-
work [1].

3. CODE GENERATION PRELIMINARIES

3.1. Concurrent programming

A dataflow network is inherently concurrent. Understanding
concurrency brings with it understanding of how the whole
system behaves and how interactions between actors are done.
Scheduling policy and data transfer mechanism are the key
concepts when interpreting a dataflow network. CAL does
not have any bias towards any particular network interpre-
tation. In other words, a CAL network exhibits neither the
scheduling policy nor the data transfer mechanism. Formal
models are used to interpret a network. This paper does not
intend to draw up an exhaustive list of models: cf. [5] for
more details. However, two particular models are chosen to
demonstrate dataflow network interpretation. On one hand,
the Process Network (PN) model [6] is efficient when describ-
ing asynchronous systems. The PN model is determinate: the
output result is not affected by the scheduling algorithm. The
downside of this model is the asynchronous execution. It re-
quires run-time scheduling, which makes the system verifi-
cation harder. On the other hand, the synchronous dataflow
(SDF) model has more constraints but is suitable for fixed-rate
systems [7]. It is especially well-adapted for software synthe-
sis; a network analysis may lead to compile-time scheduling.
This being so, indications about real-time behavior or execu-
tion in bounded memory can be determined at compile-time.
However, the fixed-rate requirement makes it impossible to
model more flexible systems like those in video coding. In-
deed, CAL actors in the standard library often contain mul-
tiple actions and an abundance of priorities, FSM or guard
clauses. It leads to state-dependent and/or conditional execu-
tion that makes it difficult to analyze the network. Then, the
PN model is a more appropriate model if implementing such
networks.

1http://www.tik.ee.ethz.ch/ moses/
2http://opendf.sourceforge.net/

http://www.tik.ee.ethz.ch/~moses/
http://opendf.sourceforge.net/

3.2. Software synthesis

The goal of the C code generator is to produce a code that
behaves exactly like the CAL reference code. Non-automatic
verification is a manual comparison between the generated
and the original files. This requires the source code produced
to be recognizable. Another approach to the checking of pro-
gram behavior, required for a decoder to be qualified as RVC-
compliant, is to assert that the tokens consumed and produced
by each actor equal the tokens described by the norm. In both
cases, it is preferable to generate a C code that has a similar
structure to the CAL code: an actor is translated into a file,
an action into a function. There are different means of trans-
lating CAL to C while meeting the above requirements. The
first is to use source transformation programming systems,
such as Stratego/XT or TXL. Such systems are very general,
and based on context-free grammars and rules. Their purpose
is to perform transformation from a language to another. An-
other possibility, since we are specifically aiming at produc-
ing C code, is to use C-specific transformation tools. SUIF
(Stanford University Intermediate Format) and CIL (C Inter-
mediate Language [8]) can parse C code to an Intermediate
Representation (IR), perform transformations on it, and print
it back to C. These systems have the advantages of producing
a clean representation and a pretty-printer, without having to
learn another language or have a complete toolset. We chose
CIL over SUIF because its IR has clean semantics, as detailed
in section 4.3, and produces a higher quality C code.

4. FROM CAL ACTIONS TO C FUNCTIONS

Translating the actions of a CAL actor to C functions consists
of the following steps: a CAL file is parsed to an abstract
tree representation of the source program (section 4.1); this
tree is then annotated with type information (section 4.2), and
converted to CIL Intermediate Representation (section 4.3).
Finally, CIL pretty-prints the IR to C code.

4.1. CAL parser

The CAL parser parses a CAL file using an LALR parser cre-
ated from the rules described in the Caltrop Language Report
[4], and produces an Abstract Syntax Tree (AST). In this tree,
a variable become a Var node, an access to the ith element of
a list, an I node, unary and binary operations, U and B nodes
respectively. Assignments, function applications, and condi-
tionals are transformed in Assign, App, and If nodes. The
AST holds the same semantic information as the source code,
but its form makes it easier to process automatically.

4.2. Type inference

The AST obtained at this stage may not have complete type
information, as CAL allows the programmer to omit type an-
notations of declared variables whereas C does not. This

makes it necessary to guess types when they are not explicit:
this step is called type inference. To this end, we use the type
system and the W algorithm defined by Damas and Milner
in [?]. This algorithm is able to infer a type-scheme for any
expression in the λ-calculus formalism, extended with the let
clause. A λ-expression is either a term, a function application,
a function definition, or a local definition:

e := x | e1e2 | λx.e | let x = e1 in e2

One property of this formalism is that it can be used to ex-
press any computable function. To compute the type of CAL
expressions, we transform them to their equivalent λ-calculus
representation using the rules shown in Table 1. Arithmetic
operations become λ-terms with known types: unary and bi-
nary operators become functions with one and two arguments
respectively. An access to a list element and a conditional
become function applications. The nth function takes two
parameters of types α list and integer, and returns an element
of type α. The ”if” function accepts a boolean parameter, two
parameters of type α, and returns a result of type α.

CAL abstract syntax λ-calculus
Var(v) v
I(list, e) (nth list) e
U(op, e) op e
B(e1, op, e2) (op e1) e2
App(e, e1, e2, . . . , en−1, en) (. . . ((e e1) e2). . . en−1) en

If(econd, ethen, eelse) ((if econd) ethen) eelse

Lambda([p1, p2, . . . , pn],
[v1 = e1, . . . , vn = en],
e)

λp1.λp2. . . . λpn.
let v1 = e1 in
. . .
let vn = en in
e

Table 1. Conversion rules

After conversion, we apply the W algorithm to the λ-
expressions associated with each declared variable. If there
is a type error, the algorithm fails, and the process stops. Oth-
erwise, the variables are updated with the type information
obtained.

4.3. Converting to CIL

C expressions can be purely functional or make use of side-
effects: functions are allowed to modify global state or lo-
cal arguments. CIL goes further by distinguishing control
flow statements and instructions among side-effect expres-
sions, from functional side-effect free expressions. Control
flow statements include branch statements (goto, while. etc.)
and conditionals. Instructions are assignments and function
calls. Expressions include constants, unary and binary op-
erations, and the operator address. Lvalues, that can appear
at the left of an assignment, are expressed in terms of host

and offset, and have precise typing rules. The conversion of
CAL AST to CIL is done by a translation function hereinafter
called T . This function takes a CAL expression, and returns
a CIL expression and a list of statements, with no particular
difference between control flow statements and instructions.
The environment Γ maps variables names to their correspond-
ing CIL lvalues. The newV ar function creates a new tempo-
rary variable named β, and returns Lval(β). The expression
resulting from T (e) is shown below:

V ar var → Lval(Γ(var))
B(e1, op, e2)→ BinOp(op, T (e1), T (e2))

U(op, e)→ UnOp(op, T (e))
I(host, e)→ Lval(host, Index(T (e), 0))

Assign(edst, esrc)→ T (edst)

App(efun, eargs)
If(econd, ethen, eelse)

}
→ newV ar()

The statement list returned for side-effect free expressions
is empty. An assignment returns a Set instruction, a function
application and a Call instruction with result placed in β while
a conditional returns a statement of the form:

If(ec, et, ee) (ec, sc) = T (ec), (et, st) = T (et)
(ee, se) = T (ee)
[sc; If(T (ec), [st; β = et], [se; β = ee])]

5. RESULTS

The CAL-based MPEG4-SP standard is used to validate the C
code generation. Yet, about 90% of actions in the decoder are
successfully translated with CAL2C (the remaining 10% ac-
tions are located in the bitstream parser subnetwork [?] which
require few other investigations). In order to test the function-
ality, the case study application is the two-dimensional IDCT,
which is part of the MPEG4-SP decoder. CAL networks are
implemented using the PN model; the POSIX threads are used
to implement actors and circular buffers are used for commu-
nication. Actions are automatically generated by CAL2C and
are subroutines handled by the actor thread. Two IDCT are
used [?, 10]. The first one is depicted in Figure 1, composed
of 2 input ports, 1 output port and 5 actors. They have al-
most the same scheme, separately applying one-dimensional
IDCT along the row and column axis of an 8×8 pixel block.
The testbench consists of applying stimulus (a random num-
ber generator) to the top network and verifying the response
against an expected result (from the original CAL descrip-
tion simulated using the Open Dataflow environment). Many
scenarios have been tested during which no errors occur that
confirm the validity of CAL2C. Note that the compiling is
done faster in this approach and the use of C enhances IDCT
run times.

1D-IDCT Tranpose 1D-IDCT Tranpose

Clip

IN

SIGNED

OUT

Fig. 1. 2D-IDCT CAL network

6. CONCLUSION AND FUTURE WORK

This paper has presented a brief overview of the software used
to translate CAL actions to C functions. The process has been
successfully applied to translate the normative IDCT, as well
as most of the actions of RVC MPEG-4 SP decoder actors.
However, FSM, action priorities and guard clauses are not
yet considered. The automatic actor code generation must
be completed by considering the relevant control structures
of the CAL language. Moreover, network implementation
(which has been a manual task until now) has to be automat-
ically generated from the top network. Finally, the ultimate
goal of the software synthesis in RVC is to provide a tool that
enables to generate code from CAL actors as well as sched-
ule and map the network onto SW architectures. To this end,
network analysis and CAL coding practice rules may lead to
compile-time scheduling of MPEG standards.

REFERENCES

[1] Jorn Janneck, “From actors to gates,” in CHESS seminar,
October 2007, UC Berkeley.

[2] C. Lucarz, M. Mattavelli, J. Thomas-Kerr, and J. Janneck, “Re-
configurable media coding: a new specification model for mul-
timedia coders,” in Proceedings of SIPS’07, Oct. 2007.

[3] J. Eker and J. Janneck, “Cal language report,” Tech. Rep. ERL
Technical Memo UCB/ERL M03/48, University of California
at Berkeley, Dec. 2003.

[4] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dor, e Sonia, and S. Yuhong, “Taming heterogeneity—the
ptolemy approach,” in Proceedings of the IEEE, Jan. 2003,
vol. 91.

[5] G. Kahn, “The semantics of a simple language for parallel
programming,” in Proceedings of IFIP ’74, Aug. 1974, pp.
471–475.

[6] E. A. Lee and D. G. Messerschmitt, “Static scheduling of
synchronous data flow programs for digital signal processing,”
IEEE Trans. Comput., vol. 36, no. 1, pp. 24–35, 1987.

[7] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “CIL:
An Infrastructure for C Program Analysis and Transforma-
tion,” in Proceedings of CC 2002, Apr. 2002, pp. 213–228.

[8] Luis Damas and Robin Milner, “Principal type-schemes for
functional programs,” in Proceedings of POPL ’82, 1982, pp.
207–212.

[9] J. Thomas-Kerr, J. Janneck, M. Mattavelli, I. Burnett, and
C. Ritz, “Reconfigurable media coding: self-describing multi-
media bitstreams,” in Proceedings of SIPS’07, Oct. 2007.

[10] “IEEE standard specifications for the implementations of 8x8
inverse discrete cosine transform,” IEEE Std 1180-1990, Mar.
1991.

[11] ISO / IEC 23002-2, “Fixed-point 8x8 IDCT and DCT,” 2007.

	 Introduction
	 RVC framework
	 Scope
	 FU specification
	 RVC Decoder Description

	 Code generation preliminaries
	 Concurrent programming
	 Software synthesis

	 From CAL actions to C functions
	 CAL parser
	 Type inference
	 Converting to CIL

	 Results
	 Conclusion and future work

