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Abstract

We focus on the high dimensional linear regression Y ∼ N (Xβ∗, σ2In),
where β∗ ∈ Rp is the parameter of interest. In this setting, several estima-
tors such as the LASSO [Tib96] and the Dantzig Selector [CT07] are known
to satisfy interesting properties whenever the vector β∗ is sparse. Interest-
ingly both of the LASSO and the Dantzig Selector can be seen as orthogonal
projections of 0 into DC(s) = {β ∈ Rp, ‖X ′(Y −Xβ)‖∞ ≤ s} - using an ℓ1
distance for the Dantzig Selector and ℓ2 for the LASSO. For a well chosen
s > 0, this set is actually a confidence region for β∗. In this paper, we
investigate the properties of estimators defined as projections on DC(s) us-
ing general distances. We prove that the obtained estimators satisfy oracle
properties close to the one of the LASSO and Dantzig Selector. On top of
that, it turns out that these estimators can be tuned to exploit a different
sparsity or/and slightly different estimation objectives.
Keywords: High-dimensional data, LASSO, Restricted eigenvalue assump-
tion, Sparsity, Variable selection.
AMS 2000 subject classifications: Primary 62J05, 62J07; Secondary
62F25.
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1 Introduction

In many modern applications, one has to deal with very large datasets. Regression
problems may involve a large number of covariates, possibly larger than the sample
size. In this situation, a major issue lies in dimension reduction which can be
performed through the selection of a small amount of relevant covariates. For
this purpose, numerous regression methods have been proposed in the literature,
ranging from the classical information criteria such as Cp, AIC and BIC to the
more recent regularization-based techniques such as the ℓ1 penalized least square
estimator, known as the LASSO [Tib96], and the Dantzig selector [CT07]. These
ℓ1-regularized regression methods have recently witnessed several developments
due to the attractive feature of computational feasibility, even for high dimensional
data when the number of covariates p is large.

Consider the linear regression model

Y = Xβ∗ + ε, (1)

where Y is a vector in R
n, β∗ ∈ R

p is the parameter vector, X is an n × p real-
valued matrix with possibly much fewer rows than columns, n ≪ p, and ε is a
random noise vector in R

n. Here, for the sake of simplicity, we will assume that
ε ∼ N (0, σ2In). Let P denote the probability distribution of Y in this setting.
Moreover, we assume that the matrix X is normalized in such a way that X ′X
has only 1 on its diagonal. The analysis of regularized regression methods for high
dimensional data usually involves a sparsity assumption on β∗ through the spar-

sity index ‖β∗‖0 =
∑

j=1,...,p I(β
∗
j 6= 0) where I(·) is the indicator function. For any

q ≥ 1, d ≥ 0 and a ∈ R
d, denote by ‖a‖qq =

∑d
i=1 |ai|q and ‖a‖∞ = max1≤i≤d |ai|,

the ℓq and the ℓ∞ norms respectively. When the design matrix X is normalized,
the LASSO and the Dantzig selector minimize respectively ‖Xβ‖22 and ‖β‖1 un-
der the constraint ‖X ′(Y − Xβ)‖∞ ≤ s where s is a positive tuning parameter
(e.g. [OPT00, Alq08] for the dual form of the LASSO). This geometric constraint
is central in the approach developed in the present paper and we shall use it in a
general perspective. Let us mention that several objectives may be considered by
the statistician when we deal with the model given by Equation (1). Usually, we
consider three specific objectives in the high-dimensional setting (i.e., p ≥ n):

Goal 1 - Prediction: The reconstruction of the signal Xβ∗ with the best possible
accuracy is first considered. The quality of the reconstruction with an estima-
tor β̂ is often measured with the squared error ‖Xβ̂ − Xβ∗‖22. In the standard
form, results are stated as follows: under assumptions on the matrix X and with
high probability, the prediction error is bounded by C log (p)‖β∗‖0 where C is
a positive constant. Such results for the prediction issue have been obtained in

2



[BRT09, Bun08, BTW07b] for the LASSO and in [BRT09] for the Dantzig selec-
tor. We also refer to [Kol09a, Kol09b, MVdGB09, vdG08, DT07, CH08] for related
works with different estimators (non-quadratic loss, penalties slightly different from
ℓ1 and/or random design). The results obtained in the works above-mentioned
are optimal up to a logarithmic factor as it has been proved in [BTW07a]. See
also [vdGB09, BC11] for very nice survey papers, or the introduction of [Heb09].

Goal 2 - Estimation: Another wishful thinking is that the estimator β̂ is close
to β∗ in terms of the ℓq distance for q ≥ 1. The estimation bound is of the form
C ‖β∗‖0 (log (p)/n)q/2 where C is a positive constant. Such results are stated for
the LASSO in [BTW07a, BTW07b] when q = 1, for the Dantzig selector in [CT07]
when q = 2 and have been generalized in [BRT09] with 1 ≤ q ≤ 2 for both the
LASSO end the Dantzig selector.

Goal 3 - Selection: Since we consider variable selection methods, the identifica-
tion of the true support {j : β∗

j 6= 0} of the vector β∗ is to be considered. One

expects that the estimator β̂ and the true vector β∗ share the same support at
least when n grows to infinity. This is known as the variable selection consistency
problem and it has been considered for the LASSO and the Dantzig Selector in
several works [Bun08, Lou08, MB06, MY09, Wai06, ZY06].

In this paper, we focus on variants of Goal 1 and Goal 2, using estimators β̂
that also satisfy the constraint ‖X ′(Y −Xβ̂)‖∞ ≤ s. It is organized as follows. In
Section 2 we give some general geometrical considerations on the LASSO and the
Dantzig Selector that motivates the introduction of the general form of estimator:

Argmin
β∈‖X′(Y−Xβ)‖∞≤s

‖β‖

for any semi-norm ‖·‖. In Section 3, we focus on two particular cases of interest in
this family, and give some sparsity inequalities in the spirit of the ones in [BRT09].
We show that under the hypothesis that Fβ∗ is sparse for a known matrix F , we
are able to estimate properly β∗. Some application to a generic inverse problem
are provided with numerical experiments. Finally, Section 4 is dedicated to proofs.

2 Some geometrical considerations

Definition 2.1. Let us put, for any s > 0, DC(s) = {β ∈ R
p : ‖X ′(Y −Xβ)‖∞ ≤ s}.

Lemma 1. For any s > 0, P(β∗ ∈ DC(s)) > 1− p exp(−s2/(2σ2)).
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This means that DC(s) is a confidence region for β∗. Moreover, note that
DC(s) is convex and closed. Let ‖ · ‖ be any semi-norm in R

p. Let Πs
‖·‖ denote an

orthogonal projection on DC(s) with respect to ‖ · ‖:

Πs
‖·‖(b) ∈ Argmin

β∈DC(s)

‖β − b‖.

From properties of projections, we know that

β∗ ∈ DC(s) ⇒ ∀b ∈ R
p, ‖Πs

‖·‖(b)− β∗‖ ≤ ‖b− β∗‖.

There is a very simple interpretation to this inequality: if b is any estimator
of β∗, then, with probability at least 1 − p exp(−s2/(2σ2)), Πs

‖·‖(b) is a better
estimator. In order to perform shrinkage it seems natural to take b = 0.

Definition 2.2. We define our general estimator by

β̂‖·‖
s = Πs

‖·‖(0) ∈ Argmin
β∈DC(s)

‖β‖.

We have the following examples:

1. for ‖ · ‖ = ‖ · ‖1, we obtain the definition of the Dantzig Selector given in
[CT07].

2. for ‖β‖ = ‖Xβ‖2, we obtain the program Argminβ∈DC(s) ‖Xβ‖2. It was
proved in [OPT00] for example that a particular solution of this program is
Tibshirani’s LASSO estimator [Tib96] known as

β̂L
s = Argmin

β∈Rp

[

‖Y −Xβ‖22 + 2s‖β‖1
]

.

3. for ‖β‖ = ‖X ′Xβ‖q with q > 0, it is proved in [Alq08] that the solution
coincides with the "Correlation Selector" and it does not depend on q.

In the next Section, we exhibit other cases of interest and provide some theo-
retical results on the performances of the estimators.

3 Generalized LASSO and Dantzig Selector

3.1 Definitions

Let F be an application R+ → R+ with the restriction that F (x) = 0 may be
equal to 0 only for x = 0. Note that X ′X may be written, for some orthogonal
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matrix Q,

Q′







λ1 . . . 0
...

. . .
...

0 . . . λp






Q, then we put F (X ′X) = Q′







F (λ1) . . . 0
...

. . .
...

0 . . . F (λp)






Q.

The idea is that, for a well chosen norm ‖ · ‖, we will build estimators that will
be useful to estimate β∗ when F (X ′X)β∗ is sparse, in the sense that they will be
close to β∗ with respect to the semi-norm induced by G(X ′X) for G(x) = xF (x).

Definition 3.1. We define the "Generalized Dantzig Selector", β̂GDS
s , as β̂

‖·‖
s for

‖b‖ = ‖F (X ′X)b‖1, and the "Generalized LASSO", β̂GL
s , for ‖b‖ = (b′G(X ′X)b)1/2.

Remark 1. In the case where the program minβ∈DC(s) β
′G(X ′X)β has multiple so-

lutions we define β̂GL
s as one of the solutions that minimizes ‖F (X ′X)β‖1 among

all the solutions β. The case where the program minβ∈DC(s) ‖F (X ′X)β‖1 has multi-

ple solution does not cause any trouble: we can take β̂GDS
s as any of these solution

without any effect on its statistical properties.

3.2 Sparsity Inequalities

We now present the assumptions we need to state the Sparsity Inequalities.
Assumption A(c) for c > 0: for any α ∈ R

p such that
∑

j:(F (X′X)β∗)j=0

|αj | ≤ 3
∑

j:(F (X′X)β∗)j 6=0

|αj| ,

we have, for H(x) = x/F (x) (with the convention 0/0 = 0),
∑

j:(F (X′X)β∗)j 6=0

α2
j ≤ cα′H(X ′X)α.

This assumption can be seen as a modification of assumptions in [BRT09]: if we
put F (x) = 1, F (X ′X) = Ip and H(X ′X) = X ′X and we obtain exactly the same
assumption that in [BRT09]. For the sake of shorteness, we put F = F (X ′X),
G = G(X ′X) and H = H(X ′X).

Theorem 1. Let us take ε ∈]0, 1[ and s = 2σ(2 log(p/ε))1/2. Assume that As-

sumption A(c) is satisfied for some c > 0. With probability at least 1− ε we have

simultaneously:


















(β̂GDS
s − β∗)′G(β̂GDS

s − β∗) ≤ 72σ2c‖Fβ∗‖0 log(p/ε),
‖F (β̂GDS

s − β∗)‖1 ≤ 18
√
2σ‖Fβ∗‖0

√

c log(p/ε),

(β̂GL
s − β∗)′G(β̂GL

s − β∗) ≤ 128σ2c‖Fβ∗‖0 log(p/ε),
‖F (β̂GL

s − β∗)‖1 ≤ 32
√
2σ‖Fβ∗‖0

√

c log(p/ε).
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In the case F (x) = 1, we obtain the same result as in [BRT09]. However, it is
worth noting that the use of β̂GL

s is particularly useful when Fβ∗ is sparse for a
non-constant F (x), and β∗ is not. In this case the errors of the LASSO and the
Dantzig Selector are not controlled anymore. This generalization is also of some
interests especially when Assumption A(c) is satisfied for H , but not satisfied if
we replace H by X ′X. We now give an exemple.

3.3 Application to a generic inverse problem

In statistical inverse problems, one usually has to deal with the following regres-
sion problem: Y ∼ N (Xβ∗, σ2In) with a known σ2, X a symmetric operator (for
example a convolution operator) and a regularity assumption on β∗. This assump-
tion is often that β∗ belongs to the range of X or of a power of X: β∗ = Xαg. See
for example [Cav11] and the references therein.

We will now assume that g is sparse. In this case, note that X ′X = X2. As
X−αβ∗ is sparse, we put F (x) = x−α/2. So F = X−α and G = X2−α. In this case,
Theorem 1 gives for example

(β̂GL
s − β∗)′G(β̂GL

s − β∗) ≤ 128σ2c‖g‖0 log(p/ε),

under an assumption on H = X2+α (it is worth mentionning that in the case where
α = −2, H = In and so Assumption A(c) is always satisfied with c = 1, even if
the case α > 0 is more meaningful).

We now provide a very short empirical comparison of the LASSO and General-
ized LASSO approach in a toy example of such a model. Note that for α ≥ 0, β∗ =
Xαg being a smoothed version of g, is “almost sparse”, so a comparison with the
LASSO makes sense. We propose the following setting: let M(ρ) = (ρ|i−j|)1≤i,j≤n,
and X = M1/2. We take g = (7, 0, 0, 0, 0, 5, 0, 0, 0, 0, 7, 0, 0, 0, 0, 5, 0, 0, 0, 0), n = 20,
ρ = 0.5, Figure 1 gives the different values of β∗ = Xαg for various values of α.

We compute the LASSO and Generalized LASSO in each case, and report the
performance of the oracle with respect to the regularization parameter s:

Perf.GL = inf
s>0

‖Xβ̂GL
s −Xβ∗‖ and Perf.L = inf

s>0
‖Xβ̂L

s −Xβ∗‖.

Of course, in practice, the optimal s in unknown and may be estimated by cross-
validation for example. We test both estimators with several values for the param-
eters α and σ2. For each value of these parameters, we run 20 experiments and
report the mean performances for both estimators. The results are given in Table
1. We can see that the results seem coherent with Theorem 1: there seems to be
an advantage in practice to consider the Generalized LASSO in the cases where
alpha 6= 0.
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Figure 1: The parameter β∗ = Xαg for different values of α. In black, α = 0, so
β∗ = g is sparse. In red, α = 1, β∗ is a bit smoothed, but still can be approximated
by a sparse signal. In green, α = 2, β∗ is smoother, and approximation by a sparse
signal do not hold any longer.

Table 1: The mean results for 20 experiments for each value of (α, σ2).

α σ2
mean of Perf.L mean of Perf.GL

0.01 0.167 0.118

-2 0.30 4.792 3.076

1.00 16.636 10.328

0.01 0.194 0.097

-1 0.30 5.624 2.911

1.00 14.386 8.56

0.01 0.098 0.098

0 0.30 2.835 2.835

1.00 9.012 9.012

0.01 0.196 0.094

+1 0.30 5.144 2.517

1.00 13.232 8.597

0.01 0.199 0.101

+2 0.30 5.589 3.018

1.00 17.957 10.228

0.01 0.183 0.102

+3 0.30 5.538 3.175

1.00 19.133 10.371

4 Proofs

4.1 Proof of Lemma 1

We have Y ∼ N (Xβ∗, σ2In) and so Y − Xβ∗ ∼ N (0, σ2In) and finally X ′(Y −
Xβ∗) ∼ N (0, σ2X ′X). Let us put V = X ′(Y − Xβ∗) and let Vj denote the j-th
coordinate of V . Note that X ′X is normalized such that for any j, Vj ∼ N (0, σ2),
so: P (|Vj| > s) ≤ exp(−s2/(2σ2)). Then P (‖V ‖∞ > s) ≤ p exp(−s2/(2σ2)).

4.2 Proof of Theorem 1

We use arguments from [BRT09]. From now, we assume that the event {β∗ ∈
DC(s/2)} = {‖X ′(Y − Xβ∗‖∞ < s/2} is satisfied. According to Lemma 1,
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the probability of this event is at least 1 − p exp(−s2/(8σ2)) = 1 − ε as s =
2(2 log(p/ε))1/2.
Proof of the results on the Generalized Dantzig Selector.

We have

(β̂GDS
s − β∗)′G(β̂GDS

s − β∗) = (β̂GDS
s − β∗)′X ′XF (β̂GDS

s − β∗)

≤ ‖X ′X(β̂GDS
s − β∗)‖∞‖F (β̂GDS

s − β∗)‖1
≤

(

‖X ′(Y −Xβ∗)‖∞ + ‖X ′(Y −Xβ̂GDS
s )‖∞

)

‖F (β̂GDS
s − β∗)‖1

≤ (s/2 + s)‖F (β̂GDS
s − β∗)‖1

since β̂GDS
s ∈ DC(s), and {β∗ ∈ DC(s/2)} is satisfied. By definition of β̂GDS

s ,

0 ≤ ‖Fβ∗‖1 − ‖F β̂GDS
s ‖1

=
∑

(Fβ∗)j 6=0

|(Fβ∗)j| −
∑

(Fβ∗)j 6=0

|(F β̂GDS
s )j| −

∑

(Fβ∗)j=0

|(F β̂GDS
s )j|

≤
∑

(Fβ∗)j 6=0

|(Fβ∗)j − (F β̂GDS
s )j | −

∑

(Fβ∗)j=0

|(Fβ∗)j − (F β̂GDS
s )j |.

This means that

‖F (β̂GDS
s − β∗)‖1 ≤ 2

∑

(Fβ∗)j 6=0

|(Fβ∗)j − (F β̂GDS
s )j |.

We can summarize all that we have now:

(β̂GDS
s − β∗)′G(β̂GDS

s − β∗) ≤ 3s

2
‖F (β̂GDS

s − β∗)‖1
≤ 3s

∑

(Fβ∗)j 6=0

|(Fβ∗)j − (F β̂GDS
s )j|. (2)

Let us remark that Inequality (2) implies that the vector α = F (β̂GDS
s − β∗) may

be used in Assumption A(c). This leads to

(β̂GDS
s − β∗)′G(β̂GDS

s − β∗) ≤ 3s
∑

(Fβ∗)j 6=0

|(Fβ∗)j − (F β̂GDS
s )j |

≤ 3s

√

‖Fβ∗‖0
∑

(Fβ∗)j 6=0

[(Fβ∗)j − (F β̂GDS
s )j]2

≤ 3s

√

‖Fβ∗‖0c(F β̂GDS
s − Fβ∗)′H(F β̂GDS

s − Fβ∗)
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= 3s

√

‖Fβ∗‖0c(β̂GDS
s − β∗)′G(β̂GDS

s − β∗). (3)

As a consequence,

(β̂GDS
s − β∗)′A(β̂GDS

s − β∗) ≤ 9s2‖Pβ∗‖0c = 72σ2c‖Pβ∗‖0 log(p/ε).

Plugging this result into Inequality (3) and using Inequality (2) again, we obtain:

‖P (β̂GDS
s − β∗)‖1 ≤ 18

√
2σ‖Pβ∗‖0

√

c log(p/ε).

Proof of the results on the Generalized LASSO.

Step 1. As a fist step, we establish an important property of the Generalized
LASSO estimator. We prove that

∀β ∈ R
p, |Y −XFβ̂GL

s ‖22 + 2s‖F β̂GL
s ‖1 + (β̂GL

s )′F (H −X ′X)F β̂GL
s

≤ ‖Y −XFβ‖22 + 2s‖Fβ‖1 + β ′F (H −X ′X)Fβ. (4)

To prove Inequality (4), we write the Lagrangian of the program that defines β̂GL
s :

L(β, λ, µ) = β ′Gβ + λ′ [X ′(Xβ − Y )− sE] + µ′ [X ′(Y −Xβ)− sE] ,

where E = (1, . . . , 1)′, λ and µ are vectors in R
p. Any solution β = β(λ, µ) must

satisfy, for some λj ≥ 0, µj ≥ 0 and λjµj = 0,

0 =
∂L
∂β

(β, λ, µ) = 2Gβ +X ′X(λ− µ),

and then Gβ = (X ′X)(µ−λ)/2 . Note that λj ≥ 0, µj ≥ 0 and λjµj = 0 imply that
there is a γj ∈ R such that γj = (µj−λj)/2, |γj| = (λj+µj)/2. Hence λj = 2(γj)−
and µj = 2(γj)+, where for any a, (a)+ = max(a; 0) and (a)− = max(−a; 0). Let
also γ denote the vector which j-th component is exactly γj, we obtain:

Gβ = (X ′X)γ. (5)

Then we have easily β ′Fβ = β ′(X ′X)γ = γ′Hγ. Using these relations, the La-
grangian may be written:

L(β, λ, µ) = γ′Hγ + 2γ′X ′Y − 2γ′(X ′X)β − 2s

p
∑

j=1

|γj|

= 2γ′X ′Y − γ′Hγ − 2s ‖γ‖1
Note that λ and β, and so γ, should maximize this value. Hence, γ is to minimize

−2γ′X ′Y + γ′Hγ + 2s‖γ‖1 + Y ′Y

9



Now, note that
Y ′Y − 2γ′X ′Y = ‖Y −Xγ‖22 − γ′(X ′X)γ

and then γ also minimizes

‖Y −Xγ‖22 + 2s ‖γ‖1 + γ′ [H − (X ′X)] γ.

We end the proof of (4) by noting that for every b such that Fb = γ, then b is to
minimize

‖Y −XFb‖22 + 2s ‖Fb‖1 + (Fb)′ [H − (X ′X)] (Fb). (6)

and that β̂GL
s is such a b.

Step 2. The next step is to apply Equation (4) with β = β∗ to obtain

‖Y −XFβ̂GL
s ‖22 + 2s‖F β̂GL

s ‖1 + (β̂GL
s )′F (H −X ′X)F β̂GL

s

≤ ‖Y −XFβ∗‖22 + 2s‖Fβ∗‖1 + (Fβ∗)′(H −X ′X)Fβ∗.

For the sake of simplicity, we can define γ̂ = F β̂GL
s (following the notations of Step

1) and γ∗ = Fβ∗ and we obtain

‖Y −Xγ̂‖22 + 2s‖γ̂‖1 + γ̂′(H −X ′X)γ

≤ ‖Y −Xγ∗‖22 + 2s‖γ∗‖1 + (γ∗)′(H −X ′X)γ∗.

Computations lead to

‖X(γ̂ − γ∗)‖22 + 2s‖γ̂‖1 + γ̂′(H −X ′X)γ̂ − 2(Y −Xγ∗)′Xγ̂

+ 2(γ∗)′(H −X ′X)(γ∗ − γ) ≤ 2s‖γ∗‖1 + (γ∗)′(H −X ′X)γ̂ − 2(Y −Xγ∗)′Xγ∗,

and then

‖X(γ̂ − γ∗)‖22
≤ 2s(‖γ∗‖1 − ‖γ̂‖1) + 2(Y −Xγ∗)′X(γ̂ − γ∗)− (γ∗ − γ̂)′(H −X ′X)(γ∗ − γ̂).

As a consequence

(γ∗ − γ̂)′H(γ∗ − γ̂) ≤ 2s(‖γ∗‖1 − ‖γ̂‖1) + 2(Y −Xγ∗)′X(γ̂ − γ∗)

≤ 2s

p
∑

j=1

(|γ∗
j | − |γ̂j|) + 2‖X ′(Y −Xβ∗)‖∞

p
∑

j=1

|γ̂j − γ∗
j |

≤ 2s

p
∑

j=1

(|γ∗
j | − |γ̂j|) + s

p
∑

j=1

|γ̂j − γ∗
j |.
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So we obtain

(γ∗ − γ̂)′H(γ∗ − γ̂) + s

p
∑

j=1

|γ̂j − γ∗
j | ≤ 2s

p
∑

j=1

(|γ̂j| − |γ∗
j |) + 2s

p
∑

j=1

|γ̂j − γ∗
j |

= 2s
∑

j:γ∗

j
6=0

(|γ̂j| − |γ∗
j |) + 2s

∑

j:γ∗

j
6=0

|γ̂j − γ∗
j | = 4s

∑

j:γ∗

j
6=0

|γ̂j − γ∗
j |. (7)

In particular, Equation (7) implies that

∑

j:γ∗

j
=0

|γ̂j − γ∗
j | ≤ 3

∑

j:γ∗

j
6=0

|γ̂j − γ∗
j |,

and so α = γ̂j−γ∗
j may be used in Assumption A(c). Then Inequality (7) becomes

(γ∗ − γ̂)′H(γ∗ − γ̂) ≤ 4s
∑

j:γ∗

j
6=0

|γ̂j − γ∗
j | ≤ 4s

√

‖γ∗‖0
∑

j:γ∗

j
6=0

(γ̂j − γ∗
j )

2

≤ 4s
√

‖γ∗‖0c(γ∗ − γ̂)′H(γ∗ − γ̂).

That leads to

(β̂GL
s − β∗)′G(β̂GL

s − β∗) = (γ∗ − γ̂)′H(γ∗ − γ̂) ≤ 128σ2c‖Fβ∗‖0 log(p/ε). (8)

We plug (8) into (7) again to obtain ‖γ̂ − γ∗‖1 ≤ 32
√
2σ‖Pβ∗‖0

√

c log(p/ε).
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