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Abstract

PAC-Bayes bounds are among the most accurate

generalization bounds for classifiers learned with

IID data, and it is particularly so for margin clas-

sifiers. However, there are many practical cases

where the training data show some dependencies

and where the traditional IID assumption does

not apply. Stating generalization bound for such

frameworks is therefore of the utmost interest.

In this work, we propose the first, to the best of

our knowledge, PAC-Bayes generalization bound

for classifiers trained on data exhibiting depen-

dencies. The approach is based on the decom-

position of a so-called dependency graph of the

data in sets of independent data, through the tool

of fractional covers. Our bounds are very gen-

eral, since being able to find an upper bound on

the chromatic number of the dependency graph

is sufficient for it get new bounds for specific set-

tings. We show how our results can be used to de-

rive bounds for bipartite ranking and windowed

prediction.

1 Introduction

Over the past decade there has been much progress in the

field of generalization bounds for classifiers. Among the

most appealing advances are the framework of PAC-Bayes

bounds, first introduced by McAllester (1999), and later

refined in several occasions (see (Seeger, 2002; Langford,

2005)). Their possible tightness, as witnessed by the work

of Ambroladze et al. (2007), make them a possible route

to perform model selection. They can also be viewed as

theoretical tools to build new learning procedures.

Unfortunately, up to now, such bounds only hold for the

case of classifiers trained from IID data, while being able

to deal with non-IID data is a problem that can show up

for real world applications such as, for instance, k-partite

ranking problem and windowed prediction. In this paper,

we propose the first PAC-Bayes bounds for non-IID data;

they are a direct generalization of the standard PAC-Bayes

bound and they are general enough to provide a princi-

pled way to establish generalization bounds for a number

of non-IID settings. To derive these new bounds, we will

only make use of standard and very simple tools of prob-

ability theory and convexity properties of adequate func-

tions, while exploiting the notion of fractional covers of

graphs. This tool from graph theory has already been

used for deriving concentration results for non independent

data by Janson (2004) (see also references of work mak-

ing use of such decompositions therein) and for provid-

ing generalization bound based on the so-called fractional

Rademacher complexity by Usunier et al. (2006).

The paper is organized as follows. Section 2 first re-

call the standard IID Pac-Bayes bound, introduces the no-

tion of fractional covers of graphs and then states the new

chromatic PAC-Bayes bounds (called so, because they rely

on the fractional chromatic number of a particular graph,

namely the dependency graph of the data at hand). Sec-

tion 3 is devoted to the proof of our main theorem. In

Section4, we provide specific versions of one of our bounds

for the case of IID data, showing that it is a direct general-

ization of the standard bounds, and for the case of bipartite

ranking and windowed prediction.

2 PAC Bayes Bounds based on Fractional

Covers

2.1 IID PAC-Bayes Bound

Let us introduce some notation that will hold from here

on. We only consider the problem of binary classification

over the input space X and we denote Z the product space

X × Y , with Y = {−1,+1}. H ⊆ YX is a family of

classifiers from X . D is a probability distribution defined

on Z and Dm the distribution of an m-sample; for instance,

Dm = ⊗m
i=1D = Dm is the distribution of an IID sample

Z = {Zi}
m
i=1 of size m, with each Zi distributed according



to D. P and Q are distributions over H.

The usual PAC-Bayes bound, as first introduced

by McAllester (1999) and later refined by Seeger

(2002), can be stated as follows.

Theorem 1 (IID PAC-Bayes Bound). ∀m, ∀D, ∀H, ∀δ ∈
(0, 1], ∀P , with probability at least 1 − δ over the random
draw of Z ∼ Dm, the following holds:

∀Q, kl(êQ||eQ) ≤
1

m

»

KL(Q||P ) + ln
m + 1

δ

–

. (1)

This theorem actually provides a generalization error

bound for the so-called Gibbs classifier gQ: given a distri-

bution Q over H, this stochastic classifier predicts a class

for an input x ∈ X by first drawing a hypothesis h accord-

ing to Q and then outputting h(x). In the theorem, êQ is

the empirical error of gQ on an IID sample Z of size m and

eQ is its true error:

êQ = Eh∼Q

1

m

m
∑

i=1

r(h, Zi) = Eh∼QR̂(h,Z)

eQ = EZ∼Dm
êQ = E Z∼D

h∼Q
r(h, Z) = Eh∼QR(h),

(2)

where, for Z = (X, Y ), r(h, Z) = Ih(X) 6=Y and where

we have used the fact that Z is an (independently) identi-

cally distributed sample. kl(q||p) is the Kullback-Leibler

divergence between the Bernoulli distributions with proba-

bilities of success q and p, and KL(Q||P ) is the Kullback-

Leibler divergence between Q and P :

kl(q||p) = q ln
q

p
+ (1 − q) ln

1 − q

1 − p

KL(Q||P ) = Eh∼Q ln
Q(h)

P (h)
.

Throughout the paper, we make the assumption that the

posteriors that are used are absolutely continuous with re-

spect to their corresponding priors.

The problem we are interested in in the present work is that

of generalizing Theorem 1 to the situation where there may

exist probabilistic dependencies between the elements Zi

of Z = {Zi}
m
i=1 but while, at the same time, the marginal

distributions of the Zi’s are identical. In other words, we

provide PAC-Bayes bounds for classifiers trained on iden-

tically distributed data. These results rely on properties of

a dependency graph that is built according to the depen-

dencies within Z. Before stating our new bounds, we thus

introduce the concepts of graph theory that will play a role

in their statements.

2.2 Dependency Graphs and Fractional Covers

Definition 1 (Dependency Graph). Let Z = {Zi}
m
i=1 be

a set of random variables taking values in some space Z .

The dependency graph Γ(Z) of Z is such that: the set of

vertices of Γ(Z) is {1, . . . ,m} and there is an edge between

i and j if and only if Zi and Zj are not independent (in the

probabilistic sense).

Definition 2 (Fractional Covers, see, e.g. Schreinerman

and Ullman (1997)). Let Γ = (V,E) be an undirected

graph, with V = {1, . . . ,m}.

• C ⊆ V is independent if the vertices in C are inde-

pendent (in the graph theory sense: no two vertices in

C are connected).

• C = {Cj}
n
j=1, with Cj ⊆ V , is a proper cover of V

if each Cj is independent and
⋃n

j=1 Cj = V . The size

of C is n.

• C = {(Cj , ωj)}
n
j=1, with Cj ⊆ V and ωj ∈ [0, 1],

is a proper exact fractional cover of V if each Cj

is independent and ∀i ∈ V ,
∑n

i=1 ωjIi∈Cj
= 1;

ω(C) =
∑n

j=1 wi is the chromatic weight of C.

• χ(Γ) is the size of the smallest exact proper cover(s)

of Γ: it is the chromatic number of Γ.

• χ∗(Γ) is the minimum weight over all proper exact

fractional cover of V : it is the fractional chromatic

number of Γ.

The problem of computing the (fractional) chromatic num-

ber of a graph is known to be NP-hard (Schreinerman &

Ullman, 1997). However, it turns out that for some partic-

ular graphs as those that come from the settings we study

in section 4, this number can be evaluated precisely. We, in

particular have the following properties.

Property 1 (Schreinerman and Ullman (1997)). Let Γ =
(V,E) be a graph. Let c(Γ) be the clique number of Γ,

i.e. the order of the largest clique in Γ. Let ∆(Γ) be the

maximum degree of a vertex in Γ.

We have the following inequalities:

1 ≤ c(Γ) ≤ χ∗(Γ) ≤ χ(Γ) ≤ ∆(Γ) + 1.

In addition, 1 = c(Γ) = χ∗(Γ) = χ(Γ) = ∆(Γ) + 1 if and

only if Γ is totally disconnected.

Remark 1. A cover can be thought of a fractional cover

with every wi being equal to 1. Therefore, all the results

that we state for fractional covers directly apply to the case

of covers.

Remark 2. If Z = {Zi}
m
i=1 is a set of random variables

over Z then a (fractional) proper cover of Γ(Z), splits Z

into subsets of independent random variables. This is a

crucial feature to establish the results of the present paper.

The following lemma, also taken from Janson (2004),

Lemma 3.1, will be very useful in the following.



Lemma 1. If C = {(Cj , ωj)}
m
j=1 is an exact fractional

cover of Γ then

∀t ∈ R
m,

m
∑

i=1

ti =

n
∑

j=1

ωj

∑

k∈Cj

tk.

In particular m =
∑n

j=1 |Cj |.

2.3 Chromatic PAC-Bayes Bounds

In this subsection, we provide new PAC-Bayes bounds

that apply for classifiers trained from samples Z accord-

ing to distributions Dm where dependencies exist. Note

that those dependencies are fully determined by Dm and

we can define the dependency graph Γ(Dm) of Dm to be

Γ(Dm) = Γ(Z). As stated before, we make the assump-

tion that the marginal distributions of Dm along each coor-

dinate are equal to D.

In the following theorems (and corresponding proofs) the

following additional notation is considered. PEFC(Dm)
is the set of proper exact fractional covers of Γ(Dm).
Given a cover C = {(Cj , ωj)}

n
j=1 ∈ PEFC(Dm), Z(j) =

{Zk}k∈Cj
and D

(j)
m is the distribution of Z(j), it is there-

fore equal to D|Cj |; α ∈ R
n is the vector of coeffi-

cients αj = ωj/ω(C) and π ∈ R
n is the vector of co-

efficients πj = ωj |Cj |/m. Pn and Qn are distributions

over Hn, P j
n and Qj

n are the marginal distributions of Pn

and Qn with respect to the jth coordinate, respectively;

h = (h1, . . . , hn) denotes a vector of n hypotheses from

H.

Theorem 2 (Chromatic PAC-Bayes Bound (I)). ∀m, ∀Dm,

∀H,∀δ ∈ (0, 1], ∀C = {(Cj , ωj)}
n
j=1 ∈ PEFC(Dm),

∀Pn, with probability at least 1−δ over the random drawn

of Z ∼ Dm, the following holds:

∀Qn, kl(ēQn ||eQn) ≤
ω

m

"

n
X

j=1

αjKL(Qj
n||P

j
n) + ln

m + ω

δω

#

,

(3)

where ω stands for ω(C) and

ēQn
= Eh∼Qn

1

m

n
∑

j=1

ωj

∑

k∈Cj

r(hj , Zk)

=
1

m

n
∑

j=1

ωj |Cj |Eh∼Q
j
n

1

|Cj |

∑

k∈Cj

r(h, Zk)

=

n
∑

j=1

πjEh∼Q
j
n
R̂(h,Z(j)).

As usual, eQn
= EZ∼Dm

ēQn
.

The proof of this theorem is deferred to Section 3.

Remark 3. The empirical error ēQn
considered in this the-

orem is a weighted average of the empirical errors on Z(j)

of Gibbs classifiers with respective distributions Qj
n.

The following proposition characterizes EZ∼Dm
ēQn

.

Proposition 1. ∀m, ∀Dm, ∀H, ∀C = {(Cj , ωj)}
n
j=1 ∈

PEFC(Dm), ∀Qn,

eQn
= EZ∼Dm

ēQn
is the error of the Gibbs classifier

based on the mixture of distributions Qπ =
∑n

j=1 πjQ
j
n

over H.

Proof. From Definition 2, πj ≥ 0 and, according to

Lemma 1,
∑n

j=1 πj = 1
m

∑n
j=1 ωj |Cj | = 1.

Then,

EZ∼Dm ēQn =
X

j

πjEh∼Qj
EZ∼DmR̂(h,Z

(j))

=
X

j

πjEh∼Qj
E

Z(j)∼D
(j)
m

R̂(h,Z
(j))

=
X

j

πjE
h∼Q

j
n
R(h)

= E
h∼π1Q1

n+...+πjQ
j
n
R(h) = Eh∼Qπ R(h).

Noting that the prior Pn and the posterior Qn enter into

play in this proposition and Theorem 2 through their

marginals only, these results advocate for the following

learning scheme. Given a cover and a (possibly factorized)

prior Pn, look for a factorized posterior Qn = ⊗n
j=1Qj

such that each Qj independently minimizes the usual IID

PAC-Bayes bound given in Theorem 1 on each Z(j). Then

make predictions according to the Gibbs classifier defined

with respect to Qπ =
∑

j πjQj .

The following theorem gives a result that can be readily

used without choosing a specific cover.

Theorem 3 (Chromatic PAC-Bayes Bound (II)). ∀m,

∀Dm, ∀H, ∀δ ∈ (0, 1], ∀P , with probability at least 1 − δ
over the random draw of Z ∼ Dm, the following holds

∀Q, kl(êQ||eQ) ≤
χ∗

m

»

KL(Q||P ) + ln
m + χ∗

δχ∗

–

, (4)

where χ∗ is the fractional chromatic number of Γ(Dm),
and where êQ and eQ are defined as in (2).

Proof. This theorem is just a particular case of Theorem 2.

Let us assume that C = {(Cj , ωj)}
n
j=1 ∈ PEFC(Dm) such

that ω(C) = χ∗(Γ(Dm)), Pn = ⊗n
j=1P = Pn and Qn =

⊗n
j=1Q = Qn, with P and Q distributions over H.

For the right-hand side (4), it directly comes that

∑

j

αjKL(Qj
n||P

j
n) =

∑

j

αjKL(Q||P ) = KL(Q||P ).

As for the left-hand side of (4), it suffices to show that



ēQn
= êQ:

ēQn =
X

j

πjE
h∼Q

j
n
R̂(h,Z

(j))

=
X

j

πjEh∼QR̂(h,Z
(j))

=
1

m

X

j

ωj |Cj |Eh∼Q
1

|Cj |

X

k

r(h, Zk)

= Eh∼Q
1

m

X

j

ωj

X

k

r(h, Zk)

= Eh∼Q
1

m

X

i

r(h, Zi) = Eh∼QR̂(h,Z) = êQ.

Remark 4. This theorem says that even in the case of non

IID data, a PAC-Bayes bound very similar to the IID PAC-

Bayes bound (1) can be stated, with a worsening (since

χ∗ ≥ 1) proportional to χ∗, i.e proportional to the amount

of dependencies that exist in the data under consideration.

In addition, the new PAC-Bayes bounds is valid with any

priors and posteriors, without the need for these distribu-

tions nor their marginals to depend on the structure of the

dependency graph, or, in other words, on the chosen cover

(as is the case in the more general Theorem 2 and the en-

tailed algorithm).

Remark 5. We note that among all elements of PEFC(Dm),
χ∗ is the best constant achievable in terms of the tightness

of the bound. Indeed, the function fm,δ(ω) = ω ln m+ω
δω

is

nondecreasing for all m ∈ N and δ ∈ (0, 1], as indicated

by the sign of the derivative f ′
m,δ:

f ′
m,δ(ω) = − ln

δω

m + ω
+

ω

m + ω
− 1

≥ − ln
ω

m + ω
+

ω

m + ω
− 1

≥ −
ω

m + ω
+ 1 +

ω

m + ω
− 1 = 0

where we have used the well-known inequality lnx ≤ x −
1. Since χ∗ is the smallest chromatic weight, this actually

is the weight that gives the tightest bound.

3 Proof of Theorem 2

A proof in three steps, following the lines of the proofs

given by Seeger (2002) and Langford (2005) for the IID

PAC-Bayes bound, can be provided for Theorem 2.

Lemma 2. ∀m, ∀Dm, ∀δ ∈ (0, 1], ∀C = {(Cj , ωj)}
n
j=1,

∀Pn, with probability at least 1 − δ over the random draw

of Z ∼ Dm, the following holds

Eh∼Pn

n
∑

j=1

αje
|Cj |kl(R̂(hj ,Z(j))||R(hj)) ≤

m + ω

δω
, (5)

where ω stands for ω(C).

Proof. We first observe the following:

EZ∼Dm

∑

j

αje
|Cj |kl(R̂(hj ,Z(j))||R(hj))

=
∑

j

αjEZ(j)∼D
(j)
m

e|Cj |kl(R̂(h,Z(j))||R(h))

≤
∑

j

αj(|Cj | + 1) (cf. Theorem 5)

=
1

ω

∑

j

ωj(|Cj | + 1) =
m + ω

ω
,

where using Theorem 5 is made possible by the fact that

Z(j) are IID Therefore,

EZ∼Dm
Eh∼Pn

n
∑

j=1

αje
|Cj |kl(R̂(hj ,Z(j))||R(hj)) ≤

m + ω

ω
.

Applying Markov’s inequality (cf. Theo-

rem 7 in Appendix) to the random variable

Eh∼Pn

∑

j αje
|Cj |kl(R̂(hj ,Z(j))||R(hj)) gives the desired

result.

Lemma 3. ∀m, ∀Dm, ∀C = {(Cj , ωj)}
n
j=1, ∀Pn, ∀Qn,,

with probability at least 1 − δ over the random draw of

Z ∼ Dm, the following holds

m

ω

Xn

j=1
πjE

h∼Q
j
n

kl(R̂(h,Z
(j))||R(h)) (6)

≤
Xn

j=1
αjKL(Qj

n||P
j
n) + ln

m + ω

δω
.

Proof. It suffices to use Jensen’s inequality with ln and the

fact that EX∼P f(X) = EX∼Q
P (X)
Q(X)f(X), for all f, P, Q.

Therefore, ∀Qn:

lnEh∼Pn

X

j

αje
|Cj |kl(R̂(hj ,Z(j))||R(hj))

= ln
X

j

αjE
h∼P

j
n
e
|Cj |kl(R̂(h,Z(j))||R(h))

= ln
X

j

αjE
h∼Q

j
n

P j
n(h)

Q
j
n(h)

e
|Cj |kl(R̂(h,Z(j))||R(h))

≥
X

j

αjE
h∼Q

j
n

ln

»

P j
n(h)

Q
j
n(h)

e
|Cj |kl(R̂(h,Z(j))||R(h))

–

= −
X

j

αjKL(Qj
n||P

j
n)

+
X

j

αj |Cj |Eh∼Q
j
n

kl
“

R̂(h,Z
(j))||R(h)

”

= −
X

j

αjKL(Qj
n||P

j
n)

+
m

ω

X

j

πjE
h∼Q

j
n

kl
“

R̂(h,Z
(j))||R(h)

”

.

Lemma 2 then gives the result.



Z1 Zm

(a) IID data

Z11 Z12 Z13 Z14

Z21 Z22 Z23 Z24

(b) Bipartite Ranking data

Zt−3 Zt−2 Zt−1 Zt Zt+1 Zt+2 Zt+3

(c) Windowed data

Figure 1: Dependency graphs for the different settings de-

scribed in section 4: (a) when the data are IID , the de-

pendency graph is disconnected and the fractional number

is χ∗ = 1; (b) a dependency graph obtained for bipartite

ranking from a sample containing 4 positive instances and

2 negative instances; nodes of the same color are indepen-

dent and χ∗ = 4; (c) a dependency graph obtained with

windowed prediction for a window parameter r = 1 (see

text for details): χ∗ = 2r + 1.

Lemma 4. ∀m, ∀Dm, ∀C = {(Cj , ωj)}
n
j=1, ∀Qn,, the

following holds

m

ω

∑n

j=1
πjEh∼Q

j
n

kl(R̂(h,Z(j))||R(h)) ≥ kl(ēQ||eQ).

Proof. This simply comes from the application of Theo-

rem 6. This lemma, in combination with Lemma 3, closes

the proof of Theorem 2.

4 Examples

In this section, we give instances of the bound given in The-

orem 3 for different settings.

4.1 IID case

In the IID case, the training sample is Z = {(Xi, Yi)}
m
i=1

distributed according to Dm = Dm and the fractional

chromatic number of Γ(Dm) is χ∗ = 1. Plugging in this

value of χ∗ in the bound of Theorem 3 gives the usual PAC-

Bayes bound recalled in Theorem 1. This emphasis that

our results are generalizations of the standard PAC-Bayes

bound.

4.2 Bipartite Ranking

Let D be a distribution over X ×Y and D+1 (D−1) be the

class conditional distribution DX|Y =+1 (DX|Y =−1) with

respect to D. In the bipartite ranking problem (see, e.g.

(Agarwal et al., 2005)), one tries to control the misranking

risk, defined for f ∈ R
X by

Rrank(f) = P
X

+
∼D+1

X
−

∼D
−1

(f(X
+
) ≤ f(X

−
)). (7)

f can be interpreted as a scoring function. Given an

IID sample S = {(Xi, Y i)}
ℓ
i=1 distributed according to

Dℓ = D
ℓ
, a usual strategy to minimize (7) is to minimize

(a possibly regularized form of)

R̂rank(f,S) =
1

ℓ+ℓ−

∑

i:Y i=+1

j:Y j=−1

r(f, (Xi, Xj)), (8)

where r(f, (Xi, Xj)) = If(Xi)≤f(Xj)
and ℓ+ (ℓ−) is the

number of positive (negative) data in S. This empirical

risk, which is closely related to the AUC
1 (see (Agarwal

et al., 2005; Cortes & Mohri, 2004)), estimates the frac-

tion of pairs (Xi, Xj) that are ranked incorrectly (given

that Y i = +1 and Y j = −1) and is an unbiased esti-

mator of Rrank(h). The entailed problem can be seen as

that of learning a classifier from a training set of the form

Z = {Zij}ij = {(Xij = (Xi, Xj), 1)}ij . This reveals

the non-IID nature of the training data as Zij depends on

{Zpq : p = i or q = j} (see Figure 1).

Using Theorem 3, we have the following result:

Theorem 4. ∀ℓ, ∀D over X × Y , ∀H ⊆ R
X , ∀δ ∈ (0, 1],

∀P over H, with probability at least 1− δ over the random

draw of S ∼ D
ℓ
, the following holds

∀Q over H, kl(êrank

Q
||erank

Q
) ≤

1

ℓmin

»

KL(Q||P ) + ln
ℓmin + 1

δ

–

,

(9)

where ℓmin = min(ℓ+, ℓ−), and êrank

Q
and erank

Q
are the

Gibbs ranking error counterparts of (2) based on (7)

and (8), respectively.

Proof. The proof works in three parts and borrows ideas

from Agarwal et al. (2005).

Conditioning on Y = y. Let y ∈ {−1,+1}ℓ be a fixed

vector and ℓ+y and ℓ−y the number of positive and nega-

tive labels, respectively. We define the distribution Dy as

Dy = ⊗ℓ
i=1Dyi

; this is a distribution on X
ℓ
. With a slight

abuse of notation, Dy will also be used to denote the dis-

tribution over (X × Y)ℓ of samples S = {(Xi, yi)}
ℓ
i=1

such that the sequence {Xi}
ℓ
i=1 is distributed according

to Dy. It is straightforward to check that, ∀f ∈ H,

ES∼Dy
R̂rank(f,S) = R̂rank(f).

Given S, defining the random variable Zij as Zij =
((Xi, Xj), 1), Z = {Zij}i:yi=1,j:yj=−1, is a sample of

identically distributed variables, each with distribution

D±1 = D+1 ⊗D−1 ⊗ 1 over X ×Y , where X = X ×X ,

1It is actually 1-AUC.



Y = {−1,+1} and 1 is the distribution that produces 1
with probability 1.

If we let m = ℓ+y ℓ−y , the training sample Z is distributed

according to Dy,m = ⊗m
i=1D±1 = Dm

±1, where interde-

pendencies exist, as shown on Figure 1. Theorem 2 can

thus be directly applied to classifiers trained on Z, the struc-

ture of Γ(Dy,m) and its corresponding fractional chromatic

number χ∗
y being completely determined by y. Letting

H ⊆ YX , ∀δ ∈ (0, 1], ∀P over H, with probability at

least 1 − δ over the random draw of Z ∼ Dy,m,

∀Q over H, kl(êQ||eQ) ≤
χ∗

y

m

»

KL(Q||P ) + ln
m + χ∗

y

δχ∗
y

–

.

Given f ∈ H, it is straightforward to see that for

hf ∈ YX defined as hf ((X, X ′)) = sign(f(X) −
f(X ′)), with sign(x) = +1 if x > 0 and −1 other-

wise, R̂(hf ,Z) = R̂rank(f,S) and EZ∼Dy,m
R̂(hf ,Z) =

ES∼Dy
R̂rank(f,S) = Rrank(f). Hence, ∀δ ∈ (0, 1], ∀P

over H, with probability at least 1 − δ over the random

draw of S ∼ Dy,

∀Q, kl(êrank

Q
||erank

Q
) ≤

χ∗
y

m

»

KL(Q||P ) + ln
m + χ∗

y

δχ∗
y

–

. (10)

Integrating over Y. As proposed by Agar-

wal et al. (2005), let us call Φ(P ,S, δ) the

event (10); we just stated that ∀y ∈ {−1,+1}ℓ,

∀P ,∀δ ∈ (0, 1], PS∼Dy
(Φ(P ,S, δ)) ≥ 1 − δ. Then,

∀P ,∀δ ∈ (0, 1],

P
S∼Dℓ

(Φ(P ,S, δ)) = EY[ES∼DY
IΦ(P,S,δ)]

=
X

y

E
S∼Dy

IΦ(P,S,δ)P(Y = y)

=
X

y

P
S∼Dy

(Φ(P ,S, δ))P(Y = y)

≥
X

y

(1 − δ)P(Y = y) = 1 − δ.

Hence, ∀δ ∈ (0, 1], ∀P over H, with probability at least

1 − δ over the random draw of S ∼ Dℓ,

∀Q, kl(êrank

Q
||erank

Q
) ≤

χ∗
S

mS

»

KL(Q||P ) + ln
mS + χ∗

S

δχ∗
S

–

. (11)

where χ∗
S is the fractional chromatic number of the graph

Γ(Z), with Z defined from S as in the first part of the proof

(taking into account the observed labels in S); here mS =
ℓ+ℓ−, where ℓ+ (ℓ−) is the number of positive (negative)

data in S.

Computing the Fractional Chromatic Number. In or-

der to finish the proof, it suffices to observe that, for Z =
{Zij}ij , letting ℓmax = max(ℓ+, ℓ−), the fractional chro-

matic number of Γ(Z) is χ∗ = ℓmax.

Indeed, the clique number of Γ(Z) is ℓmax as for all i =
1, . . . , ℓ+ (j = 1, . . . , ℓ−), {Zij : j = 1, . . . , ℓ−} ({Zij :
i = 1, . . . , ℓ+}) defines a clique of order ℓ− (ℓ+) in Γ(Z).
Thus, from Property 1: χ ≥ χ∗ ≥ ℓmax.

A proper exact cover C = {Ck}
ℓmax

k=1 of Γ(Z) can be

constructed as follows2. Suppose that ℓmax = ℓ+, then

Ck = {Ziσk(i) : i = 1, . . . , ℓ−}, with

σk(i) = (i + k − 2 mod ℓ+) + 1,

is an independent set: no two variables Zij and Zpq in Ck

are such that i = p or j = q. In addition, it is straight-

forward to check that
⋃ℓ+

k=1 Ck is a cover of Γ(Z). This

cover is of size ℓ+ = ℓmax, which means that it achieves

the minimal possible weight over proper exact (fractional)

covers since χ∗ ≥ ℓmax. Hence, χ∗ = χ = ℓmax(= c(Γ)).
Plugging in this value of χ∗ in (11), and noting that mS =
ℓmaxℓmin with ℓmin = min(ℓ+, ℓ−), closes the proof.

As proposed by Langford (2005) (section 5.3), the PAC-

Bayes bound of Theorem 4 can be specialized to the case

where H = {f : f(x) = w · x, w ∈ X}. In this situa-

tion, for f ∈ H, hf ((X, X ′)) = sign(f(X) − f(X ′)) =
sign(w·(X−X ′)) is simply a linear classifier (the argument

carries over to the use of kernel classifiers). Hence, assum-

ing an isotropic Gaussian prior P = N (0, I) and a family

of posteriors Qw,µ parameterized by w ∈ X and µ > 0
such that Qw,µ is N (µ, 1) in the direction w and N (0, 1)
in all perpendicular directions, we arrive at the following

theorem (of which we do not provide the proof):

Theorem 5. ∀ℓ,∀D over X ×Y , ∀δ ∈ (0, 1], the following

holds with probability at least 1 − δ over the draw of S ∼

D
ℓ
:

∀w, µ > 0, kl(R̂rank
Qw,µ

||Rrank
Qw,µ

) ≤
1

ℓmin

[

µ2

2
+ ln

ℓmin + 1

δ

]

.

The bounds given in Theorem 4 and Theorem 5 are very

similar to what we would get if applying IID PAC-Bayes

bound to one (independent) element Cj of a minimal cover

(i.e. their weight equals the fractional chromatic number)

C = {Cj}
n
j=1 such as the one we have constructed in the

proof of Theorem 4. The main point is that it would imply

the empirical error to be computed on a specific Cj and

not on the whole data as is the case for the new results.

It turns out that, for proper exact fractional covers C =
{(Cj , ω)}n

j=1 with elements |Cj | having the same size, it is

better, in terms of absolute moments of the empirical error,

to assess it on the whole dataset, rather than on only one

Cj . The following proposition formalizes this statement.

2Note that the cover defined here consider elements Ck con-
taining random variables instead of indices of random variable as
before. This abuse of notation is made for sake of readability.



Proposition 2. ∀m, ∀Dm, ∀H, ∀C = {(Cj , ωj}
n
j=1 ∈

PEFC(Dm), ∀Q, ∀r ∈ N, r ≥ 1,

EZ∼Dm
|êQ − eQ|

r ≤ E
Z(j)∼D

(j)
m
|êQ − eQ|

r,

where D
(j)
m is the marginal distribution of Z(j).

Proof. It suffices to use the convexity of | · |r for r ≥ 1 and

the linearity of E. Using notation of section 2, we have, for

Z ∼ Dm:

|êQ − eQ|
r = |

∑

j

πjEh∼Q(R̂(h,Z(j)) − R(h))|r

≤
∑

j

πj |Eh∼Q(R̂(h,Z(j)) − R(h))|r.

Taking the expectation of both sides with respect to Z and

observing that all the Z(j), and thus, all the random vari-

ables |Eh∼Q(R̂(h,Z(j)) − R(h))|r, have the same distri-

bution gives the result.

4.3 Predictions on Centered Windows

There are many situations, such as in bioinformatics, where

a classifier must be learned from a training sample S =
{(Xt, Y t)}

T
t=1 ∈ (X × Y)T where it is known that, in or-

der to predict Y t, information from a window {Xt+τ}
r
τ=−r

of 2r + 1 data centered on Xt must be considered (such a

scheme has been used for prediction of the secondary struc-

ture of proteins, for instance). This problem can be recast in

another classification problem using a training sample Z =
{Zt}

T
t=1, with Zt = ((Xt−r, . . . ,Xt, . . . ,Xt+r), Y t),

with special care taken for t ≤ r + 1 and t > T − r.

Considering that Y = {−1,+1}, the input space and out-

put space to be considered are therefore X = X
2r+1

and

Y = Y; the product space is Z = X ×Y . As for the bipar-

tite ranking problem, we end up with a learning problem

from non-IID data, Z having a dependency graph Γ(Z) as

the one depicted on Figure 1.

It is easy to see that the clique number of Γ(Z) is 2r +
1. Besides, one can construct a proper exact cover C =
{Cj}j of minimal weight by taking Cj = {Zj+p(2r+1) :
p = 1, . . . , (T − (2r + 1))/j}, for j = 1, . . . , 2r + 1 –

we make the implicit and reasonable assumption that T >
2r + 1. This cover is proper and has size 2r + 1. Invoking

Property 1 gives that χ = χ∗ = 2r + 1.

It is therefore easy to get a new PAC-Bayes theorem for the

case of windowed prediction, by replacing χ∗ by 2r + 1
and m by T in the bound (4) of Theorem 3. We do not state

it explicitly for sake of conciseness.

5 Conclusion

In this work, we propose the first PAC-Bayes bounds for

non-IID data. The derivation of these results rely on the

use of fractional covers of graphs, convexity and standard

tools from probability theory. The results that we provide

are very general and can easily be instantiated for specific

learning settings such as bipartite ranking and windowed

prediction.

This work gives rise to many interesting questions. First, it

seems that using a fractional cover to decompose the non-

IID training data into sets of IID data and then tightening

the bound through the use of the chromatic number is some

form of variational relaxation as often encountered in the

context of making inference in graphical models. It might

be interesting to make this connection clearer to see if, for

instance, tighter bounds can be obtained with softer varia-

tional relaxations than the one incurred by the use of frac-

tional covers.

Besides, Theorem 2 advocates for a particular learning al-

gorithm, as noted previously. It would be interesting to see

how such a learning algorithm could perform empirically

and how tight the proposed bound could be. On another

empirical side, we are currently running experiments on bi-

partite ranking problems to see how accurate the bound of

Theorem 4 can be: the results are very encouraging.

Finally, it remains the question as to what kind of strate-

gies to learn the prior(s) could be implemented to render

the bounds that we get the tightest possible. This is one

of the most stimulating question as performing such prior

learning makes it possible to obtain very accurate gener-

alization bound, as evidenced by the work of Ambroladze

et al. (2007).

Appendix

This appendix gathers useful results for the different

proofs. Only sketches of their proofs or even just refer-

ences are given.

Lemma 5. Let D be a distribution over Z .

∀h ∈ H, EZ∼Dmemkl(R̂(h,Z)||R(h)) ≤ m + 1.

Proof. Let h ∈ H. For z ∈ Zm, we let q(z) = R̂(h, z);
we also let p = R(h). Note that since Z is i.i.d, mq(Z) is

binomial with parameters m and p (recall that r(h, Z) takes

the values 0 and 1 upon correct and erroneous classification



of Z by h, respectively).

EZ∼Dmemkl(q(Z)||p)

=
∑

z∈Zm

emkl(q(z)||p)
PZ∼Dm(Z = z)

=
∑

0≤k≤m

emkl( k
m

||p)
PZ∼Dm(mq(Z) = k)

=
∑

0≤k≤m

(

m

k

)

emkl( k
m

||p)pk(1 − p)m−k

=
∑

0≤k≤m

(

m

k

)

em( k
m

ln k
m

+(1− k
m

) ln(1− k
m

))

=
∑

0≤k≤m

(

m

k

) (

k

m

)k (

1 −
k

m

)m−k

.

However, it is obvious that, from the definition of the bino-

mial distribution,

∀m ∈ N,∀k ∈ [0, m],∀t ∈ [0, 1],

(

m

k

)

tk(1− t)m−k ≤ 1.

This is obviously the case for t = k
m

, which gives

∑

0≤k≤m

(

m

k

) (

k

m

)k (

1 −
k

m

)m−k

≤
∑

0≤k≤m

1 = m + 1.

Theorem 6 (Jensen’s inequality). Let f ∈ R
X be a convex

function. For all probability distribution P on X :

f(EX∼P X) ≤ EX∼P f(X).

Proof. Directly comes by induction on the definition of a

convex function.

Theorem 7 (Markov’s Inequality). Let X be a positive

random variable on R, such that EX < ∞.

∀t ∈ R, PX

{

X ≥
EX

t

}

≤
1

t
.

Consequently, if M ≥ EX ,

∀t ∈ R, PX

{

X ≥
M

t

}

≤
1

t
.

Proof. Can be found on almost all textbooks on probabil-

ity; see, e.g., (Devroye et al., 1997).

Lemma 6. ∀p, q, r, s ∈ [0, 1],∀α ∈ [0, 1],

kl(αp + (1 − α)q||αr + (1 − α)s)

≤ αkl(p||r) + (1 − α)kl(q||s).

Proof. It suffices to see that f ∈ R
[0,1]2 , f(v = [p q]) =

kl(q||p) is convex over [0, 1]2: the Hessian H of f is

H =

[

q
p2 + 1−q

(1−p)2 − 1
p
− 1

1−p

− 1
p
− 1

1−p
1
q

+ 1
1−q

]

,

and, for p, q ∈ [0, 1], q
p2 + 1−q

(1−p)2 ≥ 0 and det H =
(p−q)2

q(1−q)p2(1−p)2 ≥ 0. Hence, H � 0 and f is indeed con-

vex.
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