François Dubois 
email: francois.dubois@math.u-psud.fr
  
Pierre Lallemand 
email: pierre.lal@free.fr
  
  
  
  
Towards higher order lattice Boltzmann schemes

Keywords: Latttice Boltzmann Equation, Taylor expansion method, thermics, linearized Navier-Stokes, quartic parameters, formal calculus PACS numbers: 02.70.Ns, 05.20.Dd, 47.10.+g, 47.11.+j

 at an arbitrary order of accuracy. We derive formally the associated dynamical equations for classical thermal and linear fluid models in one to three space dimensions. We use this approach to adjust "quartic" relaxation parameters in order to enforce fourth order accuracy for thermal model and diffusive relaxation modes of the Stokes problem. We apply the resulting scheme for numerical computation of associated eigenmodes, compare our results with analytical references and observe fourth-order accuracy when using "quartic" parameters.

Introduction

• The lattice Boltzmann scheme is a numerical method for simulation of a wide family of partial differential equations associated with conservation laws of physics. The principle is to mimic at a discrete level the dynamics of the Boltzmann equation. In this paradigm, the number f (x, t) dx dv of particles at position x, time t and velocity v with an uncertainty of dx dv follows the Boltzmann partial differential equation in the phase space (see e.g. Chapman and Cowling [START_REF] Chapman | The mathematical theory of non-uniform gases[END_REF]):

(1)

∂f ∂t + v•∇ x f = Q(f ) .
• Note that the left hand side is a simple advection equation whose solution is trivial through the method of characteristics:

(2)

f (x, v, t) = f (x -vt, v, 0) if Q(f ) ≡ 0 .
Remark also that the right hand side is a collision operator, local in space and integral relative to velocities:

(3) Q(f )(x, v, t) = C f (x, w, t), x, v, t dw , where C(•) describes collisions at a microscopic level. Due to microscopic conservation of mass, momentum and energy, an equilibrium distribution f eq (x, v, t) satisfy the nullity of first moments of the distribution of collisions:

Q(f eq )(x, v, t)   1 v 1 2 |v| 2   dv = 0 .
Such an equilibrium distribution f eq satisfies classically the Maxwell-Boltzmann distribution.

• The lattice Boltzmann method follows all these physical recommandations with specific additional options. First, space x is supposed to live in a lattice L included in Euclidian space of dimension d. Second, velocity belongs to a finite set V composed by given velocities v j (0 ≤ j ≤ J) chosen in such a way that

x ∈ L and v j ∈ V =⇒ x + ∆t v j ∈ L ,
where ∆t is the time step of the numerical method. Then the distribution of particles, f , is denoted by f j (x, t) with 0 ≤ j ≤ J, x in the lattice L and t an integer multiple of time step ∆t.

• In the pioneering work of cellular automata introduced by Hardy, Pomeau and De Pazzis [START_REF] Hardy | Time Evolution of a Two-Dimensional Classical Lattice System[END_REF], Frisch, Hasslacher and Pomeau [START_REF] Frisch | Lattice gas automata for the Navier-Stokes equation[END_REF] and developed by d'Humières, Lallemand and Frisch [START_REF] Humières | Lattice gas models for 3D-hydrodynamics[END_REF], the distribution f j (x, t) was chosen as Boolean. Since the so-called lattice Boltzmann equation of Mac Namara and Zanetti [START_REF] Mc Namara | Use of Boltzmann equation to simulate lattice gas automata[END_REF], Higuera, Succi and Benzi [START_REF] Higuera | Lattice gas dynamics with enhanced collisions[END_REF], Chen, Chen and Matthaeus [START_REF] Chen | Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method[END_REF], Higuera and Jimenez [START_REF] Higuera | Boltzmann approach to lattice gas simulations[END_REF] (see also Chen and Doolen [START_REF] Chen | Lattice Boltzmann method for fluid flows[END_REF]), the distribution f j (•, •) takes real values in a continuum and the collision process follows a linearized approach of Bhatnagar, Gross and Krook [START_REF] Bhatnagar | A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems[END_REF]. With Qian, d'Humières and Lallemand [START_REF] Qian | Lattice BGK for Navier-Stokes equation[END_REF], the equilibrium distribution f eq is determined with a polynomial in velocity. In the work of Karlin et al [START_REF] Karlin | Maximum Entropy Principle for Lattice Kinetic Equations[END_REF], the equilibrium state is obtained with a general methodology of entropy minimization.

• The numerical scheme is defined through the evolution of a population f j (x, t), with x ∈ L and 0 ≤ j ≤ J towards a distribution f j (x, t + ∆t) at a new discrete time.

The scheme is composed by two steps that take into account successively the left and right hand sides of the Boltzmann equation [START_REF] Abramowitz | Handbook of mathematical functions[END_REF]. The first step describes the relaxation f -→ f * of particle distribution f towards the equilibrium. It is local in space and nonlinear in general. D. d'Humières first introduced in [START_REF] Humières | Generalized Lattice-Boltzmann Equations[END_REF] the fundamental notion of moments in the context of lattice Boltzmann schemes. He defines an invertible matrix M with (J + 1) lines and (J + 1) columns and the moments m through a simple linear relation [START_REF] Bhatnagar | A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems[END_REF])

m k = J j=0 M kj f j , 0 ≤ k ≤ J .
• The first N moments are supposed to be at equilibrium:

(5) m * i = m i ≡ m eq i ≡ W i , 0 ≤ i ≤ N -1
and we introduce the vector W ∈ R N of conserved variables composed of the W i for 0 ≤ i ≤ N -1:

W i ≡ m eq i , 0 ≤ i ≤ N -1.
The first moments at equilibrium are respectively the total density [START_REF] Carslaw | Conduction of heat in solids[END_REF] ρ

≡ J j=0 f j , momentum (7) 
q α ≡ J j=0 v α j f j , 1 ≤ α ≤ d
and possibly the energy [START_REF] Lallemand | Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions[END_REF] for Navier-Stokes fluid simulations. In consequence, we have

M 0j ≡ 1 , 0 ≤ j ≤ J (8) M αj ≡ v α j , 1 ≤ α ≤ d , 0 ≤ j ≤ J . (9) 
For the other moments, we suppose given (J + 1 -N) (nonlinear) functions G k (•) [START_REF] Chen | Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations[END_REF])

R N ∋ W -→ G k (W ) ∈ R , N ≤ k ≤ J
that define equilibrium moments m eq k according to the relation [START_REF] Humières | Generalized Lattice-Boltzmann Equations[END_REF])

m eq k = G k (W ) , N ≤ k ≤ J .
Note also that more complicated models have been developed in Yeomans's group (see e.g. Marenduzzo at al [START_REF] Marenduzzo | Steady-state hydrodynamic instabilities of active liquid crystals: Hybrid Lattice Boltzmann simulations[END_REF]) for modelling of liquid crystals.

• The relaxation process is related to the linearized collision operator introduced at relation (3). In particular intermolecular interactions (Maxwell molecules with a 1/r 4 potential), the collision operator is exactly solvable in terms of so-called Sonine polynomials (see e.g. Chapman and Cowling [START_REF] Chapman | The mathematical theory of non-uniform gases[END_REF]) and the eigenvectors are known. Moreover, the discrete model is highly constrained by symmetry and exchanges of coordinates. In the work of d'Humières [START_REF] Humières | Generalized Lattice-Boltzmann Equations[END_REF], relaxation parameters (also named as s-parameters in the following) s k (N ≤ k ≤ J) are introduced, satisfying for stability constraints (see e.g. [START_REF] Lallemand | Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability[END_REF]) the conditions 0 < s k < 2 , N ≤ k ≤ J .

Then the nonconserved momenta m * k after collision are supposed to satisfy [START_REF] Humières | Ongoing discussions with P. lallemand[END_REF] m * k = m k + s k (m eq k -m k ) , k ≥ N and we will denote by S the diagonal matrix of order J +1-N whose diagonal coefficients are equal to s k :

(13) S kℓ ≡ δ kℓ s ℓ , k, ℓ ≥ N with δ kℓ the Kroneker symbol equal to 1 if k = ℓ and null in the other cases. Remark that this framework is general: when the matrix S is proportional to identity, the d'Humières scheme degenerates to the popular "BGK" method characterized by a "Single Relaxation Rate". In this particular case the relaxation operator is diagonal and there is no particular diagonalization basis to work with. The distribution f * after collision is reconstructed by inversion of relation ( 4):

(14) f * j = J ℓ=0 M -1 jℓ m * ℓ , 0 ≤ j ≤ J .
• We suppose also that the set of velocities V is invariant by space reflection:

v j ∈ V =⇒ ∃ ℓ ∈ {0, . . . , J}, v ℓ = -v j , v ℓ ∈ V .
The second step is the advection that mimic at the discrete level the free evolution through characteristics ( 2):

(15)

f j (x, t + ∆t) = f * j (x -v j ∆t, t) , x ∈ L, 0 ≤ j ≤ J , v j ∈ V .
Note that all physical relaxation processes are described in space of moments. Nevertheless, evolution equation ( 15) is the key issue of forthcoming expansions.

• The asymptotic analysis of cellular automata (see e.g. Hénon [START_REF] Hénon | Viscosity of a Lattice Gas[END_REF]) provides evidence supporting asymptotic partial differential equations and viscosity coefficients related to the induced parameter defined by ( 16)

σ k ≡ 1 s k - 1 2 .
The lattice Boltzmann scheme (4) to [START_REF] Dubois | Equivalent partial differential equations of a lattice Boltzmann scheme[END_REF] has been analyzed by d'Humières [START_REF] Humières | Generalized Lattice-Boltzmann Equations[END_REF] with a Chapman-Enskog method coming from statistical physics. Remark that the extension of the discrete Chapman-Enskog expansion to higher order already exists (Qian-Zhou [START_REF] Qian | Higher-order dynamics in lattice-based models using the Chapman-Enskog method[END_REF], d'Humières [START_REF] Humières | Ongoing discussions with P. lallemand[END_REF]). But the calculation in the nonthermal case (N > 1) is quite delicate from an algebraic point of view and introduces noncommutative formal operators. Recently, Junk and Rheinländer [START_REF] Junk | Regular and multiscale expansions of a lattice Boltzmann method[END_REF] developed a Hilbert type expansion for the analysis of lattice Boltzmann schemes at high order of accuracy. We have proposed in previous works [START_REF] Dubois | Une introduction au schéma de Boltzmann sur réseau[END_REF][START_REF] Dubois | Equivalent partial differential equations of a lattice Boltzmann scheme[END_REF] the Taylor expansion method which is an extension to the lattice Boltzmann scheme of the so-called equivalent partial differential equation method proposed independently by Lerat and Peyret [START_REF] Lerat | Noncentered Schemes and Shock Propagation Problems[END_REF] and by Warming and Hyett [START_REF] Warming | The modified equation approach to the stability and accuracy analysis of finite difference methods[END_REF]. In this framework, the parameter ∆t is considered as the only infinitesimal variable and we introduce a constant velocity ratio λ between space step and time step:

(17) λ ≡ ∆x ∆t .
The lattice Boltzmann scheme is classically considered as second-order accurate (see e.g. [START_REF] Lallemand | Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability[END_REF]). In fact, the viscosity coefficients µ relative to second-order terms are recovered according to a relation of the type

µ = ζ λ 2 ∆t σ k
for a particular value of label k. The coefficient ζ is equal to 1 3 for the simplest models that are considered hereafter.

• A natural question is to extend this accuracy to third or higher orders. In the case of single relaxation times (the BGK variant of d'Humières scheme), progresses in this direction have been proposed by Shan et al [START_REF] Shan | Discretization of the Velocity Space in the Solution of the Boltzmann Equation[END_REF][START_REF] Shan | Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation[END_REF] and Philippi et al [START_REF] Philippi | From the continuous to the lattice Boltzmann equation: The discretization problem and thermal models[END_REF] using Hermite polynomial methodology for the approximation of the Boltzmann equation. The price to pay is an extension of the stencil of the numerical scheme and the practical associated problems for the numerical treatment of boundary conditions. Note also the work of the Italian team (Sbragaglia et al [START_REF] Sbragaglia | Generalized lattice Boltzmann method with multirange pseudopotential[END_REF], Falcucci et al [START_REF] Falcucci | Lattice Boltzmann models with mid-range interactions[END_REF]) on application to multiphase flows. In the context of scheme with multiple relaxation times, Ginzburg, Verhaeghe and d'Humières have analyzed with the Chapman-Enskog method the "Two Relaxation Times" version of the scheme [START_REF] Ginzburg | Two-Relaxation-Time Lattice Boltzmann Scheme: About Parametrization, Velocity, Pressure and Mixed Boundary Conditions[END_REF][START_REF] Ginzburg | Study of Simple Hydrodynamic Solutions with the Two-Relaxation-Times Lattice Boltzmann Scheme[END_REF]. A nonlinear extension of this scheme, the so-called "cascaded lattice Boltzmann method" has been proposed by Geier et al [START_REF] Geier | Cascaded digital lattice Boltzmann automata for high Reynolds number flow[END_REF]. It gives also high order accuracy and the analysis is under development (see e.g. Asinari [START_REF] Asinari | Generalized local equilibrium in the cascaded lattice Boltzmann method[END_REF]). The general nonlinear extension of the Taylor expansion method to third-order of accuracy of d'Humières scheme is presented in [START_REF] Dubois | Third order equivalent equation of lattice Boltzmann scheme[END_REF]. It provides evidence of the importance of the so-called tensor of momentum-velocity defined by

(18) Λ ℓ kp ≡ J j=0 M kj M pj M -1 jℓ , 0 ≤ k, p, ℓ ≤ J .
Moreover, it shows also that for athermal Navier Stokes equations, the mass conservation equation contains a remaining term of third-order accuracy that cannot be set to zero by fitting relaxation parameters [START_REF] Dubois | Third order equivalent equation of lattice Boltzmann scheme[END_REF].

• Our motivation in this contribution is to show that it is possible to extend the order of accuracy of an existing a priori second-order accurate lattice Boltzmann scheme to higher orders. We use the Taylor expansion method [START_REF] Dubois | Equivalent partial differential equations of a lattice Boltzmann scheme[END_REF] to determine the equivalent partial differential equation of the numerical scheme to higher orders of accuracy. Nevertheless, it is quite impossible to determine explicity the entire expansion in all generality in the nonlinear case. In consequence, we restrict here to a first step. We propose in the following a general methodology for deriving the equivalent equation of the d'Humières scheme at an arbitrary order when the collision process defined by the functions G k of relation [START_REF] Chen | Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations[END_REF] are linear. This calculation leads to explicit developments that can be expanded with the help of formal calculation. This work is detailed in Section 2. In Section 3 we apply the general methodology to classical linear models of thermics and linearized athermal Navier Stokes equations. We treat fundamental examples from one to three space dimensions. When it is possible, the equivalent partial equivalent equations are explicited.

In Section 4, we use the fourth-order equivalent equation of two and three-dimensional models to enforce accuracy through a proper choice of "quartic" parameters. For a scalar heat equation, the effect of the precision of the numerical computation of eigenmodes is presented. For linearized athermal Navier Stokes equations, we propose a method for enforcing the precision of the eigenmodes of the associated partial differential equation. First numerical results show that for appropriate tuning values of the parameters, fourthorder precision is achieved.

2 Formal development of linearized d'Humières scheme

• In what follows, we suppose that the collision process is linear i.e. that the G k functions introduced in (10) [START_REF] Humières | Generalized Lattice-Boltzmann Equations[END_REF] are linearized around some reference state. With this hypothesis, we can write:

G k (W ) ≡ N j=0 G kj W j = N j=0 G kj m j , k ≥ N .
To be precise, putting together relations [START_REF] Humières | Generalized Lattice-Boltzmann Equations[END_REF] and ( 12), there exists a (J + 1) × (J + 1) matrix Ψ such that the collisioned momentum m * defined in ( 12) is a linear combination of the moments before collision:

(19) m * = Ψ • m , m * k = J j=0 Ψ kℓ m ℓ .
Of course, the conservation [START_REF] Chen | Lattice Boltzmann method for fluid flows[END_REF] implies that Ψ has a structure of the type

(20) Ψ = I 0 Φ I -S .
The top left block of the right hand side of [START_REF] Ginzburg | Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation[END_REF] is the identity matrix of dimension N and the bottom left block is described through the G k functions introduced in (10) [START_REF] Humières | Generalized Lattice-Boltzmann Equations[END_REF]:

(21) Φ kj ≡ Ψ kj = s k G kj , j < N , k ≥ N .
The bottom right block of the right hand side of (20) contains the coefficients 1 -s k (k ≥ N) related to relaxation [START_REF] Humières | Lattice gas models for 3D-hydrodynamics[END_REF].

• In order to make our result explicit, we need some notations. We introduce multiindices γ, δ, ε in {1, . . . d} q in order to represent multiple differentiation with respect to space. If γ = 1, . . . 

1 α 1 times , . . . , d, . . . d α d times , then ∂ γ ≡ ∂ α 1 ∂x α 1 1 • • • ∂ α d ∂x α d
| γ | ≡ α 1 + • • • + α d .
Then thanks to the binomial formula for iterated differentiation, we can introduce coefficients P ℓγ in order to satisfy the identity

(22) - d α=1 M αℓ ∂ α q ≡ |γ|=q P ℓγ ∂ γ .
for any integer q.

• We first establish that at first-order of accuracy, we have a representation of nonconserved moments in terms of conservative variables:

(23) m k = J j=0 B 0 kj W j + O(∆t) , k ≥ N . with (24) B 0 kj ≡ 1 s k Ψ kj , k ≥ N , 0 ≤ j ≤ N -1 .
We have also the first-order conservation law (25)

∂W i ∂t + |γ|=1 A γ ij ∂ γ W j = O(∆t) , 0 ≤ i ≤ N -1 .
with coefficients A γ ij given according to (26)

A γ ij ≡ J p=0 Λ p γi Ψ pj + ℓ≥N Ψ pℓ 1 s ℓ Ψ ℓj , | γ |= 1 , 0 ≤ i, j ≤ N -1 .
The proof of this result and those that follow of this Section are detailed in Appendix A.

• The expansion of moments [START_REF] Ginzburg | Study of Simple Hydrodynamic Solutions with the Two-Relaxation-Times Lattice Boltzmann Scheme[END_REF] can be extended to second-order accuracy:

(27) m k = 0≤|γ|≤1 ∆t |γ| B γ kj ∂ γ W j + O(∆t 2 ) . with (28) 
     B γ kj = 1 s 2 k N -1 i=0 Ψ ki A γ ij - 1 s k J r=0 1 s r J p=0 Λ p γk Ψ pr Ψ rj , | γ |= 1 , k ≥ N , 0 ≤ j ≤ N -1 .
• Then we extend the previous expansions [START_REF] Hénon | Viscosity of a Lattice Gas[END_REF] and [START_REF] Higuera | Lattice gas dynamics with enhanced collisions[END_REF] to any order σ. By induction, we establish that we have an equivalent partial differential equation of the form (29)

∂W i ∂t + 1≤|γ|≤σ ∆t |γ|-1 N -1 j=0 A γ ij ∂ γ W j = O(∆t σ ) , 0 ≤ i ≤ N -1 ,
and an expansion of nonconserved moments as

(30) m k = 0≤|γ|≤ σ ∆t |γ| N -1 j=0 B γ kj ∂ γ W j + O(∆t σ+1 ) , k ≥ N ,
with the following recurrence relations for defining the coefficients A γ ij and B γ kj :

(31) C 1,γ ij = A γ ij , 0 ≤ i, j ≤ N -1 , (32) 
     C q+1,γ ij = - δ≥q, ε≥1, δ+ε=γ J ℓ=0 C q,δ iℓ A ε ℓj , 2 ≤ q + 1 ≤ | γ | , 0 ≤ i, j ≤ N -1 , (33) 
             A γ ij = - |γ| q=2 1 q! C q,γ ij - 1≤|δ|≤|γ|, 0≤|ε|≤|γ|-1, δ+ε=γ J ℓ=0 J p=0 J r=0 1 | δ | ! M iℓ M -1 ℓp Ψ pr P ℓδ B ε rj , (34) 
D 0,γ kj = B γ kj , k ≥ N , 0 ≤ j ≤ N -1 , (35) 
       D q+1,γ kj = - |δ|≥q, |ε|≥1, δ+ε=γ J ℓ=0 D q,δ kℓ A ε ℓj , 1 ≤ q + 1 ≤| γ | , k ≥ N , 0 ≤ j ≤ N -1 , (36) 
               B γ kj = 1 s k - 1≤q≤|γ| 1 q ! D q,γ kj + 1≤|δ|≤|γ|, 0≤|ε|≤|γ|-1, δ+ε=γ J ℓ=0 J p=0 J r=0 1 | δ |! M kℓ M -1 ℓp Ψ pr P ℓδ B ε rj , k ≥ N , 0 ≤ j ≤ N -1 .
• Note that the results [START_REF] Lerat | Noncentered Schemes and Shock Propagation Problems[END_REF] and [START_REF] Marenduzzo | Steady-state hydrodynamic instabilities of active liquid crystals: Hybrid Lattice Boltzmann simulations[END_REF] are coupled through the relations (31) (32) [START_REF] Leriche | Stokes eigenmodes in cubic domain: primitive variable and Lattice Boltzmann formulations[END_REF] and [START_REF] Mc Namara | Use of Boltzmann equation to simulate lattice gas automata[END_REF]. For example, the evaluation of coefficient D q+1,γ kj uses explicitly A ε ℓj , the evaluation of A γ ij uses B ε rj and the computation of B γ rj is impossible if D q,γ kj is not known.

The proof is detailed in Appendix A. It is an elementary and relatively lengthy algebraic calculation. In particular, our mathematical framework is classical: all differential operators commute and the technical difficulties of noncommutative time derivative operators associated with the use of formal Chapman-Enskog method [START_REF] Humières | Ongoing discussions with P. lallemand[END_REF] vanish. As a result, the general expansion of a linearized d'Humières scheme at an arbitrary order can be obtained by making explicit the coefficients A γ ij and B γ kj . Remark that the hypothesis of linearity allows making the above formulae explicit and we have done this work with the help of formal calculation. Nevertheless, it is always possible to suppose that the G k functions are linearized expansions of a nonlinear equilibrium. In this case, the previous equivalent high order partial differential equations [START_REF] Karlin | Maximum Entropy Principle for Lattice Kinetic Equations[END_REF] give a very good information concerning the behavior of the scheme.

Equivalent Thermics and Fluid equations

• We make explicit in this section the fourth-order equivalent equation ( 29) of some lattice Boltzmann schemes for two fundamental problems of mathematical physics: thermics and linearized athermal Navier-Stokes equations. We treat first advective thermics in one space dimension with the so-called D1Q3 lattice Boltzmann scheme. In order to obtain results presentable on a sheet of paper, we simplify the model and omit the advective term for two (D2Q5) and three (D3Q7) space dimensions. Secondly we study linearized athermal Navier-Stokes equations in one (D1Q3), two (D2Q9) and three (D3Q19) space dimensions. Note that we have to define precisely our results. First the numbering of degrees of freedom via corresponding graphics is specified; see Appendix B. The choice of moments, id est the M matrix, is also made precise in Appendix B. Secondly the Ψ matrix of relation ( 19) is specified, later in this section.

• D1Q3 for advective thermics at fourth-order

For a thermics problem, we have only one conserved quantity. Then N = 1 in relation [START_REF] Bouzidi | Momentum transfer of a Boltzmann lattice fluid with boundaries[END_REF]. The two nonconserved moments (momentum q eq and energy ǫ eq ; see (78)) at equilibrium are supposed to be linear functions of the conserved momentum ρ:

(37) q eq = u λ ρ , ǫ eq = α λ 2 2 ρ .
Due to ( 21) and ( 37), the matrix Ψ for dynamics relation [START_REF] Geier | Cascaded digital lattice Boltzmann automata for high Reynolds number flow[END_REF] is given according to

Ψ =   1 0 0 s 1 u λ 1 -s 1 0 α s 2 λ 2 /2 0 1 -s 2   .
We determine without difficulty the equivalent partial differential equation for this lattice Boltzmann scheme at order four, to fix the ideas. For i = 1, 2, we introduce σ i from relaxation time s i according to relation [START_REF] Dubois | Third order equivalent equation of lattice Boltzmann scheme[END_REF]. When a drift in velocity u is present, note that the diffusion coefficient is a function of mean value velocity. We have

(38) ∂ρ ∂t + u λ ∂ρ ∂x -σ 1 ∆t λ 2 (α -u 2 ) ∂ 2 ρ ∂x 2 + κ 3 ∆t 2 λ 3 12 
∂ 3 ρ ∂x 3 + κ 4 ∆t 3 λ 4 12 ∂ 4 ρ ∂x 4 = O(∆t 4 )
with parameters κ 3 and κ 4 given according to

κ 3 = -u 2 1 -12 σ 2 1 u 2 + 1 -3 α -12 σ 1 σ 2 (1 -α) + 24 σ 2 1 α κ 4 = -9 + 60 σ 2 1 σ 1 u 4 + -5 (1 -3 α) σ 1 -3 (1 -α) σ 2 + + 12 (1 -α) σ 1 σ 2 2 + 36 (1 -α) σ 2 1 σ 2 -72 σ 3 1 α u 2 + α σ 1 2 -3 α -12 (1 -α) σ 1 σ 2 + 12 α σ 2 1 .
If u = 0, then κ 3 = 0 and the scheme is equivalent to an advection-diffusion equation up to third-order accuracy. In this particular case, the scheme is fourth-order accurate in the previous sense if we set

σ 2 = 2 -3α + 12 α σ 2 1 12 σ 1 (1 -α) .
• D2Q5 for pure thermics at fourth-order

We have J = 4 and N = 1. The equilibrium energy (momentum m 3 in (79) with the labelling conventions of Section 1) is the only one to be non equal to zero. The matrix Ψ of relation ( 19) is now given by the relation

(39) Ψ =        1 0 0 0 0 0 1 -s 1 0 0 0 0 0 1 -s 1 0 0 α s 3 0 0 1 -s 3 0 0 0 0 0 1 -s 4        .
We have developed the conservation law up to fourth-order:

(40)        ∂ρ ∂t - λ 2 ∆t 10 σ 1 (4 + α) ∂ 2 ρ ∂x 2 + ∂ 2 ρ ∂y 2 + ∆t 3 λ 4 1200 σ 1 (4 + α) κ 40 ∂ 4 ρ ∂x 4 + ∂ 4 ρ ∂y 4 + κ 22 ∂ 4 ρ ∂x 2 ∂y 2 = O(∆t 4 )
and the κ coefficients are explicited as follows:

κ 40 = 8 -3 α + 12 (α + 4) σ 2 1 -12 (1 -α) σ 1 σ 3 -60 σ 1 σ 4 (41) κ 22 = -6 (α + 4) + 24 (α + 4) σ 2 1 -24 (1 -α) σ 1 σ 3 + 120 σ 1 σ 4 . (42) 

• D2Q9 for advective thermics at fourth-order

The lattice Boltzmann model D2Q9 for a passive scalar (see Chen, Ohashi and Akiyama [START_REF] Chen | Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations[END_REF], Shan [START_REF] Shan | Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method[END_REF], Ginzburg [START_REF] Ginzburg | Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation[END_REF]) is obtained from the D2Q5 model by adding four velocities along the diagonals (Figure 21, right). The evaluation of matrix M is absolutely nontrivial and is precised at (80). The dynamics is given by

(43) Ψ =                 1 0 0 0 0 0 0 0 0 u λ s 1 1-s 1 0 0 0 0 0 0 0 v λ s 1 0 1-s 1 0 0 0 0 0 0 a 3 s 3 0 0 1-s 3 0 0 0 0 0 a 4 s 4 0 0 0 1-s 4 0 0 0 0 a 5 u s 5 0 0 0 0 1-s 5 0 0 0 a 6 v s 5 0 0 0 0 0 1-s 5 0 0 a 7 s 7 0 0 0 0 0 0 1-s 7 0 a 8 s 8 0 0 0 0 0 0 0 1-s 8                
.

The coefficients a 3 to a 8 in relation [START_REF] Shan | Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method[END_REF] are chosen in order to obtain the advection diffusion equation at order 2:

(44) ∂ρ ∂t + λ u ∂ρ ∂x + v ∂ρ ∂y -λ 2 ξ σ 1 ∆t ∂ 2 ρ ∂x 2 + ∂ 2 ρ ∂y 2 = O(∆t) 2 .
We have precisely:

a 3 = 3 (u 2 + v 2 ) -4 + 6 ξ , a 7 = u 2 -v 2 , a 8 = u v
as explained in [START_REF] Dubois | Third order equivalent equation of lattice Boltzmann scheme[END_REF]. When u = v = 0, the equation ( 44) takes the form

∂ρ ∂t -λ 2 ξ σ 1 ∆t ∂ 2 ρ ∂x 2 + ∂ 2 ρ ∂y 2 + λ 4 ∆t 3 ξ 36 κ 40 ∂ 4 ρ ∂x 4 + ∂ 4 ρ ∂y 4 + κ 22 ∂ 4 ρ ∂x 2 ∂y 2 = O(∆t 4 )
with coefficients κ 40 and κ 22 evaluated according to

κ 40 = σ 1 2 σ 5 (σ 7 -σ 3 ) (a 4 -4) + 6 ξ 1 -σ 1 σ 7 -5 σ 1 σ 3 + 2 σ 5 (σ 7 -σ 3 ) κ 22 = 2 σ 1 + σ 5 -2 σ 1 σ 5 (σ 3 + σ 7 + 4 σ 8 ) (a 4 -4) +12 ξ σ 5 + 3 σ 1 -2 σ 1 σ 5 (σ 3 + σ 7 ) -2 σ 1 σ 3 σ 5 -8 σ 1 σ 8 (σ 1 + σ 5 ) + σ 2 1 σ 7 .
Remark that the equivalent partial differential equation of this general lattice Boltzmann scheme has been exactly derived in a complex case where all the time relaxations are a priori distinct. The coefficients κ 40 and κ 22 of the fourth-order terms are polynomials of degree 3 in the σ coefficients. When we make the "BGK hypothesis" id est that all the σ coefficients are equal, a first possibility for killing the coefficients κ 40 and κ 22 is given by:

σ 1 = σ 1 = σ 3 = σ 4 = σ 5 = σ 7 = σ 8 = 1 6 , ξ = 0 .
We observe that this choice of parameters is without any practical interest because the diffusion term in ( 44) is null. We observe that a second possibility

ξ = 2 3 1 -6 σ 2 1 1 -8 σ 2 1 , a 4 = -2 1 -2 σ 2 1 1 -8 σ 2 1
induces also a fourth-order accurate lattice Boltzmann scheme. If we replace the strong "BGK hypothesis" by the weaker one associated to "Two Relaxation Times" as suggested by Ginzburg, Verhaeghe and d'Humières in [START_REF] Ginzburg | Two-Relaxation-Time Lattice Boltzmann Scheme: About Parametrization, Velocity, Pressure and Mixed Boundary Conditions[END_REF][START_REF] Ginzburg | Study of Simple Hydrodynamic Solutions with the Two-Relaxation-Times Lattice Boltzmann Scheme[END_REF], id est

σ 1 = σ 5 , σ 3 = σ 4 = σ 7 = σ 8 ,
we can achieve formal fourth-order accuracy for

σ 1 = 1 √ 12 and σ 3 = 1 √ 3 .
• D3Q7 for pure thermics

For three-dimensional thermics, one only needs a seven point scheme and use the so-called D3Q7 lattice Boltzmann scheme whose stencil is described in Figure 22. The matrix M is given at relation (81). The dynamics of this Boltzmann scheme uses the following matrix for computation of out of equilibrium moments, according to relation [START_REF] Geier | Cascaded digital lattice Boltzmann automata for high Reynolds number flow[END_REF]:

Ψ =            1 0 0 0 0 0 0 0 1 -s 1 0 0 0 0 0 0 0 1 -s 1 0 0 0 0 0 0 0 1 -s 1 0 0 0 0 0 0 0 1 -s 4 0 0 0 0 0 0 0 1 -s 4 0 α s 6 0 0 0 0 0 1 -s 6            .
The equivalent thermal scalar conservation law now takes the following form at fourthorder of accuracy:

∂ρ ∂t - λ 2 ∆t 21 σ 1 (α + 6) ∆ρ + ∆t 3 λ 4 1764 σ 1 (α + 6) κ 400 ∂ 4 ρ ∂x 4 + ∂ 4 ρ ∂y 4 + ∂ 4 ρ ∂z 4 + κ 220 ∂ 4 ρ ∂x 2 ∂y 2 + ∂ 4 ρ ∂y 2 ∂z 2 + ∂ 4 ρ ∂z 2 ∂x 2 = O(∆t 4 )
where the κ coefficients are given by

κ 400 = 8 -α + 4 σ 2 1 (α + 6) -56 σ 1 σ 4 -4 (1 -α) σ 1 σ 6 (45)
κ 220 = -2 (α + 6) + 8 σ 2 1 (α + 6) + 56 σ 1 σ 4 -8 (1 -α) σ 1 σ 6 . (46) 
• After these examples where only one partial differential equation is present, we consider the case of two (D1Q3), three (D2Q9) or four (D3Q19) partial differential equations "emerging" from the lattice Boltzmann algorithm. These equations model macroscopic conservation of mass and momentum of a linearized fluid in our approach in this contribution.

• D1Q3 for athermal linearized Navier-Stokes at fifth-order

We have in this case two conservation laws (N = 2 in relation ( 5)) and the equilibrium energy is supposed to be given simply by [START_REF] Tuckerman | Personal communication to P. Lallemand[END_REF] ǫ eq = α λ 2 2 ρ .

Due to ( 21) and ( 47), the matrix Ψ for dynamics relation ( 19) is now given according to

Ψ =   1 0 0 0 1 0 α s λ 2 /2 0 1 -s   ,
and σ is related to parameter s according to [START_REF] Dubois | Third order equivalent equation of lattice Boltzmann scheme[END_REF]

: σ ≡ 1 s -1 2 .
Then equivalent mass conservation at the order 5 looks like equation [START_REF] Qian | Lattice BGK for Navier-Stokes equation[END_REF]. We have precisely:

(48)      ∂ρ ∂t + ∂q ∂x - λ 2 ∆t 2 12 (1 -α) ∂ 3 q ∂x 3 - λ 4 ∆t 3 12 α (1 -α) σ ∂ 4 ρ ∂x 4 + λ 4 ∆t 4 120 (1 -α) 1 + α + 10 (1 -2 α) σ 2 ∂ 5 q ∂x 5 = O(∆t 5 ) .
Conservation of momentum takes the form:

(49)

       ∂q ∂t + α λ 2 ∂ρ ∂x -λ 2 ∆t (1 -α) σ ∂ 2 q ∂x 2 + ζ 3 λ 4 ∆t 2 6 ∂ 3 ρ ∂x 3 + ζ 4 λ 4 ∆t 3 12 
∂ 4 q ∂x 4 + ζ 5 λ 6 ∆t 4 120 ∂ 5 ρ ∂x 5 = O(∆t 5 )
with parameters ζ 3 to ζ 5 given by 49) is null. In this case, the lattice Boltzmann scheme is formally third-order accurate for the momentum equation. But, as remarked in [START_REF] Dubois | Third order equivalent equation of lattice Boltzmann scheme[END_REF], the mass conservation [START_REF] Warming | The modified equation approach to the stability and accuracy analysis of finite difference methods[END_REF] remains formally second-order accurate, except for the (without any practical interest as it leads to a null viscosity) case α = 1.

ζ 3 = α (1 -α) (1 -6 σ 2 ) ζ 4 = -(1 -α) σ 1 -4α -12 (1 -2 α) σ 2 ζ 5 = α (1 -α) 1 -4 α -10 (5 -9 α) σ 2 + 120 (2 -3 α) σ 4 . When σ = 1 √ 6 , the coefficient ζ 3 of relation (
• D2Q9 for linearized athermal Navier-Stokes at order four The D2Q9 lattice Boltzmann scheme can be used also for simulation of fluid dynamics. For the particular case of conservation of mass and momentum, we just replace matrix Ψ of ( 43) by the following one, assuming the aim is to simulate an athermal fluid with speed of sound 1/3:

Ψ =                 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -2 s 3 0 0 1-s 3 0 0 0 0 0 s 4 0 0 0 1-s 4 0 0 0 0 0 -s 5 /λ 0 0 0 1-s 5 0 0 0 0 0 -s 5 /λ 0 0 0 1-s 5 0 0 0 0 0 0 0 0 0 1-s 7 0 0 0 0 0 0 0 0 0 1-s 7                
.

We have conservation of mass at fourth-order of accuracy:

(50) ∂ρ ∂t + ∂q x ∂x + ∂q y ∂y - 1 18 λ 2 ∆t 2 ∆ ∂q x ∂x + ∂q y ∂y + λ 4 ∆t 3 108 (σ 3 + σ 7 ) ∆ 2 ρ = O(∆t 4 )
and conservation of two components of momentum:

(51)

               ∂q x ∂t + λ 2 3 ∂ρ ∂x - λ 2 3 ∆t σ 3 ∂ ∂x ∂q x ∂x + ∂q y ∂y + σ 7 ∆q x - λ 4 ∆t 2 27 3 (σ 2 3 + σ 2 7 ) -1 ∂ ∂x ∆ρ - λ 4 ∆t 3 108 ζ 40 ∂ 4 q x ∂x 4 + ζ 31 ∂ 4 q y ∂x 3 ∂y +ζ 22 ∂ 4 q x ∂x 2 ∂y 2 + ζ 13 ∂ 4 q y ∂x ∂y 3 + ζ 04 ∂ 4 q x ∂y 4 = O(∆t 4 ) (52)                ∂q y ∂t + λ 2 3 ∂ρ ∂y - λ 2 3 ∆t σ 3 ∂ ∂y ∂q x ∂x + ∂q y ∂y + σ 7 ∆q y - λ 4 ∆t 2 27 3 (σ 2 3 + σ 2 7 ) -1 ∂ ∂y ∆ρ - λ 4 ∆t 3 108 η 40 ∂ 4 q y ∂x 4 + η 31 ∂ 4 q x ∂x 3 ∂y +η 22 ∂ 4 q y ∂x 2 ∂y 2 + η 13 ∂ 4 q x ∂x ∂y 3 + η 04 ∂ 4 q y ∂y 4 = O(∆t 4 )
where the coefficients ζ are given by ( 53) • D3Q19 for linearized Navier-Stokes The D3Q19 Lattice Boltzmann scheme is described with details e.g. in J. Tölke et al [START_REF] Tölke | Lattice Boltzmann Simulations of Binary Fluid Flow through Porous Media[END_REF]. The construction of matrix M that parameterizes the transformation ( 4) is presented in full detail in relations (82) to (87) in Appendix B. The associated matrix Ψ is also of order 19 and therefore quite difficult to write on a A4 paper sheet. Due to constitutive relations [START_REF] Geier | Cascaded digital lattice Boltzmann automata for high Reynolds number flow[END_REF] and [START_REF] Ginzburg | Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation[END_REF], it is easily obtained from the expression of equilibrium moments.

                                 ζ 40 = η 04 = -σ 3 -σ 7 -12 σ 2 3 σ 7 -12 σ 3 σ 2 7 + 18 σ 2 3 σ 5 + 6 σ 5 σ
We have taken for this D3Q19 scheme (54)

                 m eq 4
= θ λ 2 m eq 5 = m eq 6 = m eq 7 = m eq 8 = m eq 9 = 0 m eq 10 = m eq 11 = m eq 12 = 0 m eq 13 = βλ 4 m eq 14 = m eq 15 = 0 m eq 16 = m eq 17 = m eq 18 = 0 .

In order to obtain physical equations at first-order of accuracy with a sound velocity c 0 given by c 0 = α λ the relation θ = 57 α 2 -30 must be imposed to obtain correct fluid second-order partial differential equations and the parameter β remains free.

• When the number of velocities of the Boltzmann scheme is reduced (up to D2Q9 scheme typically), it is possible to expand the dispersion equation formally and to derive equivalent partial differential equations up to an arbitrary order. We have done the comparison for one-dimensional and bi-dimensional schemes. The process has been extended to models with more velocities and various conserved quantities; however the equations become very complicated and thus will not be reproduced here. Let us just mention that the expressions found are quite similar to those obtained for the previous test cases. [START_REF] Bhatnagar | A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems[END_REF] The fourth-order accurate lattice Boltzmann scheme

• In this section, we precise how to choose particular "quartic" values of relaxation parameters in order to increase the accuracy of the scheme. We verify with the help of precise numerical experiments for analytical test cases that the numerical precision follows our prediction. We focus first on classical thermics at two and three space dimensions. Then we propose two numerical experiments for athermal linearized Navier-Stokes equations at two and three space dimensions for a nontrivial geometry.

• The D2Q5 lattice Boltzmann scheme for a thermal problem We obtain the order 4 by setting κ 40 = 0 and κ 22 = 0 in relations ( 41) and ( 42) respectively. We obtain :

(55)

σ 3 = σ 1 α + 4 1 -α - 1 12 σ 1 2 + 3 α 1 -α , σ 4 = 1 6 σ 1 .
The BGK condition σ 1 = σ 3 = σ 4 leads to σ 1 = 1 √ 12 and α = -4 and thus to a thermal diffusivity equal to 0. Note that the intermediate TRT presented in Ginzburg et al [START_REF] Ginzburg | Two-Relaxation-Time Lattice Boltzmann Scheme: About Parametrization, Velocity, Pressure and Mixed Boundary Conditions[END_REF][START_REF] Ginzburg | Study of Simple Hydrodynamic Solutions with the Two-Relaxation-Times Lattice Boltzmann Scheme[END_REF] supposes simply σ 3 = σ 4 . If we insert this constraint inside relations (55), we get

σ 1 = 1 √ 12 , σ 3 = 1 √ 3 
to enforce fourth-order accuracy. Then the d'Humières version of lattice Boltzmann scheme is mandatory for this improvement of the method with a wide family of admissible parameters. In order to study the fourth-order accuracy of the D2Q5 lattice Boltzmann scheme for thermal problem, we use three different approaches. The first two consider the interior scheme and the third one incorporates boundary conditions.

• First of all, we study homogeneous plane waves with a "one point computation".

In that case, we can derive numerically a dispersion equation for scheme [START_REF] Dubois | Equivalent partial differential equations of a lattice Boltzmann scheme[END_REF] associated with ( 4), ( 19), ( 79) and ( 39), as proposed in [START_REF] Lallemand | Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability[END_REF]. We introduce a wave in the Boltzmann scheme, id est f (x, t) ≡ f (k x , k y ) exp i k x x + i k y y . Then we have f (x, t + ∆t) = G f (x, t) with the so-called amplification matrix G (see e.g. Richtmyer and Morton [START_REF] Richtmyer | Difference methods for initial-value problems[END_REF]) obtained without difficulty from matrices M, Ψ and B defined respectively in (79) [START_REF] Qian | Higher-order dynamics in lattice-based models using the Chapman-Enskog method[END_REF] and B = diag 1, e i k x ∆x , e i k y ∆x , e -i k x ∆x , e -i k y ∆x for the D2Q5 scheme displayed in Figure 21 (left). Then G = B M -1 Ψ M . Then if ∂ ∂t is formally given by relation [START_REF] Richtmyer | Difference methods for initial-value problems[END_REF] and operators ∂ ∂x and ∂ ∂y replaced by i k x and i k y respectively, the number z = exp ∆t ∂ ∂t is an eigenvalue of matrix G at fourthorder of accuracy. The numerical experiment (see Figure 1) confirms the theoretical development of the dispersion equation. Note that for situations relaxing to uniform state, the eigenvalues that we determine below are negative; however we shall express results in terms of positive relaxation rates with adequate sign changes.

• For inhomogeneous situations, with N L lattice points (and N L (J + 1) degrees of freedom), one can study the time evolution starting from some initial state. Another approach for linear situations considers that the state X(t) that belongs to R N L (J+1) can be decomposed as a sum of eigenmodes of the operator A defined using the discrete evolution scheme:

(56) X(t + ∆t) ≡ A • X(t) .
The matrix A being of very large size, one can look for some of its eigenmodes using for instance the method proposed by Arnoldi [START_REF] Arnoldi | The principle of minimized iteration in the solution of the matrix eigenvalue problem[END_REF]. To accelerate the Arnoldi computations, following a suggestion by L. Tuckerman [START_REF] Tuckerman | Personal communication to P. Lallemand[END_REF], we replace the determination of the eigenvalues of equation ( 56) by the determination of the eigenvalues of (57)

X(t + (2ℓ + 1) ∆t) ≡ A 2ℓ+1 • X(t) ,
for some ℓ ∈ N, using the fact that the lattice Boltzmann scheme is very fast compared to the inner "working" of the Arnoldi procedure. Replacing problem (56) by problem (57) not only increases the splitting between various eigenmodes, but also helps to discriminate against the acoustic modes by multiplying the logarithm of the imaginary part of the eigenvalues by 2ℓ + 1. Note that choosing an even number of time steps would bring in the "checker-board" type modes. We denote by Γ num any eigenvalue computed with this methodology.

• We first test this method for "internal" lattice, id est with a periodic N L ≡ N x × N y situation and find the same results as those derived from the "one-point" analysis (see Figure 1) with very good accuracy. For this periodic situation, the eigenmodes are plane waves for the wave vector k x = 2π Ix Nx , k y = 2π Iy Ny , where I x and I y are integers. We compare the numerical relaxation rates Γ num (I x , I y , N x , N y ) to Γ th ≡ κ(k 2

x + k 2 y ) and show in Figure 2 the relative difference between those two quantities (called the "error") for the particular values I x = 5 and I y = 0 and N x from 11 to 91. With arbitrarily chosen values of the "non-hydrodynamic" s-parameters, we observe second-order convergence. However for the quartic s-parameters the convergence is of order four with a large decrease in the absolute value of the error. Analogous results are displayed in Figure 2 for D3Q7.

• We now consider a second case with boundary conditions: exact solution for the modes of the Laplace equation in a circle of radius R with homogeneous Dirichlet boundary conditions. Density is defined with (6) applied with J = 4 in this particular case. Recall that density follows heat equation ∂ρ ∂t -κ ∆ρ = 0 with κ = λ 2 ∆t 10 σ 1 (4 + α) and homogeneous boundary conditions at r = R. The solution of this problem is standard (see e.g. Landau and Lifchitz [START_REF] Landau | Fluid Mechanics[END_REF], Abramowitz and Stegun [START_REF] Abramowitz | Handbook of mathematical functions[END_REF] or Carslaw and Jaeger [START_REF] Carslaw | Conduction of heat in solids[END_REF]) and is parameterized by a pair (ℓ, n) of integers. We introduce ζ n ℓ , the n th zero of the Bessel function J ℓ . Then a solution with time dependence as exp(-Γt) defines a corresponding eigenvalue Γ (also denoted as Γ th in the following) that satisfies

(58) Γ = κ ζ n ℓ R 2 .
• The effect of fourth-order accuracy Boltzmann scheme in computing the eigenfunction is spectacular: just compare Figures 3 and4. Nevertheless, the effect of boundary conditions (we use anti-bounce-back with interpolation à la Bouzidi et al [START_REF] Bouzidi | Momentum transfer of a Boltzmann lattice fluid with boundaries[END_REF]) cannot be neglected. In Figure 5, we have compared the error defined by | Γnum Γ th -1 | for two internal schemes (with usual and quartic parameters) and two versions (first and second-order) of simple numerical boundary conditions introduced by Bouzidi et al [START_REF] Bouzidi | Momentum transfer of a Boltzmann lattice fluid with boundaries[END_REF]. We still observe a better numerical precision of the schemes (by two orders of magnitude typically) whereas the convergence still remains second-order accurate. We conclude that the effect of boundary conditions is crucial for the determination of the order of convergence. Nevertheless, the choice of quartic parameters gives a higher precision for the lattice Boltzmann scheme.

• The D3Q7 lattice Boltzmann scheme for a thermal problem We obtain the order 4 by setting κ 400 = 0 and κ 220 = 0 in relations [START_REF] Shan | Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation[END_REF] and [START_REF] Tölke | Lattice Boltzmann Simulations of Binary Fluid Flow through Porous Media[END_REF]. We obtain :

σ 4 = 1 6 σ 1 , σ 6 = α + 6 1 -α σ 1 - 4 + 3 α 12 (1 -α) 1 σ 1 .
As for D2Q5, the "BGK condition" σ 1 = σ 4 = σ 6 leads to σ 6 = 1 √ 6 and α = -6 and thus to thermal diffusivity equal to 0. Theoretical modes of the Laplace equation in a sphere of radius R with homogeneous Dirichlet boundary conditions are parameterized through the n th zero η n ℓ+1/2 of semi-integer Bessel function J ℓ+1/2 and the eigenvalue Γ is given by:

(59) Γ = κ η n ℓ+1/2 R 2 , ℓ ∈ N , n ≥ 1 .
• The results of Figures 6 and 7 ¿From results presented in Figure 8, the conclusion is essentially the same as that observed for two-dimensional thermics: the results are improved by two orders of magnitude typically, but the rate of convergence cannot be rigorously measured or still remains of second-order.

• We also made a parameter study of the location of the boundary condition. We plot in Figure 9 the ratio Γ R 2 /(κ π 2 ) with Γ given by relation (59). We use Bouzidi et al [START_REF] Bouzidi | Momentum transfer of a Boltzmann lattice fluid with boundaries[END_REF] boundary procedure with linear interpolation. The fluctuation due to the boundary algorithm is around 0.2 %. The gap between second-order usual computation and new fourth-order computation is of the order of 2%. We observe that this gap is one order of magnitude larger than the error due to the choice of the boundary condition estimated from the fluctuations with the imposed radius.

• The D2Q9 for linearized athermal Navier-Stokes at fourth-order

We consider now the linear fluid model obtained by a D2Q9 lattice Boltzmann scheme. The equivalent partial differential equations are given at the order 4 by relations (51) to (53). The dream would be to enforce high order accuracy. However, this is definitively impossible in the framework considered here due to the never null third-order term for mass conservation (50). Recall notation (5) for conservative variables: W ≡ (ρ, q x , q y ) t (60)

∂ t W k + j, p, q A j kpq ∂ p x ∂ q y W j = O(∆t 4 ) .
We search for a dissipative mode, id est a mode for linear incompressible Stokes problem under the form W (t) = e -Γt + i(kx x+ky y) W . Then Γ is an eigenvalue of the matrix A defined by

A j k = j, p, q A j kpq (i k x ) p (i k y ) q .
We know (see e.g. Landau and Lifchitz [START_REF] Landau | Fluid Mechanics[END_REF]) that for Stokes problem (incompressible shear modes), the relation

(61) Γ = ν k 2 x + k 2 y
is classical. Moreover, as a consequence of ( 51) and ( 52)

(62) ν = λ 2 3 ∆t σ 7
for a lattice Boltzmann scheme with multiple relaxation times.

• We propose here to tune the parameters s ℓ in such a way that the relation ( 61) is enforced for the modes of (60). Precisely, we search s ℓ such that

(63) ∆ m ≡ det A - λ 2 3 ∆t σ 7 k 2 x + k 2 y Id = O(∆t 7 ) .
With an elementary formal computation, the third-order term ∆ 3 m of ∆ m relative to ∆t is equal to

(64)    ∆ 3 m = - ∆t 3 λ 6 108 σ 7 k 2 x + k 2 y (-1 -4 σ 2 7 -8 σ 5 σ 7 ) k 4 x + k 4 y + 2 (1 -4 σ 2 7 -4 σ 5 σ 7 ) k 2 x k 2 y .
It is then clear that the expression (64) is identically null for parameters σ 5 and σ 7 chosen according to (65)

σ 5 = √ 3 3 , σ 7 = √ 3 6 .
With this particular choice of parameters, so-called quartic in what follows, the viscosity ν in relation (62) has the following particular value:

(66) ν = λ 2 ∆t √ 108 ≈ 0.096225 λ 2 ∆t .
François Dubois and Pierre Lallemand Then it is very simple to verify that the determinant ∆ m is null up to terms of order seven and relation ( 63) is satisfied.

• As in the particular case of D2Q5 scheme, we have verified with periodic boundary conditions that the relaxation rate of a transverse wave is determined with error of order six and relative fourth-order precision, as shown in Figure 10. The detailed numerical convergence plot is very similar to Figure 2.

• We have also validated our results for eigenmodes of the Stokes problem inside a circle. With the notations introduced previously, the eigenvalues Γ are given [START_REF] Landau | Fluid Mechanics[END_REF] by

(67) Γ = ν ζ n ℓ R 2 .
The result for R = 30.07, ℓ = 1 and n = 5 is presented in Figure 11 for the velocity field with a mesh included in a square of size 61×61. The alternance of directions for the vector field is clearly visible on Figure 11 and we use around seven meshpoints between two zeros of the Bessel function. We have compared with the same mesh the results obtained with the lattice Boltzmann scheme with the usual parameters that does not satisfy relation (65) but such that ν = λ 2 ∆t 10 which is very close to (66) and quartic parameters. The radial profile of the tangential velocity is shown in Figures 12 to 14. The difference is visually spectacular. As for the thermics case, we observe that simple boundary conditions (here we use those of Bouzidi et al. [START_REF] Bouzidi | Momentum transfer of a Boltzmann lattice fluid with boundaries[END_REF]) prevent fourth-order convergence for the Stokes problem. Use of more sophisticated boundary conditions (see Ginzburg and d'Humières [START_REF] Ginzburg | Second order boundary method for Lattice Boltzmann model[END_REF]) may help to improve the convergence; however for models with limited number of velocities, it is not clear whether the choice of s-parameters will be the same for "fourth-order volume" and "accurate Poiseuille type boundary conditions".

• The D3Q19 for linearized athermal Navier-Stokes at fourth-order The D3Q19 model is analyzed as was done above for the D2Q9 model. We detail in Appendix C the way to enforce the precision of eigenmodes for the Stokes problem. We obtain a set of eight equations for the coefficients σ's. These equations have only one nontrivial family of solutions given according to (68) Note these results are incompatible with BGK hypothesis (all σ equal) but are compatible with the "two relaxation times" hypothesis which enforces equality of even moments σ 4 = σ 5 = σ 13 = σ 14 , and of odd moments: σ 10 = σ 16 . We remark that the relaxation rate for energy (linked to the bulk viscosity) is not constrained. Note that the shear viscosity ν takes the value 1/ √ 108 as in (66). As for D2Q9 there is no decoupling at order 3 of shear and acoustic modes, and thus, at least at the present stage, we make no claim concerning possible improvements for the acoustic modes. We will study this question in a forthcoming contribution.

                   energy σ 4 = 1 s 4 -1
• We have performed the same kind of numerical analysis as for the two-dimensional D2Q9 case and find quite similar results. We illustrate our results first with a "one point experiment". We introduce numerical wave vectors k close to zero and compute the eigenmodes numerically. The shear mode is close to λ 2 3 σ 5 | k | 2 and we plot in Figure 15 the experimental error. With ordinary coefficients, the error is of order 4, whereas with the so-called "quartic coefficients", the error is of order 6 and the relative error of order 4.

• We also illustrate our results for the problem of Stokes modes in a sphere which has an analytical solution in terms of Bessel functions. The Stokes problem searches for a velocity field u(r, t) with u = 0 on the surface of a sphere of radius R. An analysis similar to that for the Stokes problem in a circle, leads to an eigenvalue problem, with solutions analogous to (59), with ζ n ℓ+1/2 equal to the n th zero of the "semi-integer" Bessel function J ℓ+1/2 as defined in Abramowitz and Stegun [START_REF] Abramowitz | Handbook of mathematical functions[END_REF]. Using the Arnoldi technique, we can determine a few eigenvalues and verify that they are close to the theoretical formula. We present Figures 16 and17 an example of a typical result obtained with this framework. We find that these eigenvalues have the expected degeneracy 2ℓ + 1. Note however that, the computations being made for a rather small radius R, there are small splittings of the degenerate eigenvalues due to the fact that lattice Boltzmann computations have cubic symmetry.

Γ = ν ζ n ℓ+1/2 R 2 , ℓ ≥ 1 , François Dubois and Pierre Lallemand -30 -25 -20 -15 -10 -5 1 1.5 2 2.5 3 3 
• For a more detailed analysis, we take advantage of the symmetry of the Stokes problem and therefore perform computations on an eighth of the sphere, taking proper account of the symmetry with respect to the planes perpendicular to the coordinates x, y, z , through the center of the cube (symmetry or anti-symmetry). Using four different combinations of symmetries on the planes, we can determine all the eigenvalues, the other combinations leading to the same eigenvalues with only a permutation in the coordinates for the eigenmodes. Note that due to the rather high complexity of the Arnoldi prodecure, this allows a reduction in computer time of two orders of magnitude.

• We present in Figure 18 the effect of boundary conditions for a number of values of the radius from 29 to 30. We give in Figure 19 Similar work has been done for a cube. The results are published in Leriche et al in [START_REF] Leriche | Stokes eigenmodes in cubic domain: primitive variable and Lattice Boltzmann formulations[END_REF].

Conclusion

• The expansion of equivalent equations that are satisfied by the mean quantities determined by the lattice Boltzmann method has been described in this contribution and explicit formulae given for a few models up to order four in space derivatives. Extending either to more complicated models or to higher order derivatives is very simple and does not imply new conceptual developments, in particular careful treatment of non commuting terms that appear in the Chapman-Enskog procedure. The developments imply only simple algebraic manipulations that can be performed by a "formal language" program, as used here. Note that these developments have a rather high complexity as seen by the fact that each order takes roughly ten times as much computer time as the preceding one.

• With the Taylor expansion method, we can obtain explicit formulae which, then, unable us to tune some parameters of the lattice Boltzmann scheme initially proposed by d'Humières in order to capture, up to fourth-order accuracy, shear waves. Of course, this extra-precision obtained with a classical scheme is possible only if the viscosity is essentially fixed and the expansion done around zero velocity. Even though very few situations were studied here, it can be said that tuning the accuracy of the "internal code" independently from the method to take care of boundary conditions allows us to get useful information concerning these two sources of errors in lattice Boltzmann simulations. Future extension of this work will be to try and discriminate between some of the numerous proposed ways to deal with boundaries to be able to estimate their contributions to errors in comparison to those due to the "internal code".

Appendix A. Taylor expansion method

• We start from relation [START_REF] Dubois | Equivalent partial differential equations of a lattice Boltzmann scheme[END_REF] for iteration of the lattice Boltzmann scheme and take the momentum of order k. Then

m k (x, t + ∆t) = J ℓ=0 M kℓ f * ℓ (x -v ℓ ∆t, t) = J ℓ=0 J p=0 M kℓ M -1 ℓp m * p (x -v ℓ ∆t, t) due to (14) = J ℓ=0 J p=0 J r=0 M kℓ M -1 ℓp Ψ pr m r (x -v ℓ ∆t, t)
due to [START_REF] Geier | Cascaded digital lattice Boltzmann automata for high Reynolds number flow[END_REF]. We have

(69) m k (x, t + ∆t) = J ℓ=0 J p=0 J r=0 M kℓ M -1 ℓp Ψ pr m r (x -v ℓ ∆t, t) , 0 ≤ k ≤ J .
We expand now momentum m r (x -v ℓ ∆t, t) with a Taylor formula of infinite length:

(70) m r (x -v ℓ ∆t, t) = +∞ q=0 (∆t) q q ! - d α=1 M αℓ ∂ α q m r (x, t) .
Then due to (69), ( 70) and ( 22), we have

(71) m k (x, t + ∆t) = γ J ℓ=0 J p=0 J r=0 M kℓ M -1 ℓp Ψ pr ∆t |γ| | γ |! P ℓγ ∂ γ m r , 0 ≤ k ≤ J .
We can also expand the left hand side of (71) and we have finally

(72) ∞ q=0 ∆t q q! ∂ q t m k = γ J ℓ=0 J p=0 J r=0 M kℓ M -1 ℓp Ψ pr ∆t |γ| | γ |! P ℓγ ∂ γ m r , 0 ≤ k ≤ J .
• We consider relation (72) at order zero relative to time step for a conserved component of momentum (id est 0 ≤ k ≡ i ≤ N -1). The left hand side of (72) is equal to m i +O(∆t) and we have

W i + O(∆t) = J ℓ=0 J p=0 J r=0 M iℓ M -1 ℓp Ψ pr m r + O(∆t) = J p=0 J r=0 δ ip Ψ pr m r + O(∆t) = J r=0 Ψ ir m r + O(∆t) with 0 ≤ i ≤ N = J r=0 δ ir m r + O(∆t) due to (20) = m i + O(∆t)
and no information is contained at this first step. Consider now the same development for k ≥ N. We pass over some repeated summations:

m k + O(∆t) = M kℓ M -1 ℓp Ψ pr m r + O(∆t) = N -1 j=0 M kℓ M -1 ℓp Ψ pj m j + r≥N M kℓ M -1 ℓp Ψ pr m r + O(∆t) = N -1 j=0 δ kp Ψ pj W j + r≥N M kℓ M -1 ℓp δ pr (1 -s r ) m r + O(∆t)
due to [START_REF] Geier | Cascaded digital lattice Boltzmann automata for high Reynolds number flow[END_REF] and (20)

= N -1 j=0 Ψ kj W j + M kℓ M -1 ℓp (1 -s p ) m p + O(∆t) = δ kp (1 -s p ) m p + N -1 j=0 Ψ kj W j + O(∆t) = (1 -s k ) m k + N -1 j=0 Ψ kj W j + O(∆t) .
We deduce from the previous calculation the relation [START_REF] Ginzburg | Study of Simple Hydrodynamic Solutions with the Two-Relaxation-Times Lattice Boltzmann Scheme[END_REF] with the expression (24) of the coefficients B 0 kj . Then we can go now one step further.

• At first order, relation (72) becomes

(73) m k + ∆t ∂m k ∂t + O(∆t 2 ) = m * k -∆t d α=1 M kℓ M -1 ℓp Ψ pr M αℓ ∂ α m r + O(∆t 2 ) .
For conserved variables (5) (id est 0 ≤ k ≡ i ≤ N -1), we have after dividing by ∆t,

∂W i ∂t + O(∆t) = - d α=1 M iℓ M -1 ℓp Ψ pr M αℓ ∂ α m r + O(∆t) = - d α=1 Λ p αi Ψ pr ∂ α m r + O(∆t) due to (18) = d α=1 Λ p αi j<N Ψ pj ∂ α W j + ℓ≥N Ψ pℓ ∂ α m ℓ + O(∆t) = d α=1 Λ p αi j<N Ψ pj ∂ α W j + ℓ≥N Ψ pℓ ∂ α 1 s ℓ Ψ ℓj W j + O(∆t) = N -1 j=0 d α=1 J p=0 Λ p αi Ψ pj + ℓ≥N Ψ pℓ 1 s ℓ Ψ ℓj ∂ α W j + O(∆t) .
For an index γ between 1 and d, we define A γ ij according to the relation ( 26) and the previous calculation can be written as a conservation law at first-order (74)

∂W i ∂t + |γ|=1 A γ ij ∂ γ W j = O(∆t) , 0 ≤ i ≤ N -1 .
• We start again from relation (73) with nonconservative indices k (k ≥ N):

m k = -∆t ∂m k ∂t + (1-s k ) m k + N -1 j=0 Ψ kj W j -∆t d α=1 M kℓ M -1 ℓp Ψ pr M αℓ ∂ α m r + O(∆t 2 ) .
Then due to [START_REF] Ginzburg | Study of Simple Hydrodynamic Solutions with the Two-Relaxation-Times Lattice Boltzmann Scheme[END_REF],

m k = 1 s k Ψ kj W j -∆t 1 s k Ψ ki ∂W i ∂t -∆t Λ p αk Ψ pr ∂ α 1 s r Ψ rj W j + O(∆t 2 ) = 1 s k Ψ kj W j + ∆t s k Ψ ki |γ|=1 A γ ij ∂ γ W j - ∆t s r Λ p γk Ψ pr Ψ rj ∂ γ W j + O(∆t 2 ) .
We introduce B γ kj for | γ |= 1 according to [START_REF] Junk | Regular and multiscale expansions of a lattice Boltzmann method[END_REF] and due to previous calculation, relation [START_REF] Ginzburg | Study of Simple Hydrodynamic Solutions with the Two-Relaxation-Times Lattice Boltzmann Scheme[END_REF] can be extended as

(75) m k = 0≤|γ|≤1 ∆t |γ| B γ kj ∂ γ W j + O(∆t 2 ) .
• We generalize the relations (74) and (75) at the order σ through a recurrence hypothesis (29) [START_REF] Lallemand | Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability[END_REF]. In order to treat the left-hand side of relation (72), we observe that we have

∂ 2 t W i = - 1≤|γ|≤σ ∆t |γ|-1 A γ ij ∂ γ ∂ t W j + O(∆t σ ) = 1≤|δ|≤σ ∆t |δ|-1 A δ iℓ ∂ δ 1≤|ε|≤σ ∆t |ε|-1 A ε ℓj ∂ ε W j + O(∆t σ )
and if we introduce C 1,γ ij according to [START_REF] Lallemand | Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions[END_REF] and

C 2,γ ij ≡ - |δ|≥1, |ε|≥1, δ+ε=γ A δ iℓ A ε ℓj , 2 ≤| γ |≤ σ + 1 ,
we have for the second time derivative a relation quite analogous to (29):

∂ 2 t W i + 2≤|γ|≤σ+1 ∆t |γ|-2 C 2,γ ij ∂ γ W j = O(∆t σ ) , 0 ≤ i ≤ N -1 .
This relation can be generalized at an arbitrary order according to (76)

∂ q t W i + q≤|γ|≤σ+q-1 ∆t |γ|-q C q,γ ij ∂ γ W j = O(∆t σ ) , 0 ≤ i ≤ N -1 .
If relation ( 76) is true at order q, we have by differentiation with respect to time,

∂ q+1 t W i = - q≤|γ|≤σ+q-1 ∆t |γ|-q C q,γ ij ∂ γ ∂ t W j + O(∆t σ ) = q≤|δ|≤σ+q-1 ∆t |δ|-q C q,δ iℓ ∂ δ 1≤|ε|≤σ ∆t |ε|-1 A ε ℓj ∂ ε W j + O(∆t σ ) ≡ q+1≤|γ|≤σ+q ∆t |γ|-q-1 C q+1,γ ij ∂ γ ∂ t W j + O(∆t σ )
and relation ( 76) is satisfied at the order q + 1 with C q+1,γ ij given by the recurrence relation [START_REF] Landau | Fluid Mechanics[END_REF]. In an analogous way, we have

(77) ∂ q t m k = q≤|γ|≤ σ+q ∆t |γ|-q D q,γ kj ∂ γ W j + O(∆t σ+1 ) , k ≥ N ,
with D 0,γ kj defined according to [START_REF] Leriche | Stokes eigenmodes in cubic domain: primitive variable and Lattice Boltzmann formulations[END_REF]. If the relation ( 77) is satisfied at order q, we have by differentiation relative to time,

∂ q+1 t m k = q≤|γ|≤ σ+q ∆t |γ|-q D q,γ kj ∂ γ ∂ t W j + O(∆t σ+1 ) = - q≤|δ|≤ σ+q ∆t |δ|-q D q,δ kℓ ∂ δ 1≤|ε|≤σ ∆t |ε|-1 A ε ℓj ∂ ε W j + O(∆t σ+1 ) ≡ q+1≤|γ|≤ σ+q+1 ∆t |γ|-(q+1) D q+1,γ kj ∂ γ W j + O(∆t σ+1 )
with coefficients D q+1,γ kj determined according to the relation [START_REF] Mc Namara | Use of Boltzmann equation to simulate lattice gas automata[END_REF]. We observe that for the particular value | γ |= σ + 1 the coefficient D q+1,γ kj is well defined for 0 ≤ q ≤ σ . In other words, the coefficient D q,γ kj is well defined for 1 ≤ q ≤ | γ | .

• We verify now by induction that the recurrence relations ( 29) and ( 30) are satisfied. It is the case at order 1 as we have shown in ( 74) and (75). We first consider a label i such that 0 ≤ i ≤ N -1. Then according to (72), we have at the order σ + 2 :

           W i + ∆t ∂W i ∂t + σ+1 q=2 ∆t q q! ∂ q t W i + O(∆t σ+2 ) = W i + M iℓ M -1 ℓp Ψ pr 1≤|δ|≤σ+1 ∆t |δ| | δ |! P ℓδ ∂ δ 0≤|ε|≤σ ∆t |ε| B ε rj ∂ ε W j + O(∆t σ+2 ) .
We use relation (76) for the left hand side of previous relation. We get after dividing by ∆t

           ∂W i ∂t - σ+1 q=2 ∆t q-1 q ! q≤|γ|≤σ+q-1 ∆t |γ|-q C q,γ ij ∂ γ W j + O(∆t σ+1 ) = 1≤|δ|≤σ+1, 0≤|ε|≤σ M iℓ M -1 ℓp Ψ pr P ℓδ ∆t |δ|+|ε|-1 | δ | ! B ε rj ∂ δ+ε W j + O(∆t σ+1 ) .
and the relation ( 29) is extended one step further with a coefficient A γ ij defined for | γ | = q + 1 by the recurrence relation [START_REF] Lerat | Noncentered Schemes and Shock Propagation Problems[END_REF]. For the nonconserved moments (k ≥ N), the relation (72) can be written at the order σ + 2 as

           m k + σ+1 q=1 ∆t q q ! ∂ q t m k + O(∆t σ+2 ) = (1 -s k ) m k + 1≤|δ|≤σ+1 M kℓ M -1 ℓp Ψ pr ∆t |δ| | δ |! P ℓδ ∂ δ 0≤|ε|≤ σ ∆t |ε| B ε rj ∂ ε W j + O(∆t σ+2 ) .
We use the relation (77) and we deduce: 

           s k m k = - σ+1 q=1 ∆t q q ! q≤|γ|≤ σ+q ∆t |γ|-q D q,γ kj ∂ γ W j + 1≤|δ|≤σ+1, 0≤|ε|≤ σ ∆t |δ|+|ε| | δ |! M kℓ M -1 ℓp Ψ pr P ℓδ B ε rj ∂ δ+ε W j + O(∆t σ+2 ) . We set, with | γ | = σ + 1 , k ≥ N , 0 ≤ j ≤ N -1, B γ kj = 1 s k - 1≤q≤σ+1 1 q ! D q,γ kj + 1≤|δ|≤σ+1, 0≤|ε|≤ σ, δ+ε=γ 1 | δ |! M kℓ M -1 ℓp Ψ pr P ℓδ B ε

Appendix B. Notations for classical lattice Boltzmann schemes

In order to define precisely our results, the numbering of degrees of freedom must be defined and we make this point precise in this Appendix with the help of usual graphics. The choice of moments, id est the M matrix (relation ( 4)) is also made explicit. Recall first that the D1Q3 lattice Boltzmann scheme (J = 2 in relation ( 4)) uses three neighbours for a given node x: the vertex x itself and the first neighbours located at ±∆x from x (see Figure 20). We introduce λ as in [START_REF] Falcucci | Lattice Boltzmann models with mid-range interactions[END_REF] and adopt a labelling for matrix M of relation (4) as in Figure 20:

x + ∆ x x x x -∆ 1 2 0
(78) M =   1 1 1 -λ 0 λ λ 2 /2 0 λ 2 /2   .

• D2Q5 for classical thermics

We have now four (J = 4) nontrivial possible directions for propagation of particles (Figure 21, left). We adopt for the M matrix of relation (4) the following choice:

(79) M =        1 1 1 1 1 0 λ 0 -λ 0 0 0 λ 0 -λ -4 1 1 1 1 0 1 -1 1 -1        .

• D2Q9 for classical thermics

The lattice Boltzmann model D2Q9 is obtained from the D2Q5 model by adding four velocities along the diagonals (Figure 21, right). The evaluation of matrix M is entirely nontrivial. We refer the reader to [START_REF] Lallemand | Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability[END_REF], and the reader can also consult our introduction 

80) M =                 1 1 1 1 1 1 1 1 1 0 λ 0 -λ 0 λ -λ -λ λ 0 0 λ 0 -λ λ λ -λ -λ -4 -1 -1 -1 -1 2 2 2 2 4 -2 -2 -2 -2 1 1 1 1 0 -2 0 2 0 1 -1 -1 1 0 0 -2 0 2 1 1 -1 -1 0 1 -1 1 -1 0 0 0 0 0 0 0 0 0 1 -1 1 -1                 . ( 
• D3Q7 for pure thermics For three-dimensional thermics, one only needs a seven point scheme and can use the so-called D3Q7 lattice Boltzmann scheme whose stencil is described in the left part of Figure 22. The matrix is not very difficult to construct. We follow [START_REF] Lallemand | Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions[END_REF]:

(81) M =            1 1 1 1 1 1 1 0 λ 0 0 -λ 0 0 0 0 λ 0 0 -λ 0 0 0 0 λ 0 0 -λ 0 -1 -1 2 -1 -1 2 0 1 -1 0 1 -1 0 -6 1 1 1 1 1 1           
.

• D3Q19 for linearized Navier-Stokes The D3Q19 Lattice Boltzmann scheme is described with details e.g. in J. Tölke et al [START_REF] Tölke | Lattice Boltzmann Simulations of Binary Fluid Flow through Porous Media[END_REF] and the stencil is presented in Figure 22 (right). The matrix M that parameterizes the transformation (4) looks like this: 

M =                                       1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 λ 0 0 -λ 0 0 λ λ -λ -λ 0 0 0 0 λ λ -λ -λ 0 0 λ 0 0 -λ 0 λ -λ λ -λ λ -λ λ -λ 0 
                                     
.

Due to the important number of moments, we detail in this sub-section the way the previous matrix is obtained. First, velocities v α j for 0 ≤ j ≤ J ≡ 18 and 1 ≤ α ≤ 3 are naturally associated with Figure 22. The four first moments ρ and q α are determined according to ( 6) and [START_REF] Chapman | The mathematical theory of non-uniform gases[END_REF] and the associated elements for matrix M are given in [START_REF] Chen | Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method[END_REF] and [START_REF] Chen | Lattice Boltzmann method for fluid flows[END_REF]. The construction of other moments uses the tensorial nature of the variety of Appendix C. Quartic parameters in three dimensions

• We use the equivalent equations of lattice Boltzmann scheme D3Q19 obtained previously in the following way. We consider the vector of conserved variables (5): W ≡ (ρ, q x , q y , q z ) t . We write the equivalent partial differential equations under the combined form:

(88) ∂ t W k + j, p, q, r A j kpqr ∂ p x ∂ q y ∂ r y W j = O(∆t 4 ) .

We search dissipative mode solution of (88) under the form W (t) = e -Γt + i(kx x+ky y+kz z) W .

Then Γ is an eigenvalue of the matrix A defined by

A j k = p, q, r
A j kpq (i k x ) p (i k y ) q (i k z ) r .

• We wish to solve this dispersion equation with a high order of accuracy, id est in our present case:

(89) ∆ ≡ det [A -Γ Id] = O(∆t 7 ) .

We impose also that this eigenvalue is double as classical for shear waves in three dimensions [START_REF] Landau | Fluid Mechanics[END_REF]: For Stokes problem (incompressible shear modes) and D3Q19 lattice Boltzmann d'Humières scheme, we have [START_REF] Qian | Lattice BGK for Navier-Stokes equation[END_REF]:

(91) Γ ≡ ν | k | 2 = λ 2 3 ∆t σ 5 k 2 x + k 2 y + k 2 z .
• We solve the set (89) (90) (91) of equations for all values of the time step ∆t . We obtain in this way a set of eight algebraic equations: 

                              

d

  and we denote by | γ | the length of multi-index γ:

2 7 - 7 ζ 7 + 30 σ 5 σ 2 7 - 7 ζ 7 + 7 ζ

 7777777 12 σ 3 σ 4 σ 5 -24 σ 3 σ 5 σ 7 + 12 σ 4 σ 5 σ 7 ζ 31 = η 13 = -4 σ 3 -7 σ 7 + 18 σ 2 3 σ 5 + 18 σ 5 σ 2 7 -12 σ σ 7 -12 σ 3 σ 2 7 -12 σ 3 σ 4 σ 5 + 12 σ 3 σ 5 σ 7 + 12 σ 4 σ 5 σ 7 + 12 σ 3 22 = η 22 = -13 σ 3 + 6 σ 4 -10 σ 7 + 18 σ 2 3 σ 5 -12 σ 2 3 σ 7 -12 σ 3 σ 2 12 σ 3 σ 4 σ 5 + 120 σ 3 σ 5 σ 7 -60 σ 4 σ 5 σ 7 -12 σ 3 13 = η 31 = -10 σ 3 + 6 σ 4 -7 σ 7 + 18 σ 2 3 σ 5 -12 σ 2 3 σ -12 σ 3 σ 2 18 σ 5 σ 2 7 + 12 σ 3 σ 4 σ 5 + 84 σ 3 σ 5 σ 7 -60 σ 4 σ 5 σ 7 + 12 σ 3 04 = η 40 = -3 σ 7 + 24 σ 5 σ 2 7 -12 σ 3 7 .

Figure 1 :

 1 Figure 1: Error | Γnum Γ th -1 | of D2Q5 scheme for thermic test case, "one point" simulation. Different curves correspond to different orientation of the wave-vector with respect to the axis, showing the angular dependence of the next order.

Figure 2 :

 2 Figure 2: Arnoldi test case for periodic thermics, I x = 5, I y = 0. Various parameters for lattice Boltzmann schemes D2Q5 and D3Q7.

Figure 3 :Figure 4 :François

 34 Figure 3: D2Q5 scheme for thermics inside a circle. Eigenmode n = 4, ℓ = 0 for heat equation with Dirichlet boundary conditions. Second-order accuracy with usual parameters for lattice Boltzmann scheme.

Figure 5 :

 5 Figure 5: D2Q5 scheme for thermics in a circle. Eigenmode n = 1, ℓ = 5. Errors for various parameters for lattice Boltzmann and boundary schemes.

Figure 6 :

 6 Figure 6: D3Q7 lattice Boltzmann scheme for thermics in a sphere. Eigenmode n = 5, ℓ = 1, m = 0 with usual parameters.

Figure 7 :

 7 Figure 7: D3Q7 lattice Boltzmann scheme for thermics in a sphere. Eigenmode n = 5, ℓ = 1, m = 0 with quartic parameters.

Figure 8 :

 8 Figure 8: D3Q7 scheme for thermics in a sphere with Dirichlet boundary conditions. Eigenmode n = 1, ℓ = 0. Errors for various parameters for lattice Boltzmann and boundary schemes.

Figure 9 :

 9 Figure 9: D3Q7 for thermics in a sphere. Eigenmode (in units κπ 2 /R 2 ) for n = 5 and ℓ = 0. Variation of the location of the boundary between R = 17 and R = 18.

  error of shear waves logarithm of the inverse of the wave vector usual : order 4 quartic : order 6

Figure 10 :

 10 Figure 10: D2Q9 "one point" test case of shear waves for different angles of the wave vector.

Figure 11 :

 11 Figure 11: D2Q9 scheme for linear Navier-Stokes. Eigenmode n = 5 ℓ = 1 for the Stokes problem in a circle.
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 242 13 = ad libitum other moments of kinetic energy σ 14 = 1/ √ 12 s 14 = 3 -√ 3 third-order antisymmetric σ 16 = 1/ √ 3 s 16 = 4 √ 3 -6 .
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 121314 Figure 12: D2Q9 scheme for linear Navier-Stokes in a circle. Eigenmode n = 5, ℓ = 1 for the Stokes problem. Usual parameters.
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 4 log of the error of shear waves logarithm of the inverse of the wave vector usual : order 4 quartic : order 6

Figure 15 :

 15 Figure 15: D3Q19 for "one point" experiment and various directions of the wave vector.

Figure 16 :

 16 Figure 16: D3Q19 for linear Navier-Stokes in a sphere. Eigenmode n = 3, ℓ = 1 for Stokes problem with Dirichlet boundary conditions. Tangential velocity vector field for a plane through the center of the sphere.

Figure 17 :

 17 Figure 17: D3Q19 for linear Navier-Stokes in a sphere. Eigenmode n = 3, ℓ = 1 for Stokes problem with Dirichlet boundary conditions. Tangent vector field for a plane orthogonal to vector (1, 1, 1).

Figure 18 :FrançoisFigure 19 :

 1819 Figure 18: D3Q19 for linear Navier-Stokes in a sphere. First eigenmodes for stationary Stokes problem with Dirichlet boundary conditions.

  some details for R between 19 and 20 for the m = 1, n = 6 mode. There are two sets of data, one for usual s-parameters s 4 = 1.3 , s 5 = 1.25 , s 10 = 1.2 , s 13 = 1.4 , s 14 = 1.25 , s 16 = 1.3 and one for the quartic s-parameters given precedingly in (68) with s 4 = 1.3 , s 13 = 1.4 .

  rjand the relation (36) is established by induction.

Figure 20 :

 20 Figure 20: Stencil for the D1Q3 lattice Boltzmann scheme

Figure 21 :Figure 22 :

 2122 Figure 21: Stencils for D2Q5 and D2Q9 lattice Boltzmann schemes
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  d dΓ (det [A -Γ Id]) ≈ 0 . The first nontrivial term in powers of ∆t for this derivative of the determinant is the term of order 3. Then we force (90) d dΓ (det [A -Γ Id]) = O(∆t 4 ) .

  2 σ 5 σ 10 -4 σ 2 5 + 6 σ 5 σ 16 = 1 80 σ 4 5 -32 σ 3 5 σ 10 + 24 σ 2 5 σ 10 σ 16 + 12 σ 14 σ 16 σ 2 14 σ 10 -12 σ 5 σ 16 σ 14 σ 10 + 6 σ 5 σ 14 σ 2 10 -8 σ 5 σ 16 + 6 σ 5 σ 2 16 σ 14 -σ 14 σ 16 + σ 14 σ 10 + 1 = 0 -48 σ 5 5 σ 10 + 44 σ 4 5 σ 2 10 + 2000 σ 5 5 σ 16 + 95 σ 2 5 -16 σ 4 5 σ 14 σ 10 +292 σ 14 σ 16 σ 2 5 + 68 σ 2 5 σ 14 σ 10 -272 σ 4 5 σ 16 σ 14 -1032 σ 3 5 σ 2 16 σ 14 +56 σ 3 5 σ 14 σ 2 10 -320 σ 6 5 -1048 σ 4 5 σ 10 σ 16 + σ 2 14 + 60 σ 2 5 σ 2 16 σ 2 14 -16 σ 5 σ 16 σ 2 14 +72 σ 2 5 σ 2 14 σ 10 σ 16 -8 σ 5 σ 2 14 σ 10 + 24 σ 3 5 σ 14 + 12 σ 2 5 σ 2 14 σ 2 10 -248 σ 4 5 -464 σ 3 5 σ 16 σ 14 σ 10 + 148 σ 3 5 σ 10 -1284 σ 16 σ 3 5 + 4284 σ 2 16 σ 4 5 -20 σ 5 σ 14 = 0 -1 + 2 σ 5 σ 10 -4 σ 2 5 + 6 σ 5 σ 16 2 σ 5 σ 10 + 2 σ 14 σ 10 -2 σ 2 5 -10 σ 5 σ 16 -2 σ 14 σ 16 + 3 = 96 σ 5 5 σ 10 + 24 σ 4 5 σ 2 10 -1920 σ 5 5 σ 16 + 98 σ 2 5 + 24 σ 4 5 σ 14 σ 10 + 350 σ 14 σ 16 σ 2 5 +34 σ 2 5 σ 14 σ 10 + 264 σ 4 5 σ 16 σ 14 -1524 σ 3 5 σ 2 16 σ 14 + 12 σ 3 5 σ 14 σ 2 10 +240 σ 6 5 -576 σ 4 5 σ 10 σ 16 + σ 2 14 + 102 σ 2 5 σ 2 16 σ 2 14 -20 σ 5 σ 16 σ 2 14 + 36 σ 2 5 σ 2 14 σ 10 σ 16 -4 σ 5 σ 2 14 σ 10 -24 σ 3 5 σ 14 + 6 σ 2 5 σ 2 14 σ 2 10 + 240 σ 4 5 -216 σ 3 5 σ 16 σ 14 σ 10 + 72 σ 3 5 σ 10 -1488 σ 16 σ 3 5 + 5688 σ 2 16 σ 4 5 -20 σ 5 σ 14 = -σ 5 + 6 σ 16 σ 2 5 + 2 σ 2 5 σ 10 -4 σ 3 5 = 2 σ 2 5 σ 10 -2 σ 16 σ 2 5 + σ 5 -σ 5 σ 16 σ 14 + σ 5 σ 14 σ 10 -12 σ 3 5 = 10 σ 5 σ 16 σ 14 + 2 σ 5 σ 14 σ 10 + 11 σ 5 -σ 14 + 8 σ 3 5 -82 σ 16 σ 2 5 + 6 σ 2 5 σ 10 = . These equations have only one nontrivial family of solutions given by (68).
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moments that can be constructed, as analyzed by Rubinstein and Luo [START_REF] Rubinstein | Theory of the lattice Boltzmann equation: Symmetry properties of discrete velocity sets[END_REF]: scalar fields are naturally coupled with one another and similarly for vector fields, and so on. So components of kinetic energy are introduced:

The entire set of second-order tensors is completed according to (83)

The three components of heat flux are defined by (84)

We finally obtain the moments of higher degree: the square of the kinetic energy (85)

second-order moments "weighted" by kinetic energy:

(86)

and third-order anti-symmetric moments:

(87)

Then matrix M is orthogonalized from relations (8), ( 9), (82), (83), (84), (85), ( 86) and (87) with a Gram-Schmidt classical algorithm:

The coefficients g iℓ are computed recursively in order to force orthogonality:

M ij M kj = 0 for i = k .