
HAL Id: hal-00336473
https://hal.science/hal-00336473

Submitted on 4 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A flexible heterogeneous hardware/software solution for
real-time high-definition H.264 motion estimation

Fabrice Urban, Ronan Poullaouec, Jean François Nezan, Olivier Déforges

To cite this version:
Fabrice Urban, Ronan Poullaouec, Jean François Nezan, Olivier Déforges. A flexible heterogeneous
hardware/software solution for real-time high-definition H.264 motion estimation. IEEE Transactions
on Circuits and Systems for Video Technology, 2008, 18 (12). �hal-00336473�

https://hal.science/hal-00336473
https://hal.archives-ouvertes.fr

1

A flexible heterogeneous hardware/software solution
for real-time high-definition H.264 motion

estimation
Fabrice URBAN, Ronan POULLAOUEC, Jean-François NEZAN, Olivier DEFORGES

Abstract—The MPEG-4 AVC/H.264 video compression stan-
dard introduces a high degree of motion estimation complexity.
Quarter-pixel accuracy and variable block-size significantly en-
hance compression performances over previous standards, but
increase computation requirements. Firstly, a DSP-based solu-
tion achieves real-time integer motion estimation. Nevertheless,
fractional-pixel refinement is too computationally intensive to
be efficiently processed on a software-based processor. Secondly,
to address this restriction, a flexible and low complexity VLSI
sub-pixel refinement coprocessor is designed. Thanks to an
improved datapath, a high throughput is achieved with low
logic resources. Finally, we propose a heterogeneous (DSP-FPGA)
solution to handle real-time motion estimation with variable
block-size and fractional-pixel accuracy for high-definition video.
It combines efficiency and programmability. The flexibility offers
complexity versus performance trade-offs. The system achieves
motion estimation of 720p sequences at up to 60 frames per
second.

Index Terms—Field programmable gate arrays, Digital signal
processors, Motion estimation, Parallel processing, Real-time,
H.264

I. INTRODUCTION

Motion estimation is known to be a key operation in video
encoders. It is aimed at removing temporal redundancies in
video sequences. The MPEG-4 AVC/H.264 video encoding
standard reduces bit-rates by up to 50% compared to MPEG-
2 and is the preferred standard for video compression. The
high performance of H.264 is mainly due to improved motion
compensation modes such as variable block-size motion com-
pensation, quarter-pixel accuracy and multiple reference pic-
tures [1]. However the introduction of numerous modes raises
the complexity of the codec [2], [3] and makes real-time H.264
compression challenging, especially for high-definition video.
Motion estimation is the most computationally intensive task
of the video encoder, reaching up to 60% of the computation
load of a H.264 video encoder [4].

To overcome the high processing complexity, specific cir-
cuits (ASIC: Application Specific Integrated Circuit) are de-
signed or programmable VLSI (FPGA: Field Programmable
Gate Array) is used. Computation power constraints are met
thanks to high logic integration. However, from previous
work described in the literature [5], [6], [7], [8], [9], none

F URBAN and R POULLAOUEC are with the Content Delivery and
Compression lab of THOMSON RD France, e-mail: (ronan.poullaouec, fab-
rice.urban@thomson.net).

JF NEZAN and O DEFORGES are with the image Group lab of the
Institude of Electronics and Telecomunications of Rennes, UMR CNRS 6164,
France, e-mail: (jnezan, odeforge@insa-rennes.fr).

address together fractional-pixel accuracy, variable bloc-size,
high-definition, and low complexity. Moreover, these hardware
components provide a very low level of flexibility and require
a long development time.

Programmable devices (DSP: Digital Signal Processors)
provide the high flexibility of software processors but have
reduced performances compared to hardware components [10].
The latest DSPs achieve high performances, but are not able
to perform a motion estimator with quarter-pixel accuracy
for high definition video in real-time. Although the search
range of fractional-pixel refinement is small, it is the most
computationally intensive part of motion estimation mainly
because of interpolation and the algorithm is quite regular.
Therefore it is a good candidate for execution on a hardware
accelerator.

Our work proposes an efficient mixed hardware/software
solution to address the challenging constraints of H.264 motion
estimation. Low to medium complexity operations are handled
by a DSP and an FPGA accelerates computationally inten-
sive parts. Consequently this heterogeneous multi-component
approach combines flexibility and computation efficiency. A
modified distribution and scheduling of the operations allows
computation parallelism. A fast Integer Motion Estimation
(IME) scheme has been optimized to be executed on the
DSP, and a low-complexity and low memory bandwidth VLSI
coprocessor has been designed for Fractional-pixel Motion
Estimation (FME). The VLSI design is scalable to match
logic resource utilization with performance requirements, and
supports variable block-size. Thanks to the flexibility of
the DSP, smart decision algorithms can be implemented to
achieve significant hardware reduction with low compression
performance lost. A large range of applications can be tar-
geted thanks to software and hardware trade-offs. The system
achieves motion estimation of 720p videos at up to 60 frames
per second.

This paper is laid out as follows: in section II the sub-pixel
motion estimation is introduced and several approaches are
discussed for embedded implementations. A DSP solution is
given in section III and limitations are highlighted. Section IV
proposes an efficient VLSI architecture for FME. The hybrid
multi-component solution for H.264 is presented in section V
and finally section VI presents our conclusion.

II. SUB-PIXEL ACCURACY MOTION ESTIMATION

Among the features introduced by H.264 standard to en-
hance coding efficiency [1], quarter-sample-accurate and vari-

2

able block-size motion compensation play an important role.
FME, however, involves a high computational complexity that
is magnified by variable block-size. The enhancement of the
reference picture resolution involves the use of interpolation
filters. Computational and memory constraints are greatly
increased.

A. H.264 standard interpolation filters

In the MPEG-4/AVC H.264 standard, the quarter-pixel
accuracy luminance picture is interpolated with two successive
filtering operations. Half-pixel samples are interpolated first
using a 6-tap separable FIR filter with coefficients (1,-5,
20, 20, -5, 1). They are computed from 6 adjacent pixels
horizontally and/or vertically. For example, b, h, and j in fig.
1 can be computed as follows:

b = E−5F+20G+20H−5I+J
32

h = A−5C+20G+20M−5Q+S
32

j = aa−5bb+20b+20s−5gg+hh
32

or j = cc−5dd+20h+20m−5ee+ff
32

Half-pixel samples not adjacent to 2 pixel locations are
interpolated from previously computed samples using un-
rounded values (the value is the same whether j is interpo-
lated vertically or horizontally). The resulting values are then
rounded and clipped to a correct luminance value (i.e. between
0 and 255 for 8 bit depth).

Figure 1. H.264 fractional pixel luminance interpolation filter

Once half-pixel samples are available, quarter-pixel samples
are computed by averaging two adjacent samples as illustrated
in fig. 2. For example, a and e are computed as follows:

a = G+b+1
2 and e = h+b+1

2

Figure 2. 1
4

-pixel interpolation filter

B. Implementation strategies

Improving motion vector accuracy for a block-based motion
estimator obviously increases complexity. Firstly the density of
candidate motion vectors is increased. To limit the number of
search points a two-step approach is generally preferred. The

motion is estimated at integer pixel accuracy and then refined
to quarter-pixel with a limited search range (usually]-1;1[
pixel) around the integer-accuracy best match. Secondly the
reference image must be enlarged, involving the use of interpo-
lation filters and introducing higher memory constraints. Two
implementation strategies can be used to find a compromise
between calculations and memory bandwidth: a basic data
interpolation, or an on-the-fly data interpolation.

1) Basic data interpolation: The use of a basic sub-pixel
motion vector refinement leads to the computation of an inter-
polated reference image before motion estimation. For quarter-
pixel FME, the memory size and bandwidth are increased by
a 16:1 ratio. Since memory constraints are already restrictive
for IME [5], we can conclude that a basic data interpolation
is not convenient for real-time FME implementation. Instead,
on-the-fly data interpolation is preferred.

2) On-the-fly data interpolation: This is the commonly
used solution. Here data interpolation is realized only when
sub-pixel samples are needed in the algorithm i.e. the filters
are applied on a small search window around the best integer-
pixel accuracy matching block. Memory constraints are thus
reduced. Hardware and software implementations can take ad-
vantage of high bandwidth local memories. External memory
access concerns only integer-pixel accuracy data.

The two-step motion estimation with firstly IME and
secondly FME combined with on-the-fly data interpolation
appears to be the best choice for both performance and
implementation constraints.

III. MOTION ESTIMATION ON DSP

A Digital Signal Processor (DSP) is a software processor
dedicated to signal processing. Its hardware architecture is
simplified to reduce its size and power consumption.

The programming is done in high level “C” language
which offers high flexibility and reduced implementation time.
Because of their low cost and high performance DSPs are pop-
ular for the prototyping of multi-processor signal processing
applications. Depending on the device, numerous peripherals
can be embedded such as a DMA controller, an Ethernet
controller, a viterbi decoder, a cache controller, etc.

To get the best performance out of these processors,
platform-independent optimizations such as loop unrolling
and loop interchanging are usually done. Memory access
can also be very time-consuming. For video processing and
especially high-definition, internal memories are too small,
which involves inherent external data accesses. Without an
enhancement mechanism this causes performance to drop by
orders of magnitude. Some DSPs integrate a cache controller
that provides an automatic way to significantly reduce per-
formance loss but it involves the user to ensure memory
consistency in a multi-component context. In previous work,
we developed an automatic cache management tool that uses
the integrated cache controler of the device [11]. Using a pro-
totyping methodology, inter-processor communications are au-
tomatically generated, external memory accesses are enhanced
and data consistency is ensured by the tool. High definition
image and video processing applications implementation on

3

a DSP is made fast and reliable with very limited memory
constraints. The user can thus focus on application specific
optimizations.

A. Integer-pixel accuracy motion estimation

Many IME have been developed to find a compromise
between computation complexity and motion vector accu-
racy [12], [13], [14], [15], [16], [17], [18]. The well-known
EPZS (Enhanced Predictive Zonal Search) [17] and hierar-
chical (HME) [18] algorithms have been implemented and
evaluated in [19]. EPZS offers good performance in terms
of both execution time and accuracy. HME is more robust
but is more computationally intensive. The EPZS algorithm
has been retained for the rest of this paper since it is faster
and more popular for software implementation. The early stop
threshold has been removed to simplify the algorithm and give
a constant execution time i.e. not dependent on the sequence.
Consequently, timing results are constant (close to worst case)
regardless of the sequence, which is good design practice for
real-time considerations.

B. Fractional-pixel accuracy pixel refinement

As soon as a motion vector is estimated at pixel-accuracy,
it is refined to fractional-pixel accuracy. A reduced search is
then performed around the best pixel-accuracy location using a
two-step refinement approach. High performances are achieved
thanks to two main characteristics: firstly the sub-pixel data
is interpolated on-the-fly to reduce the necessary memory
bandwidth and take advantage of cache architecture (data
locality property), and secondly the two-step algorithm reduces
the number of search points in a logarithmic search way [12]:
the motion vector is first refined to half-pixel accuracy (8
neighbors), then to quarter-pixel accuracy starting from the
half-pixel location (8 neighbors).

The sub-pixel search has an amplitude of 3
4 -pixel in each

direction. The two-step technique gives one sub-pixel position
out of 49 (7× 7) with only 16 (8 + 8) search points. Quarter-
pixel samples are interpolated after the half-pixel best position
is known hence only necessary values are computed. This
reduces execution time still further.

To perform the refinement process, four operations are
executed sequentially.
• First the half-pixel filter is applied to the relevant image

area. Fig. 3 shows the pixel window required for a 4× 4
block and computed sub-pixel samples. Half-pixel sam-
ples of the search window are computed as well as those
necessary for subsequent quarter-pixel interpolation.

• Secondly the best half-pixel location is chosen by evalu-
ating distortion criteria for the eight neighbors. The Sum
of Absolute Differences (SAD) is computed between each
pixel of the source block and every other sample of the
reference window with appropriate offset (the samples
required to compute the same SAD are one pixel (or
two half-pixels) away from each other vertically and
horizontally). To take advantage of the 32-bit calculation
units and vectorize the 8-bit operations, a correct data
packing is performed within the SAD computation loop.

Figure 3. Sub-pixel search window and necessary data to compute quarter-
pixel samples for a 4x4 block

• Thirdly quarter-pixel samples required to compute the
SAD for the eight positions around the best half-pixel
location are computed. There are no overlapping values
between the eight search position reference samples.
Consequently, quarter sample data are stored in 8 sets so
that the values needed to compute one SAD are adjacent
to each other.

• Finally the best quarter-pixel location is chosen from the
nine positions (8 + center). The SAD calculation takes
advantage of the efficient byte packing that has been
undertaken in the interpolation filter. Multiple data can
then be accessed simultaneously depending on the bus
width, and vectorized instructions are directly used.

C. Implementation results

The quarter-pixel accuracy motion estimation comprising
IME and two-step sub-pixel refinement has been implemented
on a Texas Instruments C6416 DSP at 1GHz. It is one of
the fastest DSP on the market [20]. Sub-pixel interpolation
of the motion estimation is not standardized (unlike the case
for motion compensation). Thus both H.264 and a simple
bilinear filter have been implemented in order to evaluate the
complexity trade-off. Table I gives execution times for 8x8
blocks. IME is performed in 900 ns. FME requires a 1200
and 630 ns overhead using an H.264 filter or bilinear filter
respectively.

The sub-pixel refinement operation is the most time-
consuming operation in motion estimation on a DSP. Using
a bilinear filter reduces the complexity and almost halves
its execution time. Section V-C discusses the impact of the
choice of interpolation filter on motion estimation quality
through rate-distortion encoding performance. One DSP has
not enough computation power to handle real-time quarter-
pixel motion estimation of high-definition video at 60 frames

4

filter type H.264 Bilinear

IME 900 ns
(77 fps for 720p)

half-pixel filter 720 ns 150 ns

half-pixel refinement 210 ns 190 ns

quarter-pixel filter 140 ns 150 ns

quarter-pixel refinement 130 ns 140 ns

Total FME 1200 ns 630 ns

Total IME+FME 2100 ns 1530 ns
(33 fps for 720p) (45 fps for 720p)

Table I
DSP IMPLEMENTATION TIMINGS FOR A 8X8 BLOCK

per second. The next section presents a sub-pixel refinement
coprocessor to lower the computational burden on the DSP.

IV. PROPOSED VLSI ARCHITECTURE FOR FME

Despite the small search window in the sub-pixel refinement
step, it is the most time-consuming part of motion estimation.
The sub-pixel refinement operation is very computationally
intensive and the search window is small. It could therefore
benefit from the high parallelism of VLSI implementation.
To meet the DSP external bus constraints, a low memory
bandwidth requirement is needed. This section describes the
dedicated VLSI architecture for fractional-pixel accuracy mo-
tion vector refinement. It achieves high throughput with low
memory bandwidth and low resource utilization.

A. Overall VLSI architecture design

To benefit from the high degree of parallelism of VLSI
implementation, the algorithm must be regular. A two-step
approach, such that used in [6] requires either to save half-
pixel samples for subsequent quarter-pixel interpolation, or to
recompute them. To avoid implementation of memory, recom-
putation is needed [21]. As the filter is used twice for the same
data, its efficiency is reduced and its consumption is raised.
Moreover, in order to meet real-time constraints, the filter
must be oversized along with memory bandwidth. Therefore
a quarter-pixel accuracy full search approach with Lagrangian
optimization is adopted with a search range of 3

4 pixels in
each direction. 48 candidates ((2 × 3 + 1)2-1) are evaluated
around the IME best match. Input data required in order to
refine a motion vector include the pixel-accuracy reference
window, the current block and optionally the differentially
coded integer-accuracy motion vector in order to compute a
Lagrangian cost for each candidate.

The sub-pixel refinement coprocessor includes (fig 4) a
quarter pixel interpolation module to generate sub-pixel sam-
ples. A Processor Element (PE) computes a distortion measure
for each candidate displacement. The distortion measure used
is the Sum of Absolute Differences (SAD) because it needs far
less hardware resource than an SATD. The best candidate (i.e.
with the smallest SAD) is finally selected in the decision tree.
Block-size parameters can be changed without any hardware

Figure 4. Overall VLSI architecture

Clock cycle & horizontal Vertical 1/4 pel
input pixel 1/2 pel filter 1/2 pel filter filter
1(-3;-3 -2) - - -
2(-3;-1 0) - - -
3(-3;1 2) -3;-1 0 - -
4(-3;3 4) -3;0.5 2 - -
5(-3;5 6) -3;2.5 4 - -

...
... - -

21(1;-3 -2) - - -
22(1;-1 0) - -1;-1 -
23(1;1 2) 1;-0.5 0 -1;-0.5 -1;0 -
24(1;3 4) 1;0.5 2 -1;0.5 -1;2 -
25(1;5 6) 1;2.5 4 -1;2.5 -1;4 -

26(2;-3 -2) - - -
27(2;-1 0) - -0.5;-1 0;-1 -
28(2;1 2) 2;-0.5 0 -0.5;-0.5 0;0 -0.75;-0.75 0;0
29(2;3 4) 2;0.5 2 -0.5;0.5 0;2 -0.75;0.25 0;2
30(2;5 6) 2;2.5 4 -0.5;2.5 0;4 -0.75;2.25 0;4.75

31(3;-3 -2) - - -
32(3;-1 0) - 0.5;-1 1;-1 -
33(3;1 2) 3;-0.5 0 0.5;-0.5 1;0 0.25;-0.75 1;0
34(3;3 4) 3;0.5 2 0.5;0.5 1;2 0.25;0.25 1;2
35(3;5 6) 3;2.5 4 0.5;2.5 1;4 0.25;2.25 1;3.75

...
...

...
...

46(6;-3 -2) - - -
47(6;-1 0) - 3.5;-1 4;-1 -
48(6;1 2) 6;-0.5 0 3.5;-0.5 4;0 3.25;-0.75 3.75;0
49(6;3 4) 6;0.5 2 3.5;0.5 4;2 3.25;0.25 3.75;2
50(6;5 6) 6;2.5 4 3.5;2.5 4;4 3.25;2.25 3.75;3.75

Table II
H.264 INTERPOLATION FILTER DATAFLOW (p = 2)

modification in order to support multiple block-size motion
estimation.

The following sections details the architecture of each unit
of the system.

B. Interpolation filter

Sub-pixel data is interpolated on-the-fly to eliminate the
need for data memorization and access. Reference window
pixels are input serially in raster-scan order beginning from
the top-left corner of the reference window. Once the filter
is initialized (depending on the filter size), 16 quarter-pixel
samples are generated per input pixel, as shown in Fig. 5-left.
To improve parallelism p input pixels are processed simultane-
ously per clock cycle, resulting in an output of 16× p quarter
pixels per clock cycle. A state machine controls filter height
and width, which ensures a full utilisation of interpolation
resources. This way, no overlapping data is computed such
as in [6], and the device is not oversized for small blocks,
such as in [21].

Table II shows the dataflow of interpolated samples for
the H.264 filter. The reference point (0;0 position) of given
ranges is the top left pixel of current block. At each cyle,

5

two pixels of the search window are input. Once six pixels
are input, the horizontal half-pixel filter can compute values.
Half-pixel samples are output to the quarter pixel filter once
the fifth line is available. Quarter pixel samples are computed
after the input-pixel sixth line is available. The output range
at each cycle corresponds to two of the squared positions of
figure 5-left. Note that to make the table clear, pipeline latency
is not taken into account, that is, two and three cycles for
horizontally and vertically half-pixel filters respectively, and
one cycle for quarter-pixel filter.

For blocks of size 4x4, only 16 out of the 25 sets is required
for each SAD. Therefore the PE are enabled when appropriate
data is available. It is done in four quadrants illustrated in
figure 5-right.

Figure 5. Scheduling of H.264 filtered sub-pixels availability for a 4x4
block (left) and distortion dependencies (right)

The design of the remainder of the architecture is dependent
on the throughput of the filter only. Any interpolation filter can
therefore be used: from H.264 filters for the best accuracy to
bilinear filters to save on resources and time. The H.264 filter
has been optimized for low resources and pipelined to support
high frequency.

C. Distortion computation matrix

From the existing dedicated architectures for IME described
in previous work [22], [5], [23], designs using inter-level
parallelism [5] (defined as type II architecture in [22]) are best-
suited to line-scan input mode and best minimize hardware
resources.

In existing full-search sub-pixel refinement architectures [8],
[7] the interpolation filter is not included in the study. We
propose here a distortion computation matrix architecture that
is adaptive to the block size and matches the interpolation filter
design in order to reduce hardware requirements. In addition,
the subsequent decision tree is also reduced.

1) Integer-pixel accuracy full search model: In [22] the full
search IME algorithm with a search range of +/- r for a n×m
block is expressed as 4 nested loops (Alg. 1).

Inter-level parallelism is obtained by unrolling ∆i and
∆j loops in hardware. The distortion measure is computed

Algorithm 1 IME nested loops
for k = 1..m (block height)
for l = 1..n (block width)

for ∆i = −r..r (vertical search range)
for ∆j = −r..r (horizontal search range)

SAD(∆j, ∆i)+ = |x1(k, l)− x2(k + ∆i, l + ∆j)|
end ∆j

end ∆i
end l

end k

x1 denotes current picture and x2 reference picture

simultaneously for every search point in (2 × r + 1)2 PEs.
This model results from two hypotheses: firstly the current
pixel x1(k, l) is broadcast to all PEs and secondly all reference
pixels from x2(k − r, l − r) to x2(k + r, l + r) are available
and propagated to the PEs through (2r + 1)2 registers.

In order to remove the registers needed to propagate ref-
erence data the architecture is inverted. Reference data is
broadcast to the PEs and the current block is propagated.
The associated algorithm is expressed (Alg. 2) with a variable
interchange (u = k + ∆i and v = l + ∆j). The latency is the
same and idle initialization cycles are still needed [23]. The
modification has little impact on IME, but presents several
advantages when transposed to FME.

Algorithm 2 Inverted IME nested loops
for u = 1− s..m + s (block height)
for v = 1− s..n + s (block width)

for ∆i = −s..s (vertical search range)
for ∆j = −s..s (horizontal search range)

SAD(∆j, ∆i)+ = |x1(u−∆i, v −∆j)
−x2(u, v)|

end ∆j
end ∆i

end v
end u

with 1 ≤ u−∆i ≤ m and 1 ≤ v −∆j ≤ n

2) Inverted sub-pixel accuracy full search model: For FME,
images x1 and x2 do not have the same scale. Data density
is higher for the search window than for the current block.
Consequently if the basic model (Alg. 1) is kept, the number
of registers needed to propagate reference data ((2ar + 1)2, a
being the accuracy factor i.e. a = 2 for half pixel, a = 4 for
quarter-pixel) increases exponentially with accuracy [8].

To reduce the number of propagation registers Alg. 2 is
considered and transposed to FME. Hence current block data
is propagated and reference window data is spread to the
appropriate PEs. Two loops (∆g and ∆h) are added to handle
fractional-pixel accuracy. Alg. 3 models the behavior of the PE
matrix. ∆i and ∆j are integer-pixel displacements and ∆g and
∆h are fractional-pixel accuracy displacements. The number
of propagation registers is then independent of the sub-pixel
accuracy.

6

Algorithm 3 new FME nested loops
for u = 1− s..m + s (block height)
for v = 1− s..n + s (block width)

for ∆i = −s..s (integer vertical search range)
for ∆j = −s..s (integer horizontal search range)

for ∆g = −(a− 1)..0 (fractional v. search range)
for ∆h = −(a− 1)..0 (fractional h. search range)
SAD(∆j,∆i)+ = |x1(u−∆i, v −∆j)

−x2(au + ∆g, av + ∆h)|
end ∆h

end ∆g
end ∆j

end ∆i
end v

end u

with −r ≤ a∆i + ∆g ≤ r and −r ≤ a∆j + ∆h ≤ r
and 1 ≤ u−∆i ≤ m and 1 ≤ v −∆j ≤ n

Loops ∆i, ∆j, ∆g and ∆h are unrolled in hardware (e.g.
for quarter-pixel accuracy this results in a 7×7 PE matrix). As
a result, reference pixels from x2(ak− r, al− r) to x2(ak, al)
are spread to appropriate PEs and current pixels x1(k, l) to
x1(k − s, l − s) are propagated.

The inequalities 1 ≤ u − ∆i ≤ m and 1 ≤ v − ∆j ≤ n
are ensured in hardware by propagating an “enable” signal
to the PEs along with current block data. Consequently, not
all the results are available simultaneously. The first a2 cost
results are available after m(n + 1) cycles and subsequent
results after appropriate delays. The new resulting systolic
architecture (Fig. 6) presents several advantages:

• Propagation registers involves now the current block
instead of the reference window and are thus roughly
divided by a2.

• The subsequent comparison unit is reduced (shorter
pipeline and less logic) because the cost results of all
the search points are not available simultaneously.

• The system works as fast as the interpolation filter can
provide data because search area samples computed on
the fly are used immediately.

• Interpolated data are never stored, saving bandwidth and
memory/registers.

The proposed architecture reduces hardware requirements
compared to previous solutions while giving optimal perfor-
mances. The PE matrix and the comparison tree take account
of data dependencies on the interpolation filter. As soon
as the data are available, the absolute differences between
the quarter-pixel samples and the current pixel values are
computed, and then accumulated. Fig 6 shows the design of the
SAD computation matrix. In order to prevent an overloading
of the figure, only half-pixel is represented (a = 2 and r = 1

2)
and p = 1. The reference window is partitioned into four
quadrants because of data scheduling of the interpolation filter.
Each quadrant represents the unrolling of ∆g and ∆h loops
of Alg.3. The four quadrants are the result of the unrolling
of ∆i and ∆j loops. The top left quadrant is started first, the

top right quadrant is delayed by one cycle and the delay for
the bottom quadrants corresponds to the computation of one
line. Dummy cycles necessary to fill the search area registers
are removed from the initialization step. Instead, results are
partitioned according to data availability and the decision tree
resources are reduced. Indeed, comparison units are shared by
the 4 quadrants; for quarter-pixel accuracy there are at most
a2 = 16 values (out of 48) to compare at a time.

Figure 6. PE matrix design (a = 2 and r = 1
2

and p = 1)

3) Increasing parallelism: This architecture makes full use
of inter-level parallelism, and in addition it supports intra-level
parallelism. Performances can be increased by unrolling ∆l
loop of Alg. 1 (or ∆v loop of Alg. 3) by a factor p. Both
the filter and the interpolation matrix are affected. The detail
of PE implementation in fig 7 corresponds to p = 2. At each
cycle, two absolute differences are computed and accumulated.
The performances are thus roughly doubled at the cost of an
increase in hardware resources (the interpolation filters and
PE matrix are enlarged).

Figure 7. PE detail with p = 2

In order to consider rate-distortion optimization, the SAD
accumulator is optionally initialized by a value corresponding
to the Lagrangian cost of the vector. This value is computed
with very low hardware resources during the initialization of
the interpolation pipeline.

A high degree of parallelism is achieved with very low
memory bandwidth. The architecture is scalable in that the

7

throughput can be enhanced by increasing the intra-level par-
allelism. The combination of two parallelism techniques (intra
and inter-level) leads to high efficiency. Hardware resources
are almost independent of the block size as only propagation
registers are involved. Thus variable block-size is supported
with no hardware modification, and the hardware is always
fully utilized regardless the block-size.

D. Decision tree

To obtain the optimal motion vector, the costs computed by
the PE matrix are compared to each other in a dedicated com-
parison tree (Fig. 8). Simultaneously available values (from the
same quadrant) are compared in a binary tree structure. The
lowest cost of each quadrant is then sequentially compared to
the current optimum. Finally the sub-pixel motion vector is
output when the 4th quadrant’s costs have been processed.

PE PE PE PE PE PE PE

PE PE PE PE PE PE PE

PE PE PE PE PE PE PE

PE PE PE PE PE PE PE

PE PE PE PE PE PE PE

PE PE PE PE PE PE PE

PE PE PE PE PE PE PE

Comparator
Motion Vector

Figure 8. Decision tree

The binary tree base size is limited to a2 thanks to the early
calculation of distortion in the PEs. Consequently, its resources
are shared between the 4 quadrants. In addition, the processing
pipeline is shorter because there are fewer values to compare.

E. Implementation results

The scheduling of each unit of the architecture for an 8x8
block and an intra-level parallelism of p = 2 is shown in
figure. 9-a for the H.264 filter and figure. 9-b for the bilinear
filter. The impact of the interpolation filter on scheduling can
be clearly seen. Using the 6-tap H.264 filter requires far more
initialization cycles than a simple bilinear filter. This results
in more idle cycles for the PE matrix. Besides, a bilinear filter
can output all subpixels in one cycle.

The number of clock cycles necessary to refine an 8x8
motion vector to quarter-pixel accuracy is given in table III for
several configurations. The implementation of the refinement
with an intra-level parallelism of 2 pixels per cycle results
in latency of 112 cycles with the H.264 interpolation filter.
Comparable timing performances are achieved with a bilinear
filter and p = 1 which results in logic savings. Section V-C
discusses the impact of filter implementation on encoding
performances.

The H264 filter has been retained for implementation since
it is likely to achieve better motion vector field quality. For
real-time performances, 720p video has to be processed at 60
Hz. Thus the FPGA must process an 8x8 block in less than

(a) H.264 filter

(b) Bilinear filter

Figure 9. Units scheduling for 8x8 block-size and p = 2

Input width H.264 filter Bilinear filter

p = 1 pixel 209 106
p = 2 pixel 112 57
p = 4 pixel 70 37

Table III
FPGA IMPLEMENTATION TIMINGS FOR 8X8 BLOCKS (CYCLES)

(720×1280×60
8×8)−1 = 1157 ns. At a frequency of 133 MHz, it

results in 154 cycles. The parameter p = 2 will be retained
to perform real-time motion vector refinement of 720p 60Hz
video with reasonable frequency and low logic resources.

Table IV gives a comparison of synthesis results for quarter-
pixel refinement implementations. The presented coprocessor
with an H.264 filter and p = 2 pixels per cycle had been
prototyped on a Xilinx Virtex II Pro FPGA. The maximum
frequency is 150 MHz. A higher value can be expected on
a the latest FPGA, and even more on ASICs. The design is
done in VHDL and briefly optimized, better results could be
achieved with further optimizations.

The input bandwidth of two pixels per cycle per image
is interesting to connect the coprocessor through a small-
bandwidth bus. For example a DSP with a 32-bit bus can
provide data to keep the coprocessor busy.

The system using the H.264 filter and clocked at 133MHz

Chen’s [6] Yang’s [21] This work

cell area (Kgates)

H.264 filter 23.9 119 14.5

PE unit 34.8 41.1 54

Decision 2.2 8.5 10.4

Total 79.3 188 94

memory bandwidth (pixels/cycle)

Cur block 4 16 2
Ref block 10 22 2

Cycles per block
4x4 10× 2 5× 2 64
8x8 28× 2 14× 2 112

16x16 88× 2 22× 2 498

Table IV
COMPARISON WITH PREVIOUS WORK

8

refines an 8x8 motion vector to quarter-pixel accuracy in 840
ns. The peak throughput is thus 82 frames per second for
720p video. The architecture achieves a high throughput with
reduced logic. The design of each module is in adequacy
with the throughput of previous one. Therefore the datapath
is optimized.

External memory bandwidth is kept low compared to previ-
ous work (4 pixels/cycle, compared to 14 and 38). Moreover,
data is accessed only once instead of twice because of the
full-search approach . Single block-size speed performances
are reduced compared to previous work, but the whole motion
estimator is enhanced and the exhaustive search of all the seven
block sizes is made useless.

The block-size parameters can be changed without the need
for hardware modification to support variable block-size. In
Chen’s design, the system matches 4x4 block-size, resulting in
redundant computations for bigger block-size. Yang’s design
eliminates redundancy with a 16 pixel-wide unit, resulting
in hardware sub-utilization for smaller block-size. This work
takes variable block-size into consideration to design adaptive
units giving better performance.

Although the full search approach is efficient to reduce data
transfers and computation time, it requires the computation
of more distortions compared to a two-step approach. The
gate-count and the power consumption is thus raised in the
PE unit. To limit the gate-count increase, the search range
can be reduced to]-0.5;0.5[, giving only 25 search points but
impacting encoding performances. This will not be discussed
further in this arcticle.

This architecture for fractional-pixel accuracy motion vector
refinement combines efficiency and resource saving. It is
scalable in that its throughput can be enhanced by increasing
intra-level parallelism, involving a higher memory bandwidth
and a non-negligible increase in logic resources.

V. MULTI-COMPONENT ME

Integer motion estimation algorithms perform well on DSPs.
Fast algorithms take advantage of branching and random
memory access abilities. Fractional-pixel accuracy, however,
requires huge computation power and memory bandwidth
due to interpolation filters and distortion evaluation. These
operations take advantage of the high parallelism of VLSI
implementation. The results presented in sections III-C and
IV-E show that a small FPGA outperforms the latest DSPs for
the sub-pixel accuracy refinement task.

A heterogeneous multi-component motion estimator has
been prototyped on a platform from Sundance (SMT395)
comprising A TI C6416 DSP at 1GHz and a Virtex-2 Pro
FPGA. The inter-connection bus between the DSP and the
FPGA is 32-bit wide and is clocked at 133 MHz. The DSP
handles IME and allows algorithmic modifications to reduce
sub-pixel refinement complexity, whereas the Virtex 2 Pro
FPGA runs as a quarter-pixel motion refinement coprocessor.
No memory is connected to the FPGA thus all the data has
to be sent by the DSP. Therefore the coprocessor must run
with low memory bandwidth. Moreover, as the FPGA already
manages communications between the DSP external world.

The interface with the DSP’s external memory is reused to
plug the FME. The coprocessor design must have reduced
logic utilization to fit into the remaining space.

This section presents performance results of the multi-
component design as well as a comparison with a full-DSP
implementation. The motion estimator has been implemented
in Thomson’s H.264 video encoder to evaluate design trade-off
impacts on encoding performances.

A. FPGA as a sub-pixel refinement coprocessor

The IME is based on a predictive algorithm (cf Sec-
tion III-A). Previously estimated motion vectors are necessary
to predict the current motion as well as to compute the
Lagrangian cost. This causes data dependencies between IME
and FME which result in inevitable sequential processing. To
take advantage of the parallel multi-component architecture,
the motion vector of the left block is input in the IME stage at
integer accuracy instead of quarter-pixel accuracy. As a result
the motion estimation architecture is a 2-stage pipeline. The
first stage is the IME on DSP and the second stage is the FME
on FPGA (Fig. 10).

Figure 10. Block-level pipeline implementation

B. Timing results

Several configurations of the motion estimator have
been benchmarked for 720p high-definition video sequences
(1280x720). Execution times are given in the table V for IME
only on DSP, FME only on DSP and FPGA, and the com-
plete heterogeneous quarter-pixel accuracy motion estimator
(DSP+FPGA).

The DSP runs the EPZS Integer motion estimation algo-
rithm at 900 ns for an 8x8 block and 4000 ns for a 16x16
block. Sub-pixel refinement can be performed on the DSP with
a 1200 and 4400 ns overhead for 8x8 and 16x16 block-size
respectively whereas sub-pixel refinement on the FPGA takes
only 842 and 1925 ns and is realized in parallel thus with no
overhead.

Practical results present an execution time of 1250 and
4600 ns for 8x8 and 16x16. The small overhead is due to
the prototyping platform constraints. No external memory is
connected to the FPGA thus, for each block, both current block
and reference window must be transferred by the DSP to input
buffers on the FPGA. This increases the refinement operation
time which has to take account of data transfers.

The computation time of a 1/4-pixel high-definition motion
field with only one DSP is around 30 ms for both 8x8 and

9

Block size 8x8 16x16

DSP 900 ns 4000 ns
pel (720p frame: 13 ms) (14.4 ms)

DSP 1/4 pel 1200 ns 4400 ns
refinement only (17.3 ms) (15.8 ms)
w H.264 filter

FPGA 1/4 pel 842 ns 1925 ns
refinement only (12 ms) (7 ms)
w H.264 filter

Total 1250 ns 4600 ns
DSP + FPGA (720p frame: 18 ms) (16.5 ms)
Pel + 1/4 pel

Table V
EXECUTION TIMES FOR 8X8 AND 16X16 BLOCKS

16x16 block-sizes. The addition of an FPGA at 133 MHz
and an appropriate operation schedule significantly decrease
running times, achieving 55 and 60 frames per second for
8x8 and 16x16 block-size respectively. These figures take
data transfers between the DSP and the FPGA into account.
The coprocessor design lead to low data bandwidth which is
appropriate for the prototyping platform. Its performances can
be enhanced with an appropriate hardware design e.g a frame
memory connected to the coprocessor.

The coprocessor achieves good acceleration results with
low resources and memory bandwidth. To further improve
performances, intra-level parallelism can be increased. The
throughput roughly doubles each time input bandwidth p
doubles, but it involves a gate count increase.

C. Design trade-offs and encoding performances

In order to compare the impact of implementation trade-
offs on motion field quality, the motion estimator has been
implemented in an H.264 video encoder developed internally
at Thomson R&D. It is a software development kit inspired by
JM reference software [24]. Many 1280x720 high-definition
video sequences have been encoded with variable block-size
motion estimation from 8x8 to 16x16, one reference frame
and constant quantification at different quantification steps and
for different configurations of motion estimation. Then, each
configuration is compared to the full-quality encoder in terms
of bit-rate increase at constant PSNR.

The quarter-pixel accuracy motion estimation reduces the
bit-rate by up to 60% over pixel-accuracy and 30% over
half-pixel accuracy motion estimation. Table VI summarizes
relative bit-rate loss for different sub-pixel motion refinements.
Reference (1.) is a 3

4 -pixel range full search with sequential
scheduling of IME and FME, (2.) uses block-level pipelining,
(3.) and (4.) are the 2-step refinement with H.264 filter and
bilinear filter respectively, (5.) and (6.) are half-pixel and
integer-pixel accuracy motion estimators.

(1.) gives the best results but is not convenient in either soft-
ware or hardware implementation. (2.) and (3.) have negligible
loss. (2.) is more suited to hardware implementation whereas
(3.) is adapted to software. The bilinear filter reduces FME

FME Bit-rate loss
implementation city horses Hockey Crowd Spin cal.

1. Full 1
4

-pixel Full quality reference encoder
Sequential

2. Full 1
4

-pixel
block-level pipeline 0.1% 0.2% 0.1% 0% 0.2%

3. 2 step 1
4

-pixel 0.5% 0.4% 0.4% 0% 1%
H.264 filter

4. 2 step 1
4

-pixel 2.4% 1.7% 2.6% 1% 4.1%
bilinear filter

5. 1
2

pixel accuracy 30% 11% 15% 21% 28%

6. pixel accuracy 61% 24% 32% 47% 61%

Table VI
SUB-PIXEL REFINEMENT IMPLEMENTATION TRADE-OFFS AND RELATIVE

BIT-RATE LOSS

cost and has little impact on encoding performances for most
video sequences but results in a bit-rate increase of up to 4%
for the “Spin calendar” sequence. It is a possible candidate for
a low-cost motion estimator.

The quarter-pixel motion estimation property of H.264 sig-
nificantly increases encoding performances. It is an important
tool but is computationally intensive. Besides, its computation
power constraints are magnified by variable block-size motion
estimation.

D. Variable block-size considerations

Many studies have been conducted on variable block-size
motion estimation [5], [25] using the full search algorithm
and SAD reuse. However, for fractional-pixel accuracy motion
estimation, this technique leads to a small search range for a
realistic implementation [7]. SAD reuse is based on computing
SADs for the smallest block-size and combining them for
bigger block-sizes. Fast algorithms are not compatible with
SAD reuse because the motion vectors of different sub-blocks
are not usually the same.

Consequently, for a realistic implementation of variable
block-size and fractional pixel motion estimation (VBSFME),
a two-step approach is preferred: IME has to be conducted
first followed by FME for each block-size. A smart decision
algorithm can reduce the complexity by selecting the block-
size mode before FME.

Two solutions have been implemented to study the com-
plexity versus quality trade off. For high-definition video se-
quences, block-sizes smaller than 8x8 lead to high complexity
and provide little compression gain [3], thus only 16x16, 16x8,
8x16 and 8x8 are considered for implementation. Complexity
is reduced and compression loss is negligible for most video
sequences.

The first solution (VBSFME1) computes IME and a quarter-
pixel accuracy motion vector for each mode. Computation
power for IME and FME are magnified. Because of this, either
the sub-pixel refinement coprocessor has to be enlarged to
handle each mode sequentially, as it is done in [6] and [21], or
multiple refinement coprocessors are required to handle each
mode in parallel.

10

The second solution (VBSFME2) is a low-cost one. IME
is accelerated thanks to software trade-offs. The algorithm
starts with an 8x8 block-size and bigger blocks are processed
with a bottom-up merge procedure [26]. The final mode is
selected from IME results before FME which is performed for
only one mode, requiring a reduced quarter-pixel refinement
coprocessor. It can achieve H.264 motion estimation of 720p
video at up to 60 frames per seconds. The impact of the
hardware trade-off on encoding performance is shown in
table VII. For comparison’s sake, simulations have also been
performed with only 16x16 blocks and 8x8 bocks 3

4 -pixel
motion estimation (resp. (8.) and (9.)).

VBSFME Bit-rate loss
implementation city horses Hockey Crowd Spin cal.

1. Full 1
4

-pixel
Sequential Full quality reference encoder
VBSFME1

7. VBSFME2 1.7% 2.4% 2.2% 4.3% 4.6%

8. 16x16 1
4

-pixel 4.1% 4.7% 4% 8.1% 6.6%

9. 8x8 1
4

-pixel 18% 20% 20% 8.8% 21%

Table VII
VARIABLE BLOCK-SIZE IMPLEMENTATION TRADE-OFFS AND RELATIVE

BIT-RATE LOSS

In addition to a high motion vector cost, motion com-
pensation on only 8x8 blocks prevents the use of the skip
mode, which operates only on 16x16 blocks. This leads to a
decrease in encoding performance. 16x16 blocks (8.) provide
better encoding performance than 8x8 blocks (9.) but the
bit-rate loss is still high (8.1 %). Moreover, the impact of
variable block-size on encoding performance is higher when
B frames are used because the direct mode reduces motion
cost. VBSFME2 offers a compromise between computation
power and encoding performance but the best mode is difficult
to estimate before FME and the bit-rate loss reaches 4.6%
with a first mode selection algorithm. However, it is a good
candidate for a low-cost solution and selection the algorithm
can be enhanced.

For high-definition video, using fractional motion estimation
and single block-size (e.g 16x16) results in significantly better
encoding performance than variable block-size with integer-
pixel accuracy. VBSFME2 is thus appropriate, because it is
better than fixed block-size ME with the same hardware cost.

VI. CONCLUSION

Coding tools supported by the H.264 standard provide high
compression performances but introduce challenging com-
putation constraints that are magnified in a high-definition
context. Fractional-pixel accuracy and variable block-size mo-
tion estimation is too computationally intensive for a real-
time solution on a single DSP. The complexity of fractional-
pixel accuracy motion estimation is firstly addressed and the
limitations of DSP processing power for the sub-pixel motion
vector refinement is highlighted. Then a scalable and flexible
low-complexity VLSI architecture is designed for a sub-pixel
refinement coprocessor.

Finally, we propose a flexible hybrid solution for real-
time variable block-size and fractional-pixel motion estima-
tion of high-definition video sequences. A DSP computes a
fast integer motion estimation such as EPZS and an FPGA
refines motion vectors to quarter-pixel accuracy. An efficient
distribution and scheduling of the operations provides parallel
computing. The programmability of the DSP combined with
the flexibility of the coprocessor design allow various imple-
mentation trade-offs and adaptability to future standards e.g.
SVC. The system achieves real-time variable block-size and
quarter-pixel accuracy motion estimation of 720p video at up
to 60 frames per second with reduced hardware cost.

Future work will focus on the mode selection algorithm
from IME, for P pictures, and B pictures.

REFERENCES

[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of
the H.264/AVC video coding standard,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, July
2003.

[2] J. Ostermann, J. Bormans, P. List, D. Marpe, M. N. andF. Pereira,
T. Stockhammer, and T. Wedi, “Video coding with h.264/avc: tools,
performance, and complexity,” Circuits and Systems Magazine, vol. 4,
pp. 7– 28, 2004.

[3] S. Saponara, K. Denolf, G. Lafruit, C. Blanch, and J. Bormans, “Perfor-
mance and complexity co-evaluation of the advanced video coding stan-
dard for cost-effective multimedia communications,” EURASIP Journal
on Applied Signal Processing, vol. 2, pp. 220–235, 2004.

[4] Z. Chen, P. Zhou, and Y. He, “Fast integer pel and fractional pel motion
estimation for jvt,” JVT-F017, 6th Meeting of Joint Video Team (JVT)
of ISO/IEC MPEG & ITU-T VCEG, 2002.

[5] C.-Y. Chen, S.-Y. Chien, Y.-W. Huang, T.-C. Chen, T.-C. Wang, and
L.-G. Chen, “Analysis and architecture design of variable block-size
motion estimation for H.264/AVC,” IEEE Transactions on Circuits and
Systems I, vol. 53, no. 3, pp. 578 – 593, March 2006.

[6] T.-C. Chen, Y.-W. Huang, and L.-G. Chen, “Fully utilized and reusable
architecture for fractional motion estimation of H.264/AVC,” Internati-
nal Conference on Acoustics, Speech an Signal Processing, vol. 5, pp.
9–12, 2004.

[7] C. Rahman and W. Badawy, “A quarter pel full search block motion
estimation architecture for H.264/AVC,” IEEE International Conference
on Multimedia and Expo, July 2005.

[8] T. Dias, N. Roma, and L. Sousa, “Fully parameterizable vlsi architecture
for sub-pixel motion estimation with low memory bandwidth require-
ments,” November 2005.

[9] K. Gaedke, M. Borsum, M. Georgi, A. Kluger, J.-P. Le Glanic, and
P. Bernard, “Architecture and VLSI implementation of a programmable
HD real-time motion estimator,” IEEE International Symposium on
Circuits and Systems, May 2007.

[10] I. Berkeley Design Technology, Ed., FPGAs for DSP,Second Edition,
September 2006.

[11] F. Urban, M. Raulet, J. F. Nezan, and O. Déforges, “Automatic DSP
cache memory management and fast prototyping for multiprocessor
image applications,” 14th European Signal Processing Conference, Sept
2006.

[12] J. R. Jain and A. K. Jain, “Displacement measurement and its application
in interframe coding,” IEEE Transactions on Communications, vol.
COM-29(12), pp. 1799–1808, 1981.

[13] P. Hosur and K. Ma, “Motion Vector Field Adaptive Fast Motion Estima-
tion,” Second International Conference on Information, Communications
and Signal Processing (ICICS ’99), 1999.

[14] K. Virk, N. Khan, S. Masud, F. Nasim, and S. Idris, “Low Complexity
Recursive Search Based Motion Estimation Algorithm for Video Coding
Applications,” in Proceedings of 13th European Signal Processing
Conference, Antalya, Turkey, 2005.

[15] W. Li and E. Salari, “Successive elimination algorithm for motion
estimation,” IEEE Transactions on Image Processing, vol. 4, pp. 107–
110, 1995.

11

[16] Y.-S. Chen, Y.-P. Hung, and C.-S. Fuh, “Fast Block Matching Algorithm
Based on the Winner-Update Strategy,” in IEEE Transactions on Image
Processing, vol. 10, August 2001.

[17] A. M. Tourapis, “Enhanced Predictive Zonal Search for Single and
Multiple Frame Motion Estimation,” Visual Communications and Image
Processing, pp. 1069–79, 2002.

[18] B. Chupeau, P. Robert, M. Pecot, and P. Guillotel, “Multiscale motion
estimation,” Workshop on Advanced Matching in Vision and Artificial
Intelligence, 5th, 6th June 1990.

[19] F. Urban, R. Poullaouec, J. F. Nezan, and O. Déforges, “Real-time Multi-
DSP Motion Estimator for MPEG-4 AVC/H.264 High Definition Video,”
International Conference on Signals and Electronic Systems, September
2006.

[20] K. Williston, “Microprocessors vs. DSPs,”
http://www.bdti.com/articles/info articles.htm, March 2006.

[21] C. Yang, S. Goto, and T. Ikenaga, “High performance vlsi architecture
of fractional motion estimation in h.264 for hdtv,” in IEEE International
Symposium on Circuits and Systems, May 2006, pp. 2605–2608.

[22] L. Vos and M. Stegherr, “Parameterizable VLSI architectures for the
full-search block-matching algorithm,” IEEE Transactions on Circuits
and Systems, vol. 36 issue 10, pp. 1309–1316, 1989.

[23] H. Yeo and Y. H. Hu, “A novel modular systolic array architecture for
full-search blockmatching motion estimation,” International Conference
on Acoustics, Speech, and Signal Processing, vol. 5, pp. 3303–3306,
May 1995.

[24] G. Sullivan, A. M. Tourapis, and K. Sühring, H.264/MPEG-4 AVC
Reference Software Manual, Joint Video Team (JVT) of ISO/IEC MPEG
and ITU-T VCEG, october 2006.

[25] S. Y. Yap and J. V. McCanny, “A vlsi architecture for variable block size
video motion estimation,” IEEE Transactions on Circuits and Systems:
Expess Briefs, vol. 51, no. 7, pp. 384–389, July 2004.

[26] Z. Zhou, M.-T. Sun, and Y.-F. Hsu, “Fast variable block-size motion esti-
mation algorithms based on merge and split procedures for h.264/mpeg-4
avc,” International Symposium on Circuits and Systems, vol. 3, pp. 725–
8, May 2004.

	Introduction
	Sub-pixel accuracy motion estimation
	H.264 standard interpolation filters
	Implementation strategies
	Basic data interpolation
	On-the-fly data interpolation

	Motion estimation on DSP
	Integer-pixel accuracy motion estimation
	Fractional-pixel accuracy pixel refinement
	Implementation results

	Proposed VLSI architecture for FME
	Overall VLSI architecture design
	Interpolation filter
	Distortion computation matrix
	Integer-pixel accuracy full search model
	Inverted sub-pixel accuracy full search model
	Increasing parallelism

	Decision tree
	Implementation results

	Multi-component ME
	FPGA as a sub-pixel refinement coprocessor
	Timing results
	Design trade-offs and encoding performances
	Variable block-size considerations

	Conclusion
	References

