
HAL Id: hal-00336477
https://hal.science/hal-00336477v1

Submitted on 4 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of automatically generated multi-core code
for the LTE RACH-PD algorithm

Maxime Pelcat, Slaheddine Aridhi, Jean François Nezan

To cite this version:
Maxime Pelcat, Slaheddine Aridhi, Jean François Nezan. Optimization of automatically generated
multi-core code for the LTE RACH-PD algorithm. DASIP 2008, Nov 2008, Bruxelles, Belgium. �hal-
00336477�

https://hal.science/hal-00336477v1
https://hal.archives-ouvertes.fr

Optimization of automatically generated multi-core
code for the LTE RACH-PD algorithm

Maxime Pelcat
IETR/INSA, UMR CNRS 6164,

Rennes, France
mpelcat@insa-rennes.fr

Slaheddine Aridhi
Texas Instruments, CIV Division,

Villeneuve Loubet, France
saridhi@ti.com

Jean-François Nezan
IETR/INSA, UMR CNRS 6164,

Rennes, France
jnezan@insa-rennes.fr

Abstract— Embedded real-time applications in communication
systems require high processing power. Manual scheduling devel-
oped for single-processor applications is not suited to multi-core
architectures. The Algorithm Architecture Matching (AAM)
methodology optimizes static application implementation on
multi-core architectures.
The Random Access Channel Preamble Detection (RACH-PD) is
an algorithm for non-synchronized access of Long Term Evolu-
tion (LTE) wireless networks. LTE aims to improve the spectral
efficiency of the next generation cellular system. This paper de-
scribes a complete methodology for implementing the RACH-PD.
AAM prototyping is applied to the RACH-PD which is modelled
as a Synchronous DataFlow graph (SDF). An efficient implemen-
tation of the algorithm onto a multi-core DSP, the TI C6487, is
then explained. Benchmarks for the solution are given.

I. INTRODUCTION
The recent evolution of digital communication systems

(voice, data and video) has been dramatic. Over the last two
decades, low data-rate systems have been replaced or aug-
mented by systems capable of data rates of several Mbit/s,
supporting multimedia applications (such as DSL, cable mo-
dems, 802.11b/a/g/n wireless local area networks, 3G and
WiMAX). The 3GPP Long Term Evolution (LTE) represents a
recent part of this evolution, enabling data rates beyond hun-
dreds of Mbit/s in potentially very wide cells.

As communication systems have evolved, the resulting in-

crease in data rates has necessitated higher system algorithmic
complexity. A more complex system requires greater flexibil-
ity in order to function with different protocols in diverse envi-
ronments. Additionally, there is an increased need for the sys-
tem to support multiple interfaces and multi-component de-
vices. Consequently, this requires the optimization of device
parameters over varying constraints, such as performance, area
and power. Achieving this device optimization requires a good
understanding of the application complexity and the choice of
an appropriate architecture to support this application.

System on a Chip (SoC) with several cores such as multi-

core DSPs is becoming the standard basic element used to
build complex telecommunication systems. The task of dis-
tributing pieces of an algorithm over a multi-component archi-
tecture is not straightforward. When performed manually, the

result is inevitably a sub-optimal solution. There is a need for
new methodologies that allow the exploration of several solu-
tions thus producing a more optimal result. For the current
work, the methodology of Algorithm-Architecture Matching
(AAM, previously called AAA [6]) is employed using the Par-
allel Real-time Embedded Executives Scheduling Method
(PREESM) tool. The PREESM tool is an open framework
which provides a flexible method for exploring architectures
suited for deterministic applications. More than just a simula-
tion tool, PREESM can generate code. Associated with well-
optimized code, communication and synchronization, the
automatic generation leads to an efficient algorithm implemen-
tation.

This article presents an overview of the LTE Random Ac-

cess Channel (RACH) preamble detection algorithm and the
PREESM tool. Subsequently, the preamble detection applica-
tion is described using a Synchronous DataFlow graph (SDF).
The virtual prototyping of this application over multi-
processor architectures using PREESM tool features is then
detailed. The target architecture is a multi-core DSP from
Texas Instruments, the C6487. An implementation onto this
DSP is performed with optimized inter-core communication
and synchronizations using Direct Memory Access (DMA).
Finally future work is discussed and conclusions are given.

II. PREAMBLE DETECTION PROCESS
The RACH is a contention-based uplink channel used

mainly for initial transmission requests from the User Equip-
ment (UE) to the evolved base station (eNodeB) for connec-
tion to the network. The UE seeking connection with a base
station sends its signature in a RACH preamble dedicated time
and frequency window in accordance with a predefined pre-
amble format. Signatures have special auto-correlation and
inter-correlation properties that maximize the ability of the
eNodeB to distinguish one UE from another. The RACH pre-
amble procedure is implemented in the LTE eNodeB to detect
and identify each user’s signature and is dependent on the cell
size and the system bandwidth. We assume that the eNodeB
has the capacity to handle the processing of this RACH pre-
amble detection every millisecond in a worst case scenario.

Fig. 1 Random Access Channel Preamble Detection (RACH-PD) Algorithm

Fig. 2 A Random Access Slot Structure

The preamble is sent over a specified time-frequency re-
source, denoted as a slot, available with a certain cycle period
and a fixed bandwidth. Within each slot, a guard period (GP)
is reserved at each end to maintain time orthogonality between
adjacent slots [1]. This preamble-based random access slot
structure is shown in Figure 2.

The case study in this article assumes a RACH-PD for a cell

size of 115 km. This is the largest cell size supported by LTE
and also the case requiring the most processing power. Ac-
cording to [2], preamble format#3 is used with 21,012 com-
plex samples as a cyclic prefix for GP1, followed by a pream-
ble of 24,576 samples followed by the same 24,576 samples
repeated. In this case the slot duration is 3 ms which gives a
GP2 of 21,996 samples.

As per Figure 1, the algorithm for the RACH preamble de-
tection can be summarized in the following steps [1]:

• After the cyclic prefix removal, the preprocessing
(Preproc) function isolates the RACH bandwidth, by
filtering with downsampling and then transforms the
data into the frequency domain.

• Next, the circular correlation (CirCorr) function cor-
relates data with several pre-stored preamble root se-
quences (or signatures) in order to discriminate be-
tween simultaneous messages from several users. It
also applies an IFFT to return to the temporal domain
and calculates the energy of each root sequence corre-
lation.

• Then, the noisefloor threshold (NoiseFloorThr) func-
tion collects these energies and estimates the noise
level for each root sequence.

• Finally, the peak search (PeakSearch) function detects
all signatures sent by the users in the current time
window. It additionally evaluates the transmission
timing advance corresponding to the approximate
user distance.

In general, depending on the cell size, three parameters of

RACH may be varied: the number of receive antennas, the
number of root sequences and the number of times the same
preamble is repeated. The 115 km cell case displayed in Figure
1 implies 4 antennas, 64 root sequences, and 2 repetitions.

Preamble
bandwidth

GP2GP1
time

RACH burst

2x N-sample preamble
n ms

1

4

3

2

Preamble Processing: Antenna#3 second copy of the preamble
Preamble Processing: Antenna#2 second copy of the preamble

Circular

Correlation

(64 repetitions)

IFFT | |2

Complex
conjugation

Zero
padding

Root preamble #2
freq-response

Root preamble #1
freq-response

IFFT | |2Zero
padding

Complex
conjugation

… Preamble Processing:
Antenna#1 first copy of
the preamble

Preamble Processing: Antenna#2 first copy of the preamble

Preamble Processing: Antenna#4 first copy of the preamble
Preamble Processing: Antenna#3 first copy of the preamble

Noise Floor
Threshold

(64 repetitions)

Noise floor
estimation Noise floor

estimation

Peak search

…

Peak Search

…

Sum of the energies of
the 8 preambles

(64 repetitions)

Circular

Correlation

(64 repetitions)

IFFT | |2

Complex
conjugation

Zero
padding

Root preamble #2
freq-response

Root preamble #1
freq-response

IFFT | |2Zero
padding

Complex
conjugation

…

Preamble Processing: Antenna#4 second copy of the preambleDelay

800µs

DFT

Subcarrier
demapping

PreProcessing

BPF

DFT

Subcarrier
demapping

PreProcessing

BPF

Preamble Processing:
Antenna#1 second copy
of the preamble

III. THE ALGORITHM ARCHITECTURE MATCHING (AAM)
Currently, development tools for processors are primarily

based on the C-language and an associated compilation tool.
The major issue with a monolithic syntax is the inability to
express parallelism. One solution is to use a Real-Time Oper-
ating System (RTOS) and to describe threads and their com-
munication links (Mailboxes and pipes). Unfortunately, the
application model used in an RTOS is too complex to handle
multi-processor architectures when the number of threads in-
creases [3]. For this reason, there is a need to explore method-
ologies better adapted at expressing the inherent parallelism
within the application. Algorithm Architecture Matching
(AAM [4]) is an example of one of these methodologies.

Algorithm Graph Architecture Graph ConstraintsAlgorithm Graph Architecture Graph Constraints

Generated Code
Implementation

graphGenerated Code

Graph transformations
AAM algorithms

Graph transformations
AAM algorithms

User :
Virtual prototyping
Profiling analysis

User :
Virtual prototyping
Profiling analysis

Fig. 3 PREESM Description

Algorithm Architecture Matching (AAM) maps an algo-
rithm to a physical architecture given a set of constraints. The
algorithm is described within PREESM using the algorithm
graph (Figure 3). It relies on a description model which
matches the application behavior. In the case of deterministic
systems (including signal, image and communication applica-
tions), dataflow graphs have proven to be an efficient repre-
sentation [5][6] for transformation-oriented systems and het-
erogeneous multi-component architectures. The algorithm
graph (Figure 3) in PREESM is a Synchronous DataFlow
graph (SDF) suitable for multi-processor architecture imple-
mentations [7]. Each vertex of the SDF represents an operation
at coarse grain (equivalent of C function) and each edge repre-
sents a data dependency between the two operations at the end
vertex. The vertices can be hierarchical, so allowing the de-
scription of the application at different resolutions. Thus, the
SDF specifies the potential parallelism used in the matching
step. The finest resolution vertex is called atomic operation;
this type of operation may be described in a programming lan-
guage such as C, VHDL, C++.

Within the PREESM tool, the architecture is described as
the architecture graph (Figure 3) in which vertices represent
operators and edges represent communication over a certain
medium. An operator in this methodology is usually a proces-
sor connected to a local memory and has several communica-
tion resources. In this paper, operators are DSP cores and the
media is an Enhanced Direct Memory Access (EDMA). The
architecture graph specifies the available parallelism.

The matching consists of manually or automatically (AAM
algorithms, Figure 3) exploring the implementation solutions
with optimization heuristics. These heuristics aim to minimize
the total execution time of the algorithm running on the multi-
component architecture, by taking into account the execution
time of operations and of data transfers between operations.
The result of the matching allows automatic code generation
[8] for multi-processor architectures handling synchronizations
and data transfers between processors. Thus PREESM pro-
vides off-line static scheduling for multi-processor architec-
tures. An implementation of AAM using the PREESM tool
consists of:

• Performing a distribution (allocating parts of the algo-
rithm to architecture components)

• Scheduling (determining the order for the operations
distributed over a component) the algorithm on the
architecture.

• Providing an implementation graph including simula-
tion results of the distributed application functions.

• Generating C-code to verify the partitioning on target
hardware and to provide a flexible implementation.

These functions enable PREESM to be used as an efficient

virtual prototyping tool for our architecture exploration.

IV. ARCHITECTURE EXPLORATION

A. Algorithm Model
The goal of this exploration is to determine through simula-

tion the architecture best suited to the 115km cell RACH-PD
algorithm. The RACH-PD algorithm behavior is described as a
SDF [3][9] in PREESM. An SDF description brings two major
benefits to our implementation. The first is the proven possi-
bility to schedule the algorithm statically. A static implementa-
tion enables static memory allocation, so removing the need
for runtime memory administration. The second advantage is
the high flexibility of communication parameter tuning, as
achieved by modifying the SDF.

The RACH-PD algorithm model is shown in Figure 4. Ini-

tialization operations on the left-hand side are executed once
as the system starts. Next, the three operations PreambleProc-
ess, NoiseFloorThreshold and PeakSearch are executed se-
quentially in a loop while AntennaGen delivers samples to
decode. The PreambleProcess operation is executed four times
in each loop iteration; once per antenna. At the beginning of
PreambleProcess, the atomic operation Preprocessing executes
sequentially the bandpass filter, DFT and subcarrier demap-
ping. It is repeated once for each of the two preamble repeti-
tions. Then the circular correlation with 64 preamble root se-
quences is performed. Each circular correlation contains the
correlation of the two preamble repetitions (SingleZCProc)
with power accumulation similar to antenna power accumula-
tion.

FIRTaps

rotationV

antenna

dftTwiddle

preProce
x2Preproc

sumPower

powerValues

newSum

newPow

x1PowerAcc

twiddle

inputVal SumPow
x64CirCorr

twiddle

SumP

FIRTaps

dftT

rotaV

input

Sum

powV

antenna

pow

SumPowdftTwiddle

FIRTaps

powerVal

antenna

powerVal

twiddle

inputZC1

rotationv

x4
PreambleProcess

twiddle
x1

IFFTTwiddleGen
antenna

x1AntennaGen

NFThres

powerVal

taValue
x1PeakSearch

FIRTaps

x1FIRGen

ZCCodes

x1ZCGen

SumPower NFThres

powerVal

x64
NoiseFloorThr

rotationv
x1

InitRotationVect

dftTwiddle
x1DFTInit

powerVal
x1InitPower

powerVal

SumPow

x1InitPower

twiddle

inputZC1 powerVal

inputVal

SumPow

SumPow

x2
SingleCirCorr

power

SumP

inputZ

twiddle

inputV

inputVal

inputZC

newPow

twiddle

newSum

x1
SingleZCProc

powerValues

sumPower

newPow

newSum

x1PowerAcc

Sum

twiddle

Sum
pow

pow

inputZ

inputV

inputZC1

powerVal

powerVal

TOP (Level 0)

Level 1

Level 2 Level 3
Fig. 4 Preamble Detection SDF Description

Using the same approach as in [10], valid scheduling de-
rived from the representation in Figure 4 can be described by
the compact expression:

PeakSearchThreshold)NoiseFloor64(
)))))))(Pr((2((64(4)(Pr8(PowAccPowAccocSingleZCInitPowereproc

We can separate the preamble detection algorithm in 4

steps:
• Preprocessing step: eprocPr8
• Circular correlation step:

)))))))(Pr((2((64(4(PowAccPowAccocSingleZCInitPower
• Noise floor threshold step: Threshold)NoiseFloor64(
• Peak search step: PeakSearch

Each of these steps is mapped on the available cores and

will appear in the exploration results detailed in Section IV-D.
The given description generates 1,357 operations; this does not
include the communication operations necessary in the case of
multi-core architectures. Placing these operations by hand on
the different cores would be greatly time-consuming. The
architecture exploration PREESM tool offers an automatic
scheduling, avoiding the problem of manual placement.

B. Architecture Exploration
The four architectures explored are shown in Figure 5. The

cores are all Texas Instrument TMS320C64x+ DSPs running
at 1 GHz [11]. The connections are made via Direct Memory
Access (DMA) links. The first architecture is a single-core
DSP such as the TMS320TCI6482. The second architecture is
dual-core, with each core similar to that of the
TMS320TCI6482. The third is a tri-core and is equivalent to

the new TMS320TCI6487 [12]. Finally, the fourth architecture
is a theoretical architecture for exploration only, as it is a
quad-core. The exploration goal is to determine the number of
cores required to run the random RACH-PD algorithm in a
115 km cell and how to best distribute the operations on the
given cores.

C64x+ EDMAC64x+ C64x+

EDMA

C64x+ C64x+

C64x+

C64x+ C64x+

EDMA

C64x+

1 2

3
4

C64x+

Fig. 5 Four architectures explored

C. Architecture Model
To solve the implementation problem, each operation is as-

signed an experimental timing (in terms of CPU cycles). These
timings are measured with implementations of the atomic
functions on a single C64x+. The EDMA is modelled as a non-
blocking medium transferring data at a constant rate. Assum-
ing the EDMA has the same performance from the L2 internal
memory to the L2 internal memory as the EDMA3 of the
TMS320TCI6482, then the transfer of N bytes via EDMA
should take approximately (see [13]):

cyclesNNtransfer
375.3

135)(+=

The average size of the transmitted buffers in the 115 km
preamble detection procedure is 4,800 bytes. Consequently,
the average transfer speed used for simulation is 3.08
GBytes/s.

D. Architecture Choice
The PREESM automatic scheduling process (i.e. the appli-

cation of the AAM methodology to the RACH-PD algorithm)
is applied for each architecture. The simulation results ob-
tained are shown in Figure 6. Due to the 115 km cell con-
straints, preamble detection must be processed in less than 4
ms. Two kinds of experimental timings feed the simulation.
The first set of timings is measured in loops, each calling a
single function with L1 cache activated and appears as striped
bars in Figure 6. It represents the application behaviour when
data access is ideal. The second set of benchmarks is measured
with L1 cache deactivated and leads to the higher cycles dis-
played in light grey. It represents the worst case of internal
data accesses. For more details about C64x+ cache, see [11].
The RACH application is well suited for a parallel architec-
ture, as the addition of one core reduces the latency dramati-
cally. With L1 cache activated, two cores can process the algo-
rithm within a time frame close to the real-time deadline.
Simulation on the dual core with deactivated cache produces
significantly higher cycles and misses the real-time deadline,
so disqualifying the 2-core solution.

Fig. 6 Timings of the RACH-PD algorithm schedule on target architectures

The 3-core solution is clearly the best one: its CPU loads
(68% with realistic cache misses and 88% without cache) are
satisfactory and do not justify the use of a fourth core, as can
be seen in Figure 6.

V. IMPLEMENTATION ON THE CHOSEN ARCHITECTURE
With the architecture chosen, we can now start the static

implementation process. Our goal is to automatically generate
a highly optimized and flexible code with the necessary trans-
fers and synchronization.

A. Description of the chosen Architecture

Fig. 7 Architecture of theTMS320TCI6487

The TMS320TCI6487 [12] is a three-core DSP specifically
created for communication signal processing. Two modes are

has 1MByte of L2 memory while in asymmetric mode, core 0
has 1.5Mbyte, core 1 has 1MByte and core 0.5MByte. Each
CPU can access the L2 memory of the two other cores via the
EDMA. Each CPU has also access to an external DDR2 mem-
ory. The EDMA can transfer a value from one core on-chip L2
memory to another core L2 memory in parallel with CPU cal-
culation. This capability brings a higher flexibility than an
architecture with cores interconnected via communication me-
dia.

available for memory sharing: in symmetric mode, each CPU

hared accesses between cores can be synchronized with
ha

 to develop
a c

Fig. 8 EDMA channels used for communication between cores

he EDMA module offers 64 channels. Messages are split

in

routine, the sender of each communication received.

core4

core3

core2

core1

core3

core2

core1

core2

core1

core1
4

co
re

s
+

ED
M

A
3

co
re

s
+

ED
M

A
2

co
re

s
+

ED
M

A
1

co
re

Preprocessing

Circular correlation

Noise f loor threshold

Peak search

Cache deactivated

Real Time
Deadline

S
rdware semaphores and inter-core interruptions. 32 sema-

phores may interrupt any core when a resource is accessed or
released. Inter-core interruptions may launched from any core
by writing in specific registers. Interruptions can carry a 7-bit
value to distinguish one from another. Local to each CPU, the
RTOS, DSP/BIOS, provides threads and local synchronization
between threads with software semaphores. These features will
be exploited to implement the RACH-PD algorithm and auto-
matically generate function calls and synchronization. The use
of software semaphores is consistent with a high performance
implementation as passive wait is generated. Waiting for a
DSP/BIOS semaphore puts the CPU in idle state.

B. Using the EDMA as a message passing system
In order to prepare for code generation, we need
ommunication library which provides synchronization. The

communicator interface should be simple and may be called by
generated code. The target architecture offers two communica-
tion possibilities: queues which are a message passing system
built in DSP/BIOS operating system or the EDMA. As the
queues are expected to be slower, the choice was made to use
the EDMA.

T
to N small frames and a remainder. The frames and the re-

mainder are sent on two different chained channels. In order to
avoid conflicts, 12 channels are used as shown in Figure 8.
Since the channel number contains the sender and receiver
identifiers, the receiver always knows, even in interruption

Remainder ChannelNr = SenderId*8 + ReceiverId*2 + 1

C64x+
Core 0

L2 mem

Switched Central Resources (SCR)

EDMA3

DDR2 external memory

Hardware
semaphores

Inter-core
interruptions

C64x+
Core 1

L2 mem

C64x+
Core 2

L2 mem

Frames ChannelNr = SenderId*8 + ReceiverId*2chip

GEM 0 GEM 1 GEM 2 CPU 0

CPU 1 CPU 2

Channels

8&9 Channels

2&3

Channels

4&5

Channels

16&17
Channels 12&13

Channels 18&19

C. gning the Communication Process Desi
Usi EESM tool gener-

 function calls and
on

Fig. 9 Threads and synchronization within the cores

The nex ion be-

tw en cores. At the beginning of the communication process,
th

n intermediate address is used, the sender does not
need to be aware of the destination address but each transfer
m

ory pull because the re-
cei requests the data by sending its address. This solution
im

Fig. 10 Two solutions for the inter-core communication

The m

th intermediate memory solution imposes the static allocation
of

 previously, two different modules may be used to
generate inter-core synchronization: hardware semaphores or
in

ng the same method as in [6], the PR
ates two threads per core: one for processing

e for sending communication orders and waiting for transfer
completion. As shown in Figure 9, when two successive func-
tions are distributed on different CPUs, two semaphores Sem1
and Sem2 are generated on each core to synchronize the proc-
essing and communication threads. While communication
threads are waiting for the completion of a transfer, processing
threads can process data that does not impact this transfer.
These local semaphores are implemented with DSP/BIOS op-
erating system.

t design problem to solve is the communicat
e
e sender alone knows the source buffer address and the re-

ceiver alone knows the destination buffer address. There are
two solutions (Figure 10) to complete a transfer in this situa-
tion: use an intermediate address or transfer the destination
address.

When a

ust occur twice: from local memory to intermediate and from
intermediate to destination. The dimension of the intermediate
buffer is also a problem. In Figure 10, only the communication
threads of the CPUs are represented.

The second solution is called mem
ver
poses a bidirectional communication but is lighter than the

preceding solution, as the address transfer of 4 bytes may be
achieved through scratch buffers and synchronization through
hardware semaphores or inter-core interruptions. During these
transfers, we use only 12 of the 256 parameter set registers of

the EDMA. The unused registers can be utilized as scratch
buffers to transmit the transfer destination addresses.

emory pull solution is chosen for two reasons. Firstly,
e
 an additional buffer of size at least as large as the largest

one in the algorithm. In the RACH-PD case, this buffer should
be of a minimum size of 100 kBytes with strong memory op-
timization. Secondly, the double transfer results in a division
by 2 of the communication speed. Even with rates of several
GBytes/s, this data rate reduction is not negligible. Simulation
shows a communication cost of almost 5% for the RACH-PD
algorithm.

As stated

ter-core interruptions. In order to simplify the synchroniza-
tion, a small library is created, with an interface close to the
one of the local semaphores:

• HardSEMPend(int id): Waits for a semaphore with
the given semaphore identifier

• HardSEMPost(int id): Launches a semaphore with the
given semaphore identifier.

CPU i

Process 1

send

Process 2

receive Synchro

Proc Com

CPU j

Com Proc

Synchro

Sem1

Sem2

Sem1
Sem2

Process 1
(CPU i)

Process 2
(CPU j)

Code

generation

Com i

send

EDMA3

transfer

CoEDMA3 m j

receive

transfer Int Int

Int Time hen
original buffer
must be pro-
tected

slot w
Timeslot when
destin
buffer must be

ation

protected

a. intermediate memory solution

Com i EDMA3 EDMA3 Com j

Send Destination address

receive

Timeslot when
destination
buffer must be
protected

b on . memory pull soluti

send
transfer

Int ij0

Int ij0

The transfer c
tion code identifies

omple-

the sender and re-
ceiver

Timeslot when
original buffer
must be pro-
tected

The semaphore identifier is chosen to be the Sender CPU
nu

hen the sender receives an interruption indicating the
av

When the cores are started, each core waits for the two other
co

 complete, our attention
tu

hen the multi-core program is run with data in external

tion programming is complete, we
ge

mber. Hardware semaphores are designed to protect critical
sections from multiple accesses. They are typically used in
resource access requests; access is granted when a semaphore
is acquired. Programming the synchronization library with
such a system leads to a clumsy implementation where the
acquired resource is purely virtual. It is for this reason that the
choice was made to base the library on inter-core interruptions.
The principle of a inter-core synchronization library based on
interruptions is quite simple. Any core can send an inter-core
interruption to another core by providing the right identifier.
An interruption is launched by the sender HardSEMPost func-
tion and is caught in an interrupt service routine of the re-
ceiver. The receiver then releases a local semaphore that was
pending in the HardSEMPend function.

W
ailability of the address, it launches the EDMA copy and

waits. At the end of the transfer, the EDMA launches an inter-
ruption giving a transfer completion code equal to the EDMA
channel number. The sender and receiver identifiers are de-
duced and communication threads of both CPUs are released.

res to run before sending any interruption. This system en-
sures that no inter-core interruption is ignored.

D. RACH-PD memory consideration
Once the communication model is

rns to memory. The data buffers are statically allocated,
some in the fast L2 memory of their CPU and others in the
huge DDR2 external memory. We thus need to decide which
buffers should be allocated in L2 and which configuration
(symmetric or asymmetric) should be chosen. For the buffers
in DDR2, sections of L2 memory must be used as cache for
DDR2 so that performance does not decrease dramatically (see
[14] for more details). Thus, we activate L2 cache with its
maximal size of 256kBytes to improve DDR2 access time.

W
memory, the EDMA reads and writes DDR2 data cached in
L2. Cache coherency must then be taken into account. Indeed,
the EDMA module runs the risk to read “dirty” data or to write
in a cached value. Before sending data, a cache “write-back” is
called to retrieve the data from cache. Before receiving data, a
cache “invalidate” is called to mark the cache value as obso-
lete. With these precautions, cache coherency is maintained.

E. Implementation tests
When the communica
nerate a 3-core code for C64x+ with the PREESM tool. We

initially test a simple PREESM project by copying a buffer
from one core L2 to another. The benchmarks of these copies
are shown in Figure 11. The fixed overhead of an inter-core
copy is approximately 2,700 cycles. This overhead is due to
the synchronization process, the interruption routines and the
EDMA configuration. When transferring big buffers, the

EDMA data rate reaches 1.6 GBytes/s, half the speed of the
TMS320TCI6482 EDMA employed in the simulations and
benchmarked in [13].

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20 25 30 35

buffer size (kBytes)

0

5000

10000

15000

20000

25000

speed (Mbytes/s) send timing (cycles)

Fig. 11 Benchmarks of TCI6487 synchronized EDMA3 buffer copy

he RACH-PD algorithm is then tested and optimized on

th

) Single-core test: A first version is tested on one core
wi

n: L2 cache is then activated with the
ma

3) Three-core implementation: The application is distrib-
ute

T
e TMS320TCI6487 platform in several steps:

1
th code in L2 and data in DDR2. This implementation al-

lows us to debug, dimension the stack and ensure that the code
is working. The time of one preamble detection with this con-
figuration is 240 ms.

2) Cache activatio
ximal size of 256 kBytes. The preamble detection time is

then reduced to 69 ms.

d over three cores. When we let the PREESM tool choose a
strongly parallel implementation without constraints, it gener-
ates a very complex solution with 10,000 semaphores. We thus
tune this solution, reducing inter-core communication and still
allowing good pipelining (see Figure 12). The number of
semaphores is then reduced to approximately 100. The com-
plex solution which results from the non-constrained operation
shows a limitation in the present PREESM mapping: a fixed
cost for transfers needs be added to the tool to avoid the explo-
sion of communication. The non-constrained PREESM auto-
matic code generation allocates buffers of approximately 1.65
Mbytes for one core, 1.25 Mbytes for a second core and 200
kBytes for a third core, to which the heap and the code size
must be added. This asymmetry justifies the use of asymmetric
memory. With this configuration, one preamble detection takes
50 ms.

Fig. 12 Simple pipelining of the RACH-PD decoding

4) Smart allocation and code: If buffers are allocated in
L2,pre-processing memory and code optimization brings the
preamble detection processing time to approximately 10 ms.
Internal allocation of some power buffers leads to a detection
within 6.5 ms. Finally, after circular correlation buffer optimi-
zation, the detection time becomes 3.6 ms, under the constraint
limit for response time.

The final implementation has one core loaded at 90%, one

core at 75% and one at 70%. The simulation and code genera-
tion have led to a real implementation very close to that pre-
dicted with L1 cache worst case where the simulation loads
were respectively: 88%, 83% and 83%. The added constraint
of deactivating the cache in simulation inputs compensates for
the external memory accesses that were not simulated and the
EDMA rate slower than intended. These results show that pro-
totyping the application enables a precise simulation of the
multi-core solution before solving complex implantation prob-
lems.

VI. FUTURE WORK
In the near future, a new communication model for the

TMS320TCI6487 will be built based on message queues from
DSP/BIOS operating system. This model will then be com-
pared with that based on the EDMA. Its advantage will be the
portability on devices using RapidIO (see [4]), as the operating
system DSP/BIOS can use this communication system to pass
messages.

Furthermore, other algorithms of LTE will be studied and
implemented. It is expected that this will help to improve the
architecture models of the PREESM tool. Specifically, inter-
nal/external allocation and advanced timings taking into ac-
count data caching may be automated, thus eliminating the
manual step of memory allocation. Additionally, a more accu-
rate communication model in the PREESM tool will remove
the need for the manual reduction of semaphores.

VII. CONCLUSIONS
The intent of this paper was to demonstrate a methodology

using rapid prototyping and automatic code generation to de-
velop an optimized multi-core implementation of a communi-
cation algorithm. After exploring 4 solutions, the best target
architecture for the 115km cell RACH-PD algorithm was cho-
sen, and an implementation is described and benchmarked.
Memory allocation, function calls and EDMA calls are gener-
ated in C-code by the PREESM tool. Inter-core communica-
tion and memory partitioning are considered in the prototyping
methodology. The result is an efficient and highly reconfigur-
able implementation, proving that the generation of static im-
plementations from SDF descriptions is a viable solution for
deterministic signal processing applications.

In the near future, an increasing number of CPUs will be
available in complex System on Chips. Developing method-
ologies to efficiently partition code on these architectures is
thus an increasingly important objective.

REFERENCES
[1] J. Jiang, T. Muharemovic, P. Bertrand, and S. Aridhi, Random Access

Preamble Detection for Long Term Evolution Wireless Networks, sub-
mitted to SIPS 2008.

[2] 3GPP technical specification group radio access network; Evolved
universal terrestrial radio access (E-UTRA); Physical channels and
modulation (Release 8), 3GPP, TS36.211 (V 8.1.0)

[3] E. A. Lee, The Problem with Threads, EECS in IEEE Computer
39(5):33-42, May 2006.

[4] S. Moreau, S. Aridhi, M. Raulet, J.-F. Nezan, On Modeling the RapidIO
communication link using the AAA Methodology, DASIP 2007.

[5] Shuvra S. Bhattacharyya, Ptolemy.
[6] T. Grandpierre and Y. Sorel, From algorithm and architecture specifi-

cations to automatic generation of distributed real-time executives: a
seamless flow of graphs transformations, In First ACM and IEEE Inter-
national Conference on Formal Methods and Models for Co-Design,
Mont Saint-Michel, France, June 2003.

[7] J. L. Pino and E. A. Lee, Hierarchical static scheduling of dataflow
graphs onto multiple processors, In IEEE International Conference on
Acoustics, Speech, and Signal Processing, Detroit, Michigan, USA,
1995.

[8] M. Raulet, F. Urban, JF Nezan, O. Deforges, C. Moy, SynDEx Executive
Kernels For Fast Developments of Applications over Heterogeneous
Architectures, EUSIPCO 2005.

[9] E.A. Lee and D.G. Messerschmitt, Synchronous Data Flow, IEEE Pro-
ceedings of the IEEE volume 75, numéro 9, 1987.

[10] S. S. Bhattacharyya, E. A. Lee, Memory Management for Dataflow
Programming of Multirate Signal Processing Algorithms, IEEE Trans.
on Signal Processing, 42, No. 5, May 1994, pp. 1190-1201., 1994.

[11] TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide,
Texas Instrument technical document (SPRU732G), February 2008.

[12] TMS320TCI6487 DSP Platform, Texas Instrument Product Bulletin
(SPRT405).

[13] B. Feng, R. Salman, TMS320TCI6482 EDMA3 Performance, Texas
Instrument technical document (SPRAAG8), November 2006.

[14] TMS320TCI6487/8Communications Infrastructure Digital Signal Proc-
essor, Texas Instrument technical document (SPRS358E), 2008.

preProcess

cirCorr 32
signatures

cirCorr 32
signatures

noiseFloor +
Peaksearch

cirCorr 32
signatures

cirCorr 32
signatures

preProcess

cirCorr 32
signatures

cirCorr 32
signatures

preProcess

preProcess

CPU 2 CPU 1 CPU 0

4ms

Maximal
cadence

4ms

4ms

