N
N

N

HAL

open science

Software synthesis of CAL actors for the MPEG
reconfigurable Video Coding framework

Ghislain Roquier, Matthieu Wipliez, Mickael Raulet, Jean Francois Nezan,

Olivier Déforges

» To cite this version:

Ghislain Roquier, Matthieu Wipliez, Mickael Raulet, Jean Francois Nezan, Olivier Déforges. Software
synthesis of CAL actors for the MPEG reconfigurable Video Coding framework. Image Processing,
2008. ICIP 2008. 15th IEEE International Conference on, Oct 2008, San Diego, United States.

pp.1408 - 1411, 10.1109/ICIP.2008.4712028 . hal-00336481

HAL Id: hal-00336481
https://hal.science/hal-00336481
Submitted on 5 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00336481
https://hal.archives-ouvertes.fr

SOFTWARE SYNTHESIS OF CAL ACTORS FOR THE MPEG RECONFIGURABLE VIDEO
CODING FRAMEWORK

Ghislain Roquier, Matthieu Wipliez, Mickaél Raulet, Jean-Frangois Nezan, Olivier Déforges

IETR laboratory, UMR CNRS 6164, Image and Remote Sensing Group
INSA de Rennes, 20 Avenue des Buttes de Coésmes, 35043 RENNES Cedex, FRANCE
Contacts: {groquier, mwipliez, mraulet, jnezan, odeforge } @insa-rennes.fr

ABSTRACT

The MPEG Reconfigurable Video Coding (RVC) frame-
work aims to provide a unified specification of all video tech-
nology. In this framework, a decoder is modularly built as
a configuration of video coding tools taken from the MPEG
toolbox library. The elements of the library are specified us-
ing the CAL Actor Language. CAL is a dataflow based lan-
guage providing computation models that are concurrent and
modular. This paper presents a synthesis tool that from a CAL
specification generates multithread C code. Indeed, code gen-
erators are fundamental supports for the deployment and suc-
cess of the MPEG RVC framework. This paper focuses on the
automatic translation of a CAL actor. This approach has been
used to obtain a C implementation of the inverse DCT module
which is a part the MPEG-4 Simple Profile decoder, chosen
by MPEG experts to validate the RVC approach. The gen-
erated code and the associated translated model are validated
against the original CAL description and simulated using the
Open Dataflow environment.

Index Terms— MPEG RVC, CAL Actor Language,
dataflow modeling, software synthesis

1. INTRODUCTION

A large number of successful MPEG video coding standards
have been developed since the first MPEG-1 standard in 1988.
The standardization process has always aimed to provide ap-
propriate forms of specifications for a wide and easy deploy-
ment. While at the beginning MPEG-1 and MPEG-2 were
only specified by textual descriptions, starting with MPEG-
4 C/C++ descriptions, reference software became the formal
specification of the standard. Such descriptions are composed
of non-optimized software packages and face now many limi-
tations. For real implementations all reference SW have to be
rewritten to optimize performances and to adapt it to current
design methodologies. Such monolithic specifications hide
the inherent parallelism and data flow structure of the video
coding algorithms, features that are necessary to be exploited
for efficient implementations. In the meanwhile the growth of

video coding technologies leads to solutions that are increas-
ingly complex to be designed and present significant overlap
between standards. Consequently, adding tools in a standard
involves a new process in which all the technology is mod-
ified. The observation of these drawbacks of current video
standard specification formalism led to the development of
the Reconfiguration Video Coding (RVC) standard. The key
concept was to design a decoder at a higher level of abstrac-
tion. An “abstract” model focusing on functionality and con-
currency is the specification formalism chosen, which is the
best starting point for any design and implementation process.
RVC provides a high-level description of the MPEG standard
using a specific language called CAL. Once the high-level
model is available the challenge is then to develop appropriate
tools providing optimized implementations. The work pre-
sented here aims to provide a non-normative software synthe-
sis tool called Cal2C. This paper proposes an automated pro-
cess to handle CAL actors, analyze them and generate multi-
thread C code. The paper is organized as follows: section 2
introduces the RVC framework. This is followed by the de-
scription of the CAL actor synthesis process. As part of the
MPEG-4 SP decoder, the inverse DCT case study is reported
in section 4. Finally conclusions and future work are given in
section 5.

2. RVC FRAMEWORK

The MPEG RVC framework is currently under development
by MPEG as the part of MPEG-B and MPEG-C standards.
It aims to provide a model of defining MPEG standards at
system-level [1]]. An abstract decoder is built as a block dia-
gram in which blocks define processing entities called Func-
tional Units (FUs) and connections represent the data path.
RVC provides both a normative standard library of FUs and
a set of decoder descriptions expressed as networks of FUs.
Such a representation is modular and helps the reconfigura-
tion of a decoder by modifying the topology of the network.
RVC mainly focuses on reusability by allowing decoder de-
scriptions to contain common FUs across standards.



Interpo-
late

DC
addr

TEXTURE DECODING

split

pred™

Scan!

AC
pred!

Quant-
ize!

DCT!

(|

MOTION COMPENSATION

Interpo-
late

T 1

1111001... o
[0 001...] i =
c addr
BITSTREAM & DC

Scan™

AC
pred™

Quant-
ize!

DCT!

DECODED DATA

Interpo-
late

Scan™

AC
pred !

(]

Fig. 1. MPEG-4 Simple Profile decoder description

2.1. FU specification

The CAL Actor Language (CAL) has been chosen as the nor-
mative language to specify the standard library of FUs. CAL
is a dataflow oriented language created as part of the Ptolemy
project [2]. A CAL actor is a computational entity with inter-
faces (input and output ports), internal state and parameters.
An actor is strongly encapsulated; it can neither access nor
modify the state of any other actor. An actor may only in-
teract with others by sending data (called tokens) along chan-
nels. During an execution (called firing), it maps input tokens
onto output tokens and changes its internal state. An actor
may contain any number of actions that are computations per-
formed during a firing. An action is specified by the number
of tokens it consumes and produces. When an actor is fired,
it has to select one of them based on the availability of in-
put tokens and optionally based on conditions (called action
guards) relating to their values or current state. In addition,
action selection may be constrained using action schedules
specified with Finite State Machines (FSM). Action firing is
then state-dependent. Finally, action priorities impose a par-
tial order among actions to select. In short, an action is fire-
able if it respects the following conditions: (1) there are suffi-
cient tokens on input ports and adequate room on output ports;
(2) guard clauses evaluate to true; (3) the current state enables
the action to fire according to the FSM; (4) no higher-priority
action respects (1), (2) and (3).

2.2. RVC Decoder Description

The Decoder Description Language (DDL) enables the de-
scription of the decoder structure. A decoder is a network
formed by a set of interconnected actors. DDL is an XML-
based language that can be used to specify the topology of
the network. DDL is hierarchical - a network may be a part
of a more general network - and is used to pass parameters

to actors. For instance, the graphical representation of the
macroblock-based MPEG-4 Simple Profile decoder descrip-
tion is shown Figure[I] The parser and the inverse DCT block
are hierarchical, otherwise all blocks are atomic actors. Note
that only one egde is represented to simplify the decoder when
two actors are connected by more than one edge. Decoder
descriptions may be generated automatically by a graphical
composition tool called Mose that is a CAL editing and
simulation framework. The Open Dataflow projecis also an
environment for building and simulating CAL actor models
with a textual description of the network (using the Network
Language) that may be automatically translated into an RVC
decoder description.

2.3. Network interpretation

The whole system behavior is conditioned by interactions be-
tween actors. Those interactions are governed by a Model of
Computation (MoC) that defines which scheduling policy is
used to execute actors and how communication is done be-
tween them. CAL does not have any bias towards any par-
ticular MoC. In other words, a CAL network exhibits neither
the scheduling policy nor the communication. As a conse-
quence, an RVC decoder description may behave differently
depending on the MoC used. This paper does not intend to
draw up an exhaustive list of models (cf. [3] for more de-
tails). Nonetheless, two dataflow-related MoCs are chosen to
demonstrate network interpretation. On one hand, the Process
Network (PN) model [4] is efficient when describing asyn-
chronous systems. The PN model is deterministic: the output
result is not affected by the scheduling algorithm. However,
it requires run-time scheduling, which makes the system veri-
fication harder. On the other hand, the Synchronous Dataflow

Uhttp://www.tik.ee.ethz.ch/ moses/
Zhttp://opendf.sourceforge.net/


http://www.tik.ee.ethz.ch/~moses/
http://opendf.sourceforge.net/

(SDF) model is suitable for fixed-rate systems [5]]. In SDF, all
computation and communication may be statically scheduled.
As a consequence, real-time execution and bounded memory
usage can be known at compile-time. However, the fixed-rate
requirement makes it difficult to model more flexible systems
like those in video coding. Indeed, CAL actors in the standard
library often contain multiple actions and an abundance of pri-
orities, FSM or guard clauses. It leads to state-dependent or
conditional execution hardly modelizable with the SDF for-
malism. Conversely, the PN model is a model of choice if
implementing such networks.

3. CAL ACTOR SYNTHESIS

3.1. Action translation

Actions of an actor are translated to equivalent C functions in
several steps. A CAL source file is parsed to an Abstract Syn-
tax Tree (AST) using the rules described in Caltrop Language
Report [2]]. It holds the same information as CAL source
code: both functional and imperative coding styles are used,
some variables are missing a type, and actions have differ-
ent semantics than functions. To generate decent C code, this
AST needs to be transformed and fully typed. First, to ease
both typing and code generation, actions are considered just
as other functions, whose parameters are actions ports. The
next step, type inference, consists in annotating declarations
nodes with type information. To this end, we use the type sys-
tem along with the W algorithm defined by Damas and Milner
in [6]. This algorithm is able to infer a type-scheme for any
expression expressed in the A-calculus formalism, extended
with the let clause. A property of this formalism is that any
computable function can be expressed using it: each CAL ex-
pression is converted to A-calculus and typed by W. The type
information allows other AST transformations that are type-
dependent. For the sakes of simplicity and efficiency, CAL
lists are modeled as C arrays, requiring list declarations to be
updated with computed size information. Another require-
ment imposed by the target language is that locally-allocated
arrays can not be returned on the stack. CAL functions that re-
turn a list are thus transformed to take an additional output list
parameter instead, and calls to these functions are modified
accordingly. A final transformation is replacing purely func-
tional constructs by imperative ones. At this point, the AST
is converted to CIL (C Intermediate Language [7]). CIL is a
framework and an intermediate language that is both lower-
level and more precise than ASTs: it disambiguates C syn-
tactic constructs and embeds type information. This allows
seamless translation of expressions and types. C code is gen-
erated by calling the pretty-printer included in the framework.

3.2. Guard and priority resolutions

Determining a total order of actions is required to have a con-
sistent evalutation of actions during execution. To this end,

(S

-
actor MUX () int i1,

al: action il:[datal,
guard s = true
endaction

int 12, bool sel ==> int o :
sel:[s] ==> o:[data]

az2: action i2:[data], sel:[s] ==> o:[data]

endaction

priority

al > a2;
endpriority
endactor

Fig. 2. if-then-else statement in a basic multiplexer actor

considering both action priority and guard may be of help.
For instance, an actor with priority and guard is depicted Fig-
ure 2} It is a basic multiplexer with 2 actions tagged al and
a2, 3 input ports i/, i2 and sel and 1 output port 0. During
a firing, the actor puts the token from either i/ or i2 on o ac-
cording to the boolean value of the token from sel. Action
tagged al contains a guard clause that constrains the firing.
The firing condition for a/ is the availability of tokens on i/
and sel ports but also that the control token value s is true
(due to the guard clause) whereas only the availability of in-
put tokens is required for a2. Without priority statement, this
actor is nondeterministic. Indeed, if the two actions fulfill
their firing conditions, it is not possible to determine which
action will be fired and then, there is more than one possible
output result for the same inputs tokens. To avoid this non-
determinism, action priorities introduce a partial order among
the actions that contrain action selection. An action may fire
if no higher-priority action is fireable. In the example, al will
be selected even if a2 also fulfill the firing conditions. For-
mally, the total order is determined as follows; (1) first con-
sider untagged actions, (2) actions without priority statements
and finally (3) actions with priority statements. then sort ac-
tion according to priority if actions have priority statements
or according to the document order otherwise.

3.3. Action scheduling

CAL actors may include finite state machine (FSM) to sched-
ule their actions. It consists of a set of states and a set of
actions (view as transitions). An action may be fired only if
its current state is in accordance with the FSM statement. Fig-
ure 3| depicts the graphical representation of the textual FSM
inside the ”add” actor from the decoder description. Nodes
and edges respectively represent states and actions. This ac-
tor adds the prediction error (from the texture decoder) to the
prediction (from the motion compensation decoder). Actions
schedules constrain action selection according to the current
state of actors. For instance, when the current state of ”add”
is “motion”, only motion and done actions can be evaluated
for firing. Formally, FSM translation is done according to the




@
other

newVop
done )\ fextureOnly

combine I l texture
other N~ done

motionOnly

done

motion

Fig. 3. Graphical representation of the FSM inside the “add”
actor

following state-transition mechanisms: (1) each state of the
FSM is a label in the C code; (2) the first label in the code
is the initial state; (3) each label is followed by function calls
to the translated actions (sorted like in which are transi-
tions from this state to others; (4) unconditional branch (goto
statement) is used after each function call to the next state.

4. RESULTS

The PN model is chosen to interpret CAL networks (cf. sec-
tion 2.3). Any environments which support multithreading
may be chosen to implement PN model. For instance it can
be done with POSIX threads by translating CAL actors into
threads and by replacing connections with FIFOs. However,
low-level considerations such as communication or sched-
uler implementation, render this solution time-consuming
and error prone. Another approach for PN implementation is
Systemdf] [8] whose simulation environment permits high-
level programming, well-adapted to functional verifications.
A PN-oriented SystemC application is expressed as a net-
work of modules communicating with each other via block-
ing FIFOs. SystemC comes with an efficient data-sensitive
scheduler suitable for dataflow programming. CAL actors are
translated into SystemC modules and networks become an
instanciation of modules and FIFOs. In order to test the func-
tionality, the case study application is the two-dimensional
inverse DCT, which is part of the MPEG-4 SP decoder. More
precisely, it is the new normative inverse DCT as specified in
[9] and given in Figure {] It consists of separately applying
one-dimensional IDCT along the row and column axis of an
8x 8 pixel block. The network is composed of 2 input ports,
1 output port and 7 actors. The testbench consists of applying
stimulus (a random number generator) to the top network and
verifying the response against an expected result (from the
CAL description simulated using the Open Dataflow environ-
ment). It has been successfully applied with consistent results
between the original and the synthesized networks.

3http://www.systemc.org/

Fig. 4. CAL network of the DCT-! block

5. CONCLUSION AND FUTURE WORK

This paper has presented a brief overview of the process that
translates CAL actors into C code. The process has been
successfully applied to translate the normative IDCT, as well
as most actors inside the MPEG-4 SP decoder description.
Moreover, a network implementation has been automatically
generated from the top network and simulated using the Sys-
temC environment. The results obtained so far show the effi-
ciency and soundness of the synthezised code. But as far as
software is concerned, the PN model faces limitations when
it comes to hard real-time implementation. Future work will
have to provide network analysis and CAL coding guidelines
in order to achieve compile-time scheduling of most MPEG
RVC decoder descriptions. More precisely, we plan to auto-
matically transform CAL networks into an SDF-related rep-
resentation that will allow us to statically schedule and map
the resulting model onto multiprocessor architectures.

6. REFERENCES

[1] C.Lucarz, M. Mattavelli, J. Thomas-Kerr, and J. Janneck, “Re-
configurable media coding: a new specification model for mul-
timedia coders,” in Proceedings of SIPS’07, Oct. 2007.

[2] J. Eker and J. Janneck, “Cal language report,” Tech. Rep. ERL
Technical Memo UCB/ERL MO03/48, University of California
at Berkeley, Dec. 2003.

[3] Edward A. Lee, “Embedded software,” Advances in Computers,
vol. 56, pp. 56-97, 2002.

[4] G. Kahn, “The semantics of a simple language for parallel pro-
gramming,” in Proceedings of IFIP '74, Aug. 1974, pp. 471-
475.

[5] E. A. Lee and D. G. Messerschmitt, “Static scheduling of
synchronous data flow programs for digital signal processing,”
IEEE Trans. Comput., vol. 36, no. 1, pp. 24-35, 1987.

[6] Luis Damas and Robin Milner, “Principal type-schemes for
functional programs,” in Proceedings of POPL ’82, 1982, pp.
207-212.

[7]1 G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “CIL:
An Infrastructure for C Program Analysis and Transformation,”
in Proceedings of CC 2002, Apr. 2002, pp. 213-228.

[8] Thorsten Grotker, System Design with SystemC, Kluwer Aca-
demic Publishers, Norwell, MA, USA, 2002.

[9] ISO /IEC 23002-2, “Fixed-point 8x8 IDCT and DCT,” 2007.


http://www.systemc.org/

	 Introduction
	 RVC framework
	 FU specification
	 RVC Decoder Description
	 Network interpretation

	 CAL actor synthesis
	 Action translation
	 Guard and priority resolutions
	 Action scheduling

	 Results
	 Conclusion and future work
	 References

