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Abstract. In this contribution we extend the Taylor expansion method proposed previously

by one of us and establish equivalent partial differential equations of “DDH” lattice Boltzmann

scheme at an arbitrary order of accuracy. We derive formally the associated dynamical equa-

tions for classical thermal and linear fluid models in one to three space dimensions. We use this

approach to adjust “quartic” relaxation parameters in order to enforce fourth order accuracy

for thermal model and diffusive relaxation modes of the Stokes problem. We apply the resulting

scheme for numerical computation of associated eigenmodes, compare our results with analytical

references and observe fourth order accuracy when using “quartic” parameters.
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1 Introduction

• The lattice Boltzmann scheme is a numerical method for simulation of a wide family of

partial differential equations associated to conservation laws of physics. The principle is to

mimic at a discrete level the dynamics of the Boltzmann equation. In this paradigm, the

number f(x, t) dx dv of particles at position x, time t and velocity v with an uncertainty

of dx dv follows the Boltzmann partial differential equation in the phase space (see e.g.

Chapman and Cowling [7]):

(1)
∂f

∂t
+ v•∇xf = Q(f) .

• Note that the left hand side is a simple advection equation whose solution is trivial

through the method of characteristics:

(2) f(x, v, t) = f(x − vt, v, 0) if Q(f) ≡ 0 .

Remark also that the right hand side is a collision operator, local in space and integral

relative to velocities:

(3) Q(f)(x, v, t) =

∫
C
(
f(x, w, t), x, v, t

)
dw ,

where C(•) describes collisions at a microscopic level. Due to microscopic conservation of

mass, momentum and energy, an equilibrium distribution f eq(x, v, t) satisfy the nullity

of first momenta of the distribution of collisions:

∫
Q(f eq)(x, v, t)




1

v
1
2
|v|2


 dv = 0 .

Such an equilibrium distribution f eq satisfies classically the Maxwell-Boltzmann distri-

bution.

• The lattice Boltzmann method follows all these physical recommandations with spe-

cific additional options. First, space x is supposed to live in a lattice L included in

Euclidian space of dimension d. Second, velocity belongs to a finite set V composed by

given velocities vj (0 ≤ j ≤ J) chosen in such a way that

x ∈ L and vj ∈ V =⇒ x + ∆t vj ∈ L ,

where ∆t is the time step of the numerical method. Then the distribution of particles f

is denoted by fj(x, t) with 0 ≤ j ≤ J, x in the lattice L and t an integer multiple of

time step ∆t.
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• In the pioneering work of cellular automata introduced by Hardy, Pomeau and De

Pazzis [24], Frisch, Hasslacher and Pomeau [18] and developed by d’Humières, Lallemand

and Frisch [13], the distribution fj(x, t) was chosen as boolean. Since the so-called

lattice Boltzmann equation of Mac Namara and Zanetti [35], Higuera, Succi and Benzi

[27], Chen, Chen and Matthaeus [8], Higuera and Jimenez [26], the distribution fj(•, •)

takes real values in a continuum and the collision process follows a linearized approach

of Bhatnagar, Gross and Krook [4]. With Qian, d’Humières and Lallemand [38], the

equilibrium distribution f eq is determined with a polynomial in velocity. Following the

work of Karlin et al [29], the equilibrium state is obtained with a general methodology of

entropy minimization.

• The numerical scheme is defined by the evolution of a population fj(x, t) with x ∈ L
and 0 ≤ j ≤ J towards a distribution fj(x, t+∆t) at a new discrete time. The scheme is

composed by two steps that take into account successively the left and right hand sides of

the Boltzmann equation (1). The first step describes the relaxation f −→ f ∗ of particle

distribution f towards the equilibrium. It is local in space and nonlinear in general.

d’Humières [11] first introduced the fundamental notion of momenta in the context of

lattice Boltzmann schemes. He defines an invertible matrix M with (J + 1) lines and

(J + 1) columns and the momenta m through a simple linear relation

(4) mk =

J∑

j=0

Mkj fj , 0 ≤ k ≤ J .

In the following, we denote by “DDH” scheme the lattice Boltzmann scheme in the previ-

ous form proposed by Dominique d’Humières, also called multi-relaxation time scheme.

• The first N momenta are supposed to be at equilibrium:

(5) m∗
i = mi ≡ meq

i ≡ Wi , 0 ≤ i ≤ N − 1

and we introduce the vector W ∈ R
N of conserved variables composed by the Wi’s for

0 ≤ i ≤ N − 1: Wi ≡ meq
i , 0 ≤ i ≤ N − 1. The first moments at equilibrium are

respectively the total density

(6) ρ ≡
J∑

j=0

fj ,

momentum

(7) qα ≡
J∑

j=0

vα
j fj , 1 ≤ α ≤ d
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and possibly the energy (Lallemand-Luo [31]) for Navier–Stokes fluid simulations. In

consequence, we have

M0j ≡ 1 , 0 ≤ j ≤ J(8)

Mαj ≡ vα
j , 1 ≤ α ≤ d , 0 ≤ j ≤ J .(9)

For the other momenta, we suppose given (J + 1 − N) (nonlinear) functions Gk(•)

(10) R
N ∋ W 7−→ Gk(W ) ∈ R , N ≤ k ≤ J

that define equilibrium momenta meq
k according to the relation

(11) meq
k = Gk(W ) , N ≤ k ≤ J .

Note also that more complicated models have been developed in Yeomans’s group (see

e.g. Marenduzzo at al [36]) for modelling of liquid crystals.

• The relaxation process is related with the linearized collision operator introduced at

relation (3). In particular for particular intermolecular interactions (Maxwell molecules

with a 1/r4 potential), the collision operator is exactly solvable in terms of so-called So-

nine polynomials (see e.g. Chapman and Cowling [7]) and the eigenvectors are known.

Moreover, the discrete model is highly constrained by symmetry and exchanges of co-

ordinates. With d’Humières [11], we introduce relaxation parameters (also named as

s-parameters in the following) sk (N ≤ k ≤ J) satisfying for stability constraints (see

e.g. Lallemand and Luo [30]) the conditions

0 < sk < 2 , N ≤ k ≤ J .

Then the nonconserved momentum m∗
k after collision are supposed to satisfy

(12) m∗
k = mk + sk (meq

k − mk) , k ≥ N

and we will denote by S the diagonal matrix of order J+1−N whose diagonal coefficients

are equal to sk:

(13) Skℓ ≡ δkℓ sℓ , k, ℓ ≥ N

with δkℓ the Kroneker symbol equal to 1 if k = ℓ and null in the other cases. Remark

that this framework is general: when the matrix S is proportional to identity, the DDH

scheme degenerates to the popular “BGK” method characterized by a “Single Relaxation

Rate”. In this particular case the relaxation operator is diagonal and there is no particular

diagonalization basis to work with. The distribution f ∗ after collision is reconstructed

by inversion of relation (4):

(14) f ∗
j =

J∑

ℓ=0

M−1
jℓ m∗

ℓ , 0 ≤ j ≤ J .
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• We suppose also that the set of velocities V is invariant by space reflection:

vj ∈ V =⇒ ∃ ℓ ∈ {0, . . . , J}, vℓ = −vj , vℓ ∈ V .

The second step is the advection that mimic at the discrete level the free evolution through

characteristics (2):

(15) fj(x, t + ∆t) = f ∗
j (x − vj ∆t, t) , x ∈ L, 0 ≤ j ≤ J , vj ∈ V .

Note that all physical relaxation processes are described in space of momenta. Neverthe-

less, evolution equation (15) is the key issue of forthcoming expansions.

• The asymptotic analysis of cellular automata (see e.g. Hénon [25]) puts in evidence

asymptotic partial differential equations and viscosity coefficients related to the induced

parameter defined by

(16) σk ≡ 1

sk
− 1

2
.

The lattice Boltzmann DDH scheme (4) to (15) has been analyzed by d’Humières [11] with

a Chapman-Enskog method coming from statistical physics. Remark that the extension

of the discrete Chapman-Enskog expansion to higher order already exists (Qian-Zhou [39],

d’Humières [12]). But the calculus in the nonthermal case (N > 1) is quite delicate from

an algebraic point of view and introduces noncommutative formal operators. Recently,

Junk and Rheinländer [28] developed a Hilbert type expansion for the analysis of lattice

Boltzmann schemes at high order of accuracy. We have proposed in previous works

[14, 15] the Taylor expansion method which is an extension to DDH scheme of the so-

called equivalent partial differential equation method proposed independently by Lerat

and Peyret [33] and by Warming and Hyett [48]. In this framework, the parameter ∆t is

considered as the only infinitesimal variable and we introduce a constant velocity ratio

λ between space step and time step:

(17) λ ≡ ∆x

∆t
.

The lattice Boltzmann scheme is classically considered as second order accurate (see e.g.

Lallemand and Luo [30]). In fact, the viscosity coefficients µ relative to second order

terms are recovered according to a relation of the type

µ = ζ λ2 ∆t σk

for a particular value of label k. The coefficient ζ is equal to 1
3

for the simplest DDH

models that are considered hereafter.
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• A natural question is to extend this accuracy to third or higher orders. In the case of

single relaxation times (BGK variant of DDH scheme), progresses in this direction have

been proposed by Shan et al [44, 45] and Philippi et al [37] by using Hermite polynomial

methodology for the approximation of the Boltzmann equation. The price to pay is an

extension of the stencil of the numerical scheme and the practical associated problems

for the numerical treatment of boundary conditions. Note also the work of the italian

team (Sbragaglia et al [42], Falcucci et al [17]) for application to multiphase flows. In

the context of DDH scheme, Ginzburg, Verhaeghe and d’Humières have analyzed with

the Chapman-Enskog method the “Two Relaxation Times” version of the DDH scheme

[22, 23]. A nonlinear extension of DDH scheme, the so-called “cascaded lattice Boltzmann

method” has been proposed by Geier et al [19]. It gives also high order accuracy and the

analysis is under development (see e.g. Asinari [3]). The general nonlinear extension of

the Taylor expansion method to third order of accuracy of DDH scheme is presented in

[16]. It puts in evidence the importance of the so-called tensor of momentum-velocity

defined by

(18) Λℓ
kp ≡

J∑

j=0

Mkj Mpj M−1
jℓ , 0 ≤ k, p, ℓ ≤ J .

Moreover, it shows also that for athermal Navier Stokes equations, the mass conservation

equation contains a remaining term of third order accuracy that can not be put to zero

by fitting relaxation parameters [16].

• Our motivation in this contribution is to show that it is possible to extend the order of

accuracy of an existing a priori second order accurate lattice Boltzmann scheme to higher

orders. We use the Taylor expansion method [15] to determine the equivalent partial

differential equation of the numerical scheme to higher orders of accuracy. Nevertheless,

it is quasi-impossible to determine explicity the entire expansion in all generality in the

nonlinear case. In consequence, we restrict here to a first step. We propose in the following

a general methodology for deriving the equivalent equation of the DDH scheme at an

arbitrary order when the collision process defined by the functions Gk of relation (10)

are linear. This calculus leads to explicit developments that are expandable with the help

of formal calculus. This work is detailed in Section 2. In Section 3 we apply the general

methodology to classical linear models of thermics and linearized athermal Navier Stokes

equations. We treat fundamental examples from one to three space dimensions. When it

is possible, the equivalent partial equivalent equations are explicited. In Section 4, we use

the fourth order equivalent equation of two and three-dimensional DDH models to enforce

accuracy by a proper choice of “quartic” parameters. For a scalar heat equation, the effect

of the precision of the numerical computation of eigenmodes is presented. For linearized

athermal Navier Stokes equations, we propose a method to enforce the precision of the
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eigenmodes of the associated partial differential equation. First numerical results show

that for appropriate tuning values of the parameters, fourth order precision is achieved.

2 A formal development of linearized DDH scheme

• In what follows, we suppose that the collision process is linear i.e. that the Gk

functions introduced in (10) (11) are linearized around some reference state. With this

hypothesis, we can write:

Gk(W ) ≡
N∑

j=0

Gkj Wj =
N∑

j=0

Gkj mj , k ≥ N .

Precisely, putting together relations (11) and (12), there exists a (J +1)× (J +1) matrix

Ψ such that the collisioned momentum m∗ defined in (12) is a linear combination of the

momenta before collision:

(19) m∗ = Ψ •m , m∗
k =

J∑

j=0

Ψkℓ mℓ .

Of course, the conservation (9) implies that Ψ has a structure of the type

(20) Ψ =

(
I 0

Φ I − S

)
.

The top left block of the right hand side of (20) is the identity matrix of dimension N

and the bottom left block is described through the Gk functions introduced in (10) (11):

(21) Φkj ≡ Ψkj = sk Gkj , j < N , k ≥ N .

The bottom right block of the right hand side of (20) contains the coefficients 1 − sk

(k ≥ N) related to relaxation (13).

• In order to explicit our result, we need some notations. We introduce multi-indices

γ, δ, ε in {1, . . . d}q in order to represent multiple derivation with respect to space. If

γ =
(

1, . . . 1︸ ︷︷ ︸
α1 times

, . . . , d, . . . d︸ ︷︷ ︸
αd times

)
,

then

∂γ ≡ ∂α1

∂xα1

1

· · · ∂αd

∂xαd

d
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and we denote by |γ | the length of multi-index γ:

|γ | ≡ α1 + · · · + αd .

Then thanks to the binomial formula for iterate derivation, we introduce coefficients Pℓγ

in order to satisfy the identity

(22)
(
−

d∑

α=1

Mαℓ ∂α

)q

≡
∑

|γ|=q

Pℓγ ∂γ .

for any integer q.

• We first establish that at first order of accuracy, we have a representation of noncon-

served momenta in terms of conservative variables:

(23) mk =

J∑

j=0

B0
kj Wj + O(∆t) , k ≥ N .

with

(24) B0
kj ≡ 1

sk

Ψkj , k ≥ N , 0 ≤ j ≤ N − 1 .

We have also the first order conservation law

(25)
∂Wi

∂t
+

∑

|γ|=1

Aγ
ij ∂γWj = O(∆t) , 0 ≤ i ≤ N − 1 .

with coefficients Aγ
ij given according to

(26) Aγ
ij ≡

J∑

p=0

Λp
γi

(
Ψpj +

∑

ℓ≥N

Ψpℓ
1

sℓ

Ψℓj

)
, |γ |= 1 , 0 ≤ i, j ≤ N − 1 .

The proof of this result and those that follow of this Section are detailed in Annex 1.

• The expansion of momenta (23) can be extended to second order accuracy:

(27) mk =
∑

0≤|γ|≤1

∆t|γ| Bγ
kj ∂γWj + O(∆t2) .

with

(28)





Bγ
kj =

1

s2
k

N−1∑

i=0

Ψki A
γ
ij − 1

sk

J∑

r=0

1

sr

J∑

p=0

Λp
γk Ψpr Ψrj ,

|γ |= 1 , k ≥ N , 0 ≤ j ≤ N − 1 .
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• Then we extend the previous expansions (25) and (27) at any order σ. By induction,

we establish that we have an equivalent partial differential equation of the form

(29)
∂Wi

∂t
+

∑

1≤|γ|≤σ

∆t|γ|−1
N−1∑

j=0

Aγ
ij ∂γWj = O(∆tσ) , 0 ≤ i ≤ N − 1 ,

and an expansion of nonconserved momenta as

(30) mk =
∑

0≤|γ|≤σ

∆t|γ|
N−1∑

j=0

Bγ
kj ∂γWj + O(∆tσ+1) , k ≥ N ,

with the following recurrence relations for the coefficients Aγ
ij and Bγ

kj:

(31) C1,γ
ij = Aγ

ij , 0 ≤ i, j ≤ N − 1 ,

(32)





Cq+1,γ
ij = −

∑

δ≥q, ε≥1, δ+ε=γ

J∑

ℓ=0

Cq,δ
iℓ Aε

ℓj ,

2 ≤ q + 1 ≤ |γ | , 0 ≤ i, j ≤ N − 1 ,

(33)





Aγ
ij = −

|γ|∑

q=2

1

q!
Cq,γ

ij

−
∑

1≤|δ|≤|γ|, 0≤|ε|≤|γ|−1, δ+ε=γ

J∑

ℓ=0

J∑

p=0

J∑

r=0

1

| δ | ! Miℓ M−1
ℓp Ψpr Pℓδ Bε

rj ,

(34) D0,γ
kj = Bγ

kj , k ≥ N , 0 ≤ j ≤ N − 1 ,

(35)





Dq+1,γ
kj = −

∑

|δ|≥q, |ε|≥1, δ+ε=γ

J∑

ℓ=0

Dq,δ
kℓ Aε

ℓj ,

1 ≤ q + 1 ≤|γ | , k ≥ N , 0 ≤ j ≤ N − 1 ,

(36)





Bγ
kj =

1

sk

(
−

∑

1≤q≤|γ|

1

q !
Dq,γ

kj

+
∑

1≤|δ|≤|γ|, 0≤|ε|≤|γ|−1, δ+ε=γ

J∑

ℓ=0

J∑

p=0

J∑

r=0

1

|δ |! Mkℓ M−1
ℓp Ψpr Pℓδ Bε

rj

)
,

k ≥ N , 0 ≤ j ≤ N − 1 .
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• Note that the results (33) and (36) are coupled through the relations (31) (32) (34)

and (35). For example, the evaluation of coefficient Dq+1,γ
kj uses explicitly Aε

ℓj , the evalu-

ation of Aγ
ij uses Bε

rj and the computation of Bγ
rj is impossible if Dq,γ

kj is not known. The

proof is detailed in Annex 1. It is an elementary and relatively long algebraic calculus. In

particular our mathematical framework is classical: all derivative operators commute and

the technical difficulties of noncommutative time-derivative operators associated with the

use of formal Chapman-Enskog method [12] vanish. As a result, the general expansion

of a linearized DDH scheme at an arbitrary order can be obtained by explicitation of the

coefficients Aγ
ij and Bγ

kj. Remark that the hypothesis of linearity allows the explicitation

of the above formulae and we have done this work with the help of formal calculus. Nev-

ertheless, it is always possible to suppose that the Gk functions are linearised expansions

of a nonlinear equilibrium. In this case, the previous equivalent high order equivalent

partial equivalent equations (29) give a very good information concerning the behavior of

the DDH scheme.

3 Equivalent Thermics and Fluid equations

• We explicit in this section the fourth order equivalent equation of some DDH lattice

Boltzmann schemes for two fundamental problems of mathematical physics: thermics

and linearized athermal Navier Stokes equations. We treat first advective thermics in one

space dimension with the so-called D1Q3 lattice Boltzmann scheme. In order to obtain

presentable results on a sheet of paper, we simplify the model and omit the advective

term for two (D2Q5) and three (D3Q7) space dimensions. Secondly we study linearized

athermal Navier Stokes equations in one (D1Q3), two (D2Q9) and three (D3Q19) space

dimensions. Note that we have to define precisely our results. First the numbering of

degrees of freedom via corresponding graphics is specified in Annex 2 (Section 7). The

choice of momenta, id est the M matrix, is also precised in Annex 2. Secondly the Ψ

matrix of relation (19) is specified later in this section.

• D1Q3 for advective thermics at fourth order

For thermics problem, we have only one conserved quantity. Then N = 1 in relation (5).

The two nonconserved momenta (momentum qeq and energy ǫeq, see (78)) at equilibrium

are supposed to be linear functions of the conserved momentum ρ:

(37) qeq = u λ ρ , ǫeq = α
λ2

2
ρ .

Due to (21) and (37), the matrix Ψ for dynamics relation (19) is given according to

Ψ =




1 0 0

s1 u λ 1 − s1 0

α s2 λ2/2 0 1 − s2


 .
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We determine without difficulty the equivalent partial differential equation for this lattice

Boltzmann scheme at order four, to fix the ideas. For i = 1, 2, we introduce σi from

relaxation time si according to relation (16). When a drift on velocity u is present, note

that the diffusion coefficient is a function of mean value velocity. We have

(38)
∂ρ

∂t
+ u λ

∂ρ

∂x
− σ1 ∆t λ2 (α−u2)

∂2ρ

∂x2
+ κ3

∆t2 λ3

12

∂3ρ

∂x3
+ κ4

∆t3 λ4

12

∂4ρ

∂x4
= O(∆t4)

with parameters κ3 and κ4 given according to

κ3 = −u
(
2
(
1 − 12 σ2

1

)
u2 + 1 − 3 α − 12 σ1 σ2 (1 − α) + 24 σ2

1 α
)

κ4 =
(
− 9 + 60 σ2

1

)
σ1 u4 +

(
− 5 (1 − 3 α) σ1 − 3 (1 − α) σ2 +

+ 12 (1− α) σ1 σ2
2 + 36 (1 − α) σ2

1 σ2 − 72 σ3
1 α

)
u2

+ α σ1

(
2 − 3 α − 12 (1 − α) σ1 σ2 + 12 ασ2

1

)
.

If u = 0, then κ3 = 0 and the DDH scheme is third order accurate. In this particular

case, the scheme is fourth order accurate if we set

σ2 =
2 − 3α + 12 ασ2

1

12 σ1 (1 − α)
.

• D2Q5 for pure thermics at fourth order

We have J = 4 and N = 1. The equilibrium energy (momentum m3 in (79) with the

labelling conventions of Section 1) is the only one to be non equal to zero. The matrix Ψ

of relation (19) is now given by the relation

(39) Ψ =




1 0 0 0 0

0 1 − s1 0 0 0

0 0 1 − s1 0 0

α s3 0 0 1 − s3 0

0 0 0 0 1 − s4




.

We have developed the conservation law up to fourth order:

(40)





∂ρ

∂t
− λ2 ∆t

10
σ1 (4 + α)

(
∂2ρ

∂x2
+

∂2ρ

∂y2

)

+
∆t3 λ4

1200
σ1 (4 + α)

(
κ40

(∂4ρ

∂x4

∂4ρ

∂y4

)
+ κ22

∂4ρ

∂x2∂y2

)
= O(∆t4)

and the κ coefficients are explicited as follows:

κ40 = 8 − 3 α + 12 (α + 4) σ2
1 − 12 (1 − α) σ1 σ3 − 60 σ1 σ4(41)

κ22 = −6 (α + 4) + 24 (α + 4) σ2
1 − 24 (1 − α) σ1 σ3 + 120 σ1 σ4 .(42)
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• D2Q9 for advective thermics at fourth order

The lattice Boltzmann model D2Q9 is obtained from the D2Q5 model by adding four

velocities along the diagonals (Figure 21, right). The evaluation of matrix M is absolutely

nontrivial and is precised at (80). Dynamics is given by

(43) Ψ =




1 0 0 0 0 0 0 0 0

u λ s1 1−s1 0 0 0 0 0 0 0

v λ s1 0 1−s1 0 0 0 0 0 0

a3 s3 0 0 1−s3 0 0 0 0 0

a4 s4 0 0 0 1−s4 0 0 0 0

a5 u s5 0 0 0 0 1−s5 0 0 0

a6 v s5 0 0 0 0 0 1−s5 0 0

a7 s7 0 0 0 0 0 0 1−s7 0

a8 s8 0 0 0 0 0 0 0 1−s8




.

The coefficients a3 to a8 in relation (43) are chosen in order to obtain the advection

diffusion equation at order 2:

(44)
∂ρ

∂t
+ λ

(
u

∂ρ

∂x
+ v

∂ρ

∂y

)
− λ2 ξ σ1 ∆t

(
∂2ρ

∂x2
+

∂2ρ

∂y2

)
= O(∆t)2 .

We have precisely:

a3 = 3 (u2 + v2) − 4 + 6 ξ , a7 = u2 − v2 , a8 = u v

as explained in [16]. When u = v = 0, the equation (44) takes the form

∂ρ

∂t
− λ2 ξ σ1 ∆t

(
∂2ρ

∂x2
+

∂2ρ

∂y2

)
+

λ4 ∆t3 ξ

36

(
κ40

(
∂4ρ

∂x4
+

∂4ρ

∂y4

)
+ κ22

∂4ρ

∂x2 ∂y2

)
= O(∆t4)

with coefficients κ40 and κ22 evaluated according to

κ40 = σ1

(
2 σ5 (σ7 − σ3) (a4 − 4) + 6 ξ

(
1 − σ1 σ7 − 5 σ1 σ3 + 2 σ5 (σ7 − σ3)

))

κ22 = 2
(
σ1 + σ5 − 2 σ1 σ5 (σ3 + σ7 + 4 σ8)

)
(a4 − 4)

+12 ξ
(
σ5 + 3 σ1 − 2 σ1 σ5 (σ3 + σ7) − 2 σ1 σ3 σ5 − 8 σ1 σ8 (σ1 + σ5) + σ2

1 σ7

)
.

Remark that the equivalent partial differential equation of this general DDH scheme has

been exactly derived in a complex case where all the time relaxations are a priori distinct.

The coefficients κ40 and κ22 of the fourth order terms are polynomials of degree 3 in the

σ’s coefficients. When we make the “BGK hypothesis” id est that all the coefficients σ’s

are equal, a first possibility to kill the coefficients κ40 and κ22 is given by:

σ1 = σ1 = σ3 = σ4 = σ5 = σ7 = σ8 =
1

6
, ξ = 0 .
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We observe that this choice of parameters is without any practical interest because the

diffusion term in (44) is null. We observe that a second possibility

ξ =
2

3

1 − 6 σ2
1

1 − 8 σ2
1

, a4 = −2
1 − 2 σ2

1

1 − 8 σ2
1

induces also a fourth order accurate lattice Boltzmann scheme. If we replace the strong

“BGK hypothesis” by the weaker one associated to “Two Relaxation Times” as suggested

by Ginzburg, Verhaeghe and d’Humières in [22, 23], id est

σ1 = σ5 , σ3 = σ4 = σ7 = σ8 ,

we can achieve fourth order accuracy for

σ1 =
1√
12

and σ3 =
1√
3

.

• D3Q7 for pure thermics

For three-dimensional thermics, one only needs a seven point scheme and use the so-called

D3Q7 lattice Boltzmann scheme whose stencil is described in Figure 22. The matrix M

is given at relation (81). The dynamics of DDH Boltzmann scheme uses the following

matrix for computation of out of equilibrium momenta, according to relation (19):

Ψ =




1 0 0 0 0 0 0

0 1 − s1 0 0 0 0 0

0 0 1 − s1 0 0 0 0

0 0 0 1 − s1 0 0 0

0 0 0 0 1 − s4 0 0

0 0 0 0 0 1 − s4 0

α s6 0 0 0 0 0 1 − s6




.

Thermal scalar conservation law takes now the following form at fourth order of accuracy:

∂ρ

∂t
− λ2 ∆t

21
σ1 (α + 6) ∆ρ +

∆t3 λ4

1764
σ1 (α + 6)

(
κ400

(∂4ρ

∂x4
+

∂4ρ

∂y4
+

∂4ρ

∂z4

)

+ κ220

( ∂4ρ

∂x2∂y2
+

∂4ρ

∂y2∂z2
+

∂4ρ

∂z2∂x2

))
= O(∆t4)

where the κ coefficients are given by

κ400 = 8 − α + 4 σ2
1 (α + 6) − 56 σ1 σ4 − 4 (1 − α) σ1 σ6(45)

κ220 = − 2 (α + 6) + 8 σ2
1 (α + 6) + 56 σ1 σ4 − 8 (1 − α) σ1 σ6 .(46)
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• After these examples where only one partial differential equation is present, we con-

sider the case of two (D1Q3), three (D2Q9) or four (D3Q19) partial differential equations

“emerge” from the lattice Boltzmann algorithm. These equations model macroscopic con-

servation of mass and momentum of a linearized fluid in our approach in this contribution.

• D1Q3 for athermal linearized Navier–Stokes at fifth order

We have in this case two conservation laws (N = 2 in relation (5)) and the equilibrium

energy is supposed to be given simply by

(47) ǫeq = α
λ2

2
ρ .

Due to (21) and (47), the matrix Ψ for dynamics relation (19) is now given according to

Ψ =




1 0 0

0 1 0

α s λ2/2 0 1 − s


 ,

and σ is related to parameter s according to (16): σ ≡ 1
s
− 1

2
. Then equivalent mass

conservation at the order 5 looks like equation (38). We have precisely:

(48)





∂ρ

∂t
+

∂q

∂x
− λ2 ∆t2

12
(1 − α)

∂3q

∂x3
− λ4 ∆t3

12
α (1 − α) σ

∂4ρ

∂x4

+
λ4 ∆t4

120
(1 − α)

(
1 + α + 10 (1 − 2 α) σ2

) ∂5q

∂x5
= O(∆t5) .

Conservation of momentum takes the form:

(49)





∂q

∂t
+ α λ2 ∂ρ

∂x
− λ2 ∆t (1 − α) σ

∂2q

∂x2
+ ζ3

λ4 ∆t2

6

∂3ρ

∂x3

+ ζ4
λ4 ∆t3

12

∂4q

∂x4
+ ζ5

λ6 ∆t4

120

∂5ρ

∂x5
= O(∆t5)

with parameters ζ3 to ζ5 given by

ζ3 = α (1 − α) (1 − 6 σ2)

ζ4 = − (1 − α) σ
(
1 − 4α − 12 (1 − 2 α) σ2

)

ζ5 = α (1 − α)
(
1 − 4 α − 10 (5 − 9 α) σ2 + 120 (2− 3 α) σ4

)
.

When σ = 1√
6
, the coefficient ζ3 of relation (49) is null. In this case, the lattice Boltzmann

scheme is formally third order accurate for the momentum equation. But, as remarked in

[16], the mass conservation (48) remains formally second order accurate, except for the

(without any practical interest as it leads to a null viscosity) case α = 1.
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• D2Q9 for linearized athermal Navier–Stokes at order four

The D2Q9 lattice Boltzmann scheme can be used also for simulation of fluid dynamics.

For the particular case of conservation of mass and momentum, we just replace matrix

Ψ of (43) by the following one, assuming the aim is to simulate an athermal fluid with

speed of sound
√

1/3:

Ψ =




1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

−2 s3 0 0 1−s3 0 0 0 0 0

s4 0 0 0 1−s4 0 0 0 0

0 −s5/λ 0 0 0 1−s5 0 0 0

0 0 −s5/λ 0 0 0 1−s5 0 0

0 0 0 0 0 0 0 1−s7 0

0 0 0 0 0 0 0 0 1−s7




.

We have conservation of mass at fourth order of accuracy:

(50)
∂ρ

∂t
+

∂qx

∂x
+

∂qy

∂y
− 1

18
λ2 ∆t2 ∆

(∂qx

∂x
+

∂qy

∂y

)
+

λ4 ∆t3

108
(σ3 + σ7) ∆2ρ = O(∆t4)

and conservation of two components of momentum:

(51)





∂qx

∂t
+

λ2

3

∂ρ

∂x
− λ2

3
∆t

[
σ3

∂

∂x

(∂qx

∂x
+

∂qy

∂y

)
+ σ7 ∆qx

]

−λ4 ∆t2

27

(
3 (σ2

3 + σ2
7) − 1

) ∂

∂x
∆ρ − λ4 ∆t3

108

(
ζ40

∂4qx

∂x4
+ ζ31

∂4qy

∂x3 ∂y

+ζ22
∂4qx

∂x2 ∂y2
+ ζ13

∂4qy

∂x ∂y3
+ ζ04

∂4qx

∂y4

)
= O(∆t4)

(52)





∂qy

∂t
+

λ2

3

∂ρ

∂y
− λ2

3
∆t

[
σ3

∂

∂y

(∂qx

∂x
+

∂qy

∂y

)
+ σ7 ∆qy

]

−λ4 ∆t2

27

(
3 (σ2

3 + σ2
7) − 1

) ∂

∂y
∆ρ − λ4 ∆t3

108

(
η40

∂4qy

∂x4
+ η31

∂4qx

∂x3 ∂y

+η22
∂4qy

∂x2 ∂y2
+ η13

∂4qx

∂x ∂y3
+ η04

∂4qy

∂y4

)
= O(∆t4)
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where the coefficients ζ are given by

(53)





ζ40 = η04 = −σ3 − σ7 − 12 σ2
3 σ7 − 12 σ3 σ2

7 + 18 σ2
3 σ5

+ 6 σ5σ
2
7 − 12 σ3 σ4 σ5 − 24 σ3 σ5 σ7 + 12 σ4 σ5 σ7

ζ31 = η13 = − 4 σ3 − 7 σ7 + 18 σ2
3 σ5 + 18 σ5 σ2

7 − 12 σ2
3 σ7

− 12 σ3 σ2
7 − 12 σ3 σ4 σ5 + 12 σ3 σ5 σ7 + 12 σ4 σ5 σ7 + 12 σ3

7

ζ22 = η22 = − 13 σ3 + 6 σ4 − 10 σ7 + 18 σ2
3 σ5 − 12 σ2

3 σ7 − 12 σ3 σ2
7

+ 30 σ5 σ2
7 − 12 σ3 σ4 σ5 + 120 σ3 σ5 σ7 − 60 σ4 σ5 σ7 − 12 σ3

7

ζ13 = η31 = − 10 σ3 + 6 σ4 − 7 σ7 + 18 σ2
3 σ5 − 12 σ2

3 σ7 − 12 σ3 σ2
7

+ 18 σ5 σ2
7 + 12 σ3 σ4 σ5 + 84 σ3 σ5 σ7 − 60 σ4 σ5 σ7 + 12 σ3

7

ζ04 = η40 = −3 σ7 + 24 σ5 σ2
7 − 12 σ3

7 .

• D3Q19 for linearized Navier–Stokes

The D3Q19 Lattice Boltzmann scheme is described with details e.g. in J. Tölke et al [46].

The construction of matrix M that parametrizes the transformation (4) is presented with

all details with relations (82) to (87) in Annex 2. The associated matrix Ψ is also of

order 19 and therefore quite difficult to write on a A4 paper sheet. Due to constitutive

relations (19) and (20), it is easily obtained from the expression of equilibrium momenta.

We have taken for this D3Q19 scheme

(54)





meq
4 = θ λ2

meq
5 = meq

6 = meq
7 = meq

8 = meq
9 = 0

meq
10 = meq

11 = meq
12 = 0

meq
13 = βλ4

meq
14 = meq

15 = 0

meq
16 = meq

17 = meq
18 = 0 .

In order to obtain physical equations at first order of accuracy with a sound velocity c0

given by c0 = α λ the relation θ = 57 α2 − 30 must be imposed to obtain correct fluid

second order partial differential equations and the parameter β remains free.

• When the number of velocities of the Boltzmann scheme is reduced (up to D2Q9

scheme typically), it is possible to expand the dispersion equation formally and to derive

equivalent partial differential equations up to an arbitrary order. We have done the com-

parison for one dimensional and bi-dimensional schemes. The process has been extended

to models with more velocities and various conserved quantities, however the equations

become very complicated and thus will not be reproduced here. Let us just mention that

the expressions found are quite similar to those obtained for the previous test cases.
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4 Fourth order accuracy DDH scheme

• In this section, we precise how to choose particular “quartic” values of relaxation

parameters in order to increase the accuracy of the DDH scheme. We verify with the

help of precise numerical experiments for analytical test cases that the numerical preci-

sion follows our prediction. We focus first on classical thermics at two and three space

dimensions. Then we propose two numerical experiments for athermal linearized Navier

Stokes equations at two and three space dimensions for a nontrivial geometry.

• D2Q5 lattice Boltzmann scheme for thermal problem

We obtain the order 4 by setting κ40 = 0 and κ22 = 0 in relations (41) and (42)

respectively. We obtain :

(55) σ3 = σ1
α + 4

1 − α
− 1

12 σ1

2 + 3 α

1 − α
, σ4 =

1

6 σ1
.

The BGK condition σ1 = σ3 = σ4 leads to σ1 = 1√
12

and α = −4 and thus to a thermal

diffusivity equal to 0. Note that the intermediate TRT presented in Ginzburg et al [22, 23]

supposes simply σ3 = σ4. If we insert this constraint inside relations (55), we get

σ1 =
1√
12

, σ3 =
1√
3

to enforce fourth order accuracy. Then the DDH version of lattice Boltzmann scheme is

mandatory for this improvement of the method with a wide family of admissible parame-

ters. In order to study the fourth order accuracy of the D2Q5 lattice Boltzmann scheme

for thermal problem, we use three different approaches. The first two consider the interior

scheme and the third one incorporates boundary conditions.

• First of all, we study homogeneous plane waves with a “one point computation”. In

that case, we can derive numerically a dispersion equation for scheme (15) associated with

(4), (19), (79) and (39), as proposed in Lallemand-Luo [30]. Introduce a wave in the DDH

scheme, id est f(x, t) ≡ f̂(kx, ky) exp
(
i kx x + i ky y

)
. Then we have f(x, t + ∆t) =

G f(x, t) with the so-called amplification matrix G (see e.g. Richtmyer and Morton

[40]) obtained without difficulty from matrices M , Ψ and B defined respectively in (79)

(39) and

B = diag
(
1, ei kx ∆x, ei ky ∆x, e−i kx ∆x, e−i ky ∆x

)

for the D2Q5 scheme displayed in Figure 21 (left). Then G = B M−1 Ψ M . Then if
∂
∂t

is formally given by relation (40) and operators ∂
∂x

and ∂
∂y

replaced by i kx and

i ky respectively, the number z = exp
(
∆t ∂

∂t

)
is an eigenvalue of matrix G at fourth

order of accuracy. The numerical experiment (see Figure 1) confirms the theoretical
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development of the dispersion equation. Note that for situations relaxing to uniform

state, the eigenvalues that we determine below are negative, however we shall express

results in terms of positive relaxation rates with adequate sign changes.

• For inhomogeneous situations, with NL lattice points (and NL (J + 1) degrees of

freedom), one can study the time evolution starting from some initial state. An other

approach for linear situations considers that the state X(t) that belongs to R
NL (J+1)

can be decomposed as a sum of eigenmodes of the operator A defined by the discrete

evolution scheme:

(56) X(t + ∆t) ≡ A • X(t) .

The matrix A being of very large size, one can look for part of its eigenmodes using

for instance the method proposed by Arnoldi [2]. To accelerate the Arnoldi computa-

tions, following a suggestion by L. Tuckerman [47], we replace the determination of the

eigenvalues of equation (56) by the determination of the eigenvalues of

(57) X(t + (2ℓ + 1) ∆t) ≡ A2ℓ+1 • X(t) ,

for some ℓ ∈ N, using the fact that the lattice Boltzmann scheme is very fast compared to

the inner “working” of the Arnoldi procedure. Replacing problem (56) by problem (57)

not only increases the splitting between various eigenmodes it also helps to discriminate

against the acoustic modes by multiplying the logarithm of the imaginary part of the

eigenvalues by 2ℓ + 1. Note that choosing an even number of time steps would bring in

the “checker-board” type modes.

• We first test this method for “internal” DDH lattice, id est with a periodic NL ≡
Nx×Ny situation and find the same results as those derived from the “one-point” analysis

(see Figure 1) with very good accuracy. For this periodic situation, the eigenmodes are

plane waves for the wave vector kx = 2π Ix

Nx
, ky = 2π Iy

Ny
, where Ix and Iy are integers.

We compare the relaxation rates Γ(Ix, Iy, Nx, Ny) to κ(k2
x + k2

y) and show in Figure 2

the relative difference between those two quantities (called “error”) for the particular

values Ix = 5 and Iy = 0 and Nx from 11 to 91. With arbitrarily chosen values of the

“non-hydrodynamic” s-parameters, we observe second order convergence. However for

the quartic s-parameters the convergence is of order four with a large decrease in the

absolute value of the error. Analogous results are displayed in Figure 2 for D3Q7.

• We now consider a second case with boundary conditions: exact solution for the

modes of the Laplace equation in a circle of radius R with homogeneous Dirichlet bound-

ary conditions. Density is defined with (6) applied with J = 4 in this particular case.

Recall that density follows heat equation ∂ρ
∂t

− κ ∆ρ = 0 with κ = λ2 ∆t
10

σ1 (4 + α) and
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Figure 1: Precision of D2Q5 scheme for thermic test case, “one point” simulation. Dif-

ferent curves correspond to different orientation of the wave-vector with respect to the

axis, showing the angular dependence of the next order.
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lattice Boltzmann schemes D2Q5 and D3Q7.
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Figure 3: D2Q5 scheme for thermics inside a circle. Eigenmode n = 4, ℓ = 0 for

heat equation with Dirichlet boundary conditions. Second order accuracy with usual

parameters for lattice Boltzmann scheme.

homogeneous boundary conditions at r = R. The solution of this problem is standard

(see e.g. Landau and Lifchitz [32] or Abramowitz and Stegun [1]) and is parametrized

by a pair (ℓ, n) of integers. Introduce ζn
ℓ the nth zero of the Bessel function Jℓ. Then

a solution with time dependency as exp(−Γt) defines a corresponding eigenvalue Γ that

satisfies

(58) Γ = κ
(ζn

ℓ

R

)2

.

• The effect of fourth order accuracy Boltzmann scheme in computing the eigenfunc-

tion is spectacular: just compare Figures 3 and 4. Nevertheless, the effect of boundary

conditions (we use anti bounce-back with interpolation à la Bouzidi et al [5]) cannot be

neglected. In Figure 5, we have compared the error defined by | Γnum

Γth

−1 | for two internal

schemes (with usual and quartic parameters) and two versions (first and second order) of

simple numerical boundary conditions introduced by Bouzidi et al [5]. We still observe a

better numerical precision of the schemes (by two orders of magnitude typically) whereas

the convergence still remains second order accurate. We conclude that the effect of bound-

ary conditions is crucial for the determination of the order of convergence. Nevertheless,

the choice of quartic parameters gives a higher precision for the lattice Boltzmann scheme.
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Figure 4: D2Q5 scheme for thermics inside a circle. Eigenmode n = 4, ℓ = 0. Quartic

parameters for lattice Boltzmann scheme.

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 100

 
e
r
r
o
r
 

 number of points along radius 

 usual bc order 2
 quartic bc order 2
 usual bc order 1

 quartic bc order 1

Figure 5: D2Q5 scheme for thermics in a circle. Eigenmode n = 1, ℓ = 5. Errors for

various parameters for lattice Boltzmann and boundary schemes.

• D3Q7 lattice Boltzmann scheme for thermal problem

We obtain the order 4 by setting κ400 = 0 and κ220 = 0 in relations (45) and (46). We
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obtain :

σ4 =
1

6 σ1
, σ6 =

α + 6

1 − α
σ1 − 4 + 3 α

12 (1 − α)

1

σ1
.

As for D2Q5, the “BGK condition” σ1 = σ4 = σ6 leads to σ6 = 1√
6

and α = −6 and thus

to thermal diffusivity equal to 0. Theoretical modes of the Laplace equation in a sphere

of radius R with homogeneous Dirichlet boundary conditions are parametrized through

the nth zero ηn
ℓ+1/2 of semi-integer Bessel function Jℓ+1/2 and the eigenvalue Γ is given

by:

(59) Γ = κ
(ηn

ℓ+1/2

R

)2

, ℓ ∈ N , n ≥ 1 .

• Results of Figures 6 and 7 have been obtained with R = 17.2 and n = 5. The

theoretical value of the eigenvalue is Γ = 52 π2 κ/R2 (as for m = 0, the zeros of the

semi-integer Bessel function are simply π n). We have used parameters s1 = 1.26795,

s4 = 1.2, s6 = 1.3 for the usual computations. The quartic parameters have been chosen

as

s1 = 1.26795 , s4 = s6 = 0.92820 .

From results presented in Figure 8, the conclusion is essentially the same as that observed

for two-dimensional thermics: the results are improved by two orders of magnitude typi-

cally, but the rate of convergence cannot be rigorously measured or still remains of second

order.

• We also made a parameter study of the location of the boundary condition. We plot

in Figure 9 the ratio Γ R2/(κ π2) with Γ given at relation (59). We use Bouzidi et al

[5] boundary procedure with linear interpolation. The fluctuation due to the boundary

algorithm is around 0.2 %. The gap between second order usual computation and new

fourth order computation is of the order of 2%. We observe that this gap is one order of

magnitude larger than the error due to the choice of the boundary condition estimated

from the fluctuations with the imposed radius.

• D2Q9 for linearized athermal Navier–Stokes at fourth order

We consider now the linear fluid model obtained by a D2Q9 lattice Boltzmann scheme.

The equivalent partial differential equations are given at the order 4 by relations (51) to

(53). The dream would be to enforce high order accuracy. However, this is definitively

impossible in the framework considered here due to the never null third order term for

mass conservation (50). Recall notation (5) for conservative variables: W ≡ (ρ, qx, qy)
t

and write the equivalent equations (51)-(53) under the synthetic form:

(60) ∂tWk +
∑

j, p, q

Aj
kpq ∂p

x∂
q
yWj = O(∆t4) .
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Figure 6: D3Q7 lattice Boltzmann scheme for thermics in a sphere. Eigenmode n = 5,

ℓ = 1, m = 0 with usual parameters.
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Figure 8: D3Q7 scheme for thermics in a sphere with Dirichlet boundary conditions.

Eigenmode n = 1, ℓ = 0. Errors for various parameters for lattice Boltzmann and

boundary schemes.
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Figure 9: D3Q7 for thermics in a sphere. Eigenmode (in units κπ2/R2) for n = 5 and

ℓ = 0. Variation of the location of the boundary between R = 17 and R = 18.
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We search a dissipative mode, id est a mode for linear incompressible Stokes problem

under the form W (t) = e−Γt + i(kx x+ky y) W̃ . Then Γ is an eigenvalue of the matrix A

defined by

Aj
k =

∑

j, p, q

Aj
kpq (i kx)

p (i ky)
q

We know (see e.g. Landau and Lifchitz [32]) that for Stokes problem (incompressible

shear modes), the relation

(61) Γ = ν
(
k2

x + k2
y

)

is classical. Moreover, as a consequence of (51) and (52)

(62) ν =
λ2

3
∆t σ7

for a DDH Lattice Boltzmann scheme.

• We propose here to tune the DDH parameters sℓ in such a way that the relation (61)

is enforced for the modes of (60). Precisely, we search sℓ such that

(63) ∆m ≡ det

[
A −

(λ2

3
∆t σ7

) (
k2

x + k2
y

)
Id

]
= O(∆t7) .

With an elementary formal computation, the third order term ∆3
m of ∆m relative to ∆t

is equal to

(64)





∆3
m = −∆t3 λ6

108
σ7

(
k2

x + k2
y

) (
(−1 − 4 σ2

7 − 8 σ5 σ7)
(
k4

x + k4
y

)

+ 2 (1 − 4 σ2
7 − 4 σ5 σ7) k2

x k2
y

)
.

It is then clear that the expression (64) is identically null for parameters σ5 and σ7

chosen according to

(65) σ5 =

√
3

3
, σ7 =

√
3

6
.

With this particular choice of parameters, so-called quartic in what follows, the viscosity

ν in relation (62) has the following particular value:

(66) ν =
λ2 ∆t√

108
≈ 0.096225 λ2 ∆t .

Then it is very simple to verify that the determinant ∆m is null up to terms of order

seven and relation (63) is satisfied.
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Figure 10: D2Q9 “one point” test case of shear waves for different angles of the wave

vector.

Figure 11: D2Q9 scheme for linear Navier–Stokes. Eigenmode n = 5 ℓ = 1 for the Stokes

problem in a circle.
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• As in the particular case of D2Q5 scheme, we have verified with periodic boundary

conditions that the relaxation rate of a transverse wave is determined with error of order

six and relative fourth order precision, as shown in Figure 10. The detailed numerical

convergence plot is very similar to Figure 2.

• We have also validated our results for eigenmodes of the Stokes problem inside a

circle. With the notations introduced previously, the eigenvalues Γ are given [32] by

(67) Γ = ν
(ζn

ℓ

R

)2

The result for R = 30.07, ℓ = 1 and n = 5 is presented in Figure 11 for the velocity field

with a mesh included in a square of size 61 × 61. The alternance of directions for vector

field is clearly visible on Figure 11 and we use around seven meshpoints between two zeros

of the Bessel function. We have compared with the same mesh the results obtained with

DDH lattice Boltzmann scheme with usual parameters that does not satisfy relation (65)

but such that ν = λ2 ∆t
10

which is very close to (66) and quartic parameters. The radial

profile of the tangential velocity is shown in Figures 12 to 14. The difference is visually

spectacular. As for the thermics case, we observe that simple boundary conditions, here

we use Bouzidi et al. [5], prevent fourth order convergence for the Stokes problem. Use

of more sophisticated boundary conditions (see Ginzburg and d’Humières [21]) may help

to improve the convergence, however for models with limited number of velocities, it is

not clear whether the choice of s-parameters will be the same for “fourth-order volume”

and “accurate Poiseuille type boundary conditions”.

• D3Q19 for linearized athermal Navier–Stokes at fourth order

The D3Q19 model is analyzed as done above for the D2Q9 model. We detail in Annex 3

the way to enforce the precision of eigenmodes for the Stokes problem. We obtain a set of

eight equations for the coefficients σ’s. These equations have only one nontrivial family

of solutions given according to

(68)





energy σ4 = 1
s4
− 1

2
s4 = ad libitum

stress tensor σ5 = 1/
√

12 s5 = 3 −
√

3

energy flux σ10 = 1/
√

3 s10 = 4
√

3 − 6

square of energy σ13 = 1
s13

− 1
2

s13 = ad libitum

other momenta of kinetic energy σ14 = 1/
√

12 s14 = 3 −
√

3

third order antisymmetric σ16 = 1/
√

3 s16 = 4
√

3 − 6 .

Note these results are incompatible with BGK hypothesis (all σ equal) but are compatible

with the “two relaxation times” hypothesis which enforces equality of even moments

σ4 = σ5 = σ13 = σ14 and of odd moments: σ10 = σ16. We remark that the relaxation rate

for energy (linked to the bulk viscosity) is not constrained. Note that the shear viscosity
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Figure 12: D2Q9 scheme for linear Navier–Stokes in a circle. Eigenmode n = 5, ℓ = 1

for the Stokes problem. Usual parameters.
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Figure 13: D2Q9 scheme for linear Navier–Stokes in a circle. Eigenmode n = 5, ℓ = 1

for the Stokes problem. Quartic parameters.
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Figure 14: D2Q9 scheme for linear Navier–Stokes in a circle. Eigenmode n = 5, ℓ = 1

for the Stokes problem. Zoom of the figures 12 and 13.

ν takes the value 1/
√

108 as in (66). As for D2Q9 there is no decoupling at order 3

of shear and acoustic modes, and thus, at least at the present stage we make no claim

concerning possible improvements for the acoustic modes. We will study this question in

a forthcoming contribution.

• We have performed the same kind of numerical analysis as for the two-dimensional

D2Q9 case and find quite similar results. We illustrate our results first with a “one

point experiment”. We introduce numerical wave vectors k close to zero and compute

numerically the eigenmodes. The shear mode is close to λ2

3
σ5 | k |2 and we plot in

Figure 15 the experimental error. With ordinary coefficients, the error is of order 4

whereas with the so-called “quartic coefficients”, the error is of order 6 and the relative

error of order 4.

• We also illustrate our results for the problem of Stokes modes in a sphere which has

an analytical solution in terms of Bessel functions. The Stokes problem searches a velocity

field u(r, t), with u = 0 on the surface of a sphere of radius R. An analysis, similar to

that for the Stokes problem in a circle, leads to an eigenvalue problem, with solutions

Γ = ν

(
ζn
ℓ+1/2

R

)2

, ℓ ≥ 1 ,

analogous to (59), with ζn
ℓ+1/2 equal to the nth zero of the “semi-integer” Bessel function
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Figure 15: D3Q19 for “one point” experiment and various directions of the wave vector.

Figure 16: D3Q19 for linear Navier–Stokes in a sphere. Eigenmode n = 3, ℓ = 1 for

Stokes problem with Dirichlet boundary conditions. Tangential velocity vector field for a

plane through the center of the sphere.
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Figure 17: D3Q19 for linear Navier–Stokes in a sphere. Eigenmode n = 3, ℓ = 1 for Stokes

problem with Dirichlet boundary conditions. Tangent vector field for a plane orthogonal

to vector (1, 1, 1).
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Figure 18: D3Q19 for linear Navier–Stokes in a sphere. First eigenmodes for stationary

Stokes problem with Dirichlet boundary conditions.



32 François Dubois and Pierre Lallemand

 118.5

 119

 119.5

 120

 120.5

 19  19.2  19.4  19.6  19.8  20

 
e
i
g
e
n
v
a
l
u
e
 
*
 
r
a
d
i
u
s
^
2
 
/
 
v
i
s
c
o
s
i
t
y

 radius  of the sphere 

 usual linear
 usual quadra

 quartic linear
 quartic quadra

 exact value

Figure 19: D3Q19 for linear Navier–Stokes in a sphere. Eigenmode for stationary Stokes

problem. Zoom of various schemes for Dirichlet eigenmode close to 118.8998692.

Jℓ+1/2 as defined in Abramowitz and Stegun [1]. Using the Arnoldi technique, we can

determine a few eigenvalues and verify that they are close to the theoretical formula. We

find that these eigenvalues have the expected degeneracy 2ℓ + 1. Note however that the

computations being made for a rather small radius R, there are small splittings of the

degenerate eigenvalues due to the fact that lattice Boltzmann computations have cubic

symmetry.

• For a more detailed analysis, we take advantage of the symmetry of the Stokes prob-

lem and therefore perform computations on 1/8 of sphere taking proper account of the

symmetry with respect to the planes perpendicular to the coordinates x, y, z , through

the center of the cube (symmetry or anti-symmetry). Using 4 different combinations of

symmetries on the planes we can determine all the eigenvalues, the other combinations

leading to the same eigenvalues with only a permutation in the coordinates for the eigen-

modes. Note that due to the rather high complexity of the Arnoldi prodecure, this allows

a two orders of magnitude reduction in computer time.

• We present in Figure 18 the effect of boundary conditions for a number of values of

the radius from 29 to 30. We give in Figure 19 some details for R between 19 and 20 for

the m = 1, n = 6 mode. There are two sets of data, one for usual s-parameters

s4 = 1.3 , s5 = 1.25 , s10 = 1.2 , s13 = 1.4 , s14 = 1.25 , s16 = 1.3
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and one for the quartic s-parameters given preceedingly in (68) with

s4 = 1.3 , s13 = 1.4 .

Similar work has been done for a cube. The results are published in Leriche, Lallemand

and Labrosse in [34].

5 Conclusion

• The expansion of equivalent equations that are satisfied by the mean quantities de-

termined by the lattice Boltzmann method has been described in this contribution and

explicit formulae given for a few models up to order four in space derivatives. Extending

either to more complicated models or to higher order derivatives is very simple and does

not imply new conceptual developments, in particular careful treatment of non commut-

ing terms that appear in the Chapman-Enskog procedure. The developments imply only

simple algebraic manipulations that can be performed by a “formal language” program,

as used here. Note that these developments have a rather high complexity as seen by the

fact that each order takes roughly 10 times as much computer time as the preceeding one.

• Even though very few situations were studied here, it can be said that tuning the

accuracy of the “internal code” independently from the method to take care of boundary

conditions allows to get useful information concerning these two sources of errors in lattice

Boltzmann simulations. Future extension of this work will be to try and discriminate

between some of the numerous proposed ways to deal with boundaries to be able to

estimate their contributions to errors in comparison to those due to the “internal code”.

6 Annex 1: Taylor expansion method

• We start from relation (15) for iteration of the lattice Boltzmann scheme and take

the momentum of order k. Then

mk(x, t + ∆t) =

J∑

ℓ=0

Mkℓ f ∗
ℓ (x − vℓ ∆t, t)

=
J∑

ℓ=0

J∑

p=0

Mkℓ M−1
ℓp m∗

p(x − vℓ ∆t, t) due to (14)

=

J∑

ℓ=0

J∑

p=0

J∑

r=0

Mkℓ M−1
ℓp Ψpr mr(x − vℓ ∆t, t)
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due to (19). We have

(69) mk(x, t + ∆t) =

J∑

ℓ=0

J∑

p=0

J∑

r=0

Mkℓ M−1
ℓp Ψpr mr(x − vℓ ∆t, t) , 0 ≤ k ≤ J .

We expand now momentum mr(x − vℓ ∆t, t) with a Taylor formula of infinite length

(70) mr(x − vℓ ∆t, t) =

+∞∑

q=0

(∆t)q

q !

(
−

d∑

α=1

Mαℓ ∂α

)q

mr(x, t) .

Then due to (69), (70) and (22), we have

(71) mk(x, t + ∆t) =
∑

γ

J∑

ℓ=0

J∑

p=0

J∑

r=0

Mkℓ M−1
ℓp Ψpr

∆t|γ|

|γ |! Pℓγ ∂γmr , 0 ≤ k ≤ J .

We can also expand the left hand side of (71) and we have finally

(72)

∞∑

q=0

∆tq

q!
∂q

t mk =
∑

γ

J∑

ℓ=0

J∑

p=0

J∑

r=0

Mkℓ M−1
ℓp Ψpr

∆t|γ|

|γ |! Pℓγ ∂γmr , 0 ≤ k ≤ J .

• We consider relation (72) at order zero relative to time step for a conserved component

of momentum (id est 0 ≤ k ≡ i ≤ N−1). The left hand side of (72) is equal to mi+O(∆t)

and we have

Wi + O(∆t) =
J∑

ℓ=0

J∑

p=0

J∑

r=0

Miℓ M−1
ℓp Ψpr mr + O(∆t)

=

J∑

p=0

J∑

r=0

δip Ψpr mr + O(∆t)

=
J∑

r=0

Ψir mr + O(∆t) with 0 ≤ i ≤ N

=

J∑

r=0

δir mr + O(∆t) due to (20)

= mi + O(∆t)

and no information is contained at this first step. Consider now the same development
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for k ≥ N . We pass over some repeated summations:

mk + O(∆t) = Mkℓ M−1
ℓp Ψpr mr + O(∆t)

=

N−1∑

j=0

Mkℓ M−1
ℓp Ψpj mj +

∑

r≥N

Mkℓ M−1
ℓp Ψpr mr + O(∆t)

=

N−1∑

j=0

δkp Ψpj Wj +
∑

r≥N

Mkℓ M−1
ℓp δpr (1 − sr) mr + O(∆t)

due to (19) and (20)

=
N−1∑

j=0

Ψkj Wj + Mkℓ M−1
ℓp (1 − sp) mp + O(∆t)

= δkp (1 − sp) mp +
N−1∑

j=0

Ψkj Wj + O(∆t)

= (1 − sk) mk +

N−1∑

j=0

Ψkj Wj + O(∆t) .

We deduce from the previous calculus the relation (23) with the expression (24) of the

coefficients B0
kj . Then we can go now one step further.

• At first order, relation (72) becomes

(73) mk + ∆t
∂mk

∂t
+ O(∆t2) = m∗

k − ∆t

d∑

α=1

Mkℓ M−1
ℓp Ψpr Mαℓ ∂αmr + O(∆t2) .

For conserved variables (5) (id est 0 ≤ k ≡ i ≤ N − 1), we have after dividing by ∆t:

∂Wi

∂t
+ O(∆t) = −

d∑

α=1

Miℓ M−1
ℓp Ψpr Mαℓ ∂αmr + O(∆t)

= −
d∑

α=1

Λp
αi Ψpr ∂αmr + O(∆t) due to (18)

=

d∑

α=1

Λp
αi

( ∑

j<N

Ψpj ∂αWj +
∑

ℓ≥N

Ψpℓ ∂αmℓ

)
+ O(∆t)

=
d∑

α=1

Λp
αi

∑

j<N

(
Ψpj ∂αWj +

∑

ℓ≥N

Ψpℓ ∂α

( 1

sℓ
Ψℓj Wj

))
+ O(∆t)

=

N−1∑

j=0

d∑

α=1

J∑

p=0

Λp
αi

(
Ψpj +

∑

ℓ≥N

Ψpℓ
1

sℓ
Ψℓj

)
∂αWj + O(∆t) .
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For an index γ between 1 and d, we define Aγ
ij according to the relation (26) and the

previous calculus can be written as a conservation law at first order

(74)
∂Wi

∂t
+

∑

|γ|=1

Aγ
ij ∂γWj = O(∆t) , 0 ≤ i ≤ N − 1 .

• We start again from relation (73) with nonconservative indices k (k ≥ N):

mk = −∆t
∂mk

∂t
+ (1−sk) mk +

N−1∑

j=0

Ψkj Wj − ∆t

d∑

α=1

Mkℓ M−1
ℓp Ψpr Mαℓ ∂αmr + O(∆t2) .

Then due to (23),

mk =
1

sk

(
Ψkj Wj − ∆t

1

sk

Ψki
∂Wi

∂t
− ∆t Λp

αk Ψpr ∂α

( 1

sr

Ψrj Wj

))
+ O(∆t2)

=
1

sk

(
Ψkj Wj +

∆t

sk

Ψki

∑

|γ|=1

Aγ
ij ∂γWj − ∆t

sr

Λp
γk Ψpr Ψrj ∂γWj

))
+ O(∆t2) .

We introduce Bγ
kj for | γ |= 1 according to (28) and due to previous calculus, relation

(23) can be extended as

(75) mk =
∑

0≤|γ|≤1

∆t|γ| Bγ
kj ∂γWj + O(∆t2) .

• We generalize the relations (74) and (75) at the order σ through a recurrence hy-

pothesis (29) (30). In order to treat the left hand side of relation (72), we observe that

we have

∂2
t Wi = −

∑

1≤|γ|≤σ

∆t|γ|−1 Aγ
ij ∂γ

(
∂tWj

)
+ O(∆tσ)

=
∑

1≤|δ|≤σ

∆t|δ|−1 Aδ
iℓ ∂δ

( ∑

1≤|ε|≤σ

∆t|ε|−1 Aε
ℓj ∂εWj

)
+ O(∆tσ)

and if we introduce C1,γ
ij according to (31) and

C2,γ
ij ≡ −

∑

|δ|≥1, |ε|≥1, δ+ε=γ

Aδ
iℓ Aε

ℓj , 2 ≤|γ |≤ σ + 1 ,

we have for the second time derivative a relation quite analogous to (29):

∂2
t Wi +

∑

2≤|γ|≤σ+1

∆t|γ|−2 C2,γ
ij ∂γWj = O(∆tσ) , 0 ≤ i ≤ N − 1 .
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This relation can be generalized at an arbitrary order according to

(76) ∂q
t Wi +

∑

q≤|γ|≤σ+q−1

∆t|γ|−q Cq,γ
ij ∂γWj = O(∆tσ) , 0 ≤ i ≤ N − 1 .

If relation (76) is true at order q, we have by derivation according to time,

∂q+1
t Wi = −

∑

q≤|γ|≤σ+q−1

∆t|γ|−q Cq,γ
ij ∂γ

(
∂tWj

)
+ O(∆tσ)

=
∑

q≤|δ|≤σ+q−1

∆t|δ|−q Cq,δ
iℓ ∂δ

( ∑

1≤|ε|≤σ

∆t|ε|−1 Aε
ℓj ∂εWj

)
+ O(∆tσ)

≡
∑

q+1≤|γ|≤σ+q

∆t|γ|−q−1 Cq+1,γ
ij ∂γ

(
∂tWj

)
+ O(∆tσ)

and relation (76) is satisfied at the order q + 1 with Cq+1,γ
ij given by the recurrence

relation (32). In an analogous way, we have

(77) ∂q
t mk =

∑

q≤|γ|≤σ+q

∆t|γ|−q Dq,γ
kj ∂γWj + O(∆tσ+1) , k ≥ N ,

with D0,γ
kj defined according to (34). If the relation (77) is satisfied at order q, we have

by derivation relative to time,

∂q+1
t mk =

∑

q≤|γ|≤σ+q

∆t|γ|−q Dq,γ
kj ∂γ

(
∂tWj

)
+ O(∆tσ+1)

= −
∑

q≤|δ|≤σ+q

∆t|δ|−q Dq,δ
kℓ ∂δ

( ∑

1≤|ε|≤σ

∆t|ε|−1 Aε
ℓj ∂εWj

)
+ O(∆tσ+1)

≡
∑

q+1≤|γ|≤σ+q+1

∆t|γ|−(q+1) Dq+1,γ
kj ∂γWj + O(∆tσ+1)

with coefficients Dq+1,γ
kj determined according to the relation (35). We observe that for

the particular value |γ |= σ + 1 , the coefficient Dq+1,γ
kj is well defined for 0 ≤ q ≤ σ . In

other words, the coefficient Dq,γ
kj is well defined for 1 ≤ q ≤ |γ | .

• We verify now by induction that the recurrence relations (29) and (30) are satisfied.

It is the case at the order 1 as we have shown in (74) and (75). We first consider a label

i such that 0 ≤ i ≤ N − 1. Then according to (72), we have at the order σ + 2 :





Wi + ∆t
∂Wi

∂t
+

σ+1∑

q=2

∆tq

q!
∂q

t Wi + O(∆tσ+2) =

Wi + Miℓ M−1
ℓp Ψpr

∑

1≤|δ|≤σ+1

∆t|δ|

| δ |! Pℓδ ∂δ

( ∑

0≤|ε|≤σ

∆t|ε| Bε
rj ∂εWj

)
+ O(∆tσ+2) .
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We use relation (76) for the left hand side of previous relation. We get after dividing by

∆t ,





∂Wi

∂t
−

σ+1∑

q=2

∆tq−1

q !

∑

q≤|γ|≤σ+q−1

∆t|γ|−q Cq,γ
ij ∂γWj + O(∆tσ+1) =

∑

1≤|δ|≤σ+1, 0≤|ε|≤σ

Miℓ M−1
ℓp Ψpr Pℓδ

∆t|δ|+|ε|−1

|δ | ! Bε
rj ∂δ+εWj + O(∆tσ+1) .

and the relation (29) is extended one step further with a coefficient Aγ
ij defined for

|γ |= q +1 by the recurrence relation (33). For the nonconserved momenta (k ≥ N), the

relation (72) can be written at the order σ + 2 as:





mk +
σ+1∑

q=1

∆tq

q !
∂q

t mk + O(∆tσ+2) =

(1 − sk) mk +
∑

1≤|δ|≤σ+1

Mkℓ M−1
ℓp Ψpr

∆t|δ|

|δ |! Pℓδ ∂δ

( ∑

0≤|ε|≤σ

∆t|ε| Bε
rj ∂εWj

)
+ O(∆tσ+2) .

We use the relation (77) and we deduce:





sk mk = −
σ+1∑

q=1

∆tq

q !

∑

q≤|γ|≤σ+q

∆t|γ|−q Dq,γ
kj ∂γWj

+
∑

1≤|δ|≤σ+1, 0≤|ε|≤σ

∆t|δ|+|ε|

|δ |! Mkℓ M−1
ℓp Ψpr Pℓδ Bε

rj ∂δ+εWj + O(∆tσ+2) .

We set, with |γ |= σ + 1 , k ≥ N , 0 ≤ j ≤ N − 1,

Bγ
kj =

1

sk

(
−

∑

1≤q≤σ+1

1

q !
Dq,γ

kj +
∑

1≤|δ|≤σ+1, 0≤|ε|≤σ, δ+ε=γ

1

|δ |! Mkℓ M−1
ℓp Ψpr Pℓδ Bε

rj

)

and the relation (36) is established by induction. �

7 Annex 2: Notations for classical DDH schemes

In order to define precisely our results, the numbering of degrees of freedom must be

defined and we precise this point in this Annex with the help of usual graphics. The

choice of momenta, id est the M matrix (relation (4)) is also explicited.

• D1Q3 for advective thermics

Recall first that D1Q3 lattice Boltzmann scheme (J = 2 in relation (4)) uses three neigh-

bours for a given node x: the vertex x itself and the first neighbours located at ±∆x
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x + ∆x      xx      x− ∆

1 20

Figure 20: Stencil for the D1Q3 lattice Boltzmann scheme
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Figure 21: Stencils for D2Q5 and D2Q9 lattice Boltzmann schemes

from x (see Figure 20). We introduce λ as in (17) and adopt a labelling for matrix M of

relation (4) as in Figure 20:

(78) M =




1 1 1

−λ 0 λ

λ2/2 0 λ2/2


 .

• D2Q5 for classical thermics

We have now four (J = 4) nontrivial possible directions for propagation of particles

(Figure 21, left). We adopt for the M matrix of relation (4) the following choice:

(79) M =




1 1 1 1 1

0 λ 0 −λ 0

0 0 λ 0 −λ

−4 1 1 1 1

0 1 −1 1 −1




.

• D2Q9 for classical thermics

The lattice Boltzmann model D2Q9 is obtained from the D2Q5 model by adding four

velocities along the diagonals (Figure 21, right). The evaluation of matrix M is absolutely

nontrivial. We refer to Lallemand-Luo [30] and the reader can consult our introduction
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Figure 22: Stencils for D3Q7 and D3Q19 lattice Boltzmann schemes

[14]. We have:

(80) M =




1 1 1 1 1 1 1 1 1

0 λ 0 −λ 0 λ −λ −λ λ

0 0 λ 0 −λ λ λ −λ −λ

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 −2 0 2 0 1 −1 −1 1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1




.

• D3Q7 for pure thermics

For three-dimensional thermics, one only needs a seven point scheme and use the so-called

D3Q7 lattice Boltzmann scheme whose stencil is described in the left part of Figure 22.

The matrix is not very difficult to construct. We follow Lallemand and Luo [31]:

(81) M =




1 1 1 1 1 1 1

0 λ 0 0 −λ 0 0

0 0 λ 0 0 −λ 0

0 0 0 λ 0 0 −λ

0 −1 −1 2 −1 −1 2

0 1 −1 0 1 −1 0

−6 1 1 1 1 1 1




.
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• D3Q19 for linearized Navier–Stokes

The D3Q19 Lattice Boltzmann scheme is described with details e.g. in J. Tölke et al

[46] and the stencil is presented Figure 22 (right). The matrix M that parametrizes the

transformation (4) looks like this:

M =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 λ 0 0 −λ 0 0 λ λ −λ −λ 0 0 0 0 λ λ −λ −λ

0 0 λ 0 0 −λ 0 λ −λ λ −λ λ −λ λ −λ 0 0 0 0

0 0 0 λ 0 0 −λ 0 0 0 0 λ λ −λ −λ λ −λ λ −λ

−30λ2
−11λ2

−11λ2
−11λ2

−11λ2
−11λ2

−11λ2
8λ2

8λ2
8λ2

8λ2
8λ2

8λ2
8λ2

8λ2
8λ2

8λ2
8λ2

8λ2

0 2λ2
−λ2

−λ2
2λ2

−λ2
−λ2 λ2 λ2 λ2 λ2

−2λ2
−2λ2

−2λ2
−2λ2 λ2 λ2 λ2 λ2

0 0 λ2
−λ2

0 λ2
−λ2 λ2 λ2 λ2 λ2

0 0 0 0 λ2 λ2 λ2 λ2

0 0 0 0 0 0 0 λ2
−λ2

−λ2 λ2
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 λ2
−λ2

−λ2 λ2
0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ2
−λ2

−λ2 λ2

0 −4λ3
0 0 4λ3

0 0 λ3 λ3
−λ3

−λ3
0 0 0 0 λ3 λ3

−λ3
−λ3

0 0 −4λ3
0 0 4λ3

0 λ3
−λ3 λ3

−λ3 λ3
−λ3 λ3

−λ3
0 0 0 0

0 0 0 −4λ3
0 0 4λ3

0 0 0 0 λ3 λ3
−λ3

−λ3 λ3
−λ3 λ3

−λ3

12λ4
−4λ4

−4λ4
−4λ4

−4λ4
−4λ4

−4λ4 λ4 λ4 λ4 λ4 λ4 λ4 λ4 λ4 λ4 λ4 λ4 λ4

0 −4λ4
2λ4

2λ4
−4λ4

2λ4
2λ4 λ4 λ4 λ4 λ4

−2λ4
−2λ4

−2λ4
−2λ4 λ4 λ4 λ4 λ4

0 0 −2λ4
2λ4

0 −2λ4
2λ4 λ4 λ4 λ4 λ4

0 0 0 0 −λ4
−λ4

−λ4
−λ4

0 0 0 0 0 0 0 λ3 λ3
−λ3

−λ3
0 0 0 0 −λ3

−λ3 λ3 λ3

0 0 0 0 0 0 0 −λ3 λ3
−λ3 λ3 λ3

−λ3 λ3
−λ3

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −λ3
−λ3 λ3 λ3 λ3

−λ3 λ3
−λ3




.

Due to the important number of momenta, we detail in this sub-section the way the

previous matrix is obtained. First, velocities vα
j for 0 ≤ j ≤ J ≡ 18 and 1 ≤ α ≤ 3 are

naturally associated with Figure 22. The four first momenta ρ and qα are determined

according to (6) and (7) and the associated elements for matrix M are given in (8) and

(9). The construction of other moments is based on the respect of tensorial nature of

the variety of moments that can be constructed, as analyzed by Rubinstein and Luo [41]:

scalar fields are naturally coupled with one another, idem for vector fields, and so on. So

components of kinetic energy are introduced:

(82) M̃4j = 19
∑

α

| vα
j |2 , 0 ≤ j ≤ J .

The entire set of second order tensors is completed according to

(83)





M̃5j = 2 (v1
j )

2 − (v2
j )

2 − (v3
j )

2

M̃6j = (v2
j )

2 − (v3
j )

2

M̃7j = v1
j v2

j , M̃8j = v2
j v3

j , M̃9j = v3
j v1

j , 0 ≤ j ≤ J .
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The three components of heat flux are defined by

(84)





M̃10 j = 5 v1
j

∑

α

| vα
j |2 , M̃11 j = 5 v2

j

∑

α

| vα
j |2 , M̃12 j = 5 v3

j

∑

α

| vα
j |2 ,

0 ≤ j ≤ J .

We finally obtain the momenta of higher degree: square of kinetic energy

(85) M̃13 j =
21

2

(∑

α

| vα
j |2

)2

, 0 ≤ j ≤ J ,

second order momenta “weighted” by kinetic energy:

(86)





M̃14 j = 3
(
2 (v1

j )
2 − (v2

j )
2 − (v3

j )
2
) ∑

α

| vα
j |2

M̃15 j = 3
(
(v2

j )
2 − (v3

j )
2
) ∑

α

| vα
j |2 , 0 ≤ j ≤ J ,

and third order antisymmetric momenta

(87)





M̃16 j = v1
j

(
(v2

j )
2 − (v3

j )
2
)

M̃17 j = v2
j

(
(v3

j )
2 − (v1

j )
2
)

M̃18 j = v3
j

(
(v1

j )
2 − (v2

j )
2
)
, 0 ≤ j ≤ J .

Then matrix M is orthogonalized from relations (8), (9), (82), (83), (84), (85), (86) and

(87) with a Gram-Schmidt classical algorithm:

Mij = M̃ij −
∑

ℓ<i

giℓ Mℓj , i ≥ 4 .

The coefficients giℓ are computed recursively in order to force orthogonality:

J∑

j=0

Mij Mkj = 0 for i 6= k .

8 Annex 3: Quartic parameters in three dimensions

• We use the equivalent equations of lattice Boltzmann scheme D3Q19 obtained pre-

viously in the following way. We consider the vector of conserved variables (5): W ≡
(ρ, qx, qy, qz)

t. We write the equivalent partial differential equations under the synthetic

form:

(88) ∂tWk +
∑

j, p, q, r

Aj
kpqr ∂p

x∂
q
y∂

r
yWj = O(∆t4) .
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We search dissipative mode solution of (88) under the form W (t) = e−Γt + i(kx x+ky y+kz z) W̃ .

Then Γ is an eigenvalue of the matrix A defined by

Aj
k =

∑

p, q, r

Aj
kpq (i kx)

p (i ky)
q (i kz)

r .

• We wish to solve this dispersion equation with a high order of accuracy, id est in our

present case:

(89) ∆ ≡ det [A − Γ Id] = O(∆t7) .

We impose also that this eigenvalue is double as classical for shear waves in three dimen-

sions [32]: d
dΓ

(det [A − Γ Id]) ≈ 0 . The first nontrivial term in powers of ∆t for this

derivative of the determinant is the term of order 3. Then we force

(90)
d

dΓ
(det [A − Γ Id]) = O(∆t4) .

For Stokes problem (incompressible shear modes) and D3Q19 lattice Boltzmann DDH

scheme, we have [38]:

(91) Γ ≡ ν | k |2 =
λ2

3
∆t σ5

(
k2

x + k2
y + k2

z

)
.

• We solve the set (89) (90) (91) of equations for all values of the time step ∆t . We

obtain in this way a set of eight algebraic equations:




2 σ5 σ10 − 4 σ2
5 + 6 σ5 σ16 = 1

80 σ4
5 − 32 σ3

5 σ10 + 24 σ2
5 σ10 σ16 + 12 σ14 σ16 σ2

5 − 8 σ2
5 − 4 σ2

5 σ2
10

+12 σ2
5 σ2

16 − 12 σ2
5 σ14 σ10 − 12 σ5 σ16 σ14 σ10 + 6 σ5 σ14 σ2

10

−8 σ5 σ16 + 6 σ5 σ2
16 σ14 − σ14 σ16 + σ14 σ10 + 1 = 0

−48 σ5
5 σ10 + 44 σ4

5 σ2
10 + 2000 σ5

5 σ16 + 95 σ2
5 − 16 σ4

5 σ14 σ10

+292 σ14 σ16 σ2
5 + 68 σ2

5 σ14 σ10 − 272 σ4
5 σ16 σ14 − 1032 σ3

5 σ2
16 σ14

+56 σ3
5 σ14 σ2

10 − 320 σ6
5 − 1048 σ4

5 σ10 σ16 + σ2
14 + 60 σ2

5 σ2
16 σ2

14 − 16 σ5 σ16 σ2
14

+72 σ2
5 σ2

14 σ10 σ16 − 8 σ5 σ2
14 σ10 + 24 σ3

5 σ14 + 12 σ2
5 σ2

14 σ2
10 − 248 σ4

5

−464 σ3
5 σ16 σ14 σ10 + 148 σ3

5 σ10 − 1284 σ16 σ3
5 + 4284 σ2

16 σ4
5 − 20 σ5 σ14 = 0(

− 1 + 2 σ5 σ10 − 4 σ2
5 + 6 σ5 σ16

) (
2 σ5 σ10 + 2 σ14 σ10

−2 σ2
5 − 10 σ5 σ16 − 2 σ14 σ16 + 3

)
= 0

96 σ5
5 σ10 + 24 σ4

5 σ2
10 − 1920 σ5

5 σ16 + 98 σ2
5 + 24 σ4

5 σ14 σ10 + 350 σ14 σ16 σ2
5

+34 σ2
5 σ14 σ10 + 264 σ4

5 σ16 σ14 − 1524 σ3
5 σ2

16 σ14 + 12 σ3
5 σ14 σ2

10

+240 σ6
5 − 576 σ4

5 σ10 σ16 + σ2
14 + 102 σ2

5 σ2
16 σ2

14 − 20 σ5 σ16 σ2
14 + 36 σ2

5 σ2
14 σ10 σ16

−4 σ5 σ2
14 σ10 − 24 σ3

5 σ14 + 6 σ2
5 σ2

14 σ2
10 + 240 σ4

5 − 216 σ3
5 σ16 σ14 σ10 + 72 σ3

5 σ10

−1488 σ16 σ3
5 + 5688 σ2

16 σ4
5 − 20 σ5 σ14 = 0

−σ5 + 6 σ16 σ2
5 + 2 σ2

5 σ10 − 4 σ3
5 = 0

2 σ2
5 σ10 − 2 σ16 σ2

5 + σ5 − σ5 σ16 σ14 + σ5 σ14 σ10 − 12 σ3
5 = 0

10 σ5 σ16 σ14 + 2 σ5 σ14 σ10 + 11 σ5 − σ14 + 8 σ3
5 − 82 σ16 σ2

5 + 6 σ2
5 σ10 = 0 .
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These equations have only one nontrivial family of solutions given by (68).
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[25] M. Hénon. “Viscosity of a Lattice Gas”, Complex Systems, vol. 1, p. 763-789, 1987.
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