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Abstract

We focus on the high dimensional linear regression Y ∼ N (Xβ∗, σ2In),
where β∗ ∈ R

p is the parameter of interest. In this setting, several estima-
tors such as the LASSO [Tib96] and the Dantzig Selector [CT07] are known
to satisfy interesting properties whenever the vector β∗ is sparse. Interest-
ingly both of the LASSO and the Dantzig Selector can be seen as orthogonal
projections of 0 into DC(s) = {β ∈ R

p, ‖X ′(Y −Xβ)‖∞ ≤ s} - using an ℓ1
distance for the Dantzig Selector and ℓ2 for the LASSO. For a well chosen
s > 0, this set is actually a confidence region for β∗. In this paper, we
investigate the properties of estimators defined as projections on DC(s) us-
ing general distances. We prove that the obtained estimators satisfy oracle
properties close to the one of the LASSO and Dantzig Selector. On top of
that, it turns out that these estimators can be tuned to exploit a different
sparsity or/and slightly different estimation objectives.
Keywords: High-dimensional data, LASSO, Restricted eigenvalue assump-
tion, Sparsity, Variable selection.
AMS 2000 subject classifications: Primary 62J05, 62J07; Secondary
62F25.
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1 Introduction

In many modern applications, one has to deal with very large datasets. Regression
problems may involve a large number of covariates, possibly larger than the sample
size. In this situation, a major issue lies in dimension reduction which can be
performed through the selection of a small amount of relevant covariates. For
this purpose, numerous regression methods have been proposed in the literature,
ranging from the classical information criteria such as Cp, AIC and BIC to the
more recent regularization-based techniques such as the ℓ1 penalized least square
estimator, known as the LASSO [Tib96], and the Dantzig selector [CT07]. These
ℓ1-regularized regression methods have recently witnessed several developments
due to the attractive feature of computational feasibility, even for high dimensional
data when the number of covariates p is large.

Consider the linear regression model

Y = Xβ∗ + ε, (1)

where Y is a vector in R
n, β∗ ∈ R

p is the parameter vector, X is an n × p real-
valued matrix with possibly much fewer rows than columns, n ≪ p, and ε is a
random noise vector in R

n. Here, for the sake of simplicity, we will assume that
ε ∼ N (0, σ2In). Let P denote the probability distribution of Y in this setting.
Moreover, we assume that the matrix X is normalized in such a way that X ′X/n
has only 1 on its diagonal. The analysis of regularized regression methods for high
dimensional data usually involves a sparsity assumption on β∗ through the spar-

sity index ‖β∗‖0 =
∑

j=1,...,p I(β
∗
j 6= 0) where I(·) is the indicator function. For any

q ≥ 1, d ≥ 0 and a ∈ R
d, denote by ‖a‖qq =

∑d
i=1 |ai|q and ‖a‖∞ = max1≤i≤d |ai|,

the ℓq and the ℓ∞ norms respectively. When the design matrix X is normalized,
the LASSO and the Dantzig selector minimize respectively ‖Xβ‖22 and ‖β‖1 un-
der the constraint ‖X ′(Y − Xβ)‖∞ ≤ s where s is a positive tuning parameter
(e.g. [OPT00, Alq08] for the dual form of the LASSO). This geometric constraint
is central in the approach developed in the present paper and we shall use it in a
general perspective. Let us mention that several objectives may be considered by
the statistician when we deal with the model given by Equation (1). Usually, we
consider three specific objectives in the high-dimensional setting (i.e., p ≥ n):

Goal 1 - Prediction: The reconstruction of the signal Xβ∗ with the best possible
accuracy is first considered. The quality of the reconstruction with an estima-
tor β̂ is often measured with the squared error ‖Xβ̂ − Xβ∗‖22. In the standard
form, results are stated as follows: under assumptions on the matrix X and with
high probability, the prediction error is bounded by C log (p)‖β∗‖0 where C is
a positive constant. Such results for the prediction issue have been obtained in
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[BRT09, Bun08, BTW07b] for the LASSO and in [BRT09] for the Dantzig selec-
tor. We also refer to [Kol09a, Kol09b, MVdGB09, vdG08, DT07, CH08] for related
works with different estimators (non-quadratic loss, penalties slightly different from
ℓ1 and/or random design). The results obtained in the works above-mentioned
are optimal up to a logarithmic factor as it has been proved in [BTW07a]. See
also [vdGB09] for a very nice survey paper on the various conditions used to prove
these results.

Goal 2 - Estimation: Another wishful thinking is that the estimator β̂ is close
to β∗ in terms of the ℓq distance for q ≥ 1. The estimation bound is of the form
C ‖β∗‖0 (log (p)/n)q/2 where C is a positive constant. Such results are stated for
the LASSO in [BTW07a, BTW07b] when q = 1, for the Dantzig selector in [CT07]
when q = 2 and have been generalized in [BRT09] with 1 ≤ q ≤ 2 for both the
LASSO end the Dantzig selector.

Goal 3 - Selection: Since we consider variable selection methods, the identifica-
tion of the true support {j : β∗

j 6= 0} of the vector β∗ is to be considered. One

expects that the estimator β̂ and the true vector β∗ share the same support at
least when n grows to infinity. This is known as the variable selection consistency
problem and it has been considered for the LASSO and the Dantzig Selector in
several works [Bun08, Lou08, MB06, MY09, Wai06, ZY06].

In this paper, we focus on variants of Goal 1 and Goal 2, using estimators β̂
that also satisfy the constraint ‖X ′(Y −Xβ̂)‖∞ ≤ s. It is organized as follows. In
Section 2 we give some general geometrical considerations on the LASSO and the
Dantzig Selector that motivates the introduction of the general form of estimator:

Argmin
β∈‖X′(Y−Xβ)‖∞≤s

‖β‖

for any semi-norm ‖·‖. In Section 3, we focus on two particular cases of interest in
this family, and give some sparsity inequalities in the spirit of the ones in [BRT09].
We show that under the hypothesis that Pβ∗ is sparse for a known matrix P , we
are able to estimate properly β∗. Finally, Section 4 is dedicated to proofs.

2 Some geometrical considerations

Definition 2.1. Let us put, for any s > 0, DC(s) = {β ∈ R
p : ‖X ′(Y −Xβ)‖∞ ≤ s}.

Lemma 1. For any s > 0, P(β∗ ∈ DC(s)) > 1− p exp(−s2/(2nσ2)).
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This means that DC(s) is a confidence region for β∗. Moreover, note that
DC(s) is convex and closed. Let ‖ · ‖ be any semi-norm in R

p. Let Πs
‖·‖ denote an

orthogonal projection on DC(s) with respect to ‖ · ‖:

Πs
‖·‖(b) ∈ Argmin

β∈DC(s)

‖β − b‖.

From properties of projections, we know that

β∗ ∈ DC(s) ⇒ ∀b ∈ R
p, ‖Πs

‖·‖(b)− β∗‖ ≤ ‖b− β∗‖.

There is a very simple interpretation to this inequality: if b is any estimator
of β∗, then, with probability at least 1 − p exp(−s2/(2nσ2)), Πs

‖·‖(b) is a better
estimator. In order to perform shrinkage it seems natural to take b = 0.

Definition 2.2. We define our general estimator by

β̂‖·‖
s = Πs

‖·‖(0) ∈ Argmin
β∈DC(s)

‖β‖.

We have the following examples:

1. for ‖ · ‖ = ‖ · ‖1, we obtain the definition of the Dantzig Selector given in
[CT07].

2. for ‖β‖ = ‖Xβ‖2, we obtain the program Argminβ∈DC(s) ‖Xβ‖2. It was
proved in [OPT00] for example that a particular solution of this program is
Tibshirani’s LASSO estimator [Tib96] known as

β̃s = Argmin
β∈Rp

[

‖Y −Xβ‖22 + 2s‖β‖1
]

.

3. for ‖β‖ = ‖X ′Xβ‖q with q > 0, it is proved in [Alq08] that the solution
coincides with the ”Correlation Selector” and it does not depend on q.

In the next Section, we exhibit other cases of interest and provide some theo-
retical results on the performances of the estimators.

3 Generalized LASSO and Dantzig Selector and

Sparsity Inequalities

Let A be a p × p symmetric positive matrix and P be a p × p invertible matrix
satisfying both (X ′X)P = A and KerA = KerX . The idea is that, for a well
chosen ‖ · ‖, we will build estimators that will be useful to estimate β∗ when Pβ∗
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is sparse, which means that they will be close to β∗ in the sense of the semi-norm
induced by A.

Let Ã−1 be any pseudo-inverse of A. Let Ω = (X ′X)Ã−1(X ′X)/n (note that
Ω is uniquely defined, even if Ã−1 is not).

Definition 3.1. We define the ”Generalized Dantzig Selector”, β̂GDS
s , as β̂

‖·‖
s for

‖b‖ = ‖Pb‖1, and the ”Generalized LASSO”, β̂GL
s , as β̂

‖·‖
s for ‖b‖ = (b′Ab)1/2.

Remark 1. In the case where the program minβ∈DC(s) β
′Aβ has multiple solutions

we define β̂GL
s as one of the solutions that minimizes ‖Pβ‖1 among all the solutions

β. The case where the program minβ∈DC(s) ‖Pβ‖1 has multiple solution does not

cause any trouble: we can take β̂GDS
s as any of these solution without any effect

on its statistical properties.

We now present the assumptions we need to state the Sparsity Inequalities.
Note that they essentially involve the matrix Ω, and then, the matrices X and A.
Assumption A(c) for c > 0: for any α ∈ R

p such that

∑

j:(Pβ∗)j=0

|αj | ≤ 3
∑

j:(Pβ∗)j 6=0

|αj| ,

we have
∑

j:(Pβ∗)j 6=0

α2
j ≤ cα′Ωα.

This assumption can be seen as a modification of assumptions that can be
found in [BRT09]: in [BRT09], the same assumption is made on the matrix X ′X .
So here, in the case where A = X ′X and P = Ip, we will obtain exactly the same
assumption that in [BRT09].

Theorem 1. Let us take ε ∈]0, 1[ and s = 2σ(2n log(p/ε))1/2. Assume that As-

sumption A(c) is satisfied for some c > 0. With probability at least 1− ε we have

simultaneously:

(β̂GDS
s − β∗)′A(β̂GDS

s − β∗) ≤ 72σ2c‖Pβ∗‖0 log
(p

ε

)

,

‖P (β̂GDS
s − β∗)‖1 ≤ 18

√
2σ‖Pβ∗‖0

√

c log(p/ε)

n
,

(β̂GL
s − β∗)′A(β̂GL

s − β∗) ≤ 128σ2c‖Pβ∗‖0 log
(p

ε

)

,

and finally

‖P (β̂GL
s − β∗)‖1 ≤ 32

√
2σ‖Pβ∗‖0

√

c log(p/ε)

n
.
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In the case A = X ′X and P = Ip, we obtain the same result as in [BRT09].

However, it is worth noting that the use of β̂GL
s is particularly useful when Pβ∗

is sparse and β∗ is not. In this case the errors of the LASSO and the Dantzig
Selector are not controlled anymore. This generalization is also of some interests
especially when when Assumption A(c) is satisfied for Ω, but not satisfied if we
replace Ω by X ′X .

4 Proofs

4.1 Proof of Lemma 1

We have Y ∼ N (Xβ∗, σ2In) and so Y − Xβ∗ ∼ N (0, σ2In) and finally X ′(Y −
Xβ∗) ∼ N (0, σ2X ′X). Let us put V = X ′(Y − Xβ∗) and let Vj denote the j-th
coordinate of V . Note that X ′X is normalized such that for any j, Vj ∼ N (0, σ2n),
so: P (|Vj | > s) ≤ exp(−s2/(2nσ2)). Then P (‖V ‖∞ > s) ≤ p exp(−s2/(2nσ2)).

4.2 Proof of Theorem 1

We use arguments from [BRT09]. From now, we assume that the event {β∗ ∈
DC(s/2)} = {‖X ′(Y − Xβ∗‖∞ < s/2} is satisfied. According to Lemma 1,
the probability of this event is at least 1 − p exp(−s2/(8nσ2)) = 1 − ε as s =
2(2n log(p/ε))1/2.
Proof of the results on the Generalized Dantzig Selector.

We have

(β̂GDS
s − β∗)′A(β̂GDS

s − β∗) = (β̂GDS
s − β∗)′X ′XP (β̂GDS

s − β∗)

≤ ‖X ′X(β̂GDS
s − β∗)‖∞‖P (β̂GDS

s − β∗)‖1
≤

(

‖X ′(Y −Xβ∗)‖∞ + ‖X ′(Y −Xβ̂GDS
s )‖∞

)

‖P (β̂GDS
s − β∗)‖1

≤ (s/2 + s)‖P (β̂GDS
s − β∗)‖1

since β̂GDS
s ∈ DC(s), and {β∗ ∈ DC(s/2)} is satisfied. By definition of β̂GDS

s ,

0 ≤ ‖Pβ∗‖1 − ‖P β̂GDS
s ‖1

=
∑

(Pβ∗)j 6=0

|(Pβ∗)j| −
∑

(Pβ∗)j 6=0

|(P β̂GDS
s )j| −

∑

(Pβ∗)j=0

|(P β̂GDS
s )j|

≤
∑

(Pβ∗)j 6=0

|(Pβ∗)j − (P β̂GDS
s )j| −

∑

(Pβ∗)j=0

|(Pβ∗)j − (P β̂GDS
s )j |.
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This means that

‖P (β̂GDS
s − β∗)‖1 ≤ 2

∑

(Pβ∗)j 6=0

|(Pβ∗)j − (P β̂GDS
s )j|.

We can summarize all that we have now:

(β̂GDS
s − β∗)′A(β̂GDS

s − β∗) ≤ 3s

2
‖P (β̂GDS

s − β∗)‖1
≤ 3s

∑

(Pβ∗)j 6=0

|(Pβ∗)j − (P β̂GDS
s )j|. (2)

Let us remark that Inequality (2) implies that the vector α = P (β̂GDS
s − β∗) may

be used in Assumption A(c). This leads to

(β̂GDS
s − β∗)′A(β̂GDS

s − β∗) ≤ 3s
∑

(Pβ∗)j 6=0

|(Pβ∗)j − (P β̂GDS
s )j |

≤ 3s



‖Pβ∗‖0
∑

(Pβ∗)j 6=0

[(Pβ∗)j − (P β̂GDS
s )j ]

2





1

2

≤ 3s
(

‖Pβ∗‖0c(P β̂GDS
s − Pβ∗)′Ω(P β̂GDS

s − Pβ∗)
)

1

2

= 3s
(

‖Pβ∗‖0
c

n
(β̂GDS

s − β∗)′A(β̂GDS
s − β∗)

)
1

2

. (3)

As a consequence,

(β̂GDS
s − β∗)′A(β̂GDS

s − β∗) ≤ 9s2‖Pβ∗‖0c = 72σ2c‖Pβ∗‖0 log
(p

ε

)

.

Plugging this result into Inequality (3) and using Inequality (2) again, we obtain:

‖P (β̂GDS
s − β∗)‖1 ≤ 18

√
2σ‖Pβ∗‖0

√

c log(p/ε)

n
.

Proof of the results on the Generalized LASSO.

First, we establish an important property of the Generalized LASSO estimator.
We prove that

∀β ∈ R
p, |Y −XPβ̂GL

s ‖22 + 2s‖P β̂GL
s ‖1 + (β̂GL

s )′P ′(nΩ−X ′X)P β̂GL
s

≤ ‖Y −XPβ‖22 + 2s‖Pβ‖1 + β ′P ′(nΩ−X ′X)Pβ. (4)
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To prove Inequality (4), we write the Lagrangian of the program that defines β̂GL
s :

Let us write the Lagrangian of this program:

L(β, λ, µ) = β ′Aβ + λ′ [X ′(Xβ − Y )− sE] + µ′ [X ′(Y −Xβ)− sE] ,

where E = (1, . . . , 1)′, λ and µ are vectors in R
p. Moreover, for any j, λj ≥ 0,

µj ≥ 0 and λjµj = 0. Any solution β = β(λ, µ) must satisfy

0 =
∂L
∂β

(β, λ, µ) = 2Aβ +X ′X(λ− µ),

and then Aβ = (X ′X)(µ−λ)/2 . Note that λj ≥ 0, µj ≥ 0 and λjµj = 0 imply that
there is a γj ∈ R such that γj = (µj−λj)/2, |γj| = (λj+µj)/2. Hence λj = 2(γj)−
and µj = 2(γj)+, where for any a, (a)+ = max(a; 0) and (a)− = max(−a; 0). Let
also γ denote the vector which j-th component is exactly γj, we obtain:

Aβ = (X ′X)γ. (5)

Note that this also implies that:

β ′Aβ = β ′(X ′X)γ = β ′AÃ−1(X ′X)γ = γ′(X ′X)Ã−1(X ′X)γ = nγ′Ωγ.

Using these relations, the Lagrangian may be written:

L(β, λ, µ) = nγ′Ωγ + 2γ′X ′Y − 2γ′(X ′X)β − 2s

p
∑

j=1

|γj|

= 2γ′X ′Y − nγ′Ωγ − 2s ‖γ‖1
Note that λ and β, and so γ, should maximize this value. Hence, γ is to minimize

−2γ′X ′Y + nγ′Ωγ + 2s‖γ‖1 + Y ′Y

Now, note that
Y ′Y − 2γ′X ′Y = ‖Y −Xγ‖22 − γ′(X ′X)γ

and then γ also minimizes

‖Y −Xγ‖22 + 2s ‖γ‖1 + γ′ [nΩ− (X ′X)] γ.

Let us put b = P−1γ, then b is to minimize

‖Y −XPb‖22 + 2s ‖Pb‖1 + (Pb)′ [nΩ− (X ′X)] (Pb). (6)

Now, we know that β̂GL
s must satisfy the relation

Aβ̂GL
s = X ′XPb = Ab,
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where b is any minimizer of (6). But we can check that this equality implies that

‖Y −XPb‖22 = ‖Y −XPβ̂GL
s ‖22,

and
(Pb)′ [nΩ− (X ′X)] (Pb) = (P β̂GL

s )′ [nΩ− (X ′X)] (P β̂GL
s ).

So, we necessarily have ‖Pb‖1 = ‖P β̂GL
s ‖1 (otherwise we would have a contradic-

tion with Remark 1). Then β̂GL
s is also a minimizer of (6). This proves Equa-

tion (4).

The next step is to apply Equation (4) with β = β∗ to obtain

‖Y −XPβ̂GL
s ‖22 + 2s‖P β̂GL

s ‖1 + (β̂GL
s )′P ′(nΩ−X ′X)P β̂GL

s

≤ ‖Y −XPβ∗‖22 + 2s‖Pβ∗‖1 + (Pβ∗)′(nΩ−X ′X)Pβ∗.

For the sake of simplicity, we can define γ̂ = P β̂GL
s and γ∗ = Pβ∗ and we obtain

‖Y −Xγ̂‖22 + 2s‖γ̂‖1 + γ̂′(nΩ−X ′X)γ

≤ ‖Y −Xγ∗‖22 + 2s‖γ∗‖1 + (γ∗)′(nΩ−X ′X)γ∗.

Computations lead to

‖X(γ̂ − γ∗)‖22 + 2s‖γ̂‖1 + γ̂′(nΩ−X ′X)γ̂ − 2(Y −Xγ∗)′Xγ̂

+ 2(γ∗)′(nΩ−X ′X)(γ∗ − γ) ≤ 2s‖γ∗‖1 + (γ∗)′(nΩ−X ′X)γ̂

− 2(Y −Xγ∗)′Xγ∗,

and then

‖X(γ̂ − γ∗)‖22
≤ 2s(‖γ∗‖1 − ‖γ̂‖1) + 2(Y −Xγ∗)′X(γ̂ − γ∗)− (γ∗ − γ̂)′(nΩ−X ′X)(γ∗ − γ̂).

As a consequence

(γ∗ − γ̂)′nΩ(γ∗ − γ̂) ≤ 2s(‖γ∗‖1 − ‖γ̂‖1) + 2(Y −Xγ∗)′X(γ̂ − γ∗)

≤ 2s

p
∑

j=1

(|γ∗
j | − |γ̂j|) + 2‖X ′(Y −Xβ∗)‖∞

p
∑

j=1

|γ̂j − γ∗
j |

≤ 2s

p
∑

j=1

(|γ∗
j | − |γ̂j|) + s

p
∑

j=1

|γ̂j − γ∗
j |.
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So we obtain

(γ∗ − γ̂)′nΩ(γ∗ − γ̂) + s

p
∑

j=1

|γ̂j − γ∗
j | ≤ 2s

p
∑

j=1

(|γ̂j| − |γ∗
j |) + 2s

p
∑

j=1

|γ̂j − γ∗
j |

= 2s
∑

j:γ∗

j
6=0

(|γ̂j| − |γ∗
j |) + 2s

∑

j:γ∗

j
6=0

|γ̂j − γ∗
j | = 4s

∑

j:γ∗

j
6=0

|γ̂j − γ∗
j |. (7)

In particular, Equation (7) implies that

∑

j:γ∗

j
=0

|γ̂j − γ∗
j | ≤ 3

∑

j:γ∗

j
6=0

|γ̂j − γ∗
j |,

and so α = γ̂j−γ∗
j may be used in Assumption A(c). Then Inequality (7) becomes

(γ∗ − γ̂)′nΩ(γ∗ − γ̂) ≤ 4s
∑

j:γ∗

j
6=0

|γ̂j − γ∗
j | ≤ 4s



‖γ∗‖0
∑

j:γ∗

j
6=0

(γ̂j − γ∗
j )

2





1

2

≤ 4s (‖γ∗‖0c(γ∗ − γ̂)′Ω(γ∗ − γ̂))
1

2 .

That leads to

(β̂GL
s − β∗)′A(β̂GL

s − β∗) = (γ∗ − γ̂)′nΩ(γ∗ − γ̂) ≤ 128σ2c‖Pβ∗‖0 log
(p

ε

)

.

We plug this result into Inequality (7) again to obtain

‖γ̂ − γ∗‖1 ≤ 32
√
2σ‖Pβ∗‖0

√

c log(p/ε)

n
.

This ends the proof.
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