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∗Université Pierre et Marie Curie-Paris 6

Institut Jean Le Rond d’Alembert, UMR CNRS 7190
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Abstract

A linear dispersive mechanism leading to a burst in the L∞ norm of

the error in numerical simulation of polychromatic solutions is identified.

This local error pile-up corresponds to the existence of spurious caustics,

which are allowed by the dispersive nature of the numerical error. From

the mathematical point of view, spurious caustics are related to extrema

of the numerical group velocity and are physically associated to inter-

actions between rays defined by the characteristic lines of the discrete

system. This paper extends our previous work about classical schemes to

dispersion-relation preserving schemes.
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1 Introduction

The analysis and the control of numerical error in discretized propagation-type
equations is of major importance for both theoretical analysis and practical ap-
plications. A huge amount of works has been devoted to the analysis of the
numerical errors, its dynamics and its influence on the computed solution (the
reader is referred to classical books, among which [5, 13, 8, 9]). The emergence
of Dispersion-Relation-Preserving (DRP) schemes [3]), which have the same dis-
persion relation as the original partial difference equations, enables one to have
very accurate high order finite difference schemes.

The two sources of numerical error are the dispersive and dissipative properties
of the numerical scheme, which are very often investigated in unbounded or
periodic domains thanks to a spectral analysis.
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It appears that existing works are mostly devoted to linear, one-dimensional
numerical models, such as the linear advection equation

∂u

∂t
+ c

∂u

∂x
= 0 (1)

where c is a constant uniform advection velocity.
The two sources of numerical error are the dispersive and dissipative proper-
ties of the numerical scheme, which are very often investigated in unbounded
or periodic domains thanks to a spectral analysis. Following this approach, a
monochromatic wave is used to measure the accuracy of the scheme. Such a tool
is very powerful and provides the user with a deep insight into the discretization
errors. But some results coming from practical numerical experiments still re-
main unexplained, despite the linear character of the discrete numerical model.
As an example, let us note the sudden growth of the numerical error for long
range propagation reported by Zingg [15] for a large set of numerical schemes,
including optimized numerical schemes.
The usual modal analysis is almost always applied to monochromatic reference
solutions, with the purpose of analyzing the error committed on both their am-
plitude and their phase, leading to classical plots of the relative error as the
function of the Courant number and/or the number of grid points per wave-
length. Therefore, dispersive phenomena associated to polychromatic solutions
are usually not taken into account.

The present paper deals with the analysis of linear dispersive mechanism which
results in local error focusing, i.e. to a sudden local error burst in the L∞ norm
for polychromatic solutions. This phenomena is reminiscent of the physical one
referred to as the caustic phenomenon in linear dispersive physical models [14],
and will be referred to as the spurious caustic phenomenon hereafter. It extends
our previous work [2] to DRP schemes. The present analysis is restricted to
interior stencil, and the influence of boundary conditions will not be considered.
The paper is organized as follows. Main elements of caustic theory of interest
for the present analysis are recalled in section 2. DRP schemes are presented in
section 3. Their caustical analysis is exposed in section 4. A numerical example
is presented in section 5.

2 Caustics

The solution of Eq. (1) is taken under the form:

u(x, t, k) = ei (k x−ω t) (2)

where ω = ξω + i ηω is the complex phase, and k the real wave number. For
dispersive waves, it is recalled that the group velocity Vg(k) is defined as

Vg(k) ≡
∂ξω

∂k
(3)
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A caustic is defined as a focusing of different rays in a single location. The
equivalent condition is that the group velocity exhibits an extremum, i.e. there
exists at least one wave number kc such that

∂Vg

∂k
(kc) = 0 (4)

The corresponding physical interpretation is that wave packets with character-
istic wave numbers close to kc will pile-up after a finite time and will remain
superimposed for a long time, resulting in the existence a region of high energy
followed by a region with very low fluctuation level.
The linear continuous model Eq. (1) is not dispersive if the convection velocity
c is uniform, and therefore the exact solution does not exhibits caustics since the
group velocity does not depend on k. The discrete solution associated with a
given numerical scheme will admit spurious caustics, and therefore spurious local
energy pile-up and local sudden growth of the error, if the discrete dispersion
relation is such that the condition (4) is satisfied. For a uniform scale-dependent
convection velocity, such spurious caustics can exist in polychromatic solutions
only, since they are associated to the superposition of wave packets with different
characteristic wave numbers.
Set:

k =
ϕσ

c dt
(5)

The general dispersion relation associated with the discrete scheme enables us
to obtain the corresponding group velocity, given by:

Vg = h
∂ξω

∂ϕ
(6)

The numerical solution will therefore admits spurious caustics if

∂Vg

∂k
=

∂Vg

∂ϕ

∂ϕ

∂k
= 0 ⇐⇒

∂Vg

∂ϕ
= 0 (7)

The corresponding values of ϕ and k will be respectively denoted ϕc and kc.
Spurious caustics are associated with characteristic lines given by

x

t
= Uc (8)

where

Uc = Vg(ϕc) (9)

3 DRP schemes

The Burgers equation:

ut + c u ux − µ uxx = 0, (10)
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c, µ being real constants, plays a crucial role in the history of wave equations.
It was named after its use by Burgers [1] for studying turbulence in 1939.

i, n denoting natural integers, a linear finite difference scheme for this equation
can be written under the form:

∑
αlm um

l = 0 (11)

where:
ul

m = u (l h, m τ) (12)

l ∈ {i − 1, i, i + 1}, m ∈ {n − 1, n, n + 1}, j = 0, ..., nx, n = 0, ..., nt. The
αlm are real coefficients, which depend on the mesh size h, and the time step τ .
The Courant-Friedrichs-Lewy number (cfl) is defined as σ = c τ/h .
A numerical scheme is specified by selecting appropriate values of the coeffi-
cients αlm. Then, depending on them, one can obtain optimum schemes, for
which the error will be minimal.

m being a strictly positive integer, the first derivative ∂u
∂x

is approximated at
the lth node of the spatial mesh by:

(
∂u

∂x
)l ≃

m∑

k=−m

γk un
i+k (13)

Following the method exposed by C. Tam and J. Webb in [3], the coefficients
gammak are determined requiring the Fourier Transform of the finite difference
scheme (13) to be a close approximation of the partial derivative ( ∂u

∂x
)l.

(13) is a special case of:

(
∂u

∂x
)l ≃

m∑

k=−m

γk u(x + k h) (14)

where x is a continuous variable, and can be recovered setting x = l h.
Denote by ω the phase. Applying the Fourier transform, referred to by ̂ , to
both sides of (14), yields:

j ω û ≃

m∑

k=−m

γk e j k ω h û (15)

j denoting the complex square root of −1.

Comparing the two sides of (15) enables us to identify the wavenumber λ of the

finite difference scheme (13) and the quantity 1
j

m∑

k=−m

γk e j k ω h, the wavenumber

of the finite difference scheme (13) is thus:

λ = − j

m∑

k=−m

γk e j k ω h (16)
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To ensure that the Fourier transform of the finite difference scheme is a good
approximation of the partial derivative ( ∂u

∂x
)l over the range of waves with wave-

length longer than 4 h, the a priori unknowns coefficients γk must be choosen
so as to minimize the integrated error:

E =
∫ π

2

−
π
2

|λ h − λ h|2 d(λ h)

=
∫ π

2

−
π
2

|λ h + j

m∑

k=−m

γk e j k ω h h|2 d(λ h)

=
∫ π

2

−
π
2

|ζ + j

m∑

k=−m

γk {cos( k ζ) + j sin( k ζ)} |2 dζ

=
∫ π

2

−
π
2








ζ −
m∑

k=−m

γk sin( k ζ)




2

+




m∑

k=−m

γk cos( k ζ)




2 



 dζ

= 2
∫ π

2

0








ζ −
m∑

k=−m

γk sin( k ζ)




2

+




m∑

k=−m

γk cos( k ζ)




2 



 dζ

(17)

The conditions that E is a minimum are:

∂E

∂γi

= 0 , i = −m, . . . , m (18)

i. e.:

∫ π
2

0

{
− ζ sin( i ζ) +

m∑

k=−m

γk cos ( (k − i) ζ)

}
dζ = 0 (19)

Changing i into −i, and k into −k in the summation yields:

∫ π
2

0

{
ζ sin( i ζ) +

m∑

k=−m

γ−k cos ( (−k + i) ζ)

}
dζ = 0 (20)

i. e.:

∫ π
2

0

{
ζ sin( i ζ) +

m∑

k=−m

γ−k cos ( (k − i) ζ)

}
dζ = 0 (21)

Thus:

∫ π
2

0

m∑

k=−m

{γ−k + γk} cos ( (k − i) ζ) dζ = 0 (22)

which yields:

π

2
{γ−i + γi} +

m∑

k 6=i, k=−m

{
γ−k + γk

k − i

}
sin

(
(k − i)

π

2

)
= 0 (23)

which can be considered as a linear system of 2 m + 1 equations, the unknowns
of which are the γ−i+γi, i = −m, . . . , m. The determinant of this system is not
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equal to zero, while it is the case of its second member: the Cramer formulae
give then, for i = −m, . . . , m:

γ−i + γi = 0 (24)

or:

γ−i = −γi (25)

For i = 0, one of course obtains:

γ0 = 0 (26)

All this ensures:

m∑

k=−m

γk = 0 (27)

The values of the γk coefficients are obtained by substituting relations (25) into
(19):

m∑

k=−m

γk = 0 (28)

m being a strictly positive integer, a 2m + 1-points DRP scheme ([3]) is thus
given by:

− un+1
i + un

i +
τ

h

m∑

k=−m

γk un
i+k = 0 (29)

where the γk, k ∈ {−m, m} are the coefficients of the considered scheme, and
satisfy the relations (25).

4 General study of DRP schemes

The dispersion relation related to a general DRP -scheme (29) is given by:

τ

h

m∑

k=−m

γk ei (k ϕ+ξω τ)−B τ+ei ξω τ−B τ

− 1 = 0 (30)

from which it comes that

i ξω τ = B τ − ln




1 +

τ

m∑

k=−m

γk e i k ϕ

h




(31)
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The group velocity can be expressed as

Vg =

i

m∑

k=−m

i k γk e i k ϕ

ω





σ

m∑

k=−m

γk e i k ϕ

c
+ 1





(32)

from which it comes that

∂Vg

∂ϕ
=

i c2τ







c + σ

m∑

k=−m

γk ei k ϕ




m∑

k=−m

i k2γk ei k ϕ − σ




m∑

k=−m

γk ei kϕi k



 2





σ



c + σ

m∑

k=−m

γk ei k ϕ



 2

(33)

Through identification of the real and imaginary part of (33), we obtain:

σ

m∑

k,l=−m

γk γi+l

{
k2 sin [ (k + l)ϕ ] − k l cos [ (k + l)ϕ ]

}
= −c

m∑

k=−m

k2 γk sin(k ϕ) (34)

and

σ

m∑

k,l=−m

γk γl {− cos [ (k + l) ϕ] − k l sin [ (k + l) ϕ ]} = c

m∑

k=−m

k2 γk cos(k ϕ) (35)

Due to (25), (36) and (37) respectively become:

σ

m∑

k,l=−m

γk γl

{
k2 sin [ (k + l)ϕ ] − k l cos [ (k + l)ϕ ]

}
= −2 c

m∑

k=1

k2 γk sin(k ϕ) (36)

and

σ

m∑

k,l=−m

γk γl {− cos [ (k + l) ϕ] − k l sin [ (k + l) ϕ ]} = 0 (37)

Denote by Tj, j ∈ IN∗ the Chebyshev polynomial of the first kind, and by Uj ,
j ∈ IN∗ the Chebyshev polynomial of the second kind:

cos(j x) = Tj (cos(x)) =
n

2

[
n
2

]
∑

k=0

(−1)k (n − k − 1)!

k! (n − 2 k)!
(2 cos(x))n−2k (38)

sin(j x) = sin(x)Uj (cos(x)) (39)

where:

Uj (cos(x)) =

[
n
2

]
∑

k=0

(−1)k (n − k)!

k! (n − 2 k)!
(2 cos(x))n−2k (40)
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[
n
2

]
denotes the integer part of n

2 .
Equations (36), (37) can thus be written as:

σ

m∑

k,l=−m

γk γl

{
k2 sin(ϕ) Uk+l (cos(ϕ)) − k l Tk+l (cos(ϕ))

}
= −c

m∑

k=−m

k2 γk sin(ϕ) Uk (cos(ϕ))

(41)

and

σ

m∑

k,l=−m

γk γl {Tk+l (cos(ϕ)) + k l sin(ϕ) Uk+l (cos(ϕ))} = 0 (42)

Using the relation:

sin(ϕ) =
√

1 − cos2(ϕ) (43)

equations (41), (42) can be written as:

f1 (cos(ϕ)) = 0 (44)

and

f2 (cos(ϕ)) = 0 (45)

where, for all θ ∈ IR:

f1(θ) = σ

m∑

k,l=−m

γk γl

{
k2

√
1 − θ2 Uk+l (θ) − k l Tk+l (θ)

}
+ c

m∑

k=−m

k2 γk

√
1 − θ2 Uk (θ)

(46)
i.e.:

f1(θ) = σ

m∑

k,l=−m

γk γl

{
k2

√
1 − θ2 Uk+l (θ) − k l Tk+l (θ)

}
+ 2 c

m∑

k=1

k2 γk

√
1 − θ2 Uk (θ)

(47)

and

f2(θ) =
m∑

k,l=−m

γk γl

{
Tk+l (θ) + k l

√
1 − θ2 Uk+l (θ)

}
(48)

Due to:

Tj (1) = 1 ∀ j ∈ IN∗ (49)

it is worth noting that:

f1(1) = −σ

m∑

k,l=−m

γk γl k l (50)

and

f2(1) =

m∑

k,l=−m

γk γl (51)
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The knowledge of the scheme coefficients γk, k ∈ {−m, m}, enables one to
study their variations, and to determine wether the equations (44), (45) admit

a solution. One can thus know wether
∂Vg

∂ϕ
= 0 admits real roots, i. e. wether

the schema has spurious caustics.

5 Numerical application: the 3-points DRP scheme

The 3-points DRP scheme is given by:

γ1 = 0.63662 (52)

We thus have:

f1(1) = −2 σ
{
γ2
1 − γ2

1

}
= 0 (53)

and

f2(1) = 2
{
γ2
1 − γ2

1

}
= 0 (54)

For the 3-points DRP scheme, the dispersion relation is:

e i ϕ
(
−e−ηω τ + ei τ ξω

)
+ eiτ ξω

(
−0.63662 + 0.63662 e2 i ϕ

)
σ = 0 (55)

which leads to:

ei τ ξω =
e i ϕ e−ηω τ

e i ϕ + 0.63662 σ (e2 i ϕ − 1)
(56)

It yields:

ξω =
1

τ
Arctan

[
− (1 + 0.63662 σ ) sin(ϕ)

1 + (0.63662 σ − 1) cos(ϕ)

]
(57)

The derivative
∂Vg

∂ϕ
of the group velocity Vg vanishes for ϕ = 0, ϕ = ±π

2 , and
ϕ = 0.950935.
The 3-points DRP scheme admits thus spurious caustics.
We now illustrate the caustic phenomenon considering the two following sinu-
soidal wave packets:

u1 = e−α (x−x1

0
−c t)2 Cos [ k1 (x − x1

0 − c t) ] (58)

u2 = e−α (x−x2

0
−c t)2 Cos [ k2 (x − x2

0 − c t) ] (59)

where α > 0. The two wave packets are initially centered at x1
0 and x2

0, re-
spectively. The group velocity of the two wave packets are V1 = Vg(k1) and
V2 = Vg(k2), respectively, where the function Vg(x) is associated to the numer-
ical scheme used to solve Eq. (1).
If the solution obeys the linear advection law given by Eq. (1), the initial field is
passively advected at speed c, while, if the advection speed is scale-dependent (as
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in numerical solutions), the two packets will travel at different speeds, leading
to the rise of discrepancies with the constant-speed solution. Another dispersive
error is the shape-deformation phenomenon: due to numerical errors, the exact
shape of the wave packets will not be exactly preserved. This secondary effect
will not be considered below, since it is not related to the existence of spurious
caustics. It is emphasized here that the occurance of spurious caustics originates
in the differential error in the group velocity, not in the fact that shapes of the
envelope of the wave packets are not preserved. The issue of deriving shape-
preserving schemes for passive scalar advection has been adressed by several
authors (e.g. [6, 7]).
The spurious caustics will appear if the two wave packets happen to get su-
perimposed. During the cross-over, the L∞ norm of the error (defined as the
difference between the constant-speed solution and the dispersive one) will ex-
hibit a maximum. The characteristic life time of the caustic, t∗, depends directly
on the difference between the advection speeds of the two wave packets and the
wave packet widths. Denoting l1 and l2 the characteristic length of the two wave
packets, the time during which they will be (at least partially) superimposed
can be estimated as

t∗ =
l1 + l2

|V1 − V2|
(60)

It is seen that, since caustics are defined as solutions for which ∂Vg/∂k = 0, t∗

will be large if |k1−k2| ≪ 1. Noting k1 = kc + δk and k2 = kc − δk, one obtains

t∗ ≃
l1 + l2

2(δk)2
∣∣∣∂2Vg

∂k
(kc)

∣∣∣
(61)

leading to t∗ ∝ (δk)−2.
Neglecting shape-deformation effects and assuming that the numerical scheme
is non-dissipative, the numerical error E is given by:

E = | e−α(x−x1

0
−c t)2Cos[k1 (x − x1

0 − ct) ] − e−α(x−x1

0
−t V1)2Cos[k1(x − x1

0 − tV1)]

+ e−α(x−x2

0
−c t)2Cos[k2(x − x2

0 − ct)] − e−α(x−x2

0
−t V2)2 Cos [ k2 (x − x2

0 − t V2) ]|
(62)

A simple analysis show that

lim
t→+∞

L∞(E(t)) = L∞(u1(t = 0)), max
t

L∞(E(t)) = 2L∞(u1(t = 0)) (63)

The time history of the L∞ norm of E for the 3-points DRP scheme scheme, is
displayed in Fig. 1, showing the occurance of the caustic and the sudden growth
of the L∞ error norm.
Figure 2 displays the isovalues of the residual kinetic energy for 3-points DRP
scheme, for cfl = 0.9. Minima are in black, maxima in white. In each case, the
caustic corresponds to the white domain, where the residual kinetic energy is
maximal.
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Figure 1: Time history (L∞ norm) of the numerical error for the two-wave
packet problem (shape deformation and dissipative errors are neglected to em-
phasize the linear focusing phenomenon). Numerical parameters are α = 0.0005,
h = 0.01, V1 = −2.68381, V2 = −2.51381, corresponding to the properties of
the 3-points DRP scheme, for σ = 0.9.

0 50 100 150 200

0

50

100

150

200

x

dx

t dt

Figure 2: Isovalues of the residual kinetic energy for the 3-points DRP scheme, for

cfl = 0.9.

6 Concluding remarks

In the above, we have set a general method that enables one to determine wether
a DRP scheme admits or not spurious caustics.
The existence of spurious numerical caustics in linear advection DRP schemes
has been proved. This linear dispersive phenomenon gives rise to a sudden
growth of the L∞ norm of the error, which corresponds to a local focusing of
the numerical error in both space and time. In the present analysis, spurious
caustics have been shown to occur in polychromatic solutions. The energy of
the caustic phenomenon depends on the number of spectral modes that will get
superimposed at the same time. As a consequence, the spurious error pile-up will
be more pronounced in simulations with very small wave-number increments. It
has been shown that a popular existing scheme, as the 3-points DRP -scheme,
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allows the existence of spurious caustics.
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