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Abstract

PAC-Bayes bounds are among the most accu-
rate generalization bounds for classifiers learned
with IID data, and it is particularly so for mar-
gin classifiers. However, there are many practical
cases where the training data show some depen-
dencies and where the traditional IID assumption
does not apply. Stating generalization bounds for
such frameworks is therefore of the utmost in-
terest, both from theoretical and practical stand-
points. In this work, we propose the first – to the
best of our knowledge – PAC-Bayes generaliza-
tion bounds for classifiers trained on data exhibit-
ing interdependencies. The approach undertaken
to establish our results is based on the decompo-
sition of a so-called dependency graph that en-
codes the dependencies within the data, in sets
of independent data, through the tool of graph
fractional covers. Our bounds are very general,
since being able to find an upper bound on the
(fractional) chromatic number of the dependency
graph is sufficient to get new PAC-Bayes bounds
for specific settings. We show how our results
can be used to derive bounds for bipartite rank-
ing and windowed prediction on sequential data.

1 Introduction

Over the past decade, there has been much progress in the
field of generalization bounds for classifiers. PAC-Bayes
bounds, introduced in (McAllester, 1999), and refined in,
e.g., (Seeger, 2002; Langford, 2005), are among the most
appealing advances. Their possible tightness, as shown
in (Ambroladze et al., 2007), make them a possible route
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to perform model selection. They can also be viewed as
theoretical tools to motivate new learning procedures.

Unfortunately, so far, PAC-Bayes bounds have only tack-
led the case of classifiers trained from independently and
identically distributed (IID) data. Yet, being able to learn
from non-IID data while having strong theoretical guaran-
tees is an actual problem in a number of real world ap-
plications such as, e.g., k-partite ranking or classification
from sequential data. Here, we propose the first PAC-Bayes
bounds for classifiers trained on non-IID data; they are a
direct generalization of the IID PAC-Bayes bound and they
are general enough to provide a principled way to establish
generalization bounds for a number of non-IID settings. To
derive these new bounds, we only make use of standard and
simple tools of probability theory, convexity properties of
adequate functions, and we exploit the notion of fractional
covers of graphs. This tool from graph theory has already
been used for deriving concentration results for non inde-
pendent data in (Janson, 2004) (see also references of work
making use of such decompositions therein) and for provid-
ing generalization bounds based on the so-called fractional
Rademacher complexity by (Usunier et al., 2006).

The paper is organized as follows. Section 2 first re-
calls the standard IID PAC-Bayes bound, introduces the no-
tion of fractional covers of graphs and then states the new
chromatic PAC-Bayes bounds, called so, because they rely
on the fractional chromatic number of a particular graph,
namely the dependency graph of the data at hand. Section 3
is devoted to the proof of our main theorem. In Section 4,
we provide specific versions of one of our bounds for the
case of IID data, showing that it is a direct generalization of
the standard bounds, for the case of bipartite ranking and
for windowed prediction on sequential data.

2 PAC Bayes Bounds and Fractional Covers

2.1 IID PAC-Bayes Bound

Let us introduce some notation that will hold from here
on. We only consider the problem of binary classification
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over the input space X and we denote Z the product space
X × Y , with Y = {−1,+1}. H ⊆ YX is a family of
classifiers from X . D is a probability distribution defined
onZ and Dm the distribution of anm-sample; for instance,
Dm = ⊗mi=1D = Dm is the distribution of an IID sample
Z = {Zi}mi=1 of sizem, with each Zi distributed according
to D. P and Q are distributions overH.

The usual PAC-Bayes bound, can be stated as follows
(McAllester, 1999; Seeger, 2002).

Theorem 1 (IID PAC-Bayes Bound). ∀m, ∀D, ∀H, ∀δ ∈
(0, 1], ∀P , with probability at least 1 − δ over the random
draw of Z ∼ Dm = Dm, the following holds:

∀Q, kl(êQ||eQ) ≤ 1
m

[
KL(Q||P ) + ln

m+ 1
δ

]
. (1)

This theorem actually provides a generalization error
bound for the so-called Gibbs classifier gQ: given a distri-
bution Q over H, this stochastic classifier predicts a class
for an input x ∈ X by first drawing a hypothesis h accord-
ing to Q and then outputting h(x). In the theorem, êQ is
the empirical error of gQ on an IID sample Z of size m and
eQ is its true error:

êQ = Eh∼Q
1
m

m∑
i=1

r(h, Zi) = Eh∼QR̂(h,Z)

eQ = EZ∼Dm
êQ = EZ∼D

h∼Q
r(h, Z) = Eh∼QR(h),

(2)

where, for Z = (X,Y ), r(h, Z) = Ih(X)6=Y and where
we have used the fact that Z is an (independently) identi-
cally distributed sample. kl(q||p) is the Kullback-Leibler
divergence between the Bernoulli distributions with proba-
bilities of success q and p, and KL(Q||P ) is the Kullback-
Leibler divergence between Q and P :

kl(q||p) = q ln
q

p
+ (1− q) ln

1− q
1− p

KL(Q||P ) = Eh∼Q ln
Q(h)
P (h)

.

Throughout the paper, we make the assumption that the
posteriors that are used are absolutely continuous with re-
spect to their corresponding priors.

We note that even if the present bound does apply to the risk
eQ of the stochastic classifier gQ, a straightforward argu-
ment gives that, if bQ is the (deterministic) Bayes classifier
such that bQ(x) = sign(Eh∼Qh(x)), then R(bQ) ≤ 2eQ
(Langford & Shawe-taylor, 2002).

The problem we are interested in in the present work is that
of generalizing Theorem 1 to the situation where there may
exist probabilistic dependencies between the elements Zi
of Z = {Zi}mi=1 but while, at the same time, the marginal
distributions of the Zi’s are identical. In other words, we
provide PAC-Bayes bounds for classifiers trained on identi-
cally but not independently distributed data. These results

rely on properties of a dependency graph that is built ac-
cording to the dependencies within Z. Before stating our
new bounds, we thus introduce the concepts of graph the-
ory that will play a role in their statements.

2.2 Dependency Graphs and Fractional Covers

Definition 1 (Dependency Graph). Let Z = {Zi}mi=1 be
a set of random variables taking values in some space Z .
The dependency graph Γ(Z) of Z is such that: the set of
vertices of Γ(Z) is {1, . . . ,m} and there is an edge between
i and j if and only if Zi and Zj are not independent (in the
probabilistic sense).

Definition 2 (Fractional Covers, (Schreinerman & Ullman,
1997)). Let Γ = (V,E) be an undirected graph, with V =
{1, . . . ,m}.

• C ⊆ V is independent if the vertices in C are inde-
pendent (no two vertices in C are connected).

• C = {Cj}nj=1, with Cj ⊆ V , is a proper cover of V
if each Cj is independent and

⋃n
j=1 Cj = V . The size

of C is n.

• C = {(Cj , ωj)}nj=1, with Cj ⊆ V and ωj ∈ [0, 1],
is a proper exact fractional cover of V if each Cj
is independent and ∀i ∈ V ,

∑n
i=1 ωjIi∈Cj = 1;

ω(C) =
∑n
j=1 wi is the chromatic weight of C.

• χ(Γ) (χ∗(Γ)) is the minimum size (weight) over all
proper exact (fractional) covers of Γ: it is the (frac-
tional) chromatic number of Γ.

The problem of computing the (fractional) chromatic num-
ber of a graph is known to be NP-hard (Schreinerman &
Ullman, 1997). However, it turns out that for some particu-
lar graphs as those that come from the settings we study in
section 4, this number can be evaluated precisely. The fol-
lowing properties hold (Schreinerman & Ullman, 1997):

Property 1. Let Γ = (V,E) be a graph. Let c(Γ) be the
clique number of Γ, i.e. the order of the largest clique in Γ.
Let ∆(Γ) be the maximum degree of a vertex in Γ.

We have the following inequalities:

1 ≤ c(Γ) ≤ χ∗(Γ) ≤ χ(Γ) ≤ ∆(Γ) + 1.

In addition, 1 = c(Γ) = χ∗(Γ) = χ(Γ) = ∆(Γ) + 1 if and
only if Γ is totally disconnected.

Remark 1. A cover can be thought of a fractional cover
with every wi being equal to 1. Hence, all the results that
we state for fractional covers apply to the case of covers.
Remark 2. If Z = {Zi}mi=1 is a set of random variables
over Z then a (fractional) proper cover of Γ(Z), splits Z
into subsets of independent random variables. This is a
crucial feature to establish the results of the present paper.
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In addition, we can see χ∗(Γ(Z)) and χ(Γ(Z)) as measures
of the amount of dependencies within Z.

The following lemma, also taken from (Janson, 2004),
Lemma 3.1, will be very useful in the following.

Lemma 1. If C = {(Cj , ωj)}nj=1 is an exact fractional
cover of Γ = (V,E), with V = {1, . . . ,m}, then

∀t ∈ Rm,
m∑
i=1

ti =
n∑
j=1

ωj
∑
k∈Cj

tk.

In particular m =
∑n
j=1 |Cj |.

2.3 Chromatic PAC-Bayes Bounds

In this subsection, we provide new PAC-Bayes bounds that
apply for classifiers trained from samples Z according to
distributions Dm where dependencies exist. We assume
that those dependencies are fully determined by Dm and
we can define the dependency graph Γ(Dm) of Dm to be
Γ(Dm) = Γ(Z). As stated before, we make the assump-
tion that the marginal distributions of Dm along each coor-
dinate are equal to some distribution D.

We consider the following additional notation. PEFC(Dm)
is the set of proper exact fractional covers of Γ(Dm).
Given a cover C = {(Cj , ωj)}nj=1 ∈ PEFC(Dm), Z(j) =

{Zk}k∈Cj and D(j)
m is the distribution of Z(j), it is there-

fore equal to D|Cj |; α ∈ Rn is the vector of coeffi-
cients αj = ωj/ω(C) and π ∈ Rn is the vector of co-
efficients πj = ωj |Cj |/m. Pn and Qn are distributions
over Hn, P jn and Qjn are the marginal distributions of Pn

and Qn with respect to the jth coordinate, respectively;
h = (h1, . . . , hn) is an element ofHn.

We can now state our main results.

Theorem 2 (Chromatic PAC-Bayes Bound (I)). ∀m, ∀Dm,
∀H,∀δ ∈ (0, 1], ∀C = {(Cj , ωj)}nj=1 ∈ PEFC(Dm),
∀Pn, with probability at least 1− δ over the random draw
of Z ∼ Dm, the following holds:

∀Qn, kl(ēQn ||eQn) ≤ ω

m

"
nX
j=1

αjKL(Qjn||P jn) + ln
m+ ω

δω

#
,

(3)
where ω stands for ω(C) and

ēQn = Eh∼Qn

1

m

nX
j=1

ωj
X
k∈Cj

r(hj , Zk)

=
1

m

nX
j=1

ωj |Cj |Eh∼Qjn
1

|Cj |
X
k∈Cj

r(h, Zk)

=

nX
j=1

πjEh∼QjnR̂(h,Z(j)).

As usual, eQn
= EZ∼Dm

ēQn
.

The proof of this theorem is deferred to Section 3.
Remark 3. The empirical error ēQn

considered in this the-
orem is a weighted average of the empirical errors on Z(j)

of Gibbs classifiers with respective distributions Qjn.

The following proposition characterizes EZ∼Dm
ēQn

.

Proposition 1. ∀m, ∀Dm, ∀H, ∀C = {(Cj , ωj)}nj=1 ∈
PEFC(Dm), ∀Qn,
eQn = EZ∼Dm ēQn is the error of the Gibbs classifier
based on the mixture of distributions Qπ =

∑n
j=1 πjQ

j
n

overH.

Proof. From Definition 2, πj ≥ 0 and, according to
Lemma 1,

∑n
j=1 πj = 1

m

∑n
j=1 ωj |Cj | = 1.

Then,

EZ∼Dm ēQn =
X
j

πjEh∼QjEZ∼DmR̂(h,Z(j))

=
X
j

πjEh∼QjEZ(j)∼D
(j)
m
R̂(h,Z(j))

=
X
j

πjEh∼QjnR(h)

= E
h∼π1Q1

n+...+πjQ
j
n
R(h) = Eh∼QπR(h).

Remark 4. Since the prior Pn and the posterior Qn enter
into play in this proposition and Theorem 2 through their
marginals only, these results advocate for the following
learning scheme. Given a cover and a (possibly factorized)
prior Pn, look for a factorized posterior Qn = ⊗nj=1Qj
such that each Qj independently minimizes the usual IID
PAC-Bayes bound given in Theorem 1 on each Z(j). Then
make predictions according to the Gibbs classifier defined
with respect to Qπ =

∑
j πjQj .

The following theorem gives a result that can be readily
used without choosing a specific cover.

Theorem 3 (Chromatic PAC-Bayes Bound (II)). ∀m,
∀Dm, ∀H, ∀δ ∈ (0, 1], ∀P , with probability at least 1− δ
over the random draw of Z ∼ Dm, the following holds

∀Q, kl(êQ||eQ) ≤ χ∗

m

»
KL(Q||P ) + ln

m+ χ∗

δχ∗

–
, (4)

where χ∗ is the fractional chromatic number of Γ(Dm),
and where êQ and eQ are defined as in (2).

Proof. This theorem is just a particular case of Theorem 2.
Let us assume that C = {(Cj , ωj)}nj=1 ∈ PEFC(Dm) such
that ω(C) = χ∗(Γ(Dm)), Pn = ⊗nj=1P = Pn and Qn =
⊗nj=1Q = Qn, with P and Q distributions overH.

For the right-hand side of (4), it directly comes that∑
j

αjKL(Qjn||P jn) =
∑
j

αjKL(Q||P ) = KL(Q||P ).
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As for the left-hand side of (4), it suffices to show that
ēQn = êQ:

ēQn =
X
j

πjEh∼QjnR̂(h,Z(j))

=
X
j

πjEh∼QR̂(h,Z(j))

=
1

m

X
j

ωj |Cj |Eh∼Q
1

|Cj |
X
k

r(h, Zk)

= Eh∼Q
1

m

X
j

ωj
X
k

r(h, Zk)

= Eh∼Q
1

m

X
i

r(h, Zi) = Eh∼QR̂(h,Z) = êQ.

Remark 5. This theorem says that even in the case of non
IID data, a PAC-Bayes bound very similar to the IID PAC-
Bayes bound (1) can be stated, with a worsening (since
χ∗ ≥ 1) proportional to χ∗, i.e proportional to the amount
of dependencies that exist in the data under consideration.
In addition, the new PAC-Bayes bounds is valid with any
priors and posteriors, without the need for these distribu-
tions nor their marginals to depend on the structure of the
dependency graph, or, in other words, on the chosen cover
(as is the case with the more general Theorem 2).
Remark 6. We note that among all elements of PEFC(Dm),
χ∗ is the best constant achievable in terms of the tightness
of the bound. Indeed, the function fm,δ(ω) = ω ln m+ω

δω is
nondecreasing for all m ∈ N and δ ∈ (0, 1], as indicated
by the sign of the derivative f ′m,δ:

f ′m,δ(ω) = − ln
δω

m+ ω
+

ω

m+ ω
− 1

≥ − ln
ω

m+ ω
+

ω

m+ ω
− 1

≥ − ω

m+ ω
+ 1 +

ω

m+ ω
− 1 = 0

where we have used the well-known inequality lnx ≤ x−
1. Since χ∗ is the smallest chromatic weight, this actually
is the weight that gives the tightest bound.

3 Proof of Theorem 2

A proof in three steps, following the lines of the proofs
given in (Seeger, 2002) and (Langford, 2005) for the IID
PAC-Bayes bound, can be provided for Theorem 2.

Lemma 2. ∀m, ∀Dm, ∀δ ∈ (0, 1], ∀C = {(Cj , ωj)}nj=1,
∀Pn, with probability at least 1− δ over the random draw
of Z ∼ Dm, the following holds

Eh∼Pn

n∑
j=1

αje
|Cj |kl(R̂(hj ,Z

(j))||R(hj)) ≤ m+ ω

δω
, (5)

where ω stands for ω(C).

Proof. We first observe the following:

EZ∼Dm

X
j

αje
|Cj |kl(R̂(hj ,Z

(j))||R(hj))

=
X
j

αjEZ(j)∼D
(j)
m
e|Cj |kl(R̂(h,Z(j))||R(h))

≤
X
j

αj(|Cj |+ 1) (Lemma 5, Appendix)

=
1

ω

X
j

ωj(|Cj |+ 1) =
m+ ω

ω
,

where using Lemma 5 is made possible by the fact that Z(j)

are IID. Therefore,

EZ∼Dm
Eh∼Pn

n∑
j=1

αje
|Cj |kl(R̂(hj ,Z

(j))||R(hj)) ≤ m+ ω

ω
.

Applying Markov’s inequality (Theorem 7, Appendix) to
the random variable Eh∼Pn

∑
j αje

|Cj |kl(R̂(hj ,Z
(j))||R(hj))

gives the desired result.

Lemma 3. ∀m, ∀Dm, ∀C = {(Cj , ωj)}nj=1, ∀Pn, ∀Qn,
with probability at least 1 − δ over the random draw of
Z ∼ Dm, the following holds
m

ω

Xn

j=1
πjEh∼Qjnkl(R̂(h,Z(j))||R(h)) (6)

≤
Xn

j=1
αjKL(Qjn||P jn) + ln

m+ ω

δω
.

Proof. It suffices to use Jensen’s inequality with ln and the
fact that EX∼P f(X) = EX∼Q P (X)

Q(X)f(X), for all f, P,Q.
Therefore, ∀Qn:

lnEh∼Pn

X
j

αje
|Cj |kl(R̂(hj ,Z

(j))||R(hj))

= ln
X
j

αjEh∼P jne
|Cj |kl(R̂(h,Z(j))||R(h))

= ln
X
j

αjEh∼Qjn
P jn(h)

Qjn(h)
e|Cj |kl(R̂(h,Z(j))||R(h))

≥
X
j

αjEh∼Qjn ln

»
P jn(h)

Qjn(h)
e|Cj |kl(R̂(h,Z(j))||R(h))

–
= −

X
j

αjKL(Qjn||P jn)

+
X
j

αj |Cj |Eh∼Qjnkl
“
R̂(h,Z(j))||R(h)

”
= −

X
j

αjKL(Qjn||P jn)

+
m

ω

X
j

πjEh∼Qjnkl
“
R̂(h,Z(j))||R(h)

”
.

Lemma 2 then gives the result.

Lemma 4. ∀m, ∀Dm, ∀C = {(Cj , ωj)}nj=1, ∀Qn,, the
following holds
m

ω

∑n

j=1
πjEh∼Qjnkl(R̂(h,Z(j))||R(h)) ≥ kl(ēQ||eQ).
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Z1 Zm

(a) IID data

Z11 Z12 Z13 Z14

Z21 Z22 Z23 Z24

(b) Bipartite Ranking data

Zt−3 Zt−2 Zt−1 Zt Zt+1 Zt+2 Zt+3

(c) Sliding window data

Figure 1: Dependency graphs for the different settings de-
scribed in section 4. Nodes of the same color are part of
the same cover element; henceforth, they are independent.
(a) When the data are IID , the dependency graph is discon-
nected and the fractional number is χ∗ = 1; (b) a depen-
dency graph obtained for bipartite ranking from a sample
containing 4 positive instances and 2 negative instances:
χ∗ = 4; (c) a dependency graph obtained with the tech-
nique of sliding windows for sequence data, for a window
parameter r = 1 (see text for details): χ∗ = 2r + 1.

Proof. This simply comes from the application of Theo-
rem 6 given in Appendix. This lemma, in combination with
Lemma 3, closes the proof of Theorem 2.

4 Examples

In this section, we give instances of the bound given in The-
orem 3 for different settings.

4.1 IID case

In the IID case, the training sample is Z = {(Xi, Yi)}mi=1

distributed according to Dm = Dm and the fractional
chromatic number of Γ(Dm) is χ∗ = 1. Plugging in this
value of χ∗ in the bound of Theorem 3 gives the usual PAC-
Bayes bound recalled in Theorem 1. This emphasizes the
fact that the standard PAC-Bayes bound is a special case of
our more general results.

4.2 Bipartite Ranking

Let D be a distribution over X ×Y and D+1 (D−1) be the
class conditional distribution DX|Y=+1 (DX|Y=−1) with
respect to D. In the bipartite ranking problem (see, e.g.
(Agarwal et al., 2005)), one tries to control the misranking
risk, defined for f ∈ RX by

Rrank(f) = P
X

+∼D+1

X
−∼D−1

(f(X
+

) ≤ f(X
−

)). (7)

f can be interpreted as a scoring function. Given an
IID sample S = {(Xi, Y i)}`i=1 distributed according to
D` = D

`
, a usual strategy to minimize (7) is to minimize

(a possibly regularized form of)

R̂rank(f,S) =
1

`+`−

∑
i:Y i=+1

j:Y j=−1

r(f, (Xi, Xj)), (8)

where r(f, (Xi, Xj)) = If(Xi)≤f(Xj)
and `+ (`−) is the

number of positive (negative) data in S. This empirical risk,
which is closely related to the Area under the ROC curve,
or AUC1 (Agarwal et al., 2005; Cortes & Mohri, 2004),
estimates the fraction of pairs (Xi, Xj) that are ranked in-
correctly (given that Y i = +1 and Y j = −1) and is an
unbiased estimator of Rrank(h). The entailed problem can
be seen as that of learning a classifier from a training set of
the form Z = {Zij}ij = {(Xij = (Xi, Xj), 1)}ij . This
reveals the non-IID nature of the training data, as Zij de-
pends on {Zpq : p = i or q = j} (see Figure 1).

Using Theorem 3, we have the following result:

Theorem 4. ∀`, ∀D over X × Y , ∀H ⊆ RX , ∀δ ∈ (0, 1],
∀P overH, with probability at least 1− δ over the random
draw of S ∼ D`

, the following holds

∀Q overH, kl(êrank
Q
||erank
Q

) ≤ 1

`min

»
KL(Q||P ) + ln

`min + 1

δ

–
,

(9)
where `min = min(`+, `−), and êrank

Q
and erank

Q
are the

Gibbs ranking error counterparts of (2) based on (7)
and (8), respectively.

Proof. The proof works in three parts and borrows ideas
from (Agarwal et al., 2005). The first two parts are neces-
sary to deal with the fact that the dependency graph of Z,
as implied by S, does not have a deterministic structure.

Conditioning on Y = y. Let y ∈ {−1,+1}` be a fixed
vector and `+y and `−y the number of positive and nega-
tive labels, respectively. We define the distribution Dy as

Dy = ⊗`i=1Dyi ; this is a distribution on X `. With a slight
abuse of notation, Dy will also be used to denote the dis-
tribution over (X × Y)` of samples S = {(Xi, yi)}`i=1

such that the sequence {Xi}`i=1 is distributed according
to Dy. It is straightforward to check that, ∀f ∈ H,
ES∼Dy

R̂rank(f,S) = Rrank(f) (cf. Equation (7)).

Given S, defining the random variable Zij as Zij =
((Xi, Xj), 1), Z = {Zij}i:yi=1,j:yj=−1 is a sample of
identically distributed variables, each with distribution
D±1 = D+1 ⊗D−1 ⊗ 1 over X ×Y , where X = X ×X ,
Y = {−1,+1} and 1 is the distribution that produces 1
with probability 1.

1It is actually 1-AUC.
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Chromatic PAC-Bayes Bounds for Non-IID Data

Letting m = `+y `
−
y we denote by Dy,m the distribution of

the training sample Z, within which interdependencies ex-
ist, as shown on Figure 1. Theorem 2 can thus be directly
applied to classifiers trained on Z, the structure of Γ(Dy,m)
and its corresponding fractional chromatic number χ∗y be-
ing completely determined by y. Letting H ⊆ YX , ∀δ ∈
(0, 1], ∀P over H, with probability at least 1 − δ over the
random draw of Z ∼ Dy,m,

∀Q overH, kl(êQ||eQ) ≤
χ∗y
m

»
KL(Q||P ) + ln

m+ χ∗y
δχ∗y

–
.

Given f ∈ H, it is straightforward to see that for
hf ∈ YX defined as hf ((X,X ′)) = sign(f(X) −
f(X ′)), with sign(x) = +1 if x > 0 and −1 other-
wise, R̂(hf ,Z) = R̂rank(f,S) and EZ∼Dy,mR̂(hf ,Z) =
ES∼Dy

R̂rank(f,S) = Rrank(f). Hence, ∀δ ∈ (0, 1], ∀P
over H, with probability at least 1 − δ over the random
draw of S ∼ Dy,

∀Q, kl(êrank
Q
||erank
Q

) ≤
χ∗y
m

»
KL(Q||P ) + ln

m+ χ∗y
δχ∗y

–
. (10)

Integrating over Y. As proposed in (Agarwal et al.,
2005), let us call Φ(P ,S, δ) the event (10); we just
stated that ∀y ∈ {−1,+1}`, ∀P , ∀δ ∈ (0, 1],
PS∼Dy

(Φ(P ,S, δ)) ≥ 1− δ. Then, ∀P ,∀δ ∈ (0, 1],

PS∼D`
(Φ(P ,S, δ)) = EY[ES∼DY

IΦ(P,S,δ)]

=
X
y

ES∼Dy
IΦ(P,S,δ)P(Y = y)

=
X
y

PS∼Dy
(Φ(P ,S, δ))P(Y = y)

≥
X
y

(1− δ)P(Y = y) = 1− δ.

Hence, ∀δ ∈ (0, 1], ∀P over H, with probability at least
1− δ over the random draw of S ∼ D`,

∀Q, kl(êrank
Q
||erank
Q

) ≤ χ∗S
mS

»
KL(Q||P ) + ln

mS + χ∗S
δχ∗S

–
. (11)

where χ∗S is the fractional chromatic number of the graph
Γ(Z), with Z defined from S as in the first part of the proof
(taking into account the observed labels in S); here mS =
`+`−, where `+ (`−) is the number of positive (negative)
data in S.

Computing the Fractional Chromatic Number. In or-
der to finish the proof, it suffices to observe that, for Z =
{Zij}ij , letting `max = max(`+, `−), the fractional chro-
matic number of Γ(Z) is χ∗ = `max.

Indeed, the clique number of Γ(Z) is `max as for all i =
1, . . . , `+ (j = 1, . . . , `−), {Zij : j = 1, . . . , `−} ({Zij :
i = 1, . . . , `+}) defines a clique of order `− (`+) in Γ(Z).
Thus, from Property 1: χ ≥ χ∗ ≥ `max.

A proper exact cover C = {Ck}`max
k=1 of Γ(Z) can be

constructed as follows2. Suppose that `max = `+, then
Ck = {Ziσk(i) : i = 1, . . . , `−}, with

σk(i) = (i+ k − 2 mod `+) + 1,

is an independent set: no two variables Zij and Zpq in Ck
are such that i = p or j = q. In addition, it is straight-
forward to check that C is indeed a cover of Γ(Z). This
cover is of size `+ = `max, which means that it achieves
the minimal possible weight over proper exact (fractional)
covers since χ∗ ≥ `max. Hence, χ∗ = χ = `max(= c(Γ)).
Plugging in this value of χ∗ in (11), and noting that mS =
`max`min with `min = min(`+, `−), closes the proof.

As proposed by (Langford, 2005), the PAC-Bayes bound
of Theorem 4 can be specialized to the case where H =
{f : f(x) = w · x,w ∈ X}. In this situation, for f ∈ H,
hf ((X,X ′)) = sign(f(X)−f(X ′)) = sign(w ·(X−X ′))
is simply a linear classifier (the following results therefore
carries over to the use of kernel classifiers). Hence, assum-
ing an isotropic Gaussian prior P = N (0, I) and a family
of posteriors Qw,µ parameterized by w ∈ X and µ > 0
such that Qw,µ is N (µ, 1) in the direction w and N (0, 1)
in all perpendicular directions, we arrive at the following
theorem (of which we omit the proof):

Theorem 5. ∀`,∀D over X ×Y , ∀δ ∈ (0, 1], the following
holds with prob. at least 1− δ over the draw of S ∼ D`

:

∀w, µ > 0, kl(R̂rank
Qw,µ ||R

rank
Qw,µ) ≤ 1

`min

»
µ2

2
+ ln

`min + 1

δ

–
.

The bounds given in Theorem 4 and Theorem 5 are very
similar to what we would get if applying IID PAC-Bayes
bound to one (independent) element Cj of a minimal cover
(i.e. its weight equals the fractional chromatic number)
C = {Cj}nj=1 such as the one we have constructed in the
proof of Theorem 4. This would imply the empirical er-
ror êrank

Q
to be computed on only one specific Cj and not

all the Cj’s simultaneously, as is the case for the new re-
sults. It turns out that, for proper exact fractional covers
C = {(Cj , ω)}nj=1 with elements Cj having the same size,
it is better, in terms of absolute moments of the empirical
error, to assess it on the whole dataset, rather than on only
one Cj . The following proposition formalizes this.

Proposition 2. ∀m, ∀Dm, ∀H, ∀C = {(Cj , ωj}nj=1 ∈
PEFC(Dm), ∀Q, ∀r ∈ N, r ≥ 1, if |C1| = . . . = |Cn| then

EZ∼Dm |êQ − eQ|
r ≤ E

Z(j)∼D
(j)
m
|ê(j)
Q − eQ|

r,∀j ∈ {1, . . . n},

where ê(j)Q = Eh∼QR̂(h,Z(j)).

2Note that the cover defined here considers elements Ck con-
taining random variables themselves instead of their indices. This
abuse of notation is made for sake of readability.
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Ralaivola, Szafranski, Stempfel

Proof. It suffices to use the convexity of | · |r for r ≥ 1 and
the linearity of E. Using notation of section 2, we have, for
Z ∼ Dm:

|êQ − eQ|r = |
X
j

πjEh∼Q(R̂(h,Z(j))−R(h))|r

≤
X
j

πj |Eh∼Q(R̂(h,Z(j))−R(h))|r

=
X
j

πj |ê(j)
Q − eQ|

r.

Taking the expectation of both sides with respect to Z and
noting that the random variables |ê(j)Q −eQ|r, have the same
distribution, gives the result.

4.3 Sliding Windows for Sequence Data

There are many situations, such as in bioinformatics, where
a classifier must be learned from a training sample S =
{(Xt, Y t)}Tt=1 ∈ (X × Y)T where it is known that there
is a sequential dependence between the Xt’s. A typical
approach to tackle the problem of learning from such data
is the following: in order to predict Y t, information from a
window {Xt+τ}rτ=−r of 2r+1 data centered onXt is con-
sidered, r being set according to some prior knowledge or
after a cross-validation process. This problem can be cast in
another classification problem using a training sample Z =
{Zt}Tt=1, with Zt = ((Xt−r, . . . , Xt, . . . , Xt+r), Y t),
with special care taken for t ≤ r + 1 and t > T − r.
Considering that Y = {−1,+1}, the input space and out-
put space to be considered are therefore X = X 2r+1

and
Y = Y; the product space is Z = X ×Y . As for the bipar-
tite ranking problem, we end up with a learning problem
from non-IID data, Z having a dependency graph Γ(Z) as
the one depicted on Figure 1.

It is easy to see that the clique number of Γ(Z) is
2r + 1. Besides, one can construct a proper exact cover
C = {Cj}2r+1

j=1 of minimal size/weight by taking Cj =
{Zj+p(2r+1) : p = 0, . . . , b T−j2r+1c}, for j = 1, . . . , 2r + 1
– we make the implicit and reasonable assumption that
T > 2r + 1. This cover is proper and has size 2r + 1.
Invoking Property 1 gives that χ = χ∗ = 2r + 1.

It is therefore easy to get a new PAC-Bayes theorem for the
case of windowed prediction, by replacing χ∗ by 2r + 1
andm by T in the bound (4) of Theorem 3. We do not state
it explicitly for sake of conciseness.

5 Conclusion

In this work, we propose the first PAC-Bayes bounds apply-
ing for classifiers trained on non-IID data. The derivation of
these results rely on the use of fractional covers of graphs,
convexity and standard tools from probability theory. The
results that we provide are very general and can easily be

instantiated for specific learning settings such as bipartite
ranking and windowed prediction for sequence data.

This work gives rise to many interesting questions. First,
it seems that using a fractional cover to decompose the
non-IID training data into sets of IID data and then tight-
ening the bound through the use of the chromatic number
is some form of variational relaxation as often encountered
in the context of inference in graphical models, the graph-
ical model under consideration in this work being one that
encodes the dependencies in Dm. It might be interesting to
make this connection clearer to see if, for instance, tighter
and still general bounds can be obtained with more appro-
priate variational relaxations than the one incurred by the
use of fractional covers.

Besides, Theorem 2 advocates for the learning algorithm
described in Remark 4. It would be interesting to see how
such a learning algorithm based on possibly multiple pri-
ors/multiple posteriors could perform empirically and how
tight the proposed bound could be.

On another empirical side, we are planning to run intensive
numerical simulations on bipartite ranking problems to see
how accurate the bound of Theorem 5 can be: we expect the
results to be of good quality, because of the resemblance of
the bound of the theorem with the IID PAC-Bayes theorem
for margin classifiers, which has proven to be rather accu-
rate (Langford, 2005). Likewise, it would be interesting to
see how the possibly more accurate PAC-Bayes bound for
large margin classifiers proposed by (Langford & Shawe-
taylor, 2002), which should translate to the case of bipartite
ranking as well, performs empirically.

It also remains the question as to what kind of strategies
to learn the prior(s) could be implemented to render the
bound of Theorem 2 the tightest possible. This is one of the
most stimulating question as performing such prior learn-
ing makes it possible to obtain very accurate generalization
bound, as evidenced by (Ambroladze et al., 2007).

Finally, assuming the data are identically distributed might
be too strong an assumption. This brings up the question on
whether it is possible to derive the same kind of results as
those provided here in the case where the variables do not
have the same marginals: we have recently obtained a posi-
tive answer on deriving such a bound (Ralaivola, 2009), by
directly leveraging a concentration inequality given in (Jan-
son, 2004). We are also currently investigating how PAC-
Bayes bounds could be derived for a different setting that
gives rise to non-IID data, namely mixing processes.

Acknowledgment

This work is partially supported by the IST Program of the
EC, under the FP7 Pascal 2 Network of Excellence, ICT-
216886-NOE.

ha
l-0

03
36

14
7,

 v
er

si
on

 3
 - 

10
 S

ep
 2

00
9



Chromatic PAC-Bayes Bounds for Non-IID Data

Appendix

Lemma 5. Let D be a distribution over Z .

∀h ∈ H,EZ∼Dme
mkl(R̂(h,Z)||R(h)) ≤ m+ 1.

Proof. Let h ∈ H. For z ∈ Zm, we let q(z) = R̂(h, z);
we also let p = R(h). Note that since Z is i.i.d, mq(Z) is
binomial with parametersm and p (recall that r(h, Z) takes
the values 0 and 1 upon correct and erroneous classification
of Z by h, respectively).

EZ∼Dme
mkl(q(Z)||p)

=
X

z∈Zm
emkl(q(z)||p)PZ∼Dm(Z = z)

=
X

0≤k≤m

emkl( km ||p)PZ∼Dm(mq(Z) = k)

=
X

0≤k≤m

 
m

k

!
emkl( km ||p)pk(1− p)m−k

=
X

0≤k≤m

 
m

k

!
em( km ln k

m
+(1− k

m
) ln(1− k

m
))

=
X

0≤k≤m

 
m

k

!„
k

m

«k „
1− k

m

«m−k
.

However, it is obvious that, from the definition of the bino-
mial distribution,

∀m ∈ N,∀k ∈ [0,m],∀t ∈ [0, 1],
(
m

k

)
tk(1− t)m−k ≤ 1.

This is obviously the case for t = k
m , which gives

X
0≤k≤m

 
m

k

!„
k

m

«k „
1− k

m

«m−k
≤

X
0≤k≤m

1 = m+ 1.

Theorem 6 (Jensen’s inequality). Let f ∈ RX be a convex
function. For all probability distribution P on X :

f(EX∼PX) ≤ EX∼P f(X).

Proof. Directly comes by induction on the definition of a
convex function.

Theorem 7 (Markov’s Inequality). Let X be a positive
random variable on R, such that EX <∞.

∀t ∈ R,PX

X ≥ EX

t

ff
≤ 1

t
.

Consequently: ∀M ≥ EX,∀t ∈ R,PX
{
X ≥ M

t

}
≤ 1

t .

Proof. In almost all textbooks on probability.

Lemma 6. ∀p, q, r, s ∈ [0, 1],∀α ∈ [0, 1],

kl(αp+ (1− α)q||αr + (1− α)s)
≤ αkl(p||r) + (1− α)kl(q||s).

Proof. It suffices to see that f ∈ R[0,1]2 , f(v = [p q]) =
kl(q||p) is convex over [0, 1]2: the Hessian H of f is

H =

[
q
p2 + 1−q

(1−p)2 − 1
p −

1
1−p

− 1
p −

1
1−p

1
q + 1

1−q

]
,

and, for p, q ∈ [0, 1], q
p2 + 1−q

(1−p)2 ≥ 0 and detH =
(p−q)2

q(1−q)p2(1−p)2 ≥ 0: H � 0 and f is indeed convex.
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