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Abstract

We consider the linear regression problem where the number p of covariates
is possibly larger than the number n of observations. In the paper, we propose
to approximate the unknown regression parameters under sparsity assumptions
with a class of estimators that are motivated by geometrical considerations.
Popular estimators based on the control of the ℓ1 norm of the regression coef-
ficients (such as the LASSO and the Dantzig selector for example) can be seen
as special cases of our estimator for which we derive Sparsity Inequalities, i.e.,
bounds involving the sparsity of the parameter we try to estimate. In such a
generalized setup, we show that it is possible to consider variations of the loss
function to be minimized. In particular, under a suitable setting, we derive a
transductive version of the LASSO and analyze its performance with milder
assumptions than in previous results.

Keywords: High-dimensional data, LASSO, Mutual coherence, Sparsity, Vari-
able selection.
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1 Introduction

In many modern applications, one has to deal with very large datasets. Regression
problems may involve a large number of covariates, possibly larger than the sam-
ple size. In this situation, a major issue lies in dimension reduction which can be
performed through the selection of a small amount of relevant covariates. For this
purpose, numerous regression methods have been proposed in the literature, rang-
ing from the classical information criteria such as Cp, AIC and BIC to the more
recent regularization-based techniques such as the l1 penalized least square estima-
tor, known as the LASSO [20], and the Dantzig selector [7] among many others.
Regularized regression methods have recently witnessed several developments due to
the attractive feature of computational feasibility, even for high dimensional data
when the number of covariates p is large. In the present paper, we focus on the
LASSO and the Dantzig selector with what they have in common: both obey to a
geometric constraint which we now introduce. Consider the linear regression model
Y = Xβ∗ + ε, where Y is a vector in R

n, β∗ ∈ R
p is the parameter vector, X is an

n × p real-valued matrix with possibly much fewer rows than columns, n ≪ p, and
ε is a random noise vector in R

n. The analysis of regularized regression methods
for high dimensional data usually involves a sparsity assumption on β∗ through the
sparsity index ‖β∗‖0 =

∑

j=1,...,p I(β∗
j 6= 0) where I(·) is the indicator function. For

any q ≥ 1, d ≥ 0 and a ∈ R
d, denote by ‖a‖q

q =
∑d

i=1 |ai|q and ‖a‖∞ = max1≤i≤d |ai|,
the ℓq and the ℓ∞ norms respectively. When the design matrix X is normalized, the
LASSO and the Dantzig selector minimize respectively ‖Xβ‖2

2 and ‖β‖1 under the
constraint ‖X ′(Y −Xβ)‖∞ ≤ s where s is a positive tuning parameter (e.g. [19, 1] for
the dual form of the LASSO). This geometric constraint is central in the approach
developed in the present paper and we shall use it in a general perspective. In the se-
quel, we consider three specific problems in the high-dimensional setting (i.e., p ≥ n):

Goal 1 - Prediction: The reconstruction of the signal Xβ∗ with the best possible
accuracy is first considered. The quality of the reconstruction with an estimator β̂ is
often measured with the squared error ‖Xβ̂ − Xβ∗‖2

2. In the standard form, results
are stated as follows: under assumptions on the matrix X and with high probability,
the prediction error is bounded by C log (p)‖β∗‖0 where C is a positive constant.
Such results for the prediction issue have been obtained in [3, 4, 5, 6] for the LASSO
and in [3] for the Dantzig selector. We also refer to [13, 14, 16, 21, 9, 8] for related
works with different estimators (non-quadratic loss, penalties slightly different from
l1 and/or random design). The results obtained in the works above-mentioned are
optimal up to a logarithmic factor as it has been proved in [5].
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Goal 2 - Estimation: Another wishful thinking is that the estimator β̂ is close to
β∗ in terms of the ℓq distance for q ≥ 1. The estimation bound is of the form
C ‖β∗‖0 (log (p)/n)q/2 where C is a positive constant. Such results are stated for the
LASSO in [5, 6] when q = 1, for the Dantzig selector in [7] when q = 2 and have
been generalized in [3] with 1 ≤ q ≤ 2 for both the LASSO end the Dantzig selector.

Goal 3 - Selection: Since we consider variable selection methods, the identification
of the true support {j : β∗

j 6= 0} of the vector β∗ is to be considered. One expects

that the estimator β̂ and the true vector β∗ share the same support at least when
n grows to infinity. This is known as the variable selection consistency problem and
it has been considered for the LASSO estimator in several works [4, 17, 18, 23, 24].
Recently, Lounici [15] provided the variable selection consistency of the Dantzig selec-
tor. Other popular selection procedures, based on the LASSO estimator, such as the
Adaptive LASSO [25], the SCAD [11], the S-LASSO [12] and the Group-LASSO [2],
have also been studied under this angle.

In the present paper, we address these three goals under a different sparsity as-
sumption than the usual one. Namely, we relate the notion of sparsity to the sparsity
index of the vector Pβ∗, for some matrix P ∈ R

p×p. Therefore, sparsity implies here
that many components (Pβ∗)j are equal to 0. Naturally, when P equals Ip, the p×p
identity matrix, we recover the standard assumption on the sparsity index of β∗. We
consider a general family of estimators which are defined as solutions of different
optimization functions but with the same set of constraint ‖X ′(Y − Xβ)‖∞ ≤ s
(when X is normalized). This family includes the LASSO and the Dantzig selec-
tor as special cases. We respond to the three goals described above but with some
modifications. Concerning Goal 1, instead of the prediction of Xβ∗, we aim at
recovering Zβ∗ for some matrix Z ∈ R

m×p with m ∈ N. This matrix can be taken
equal to X. However, different choices of matrices Z can be considered in such a
way to cover other fields such as the transductive setting (Section 4.2). As far as
estimation (Goal 2) and selection (Goal 3) are concerned, the whole study takes
into consideration the sparse vector Pβ∗ instead of β∗. By exploiting the sparsity of
Pβ∗, we provide similar results to those presented in the conventional case. However,
we need assumptions which are less restrictive in some situations. We also show, in
the high-dimensional case p ≫ n, that it is possible to derive consistent results in
situations where β∗ is not sparse (in the usual sense).

The paper is organized as follows. In the next section, we specify the setting and
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the estimators considered in this paper. A short description of the results stated
in the sequel are also provided. In Section 3, we state our main results. More pre-
cisely, we present in Section 3.1, different assumptions used through the paper and
compare them to the assumptions used in previous works. Using techniques from
Tsybakov and al. [6], we study the performance of the estimators in the different
contexts (Goal 1 to Goal 3). Applications of these results are then considered in
Section 4: the transductive LASSO and the correlation selector [1]. Finally Section 6
is dedicated to the proofs.

2 Model and estimator

In this section, we present the general setting. We first introduce the model and the
estimators which are considered in the sequel. We also briefly present the results
obtained in this paper with some technical arguments which should help the reader
to better understand the progression of the paper.

Model. We focus on the usual linear regression model:

yi = xiβ
∗ + εi, i = 1, . . . , n, (1)

where the design xi = (xi,1, . . . , xi,p) ∈ R
p is deterministic, β∗ = (β∗

1 , . . . , β
∗
p)

′ ∈ R
p is

the unknown parameter vector of interest and ε1, . . . , εn are i.i.d. centered Gaussian
random variables with known variance σ2. Let X denote the matrix with i-th line is
xi and with the j-th column is Xj with i ∈ {1, . . . , n} and j ∈ {1, . . . , p}. Then:

X = (x′
1, . . . , x

′
n)′ = (X1, . . . , Xp).

For the sake of simplicity, it is often assumed that the observations are normalized in
such a way that X ′

jXj/n = 1. In this paper, we will not make such an assumption,
but we will discuss the consequences of such a normalization in the various results.
For this purpose, let us introduce to following notation. For any j ∈ {1, . . . , p},

ξj =
X ′

jXj

n
=

1

n

n
∑

i=1

x2
i,j and Ξ =









ξ
1

2

1 0
. . .

0 ξ
1

2

p









.

Let us also put Y = (y1, . . . , yn)
′ and ε = (ε1, . . . , εn)

′, so we have the following
matricial form for Model (1): Y = Xβ∗ + ε. As mentioned in Section 1, we assume
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that Pβ∗ is sparse and base our approach in exploiting this sparsity of the model
through the sparsity index ‖Pβ∗‖0 =

∑

j=1...,p I((Pβ∗)j 6= 0).

Estimator. Considering the case where p ≫ n, dimension reduction is funda-
mental in statistical analysis. It aims at producing consistent estimators while being
easy to interpret. The estimators defined in this paper share the same constraint
‖Ξ−1X ′ (Y − Xβ)‖∞ ≤ s where s > 0 is a tuning parameter to be specified later. Let
us call this constraint the Dantzig Constraint (DC(s)), as it appears in the definition
of the Dantzig selector [7] when ξj = 1. This constraint consists in a threshold on
the correlation between a covariate Xj , j ∈ {1, . . . , p} and the residual Y −Xβ. Let
us define the set:

DC(s) = {β ∈ Rp :
∥

∥Ξ−1X ′ (Y − Xβ)
∥

∥

∞
≤ s}, (2)

where s > 0 is a tuning parameter depending in n and p to be specified later. This
set is also interpreted as a confidence region for β∗ [1] and produce a geometrical
motivation for the study of the following estimators:

Program I: β̂ = Argmin
β∈DC(s)

‖Zβ‖2
2, (3)

Program II: β̃ = Argmin
β∈DC(s)

‖ΞPβ‖1, (4)

where Z ∈ R
m×p with m ∈ N and DC(s) is the Dantzig Constraint given by (2). For

unicity reasons, Let us assume from now on the following condition:

− Kernel condition. The matrix Z is such that ker Z = ker X.

The connection between the estimators β̂ and β̃ defined respectively in (3) and (4)
is made in the following way. The Kernel condition implies1 that there exists an
invertible matrix P ∈ R

p×p such that

(X ′X)P = (Z ′Z). (5)

When this matrix P coincides with the matrix P used in the definition of β̃ in (4),
Program I and Program II will produce estimators that are roughly equivalent.
In this paper, both of the solutions β̂ and β̃ are used to predict Zβ∗ whenever Pβ∗

is sparse.

1See the section dedicated to proofs, more precisely Section 6.1 page 16 for a proof.
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Sketch of main results and technical tools. Most of the results which are
stated here rely on the exploitation sparsity index ‖Pβ∗‖0, under assumptions on a
symmetric matrix W , defined2 such that

(Z ′Z)W (X ′X) = (X ′X). (6)

In the sequel, in the high dimensional case (when p ≫ n) and under the sparsity as-
sumption ‖Pβ∗‖0 ≪ p, we respond mainly to three objectives described in Section 1.
Here is a sketch of main results:
Goal 1 - Prediction: To ensure to reconstruction of Zβ∗, we prove that, with high
probability, ‖Zβ − Zβ∗‖2

2 ≤ C log (p) ‖Pβ∗‖0 where C is a positive constant and β

is either β̂ or β̃ defined in (3) and (4) respectively.
Goal 2 - Estimation: We hope that the solution β (with β is either β̂ or β̃ defined
in (3) and (4) respectively) is such that Pβ is close to Pβ∗. We state that with high
probability ‖Pβ − Pβ∗‖1 ≤ C

√

log (p)/n ‖Pβ∗‖0 where C is a positive constant.
Goal 3 - Selection: Variable selection consistency seems less interesting in our study
as soon as P 6= Ip. However, we set that with high probability ‖Pβ − Pβ∗‖∞ ≤
C
√

log (p)/n where C is a positive constant. One then can easily provide variable
selection consistency results using such an inequality.
The results stated in the present paper can be interpret as Sparsity Inequalities (SIs),
bounds which depend on the oracle vector β∗ through the sparsity index ‖Pβ∗‖0.
Furthermore, let us mention that one technical argument to provide our result is
based on a dual form of Program I: given X, Z and β∗, the relation (5) permits us
to introduce Γ, defined as

Γ = {γ ∈ R
p : X ′Xγ = Z ′Zβ∗}.

This set consists of all vectors γ which belong to the space in which the transformation
of β∗ is sparse. Intuitively we can define the sparsest vector in Γ by

γ∗ ∈ Argmax
γ∈Γ

Card {j ∈ {1, ..., p}, γj = 0} = Argmax
γ∈Γ

‖γ‖0 . (7)

As the matrix P is invertible, denote β∗∗ ∈ Rp the vector such that β∗∗ = P−1γ∗ and
consequently, we have ‖γ∗‖0 = ‖Pβ∗∗‖0, the sparsity index. Because of the Kernel
condition, we have3 Zβ∗ = Zβ∗∗. Then estimating β∗∗ instead of β∗ does not affect
the prediction objective Goal 1. From now on, for the sake of simplicity, let Pj

denote the j-th column of P , so we can write, for any j ∈ {1, ..., p}: γ∗
j = Pjβ

∗∗.

2Here again, the existence of such a W is given in Section 6.1.
3See Section 6.1.
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One of the main points in the proofs is to link the study of Program I, with the
study of

Program I-Dual γ̂ = Argmin
γ∈Rp

{

‖Y − Xγ‖2
2 + 2s ‖Ξγ‖1 + γ′Mγ

}

, (8)

for some matrix M ∈ R
p×p related to Z. An explicit form of M will be provided in

Section 3.2. Here again, note the form of the program when ξj = 1 for j = 1, . . . , p:

Argmin
γ∈Rp

{

‖Y − Xγ‖2
2 + 2s ‖γ‖1 + γ′Mγ

}

.

In this paper we present two applications based on the sparsity induced by the trans-
formation Pβ. We consider in Section 4.1 the Correlation Selector introduced in [1].
We also consider the Transductive LASSO. In such a case, one choice for Z may be
the unlabeled dataset (More details are given in Section 4.2).

Links with related programs. In previous works (Osborne et al. [19], Alquier
[1]), it is proved that, in the normalized case ξj = 1, j = 1, . . . , p, the following
program







Argminβ∈Rp ‖Xβ‖2
2

s.t. ‖X ′ (Y − Xβ)‖∞ ≤ s,

for an s > 0 is roughly equivalent to the LASSO [20]. The generalized Programs I

and II proposed in this paper extend the study of the program above to other norms
and objective functions to be minimized (that is ‖Xβ‖2

2 is replaced by ‖Zβ‖2
2 or

by ‖ΞPβ‖1). Note that in a larger perspective, one may consider the more general
program







Argminβ∈Rp ‖Mβ‖q
q

s.t. ‖Ξ−1X ′ (Y − Xβ)‖∞ ≤ s,
(9)

where q ∈ R+ and M is a matrix in R
m×p and m ∈ N. In [1], when ξj = 1,

another particular member of the family (4) is introduced, corresponding to Z = X ′X
or equivalently to P = X ′X, and studied under the name ”Correlation Selector”.
However, its study was restricted to the estimation objective Goal 1.

3 Main results

In this section we state all the theoretical results according to the solutions of Pro-

gram I and Program II. We start with presenting different assumptions used
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through the paper in Section 3.1. This is the occasion to compare our hypothe-
sis with the ones already used in the previous works mentioned above. Then, we
study the performance of the estimators β̂ and β̃ defined by Programs I and II

respectively. We also relate the solutions of Programs I to those of Program I-

Dual thanks to a link between Z and M (Section 3.2). This remark is useful to
study the estimation of Zβ∗ under the assumption that γ∗ = Pβ∗∗ is sparse: in
Section 3.3, using techniques from Tsybakov and al. [6], we prove that the solutions
of Program I-Dual satisfy some sparsity inequalities (SIs), and we deduce SIs for
β̂ and β̃. In Section 3.4 we prove SIs for the solutions of Program II.

3.1 Assumptions

We present here the assumptions we need to state the Sparsity Inequalities provided
in Sections 3.3 and 3.4. Note that they essentially involve the matrix Ω defined as
follows:

Ω =
1

n
(X ′X)W (X ′X). (10)

We denote by Ωj,k, the (j, k) coefficient of Ω. We just remind that the definition
of Ω involves the matrix W , given by (6). Using this notation we introduce the
assumptions with more precision. The first assumption is used to respond to the
prediction Goal 1 and estimation Goal 2 objectives.

− Assumption (A1). There is a constant c > 0 such that, for any α ∈ Rp such
that

∑

j:γ∗
j =0

ξ
1

2

j |αj| ≤ 3
∑

j:γ∗
j 6=0

ξ
1

2

j |αj | ,

where γ∗ is given by (7), we have

∑

j:γ∗
j 6=0

α2
j ≤ cα′Ωα. (11)

When we deal with variable selection Goal 3, we replace Assumption (A1) by the
following:

− Assumption (A2). Let us assume that , for any j ∈ {1, ..., p}, ξj = 1 and that

ρ = sup
j∈{1,...,p}

sup
k 6=j

|Ωj,k| ≤
infγ∗

j 6=0 Ωj,j

14‖γ∗‖0
. (12)
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We now give some comments about the assumptions. First, note that both of these
assumptions are modifications of the well-known mutual coherence condition intro-
duced by Donoho et al. [10] - but the mutual coherence condition is about the Gram
matrix n−1X ′X while the assumptions presented here involve the matrix Ω. As-
sumption (A2) is closer to the mutual coherence condition than Assumption (A1).
It is also more restrictive. For a selection purpose Goal 3, the mutual coherence
assumption is used in [15]. Moreover Assumption (A1) can be seen as a modification
of more general assumptions that can be found in [3, 4, 5, 6]. For example, using a
slight modification of a proof given in [3], we can prove the following result.

Lemma 1. Assumption (A2) ⇒ Assumption (A1) with constant c = 2
infγ∗

j
6=0

Ωj,j
.

For the sake of completeness, the proof is given in Section 6 in its full length. It
is known that in the high dimensional case (p ≫ n), such assumptions are hard to
relax when the considered estimators are solution of a convex minimization problem
as in (3) and (4); see [3] and [6, Remarks 4 and 5] for other comments on that topic.
In the case where n ≥ p, if Z ′Z and X ′X are ”reasonable” matrices, then we can
find a constant c such that, for any α ∈ Rp, α′α ≤ cα′Ωα. Of course, this implies
that Assumption (A1) is satisfied with this specific choice of the constant c.

3.2 Dual form of Program I

Let us put
M = (X ′X)W (X ′X) − (X ′X), (13)

where W is given by (6).

Theorem 1. All the solutions β̂ of Program I







Argminβ∈Rp ‖Zβ‖2
2

s.t. ‖Ξ−1X ′ (Y − Xβ)‖∞ ≤ s

are given by (Z ′Z)β̂ = (X ′X)γ̂ where γ̂ is any solution of Program I-Dual:

Argmin
γ∈Rp

{

‖Y − Xγ‖2
2 + 2s ‖Ξγ‖1 + γ′Mγ

}

,

with M given by (13). Moreover, when γ̂ is unique, all the solutions of Program I

give the same value Xβ̂ and also the same value Zβ̂.
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The proof is given in Section 6. Note that, taking Z = X gives M = 0 and allows
the choice P = Ip. So, γ̂ is a solution the the LASSO program and we can take

β̂ = γ̂. Theorem 1 can be seen as a generalization of the dual form of the LASSO
given in [19].

3.3 Sparse inequalities and sup-norm bound for Program I

In this section, we provide sparse inequalities (SIs) and a sup-norm bound for Pro-

gram I. First Theorem 2 provides bounds on the squared error (corresponding to
Goal 1) and to the distance between the estimated and true parameters (corre-
sponding to Goal 2). The main key is to use the sparsity index ‖γ∗‖0 = ‖Pβ∗∗‖0

where γ∗ is given by (7).

Theorem 2. Let us consider the linear regression model (1). Let γ̂ be any solution
of the the quadratic Program I-Dual. Let β̂ = P−1γ̂, so by Theorem 1, β̂ is a
solution of Program I. Let us choose κ > 2

√
2 and s = κσ

√

n log(p). Under

Assumption (A1), with probability larger than 1 − p1−κ2

8 , we have

∥

∥

∥
Z(β̂ − β∗∗)

∥

∥

∥

2

2
=
∥

∥

∥
Z(β̂ − β∗)

∥

∥

∥

2

2
≤ 16cκ2σ2 log(p)

∑

Pjβ∗∗ 6=0

ξj, (14)

and

‖Ξ (γ̂ − γ∗)‖1 =
∥

∥

∥
ΞP

(

β̂ − β∗
)∥

∥

∥

1
≤ 16cκσ

√

log(p)

n

∑

Pjβ∗∗ 6=0

ξj. (15)

The proof of this result can be found in Section 6.

Corollary 3.1. Under the conditions of Theorem 2, if we moreover assume that
the matrix X is normalized in order to have ξj = 1 for any j, then we have, with

probability larger than 1 − p1−κ2

8 ,

∥

∥

∥
Z(β̂ − β∗)

∥

∥

∥

2

2
≤ 16cκ2σ2 log(p) ‖Pβ∗∗‖0 , (16)

and
∥

∥

∥
P
(

β̂ − β∗∗
)∥

∥

∥

1
≤ 16cκσ

√

log(p)

n
‖Pβ∗∗‖0 . (17)

Theorem 2 and its corollary state that with high probability, we can consistently
perform prediction Goal 1 and estimation Goal 2, exploiting the sparsity of the
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projected β∗, that is γ∗ = Pβ∗∗. Note that the obtained rates are near optimal up
to a logarithmic factor. Indeed, in our setting, it is proved in [5, Theorem 5.1] that
the optimal rate for the l2 risk (16) is log ( p

‖Pβ∗∗‖
0

+ 1) ‖Pβ∗∗‖0.

We provide now a bound on the sup-norm ‖γ∗− γ̂‖∞. As described in Remark 1,
such a result would help us to easily get an estimator of γ∗ which is consistent in
variable selection Goal 3. That is, an estimator which succeed to recover the true
support of γ∗, the sparse projection of β∗.

Theorem 3. Let us consider the linear regression model (1). Let γ̂ be any solution of
the quadratic Program I-Dual. Let us choose κ > 2

√
2 and s = κσ

√

n log(p). Un-

der Assumption (A2), with probability larger than 1− p1−κ2

8 , we have simultaneously
Inequalities (16), (17) and

‖γ̂ − γ∗‖∞ ≤ 3κσ

inf1≤j≤p Ωj,j

√

log(p)

n
. (18)

The proof of this result can be found in Section 6. Note also that these results
generalize the results obtained in [4, 6, 15] as the LASSO can be seen as special cases
of our estimator.

3.4 Sparsity Inequalities and sup-norm bound for Program II

For readability, let us recall Program II:







Argminβ∈Rp ‖ΞPβ‖1

s.t. ‖Ξ−1X ′ (Y − Xβ)‖∞ ≤ s.

Here again we want to estimate Zβ∗ = Zβ∗∗ when Pβ∗∗ is assumed to be sparse (as
in Theorem 2). In such a context, analog results to those obtained in Section 3.3 can
be obtained. First we state:

Theorem 4. Let us assume that Assumption (A1) is satisfied. Let β̃ be a solution
of Program II. Let us choose κ > 2

√
2 and s = κσ

√

n log(p). Then with probability

larger than 1 − p1−κ2

8 , we have

∥

∥

∥
Z(β̃ − β∗)

∥

∥

∥

2

2
≤ 9cκ2σ2 log(p)

∑

Pjβ∗∗ 6=0

ξj,
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and
∥

∥

∥
ΞP

(

β̃ − β∗∗
)∥

∥

∥

1
≤ 6cκσ

√

log(p)

n

∑

Pjβ∗∗ 6=0

ξj.

The proof is given in Section 6. In the same way as for the solution of Program I,
we can provide an analog to Theorem 3.

Theorem 5. With the notations of the previous theorem, under Assumption (A2),
if we moreover assume that the matrix X is normalized in order to have ξj = 1 for

any j, with probability greater than 1 − p1−κ2

8 , we have simultaneously

∥

∥

∥
Z(β̃ − β∗)

∥

∥

∥

2

2
≤ 9cκ2σ2 log(p) ‖Pβ∗∗‖0 ,

∥

∥

∥
P
(

β̃ − β∗∗
)∥

∥

∥

1
≤ 6cκσ

√

log(p)

n
‖Pβ∗∗‖0 ,

and
∥

∥

∥
P
(

β̃ − β∗∗
)∥

∥

∥

∞
≤ 2κσ

inf1≤j≤p Ωj,j

√

log(p)

n
.

Note that these results generalize the results obtained in [3, 15] as the Dantzig
selector can be seen as special cases of our estimator.

Remark 1. Thanks to Theorems 3 and 5, we can easily construct a sign-consistent
estimator (an estimator γ of the vector γ∗ given by (7) such that it shares asymptot-
ically and in probability, not only the same support (sparsity set) but also the same
sign of its components with γ∗). This estimator γ is defined as a thresholded version
of γ̂ where γ̂ is either solution of Program I or is equal to P β̃ with β̃ solution of
Program II. The threshold used is respectively equal to the bound in the sup-norm
result appearing in Theorem 3 and 5. Some more technical tools to establish the result
are needed and we refer to [4, 15] for more details.

4 Applications

We present in this section two applications of the estimators considered in the pre-
vious sections.
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4.1 The Correlation Selector

In [1], an estimator is introduced for the case where most of the Xj ’s have a null
correlation with Y while we think that all together, these covariates can provide a
good prevision for Y : namely, we assume that the (X ′X)β∗ is sparse.

Here (in this subsection only), let us assume that (X ′X) is invertible - this implies
that p ≤ n. Let us also assume that X is normalized, so ξj = 1 for any j. Then,
if we take Z = (X ′X) then we can take P = (X ′X) too and Ω = Ip/n, this means
that Assumptions (A1) and (A2) are satisfied in any case. So, Program I involves
the minimization of ‖(X ′X)β‖2

2 while Program II involves the minimization of
‖(X ′X)β‖1. Actually, it is proved in [1] that the estimator defined by

β̂CS =







Argminβ∈Rp ‖(X ′X)β‖q
q

s.t. ‖X ′ (Y − Xβ)‖∞ ≤ s

for any q ≥ 1 does not depend on q. An application of Theorem 5 gives, with

probability greater than 1 − n1−κ2

8 ,
∥

∥

∥

∥

X ′X

n
(β̂CS − β∗)

∥

∥

∥

∥

2

2

≤ 9κ2σ2 log(p)

n
‖(X ′X)β∗‖0 , (19)

∥

∥

∥

∥

X ′X

n

(

β̂CS − β∗
)

∥

∥

∥

∥

1

≤ 6κσ

√

log(p)

n
‖(X ′X)β∗‖0 ,

and
∥

∥

∥

∥

X ′X

n

(

β̂CS − β∗
)

∥

∥

∥

∥

∞

≤ 2κσ

√

log(p)

n
.

Note that Inequality (19) was already proved in [1], but that the proof in [1]
could not be extended to the cases of the ℓ1-norm and ℓ∞-norm. However, the proof
in [1] allows to extend Inequality (19) to the case where p ≥ n without hypothesis;
here, Ω = I/n would not be possible in this case and so we would have additional
hypothesis.

Finally, notice that Inequality (19) does not involve a natural norm. However,
adding one more hypothesis, we obtain the following result.

Corollary 4.1. Let us assume that there is a ζ > 0 such that ζ(X ′X)/n − Ip is

definite positive. Then we have, with probability larger than 1 − n1−κ2

8 ,
∥

∥

∥
X(β̂CS − β∗)

∥

∥

∥

2

2
≤ 9ζκ2σ2 log(p) ‖(X ′X)β∗‖0 .
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4.2 The transductive LASSO

By an application of Theorem 1, the equivalence between Program I, applied with
and Z = X, and the LASSO, is clear. However, Theorem 2 allows to extend the
LASSO to the so-called transductive setting introduced by Vapnik [22].

In this setting, we have Y = Xβ
∗
+ε where X is a matrix containing the observa-

tion vectors xi and β
∗

is ”sparse”. However, we are not interested in the estimation
of β

∗
or Xβ

∗
: we have another set of m points - say xn+1,. . . , xn+m. We choose

Z = (x′
n+1, . . . , x

′
n+m)′,

satisfying ker Z = ker X and so the objective is the estimation of Zβ
∗
, that is the

prediction of the value of the regression function on a particular set of points. We
have also P such that X

′
XP = Z

′
Z and W such that (Z

′
Z)W (X

′
X) = (X

′
X).

It is argued in Vapnik [22] that in this setting, a bound on the general perfor-
mances of an estimator of β

∗
is (often) useless and that the statistician should focus

on a particular method to estimate Zβ
∗
, that can be easier.

Note that a direct application of Theorem 2 (for example) would lead to an
unsatisfying result as it would not assume that β

∗
is sparse, but Pβ

∗
. The problem

can be solved in the following way. Note that

Y = Xβ
∗
+ ε = (XP )(P

−1
β
∗
) + ε = Xβ∗ + ε

where we put X = XP , β∗ = P
−1

β
∗
, and

Zβ
∗

= (ZP )(P
−1

β
∗
) = Zβ∗

where Z = ZP . Note that the choice W = P
−1

W (P
−1

)′ satisfies (Z ′Z)W (X ′X) =
(X ′X).

Note that ξj will still denote the j-th diagonal element of X ′X/n. When we apply
Theorem 2 to this setting, we have to make hypothesis about

Ω =
1

n
(X ′X)W (X ′X) =

1

n
P

′
(X

′
X)PP

−1
W (P

−1
)′P

′
(X

′
X)P

=
1

n
P

′
(X

′
X)W (X

′
X)P =

1

n
(Z

′
Z).

So we will not need any assumption about X!

Corollary 4.2. Let us assume that there is a constant c > 0 such that, for any
α ∈ Rp satisfying

∑

j:γ∗
j
=0 |αj| ≤ 2

∑

j:γ∗
j
6=0 |αj |, we have

α′α ≤ c

n
α′(Z

′
Z)α.
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Let β̂ be any solution of the the quadratic program







Argminβ∈Rp ‖Zβ‖2
2

s.t. ‖Ξ−1X ′ (Y − Xβ)‖∞ ≤ s

and let 4 β̃ = P β̂. Let us choose κ > 2
√

2 and s = κσ
√

n log(p). Then with

probability greater than 1− p1−κ2

8 , we have the total error on the prevision of xn+iβ
∗

for 1 ≤ i ≤ n that is given by

∥

∥

∥
Z(β̃ − β

∗
)
∥

∥

∥

2

2
≤ 16cκ2σ2 log(p)

∑

β
∗
6=0

ξj.

Note that in the theorems about LASSO, there are always hypothesis about the
matrix X that is given to the statistician. Here, the only hypothesis is about Z that
is chosen by the statistician. For example, if Z

′
Z is not enough well conditioned,

it is possible to ”add vectors” in Z, namely, to choose a larger m. This is a real
improvement. However, there is a price to pay for this improvement, as explained
now.
Remark that the matrix Z is not normalized. If one is to impose such a normalization,
the more natural thing to do is to impose that the diagonal elements of Z

′
Z are

constant. But in this case, one can check that (in general) it is no longer possible to
normalize X in such a way that ξj = 1 for any j. So, without any assumption about
a link between Z and X that would allow to have more information on X, it is not
possible to control

∑

β
∗
6=0 ξj by ‖β∗‖0.

5 Conclusion

Based on a geometrical remark in [1], we studied the family of estimators defined by







Argminβ∈Rp ‖Mβ‖q
q

s.t. ‖Ξ−1X ′ (Y − Xβ)‖∞ ≤ s,
4Equivalently, we could define

β̃ = arg min
β

{

−2Y ′Xβ + β′Z
′

Zβ + 2s ‖Ξβ‖
1

}

.
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that includes the LASSO, the Dantzig Selector, the Correlation Selector and the
transductive LASSO in some particular cases: q = 1 and q = 2 for a quite general
matrix M, and q ≥ 1 for the particular case M = (X ′X).

Future works could include the theoretical study of our estimator for a general
matrix M and q /∈ {1, 2}, as well as an extension of the LARS algorithm to compute
efficiently the solutions of Program (3) and (4).

6 Proofs

6.1 Basic algebra results

In this subsection, we prove the basic algebra results claimed in the introduction.

Proof that the kernel condition implies the existence of P . As (Z ′Z) is symmetric, we
can diagonalize it in an orthogonal basis, given by a matrix Q: there is a q ∈ {0, ..., p}
and λ1, ..., λq > 0 with

(Z ′Z) = Q′

(

D 0
0 0

)

Q, with D =







λ1 . . . 0
...

. . .
...

0 . . . λq






.

Remark also that this implies that Ker(Z ′Z) ⊥ Im(Z ′Z). Now, remark that the
kernel condition implies that Ker(X ′X) = Ker(Z ′Z) and, because (X ′X) is sym-
metric, we have Ker(X ′X) ⊥ Im(X ′X). This implies that Im(Z ′Z) = Im(X ′X).
So, (X ′X) can be ”partially diagonalized” in the basis Q, in the sense that

(X ′X) = Q′

(

B 0
0 0

)

Q

where B is some invertible q × q matrix. Now, let us put

P = Q′

(

B−1D 0
0 Ip−q

)

Q.

We can easily check that P is invertible and that

(X ′X)P = Q′

(

B 0
0 0

)

QQ′

(

B−1D 0
0 Ip−q

)

Q = Q′

(

D 0
0 0

)

Q = (Z ′Z).
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Proof of the existence of W . This proof uses the same arguments, we just put

W = Q′

(

D−1 0
0 Ip−q

)

Q

and we check that (Z ′Z)W (X ′X) = (X ′X) and that W is symmetric.

Proof that Zβ∗ = Zβ∗∗. We have (Z ′Z)β∗ = (X ′X)γ∗ = (Z ′Z)β∗∗ by definition. So
(Z ′Z)(β∗−β∗∗) = 0 and so (β∗−β∗∗)′(Z ′Z)(β∗−β∗∗) = 0 that leads to Z(β∗−β∗∗) =
0.

6.2 Proof of Theorem 1

Proof. Let us remark that Program I can be written






minβ∈Rp β(Z ′Z)β

s. t. ‖Ξ−1X ′(Y − Xβ)‖+∞ ≤ s
(20)

Let us write the Lagrangian of this program:

L(β, λ, µ) = β(Z ′Z)β + λ′Ξ−1 [X ′(Xβ − Y ) − sE] + µ′Ξ−1 [X ′(Y − Xβ) − sE]

with E = (1, ..., 1)′, and for any j, λj ≥ 0, µj ≥ 0 and λjµj = 0. Any solution
β = β(λ, µ) of Program I must satisfy

0 =
∂L
∂β

(β, λ, µ) = 2β ′(Z ′Z) + (λ − µ)′Ξ−1(X ′X),

so

(Z ′Z)β = (X ′X)
1

2
Ξ−1(µ − λ).

Note that the conditions λj ≥ 0, µj ≥ 0 and λjµj = 0 means that there is a γj ∈ R
such that γj = ξ

1

2

j (µj − λj)/2, |γj| = ξ
1

2

j (λj + µj)/2, and so λj = 2(γj/ξ
1

2

j )− and

µj = 2(γj/ξ
1

2

j )+, where (a)+ = max(a; 0) and (a)− = max(−a; 0). Let also γ denote
the vector which j-th component is exactly γj, we obtain:

(Z ′Z)β = (X ′X)γ. (21)

Note that this also implies that:

β′(Z ′Z)β = β ′(X ′X)γ = β ′(Z ′Z)W (X ′X)γ = γ′(X ′X)W (X ′X)γ.
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Using these relations, the Lagrangian may be written:

L(β, λ, µ) = γ′(X ′X)W (X ′X)γ + 2γ′X ′Y − 2γ′(X ′X)β − 2s

p
∑

j=1

ξ
1

2

j |γj|

= 2γ′X ′Y − γ′(X ′X)W (X ′X)γ − 2s ‖Ξγ‖1

Note that λ and β, and so γ, should maximize this value. Hence, γ is to minimize

−2γ′X ′Y + γ′(X ′X)W (X ′X)γ + 2s‖Ξγ‖1 + Y ′Y

Now, note that
Y ′Y − 2γ′X ′Y = ‖Y − Xγ‖2

2 − γ′(X ′X)γ

and then γ is also to minimize

‖Y − Xγ‖2
2 + 2s ‖Ξγ‖1 + γ′ [(X ′X) − (X ′X)W (X ′X)] γ,

what is claimed in the theorem. Let γ denote a solution of this program. Equa-
tion (21) implies that if β is a solution of Program I then (Z ′Z)β = (X ′X)γ. Let

β we another solution of Program I, note that we also have (Z ′Z)β = (X ′X)γ.

Then (Z ′Z)(β − β) = 0 so (β − β) belongs to ker Z and so to ker X. This ends the
proof.

6.3 Proof of Lemma 1

Proof. Remember that Assumption (A2) implies among others that ξj = 1 for any
j. Let α ∈ Rp satisfy:

∑

j:γ∗
j
=0 |αj| ≤ 3

∑

j:γ∗
j
6=0 |αj |. We have:

α′Ωα =
∑

j:γ∗
j 6=0

Ωj,jα
2
j +

∑

j:γ∗
j =0

∑

k:γ∗
k
=0

Ωj,kαjαk

+2
∑

j:γ∗
j 6=0

∑

k:γ∗
k
=0

Ωj,kαjαk +
∑

j:γ∗
j 6=0

∑

k: γ∗
k
6=0

k 6=j

Ωj,kαkαj

≥
∑

j:γ∗
j 6=0

Ωj,jα
2
j + 2

∑

j:γ∗
j 6=0

∑

k:γ∗
k
=0

Ωj,kαjαk +
∑

j:γ∗
j 6=0

∑

k: γ∗
k
6=0

k 6=j

Ωj,kαjαk.

So we have
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∑

j:γ∗
j 6=0

Ωj,jα
2
j ≤ α′Ωα − 2

∑

j:γ∗
j 6=0

∑

k:γ∗
k
=0

Ωj,kαjαk −
∑

j:γ∗
j 6=0

∑

k: γ∗
k
6=0

k 6=j

Ωj,kαjαk

≤ α′Ωα +

(

sup
γ∗

j 6=0
sup
k 6=j

|Ωj,k|
)[

2

(

∑

γ∗
j 6=0

|αj|
)(

∑

γ∗
k
=0

|αk|
)

+

(

∑

γ∗
j 6=0

|αj |
)2]

≤ α′Ωα + 7

(

sup
γ∗

j 6=0
sup
k 6=j

|Ωj,k|
)(

∑

γ∗
j 6=0

|αj |
)2

= α′Ωα + 7ρ

(

∑

γ∗
j 6=0

|αj|
)2

. (22)

On the other hand, using the Cauchy-Schwarz inequality, we have
(

∑

γ∗
j 6=0

|αj|
)2

≤ ‖γ∗‖0

∑

γ∗
j 6=0

α2
j ≤ ‖γ∗‖0

infγ∗
j 6=0 Ωj,j

∑

γ∗
j 6=0

Ωj,jα
2
j . (23)

Combining (22) and (23), we obtain

∑

j:γ∗
j 6=0

Ωj,jα
2
j ≤ 1

1 − 7 ‖γ∗‖0

infγ∗
j
6=0 Ωj,j

ρ
α′Ωα.

Now, remember that we assumed that

ρ ≤
infγ∗

j 6=0 Ωj,j

14‖γ∗‖0

by hypothesis and we conclude by

∑

γ∗
j 6=0

α2
j ≤

1

infγ∗
j 6=0 Ωj,j

∑

j:γ∗
j 6=0

Ωj,jα
2
j ≤ 2α′Ωα

infγ∗
j 6=0 Ωj,j

.

6.4 A useful Lemma

Lemma 2. Let Λn,p be the random event defined by

Λn,p =
{

∀j ∈ {1, ..., p}, 2|Vj| ≤ sξ
1

2

j

}

, (24)

where Vj =
∑n

i=1 xi,jεi. Let us choose a κ > 2
√

2 and s = κσ
√

n log(p). Then

P (Λn,p) ≥ 1 − p1−κ2

8 .
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Proof. Remember that ξj = 1
n

∑n
i=1 x2

i,j. Since Vj =
∑n

i=1 xi,jεi ∼ N (0, nξjσ
2), an

elementary Gaussian inequality gives

P

(

max
l=1,...,p

s−1ξ
− 1

2

j |Vl| ≥ 2−1

)

≤ p max
l=1,...,p

P

(

s−1ξ
− 1

2

j |Vl| ≥ 2−1
)

≤ p exp
(

−κ2 log(p)/8
)

= p1−κ2/8.

This ends the proof.

6.5 Proof of Theorem 2

The proof follows the technique used by Tsybakov and al. [6]. We begin by a pre-
liminary lemma. Lemma 3 below provides an upper bound for the squared error of
the estimator γ̂ which takes into account the sparsity of γ∗.

Lemma 3. Let us consider the regression model (1). Let γ̂ be a solution of Pro-
gram (8). Let us assume that Λn,p, the event defined in Lemma 2, is satisfied. Then

∥

∥

∥
Z(β̂ − β∗)

∥

∥

∥

2

2
+ s ‖Ξ(γ̂ − γ∗)‖1 ≤ 4s

∑

j:γ∗
j
6=0

ξ
1

2

j

∣

∣γ̂j − γ∗
j

∣

∣ . (25)

The proof of this result is based on the ’argmin’ definition of γ̂ and some technical
inequalities.

Proof of Lemma 3. Let us remember the criterion (8):

Argmin
γ∈Rp

{

‖Y − Xγ‖2
2 + 2s ‖Ξγ‖1 + γ′Mγ

}

with Y = Xβ∗ + ε and M is given by (13). First, let us prove that Xβ∗ =
XW (X ′X)γ∗, we start from the relation

(Z ′Z)β∗ = (X ′X)γ∗ = (Z ′Z)W (X ′X)γ∗

so β∗ − W (X ′X)γ∗ ∈ ker(Z ′Z) = ker Z = ker X and then Xβ∗ = XW (X ′X)γ∗.
Therefore we have

‖Y − Xγ‖2
2 = ‖XW (X ′X)γ∗ − Xγ + ε‖2

2

= ‖X[W (X ′X) − Ip]γ
∗ + X(γ∗ − γ) + ε‖2

2
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= (γ∗)′[(X ′X)W − Ip](X
′X)[W (X ′X) − Ip]γ∗ + ‖Xγ∗ − Xγ‖2

2

+ ‖ε‖2
2 + 2

{

(γ∗)′[(X ′X)W − Ip](X
′X)(γ∗ − γ)

+ ε′X[W (X ′X) − Ip)γ
∗ + ε′X(γ∗ − γ)

}

.

Then, since M = (X ′X)W (X ′X) − (X ′X), we have

Argmin
γ∈Rp

{

‖Y − Xγ‖2
2 + 2s ‖Ξγ‖1 + γ′Mγ

}

= Argmin
γ∈Rp

{

‖Xγ∗ − Xγ‖2
2 + 2s ‖Ξγ‖1 + γ′Mγ − 2ε′Xγ + 2(γ∗)′M(γ∗ − γ)

}

.

Using now the definition of γ̂ and we obtain that for any γ ∈ R
p, we have

‖Xγ̂ − Xγ∗‖2
2 − 2

n
∑

i=1

εixiγ̂ + 2s ‖Ξγ̂‖1 + 2(γ∗)′M(γ∗ − γ̂) + γ̂′Mγ̂

≤ ‖Xγ − Xγ∗‖2
2 − 2

n
∑

i=1

εixiγ + 2s ‖Ξγ‖1 + 2(γ∗)′M(γ∗ − γ) + γ′Mγ.

Therefore, if we chose γ = γ∗, we obtain the following inequalities:

‖X(γ̂ − γ∗)‖2
2 ≤ 2s

p
∑

j=1

ξ
1

2

j

(∣

∣γ∗
j

∣

∣− |γ̂j |
)

+ 2

n
∑

i=1

εixi(γ̂ − γ∗)

+
[

(γ∗)′Mγ∗ − γ̂′Mγ̂ − 2(γ∗)′M(γ∗ − γ̂)
]

≤ 2s

p
∑

j=1

ξ
1

2

j

(∣

∣γ∗
j

∣

∣− |γ̂j |
)

+ 2

n
∑

i=1

εixi(γ̂ − γ∗)

−(γ∗ − γ̂)′M(γ∗ − γ̂). (26)

As a consequence, replacing M by its definition we obtain

(γ∗ − γ̂)′(X ′X)W (X ′X)(γ∗ − γ̂) ≤ 2s

p
∑

j=1

ξ
1

2

j

(

|γ∗
j | − |γ̂j|

)

+ 2

n
∑

i=1

εixi(γ̂ − γ∗).

Note that

(γ∗ − γ̂)′(X ′X)W (X ′X)(γ∗ − γ̂) = (β∗ − β̂)′(Z ′Z)W (X ′X)(γ∗ − γ̂)
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= (β∗ − β̂)′(X ′X)(γ∗ − γ̂) = (β∗ − β̂)′(Z ′Z)(β∗ − β̂), (27)

then our bound so far is

∥

∥

∥
Z(β̂ − β∗)

∥

∥

∥

2

2
≤ 2s

p
∑

j=1

ξ
1

2

j

(

|γ∗
j | − |γ̂j|

)

+ 2

n
∑

i=1

εixi(γ̂ − γ∗). (28)

Moreover, on the event Λn,p, we have

2

n
∑

i=1

εixi (γ̂ − γ∗) = 2

p
∑

j=1

Vj

(

γ̂j − γ∗
j

)

≤
p
∑

j=1

sξ
1

2

j

∣

∣γ̂j − γ∗
j

∣

∣ . (29)

It follows from (28) and (29) that

∥

∥

∥
Z(β̂ − β∗)

∥

∥

∥

2

2
+ s

p
∑

j=1

ξ
1

2

j

∣

∣γ̂j − γ∗
j

∣

∣ ≤ 2s

p
∑

j=1

ξ
1

2

j

∣

∣γ̂j − γ∗
j

∣

∣ + 2s

p
∑

j=1

ξ
1

2

j |γ∗
j | − 2s

p
∑

j=1

ξ
1

2

j |γ̂j|

≤ 2s
∑

j:γ∗
j 6=0

ξ
1

2

j

∣

∣γ̂j − γ∗
j

∣

∣+ 2s
∑

γ∗
j 6=0

ξ
1

2

j

(

|γ∗
j | − |γ̂j|

)

≤ 4s
∑

j:γ∗
j 6=0

ξ
1

2

j

∣

∣γ̂j − γ∗
j

∣

∣ .

This is the result claimed in the lemma.

We are now ready to give the

Proof of Theorem 2. We apply Lemmas 2 and 3 and state that Inequality (25)

∥

∥

∥
Z(β̂ − β∗)

∥

∥

∥

2

2
+ s

p
∑

j=1

ξ
1

2

j

∣

∣γ̂j − γ∗
j

∣

∣ ≤ 4s
∑

j:γ∗
j 6=0

ξ
1

2

j

∣

∣γ̂j − γ∗
j

∣

∣ .

holds with probability at least 1 − p1−κ2

8 . This equation implies in particular that

∑

j:γ∗
j =0

ξ
1

2

j

∣

∣γ̂j − γ∗
j

∣

∣ ≤ 3
∑

j:γ∗
j 6=0

ξ
1

2

j

∣

∣γ̂j − γ∗
j

∣

∣ ,

then taking α = γ̂ − γ∗ in Assumption (A1), we obtain
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∥

∥

∥
Z(β̂ − β∗)

∥

∥

∥

2

2
+ s

p
∑

j=1

ξ
1

2

j

∣

∣γ̂j − γ∗
j

∣

∣ ≤ 4s

√

√

√

√

√





∑

γ∗
j 6=0

ξj









∑

γ∗
j 6=0

(

γ̂j − γ∗
j

)2





≤ 4s

√

√

√

√

√





∑

γ∗
j 6=0

ξj





c

n
(γ̂ − γ∗)′Ω(γ̂ − γ∗) = 4s

√

√

√

√

√





∑

γ∗
j 6=0

ξj





c

n
‖Z(β̂ − β∗)‖2

2,

where we used (27) in the last equality. As a consequence,

∥

∥

∥
Z(β̂ − β∗)

∥

∥

∥

2
≤ 4s

√

c

n

∑

γ∗
j 6=0

ξj

and so
∥

∥

∥
Z(β̂ − β∗)

∥

∥

∥

2

2
≤ 16s2c

n

∑

γ∗
j 6=0

ξj = 16cκ2σ2 log(p)
∑

γ∗
j 6=0

ξj

while

s ‖Ξ(γ̂ − γ∗)‖1 ≤ 4s

√

c

n
‖Z(β̂ − β∗)‖2

2

∑

γ∗
j 6=0

ξj

which implies that

‖Ξ(γ̂ − γ∗)‖1 ≤ 4

√

16c2κ2σ2 log(p)

n

∑

γ∗
j
6=0

ξj.

This ends the proof.

6.6 Proof of Theorem 4

First, we give the following lemma.

Lemma 4. We have, on the event Λn,p,

‖Z(β̃ − β∗)‖2
2 ≤

3s

2

∥

∥

∥
ΞP

(

β̃ − β∗∗
)∥

∥

∥

1
≤ 3s

∑

Pjβ∗∗ 6=0

ξ
1

2

j

∣

∣

∣
Pj

(

β̃ − β∗∗
)∣

∣

∣
. (30)

Proof of Lemma 4. We have

‖Z(β̃ − β∗)‖2
2 = ‖Z(β̃ − β∗∗)‖2

2 = (β̃ − β∗∗)′(Z ′Z)(β̃ − β∗∗)
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= [P (β̃ − β∗∗)]′(X ′X)(β̃ − β∗∗) = [ΞP (β̃ − β∗∗)]′Ξ−1(X ′X)(β̃ − β∗∗)

≤ ‖ΞP (β̃ − β∗∗)‖1‖Ξ−1(X ′X)(β̃ − β∗∗)‖∞ ≤ 3s

2
‖ΞP (β̃ − β∗∗)‖1, (31)

where we use the Dantzig constraint in the last inequality. Note that, by definition
of β̃,

0 ≤ ‖ΞPβ∗∗‖1 − ‖ΞP β̃‖1 =
∑

Pjβ∗∗ 6=0

ξ
1

2

j |Pjβ
∗∗| −

∑

Pjβ∗∗ 6=0

ξ
1

2

j

∣

∣

∣
Pj β̃

∣

∣

∣
−

∑

Pjβ∗∗=0

ξ
1

2

j

∣

∣

∣
Pjβ̃

∣

∣

∣

≤
∑

Pjβ∗∗ 6=0

ξ
1

2

j

∣

∣

∣
Pjβ

∗∗ − Pjβ̃
∣

∣

∣
−

∑

Pjβ∗∗=0

ξ
1

2

j

∣

∣

∣
Pjβ

∗∗ − Pjβ̃
∣

∣

∣
,

that leads to Inequality (30).

Proof of Theorem 4. We apply here Lemmas 2 and 4 and we obtain that with prob-

ability at least 1 − p1−κ2

8 , we have Inequality (30). Now, let us remark that

‖Z(β∗ − β̃)‖2
2 ≤ 3s

2
‖ΞP

(

β∗∗ − β̃
)

‖1 ≤ 3s
∑

Pjβ∗∗ 6=0

ξ
1

2

j

∣

∣

∣
Pjβ

∗∗ − Pjβ̃
∣

∣

∣

≤ 3s

√

√

√

√

√





∑

Pjβ∗∗ 6=0

ξj









∑

Pjβ∗∗ 6=0

∣

∣

∣
Pjβ∗∗ − Pjβ̃

∣

∣

∣

2





≤ 3s





∑

Pjβ∗∗ 6=0

ξj





1

2
√

c

n
‖Z(β∗ − β̃)‖2

2.

So we have,

‖Z(β̃ − β∗)‖2
2 ≤ 9s2 c

n

∑

Pjβ∗∗ 6=0

ξj,

and as a consequence

3s

2

∥

∥

∥ΞP
(

β∗∗ − β̃
)∥

∥

∥

1
≤ 3s





∑

Pjβ∗∗ 6=0

ξj





1

2
√

c

n
‖Z(β∗ − β̃)‖2

2 ≤ 9s2 c

n

∑

Pjβ∗∗ 6=0

ξj,

this ends the proof.
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6.7 Proof of Theorems 3 and 5

Let us remind that Assumption (A2), involved in both theorems, implies among
others that ξj = 1 for any j, so Ξ is the identity matrix.

Proof of Theorem 3. We can rewrite the fact that β̂ = P γ̂ satisfies the Dantzig
constraint:

∥

∥

∥

∥

Ω(γ̂ − γ∗) − X ′ε

n

∥

∥

∥

∥

∞

≤ s

n
. (32)

Recall that Λn,p = {maxj=1,...,p 2|Vj| ≤ s} with Vj = X ′
jε, then applying (32), we

have on Λn,p and for any j ∈ {1, . . . , p},
∣

∣Ωj,j(γ̂j − γ∗
j )
∣

∣ =

∣

∣

∣

∣

{Ω(γ̂ − γ∗)}j −
p
∑

k=1
k 6=j

Ωj,k(γ̂k − γ∗
k)

∣

∣

∣

∣

≤ s

n
+

∣

∣

∣

∣

X ′
jε

n

∣

∣

∣

∣

+

p
∑

k=1
k 6=j

|Ωj,k(γ̂k − γ∗
k)|

≤ 3s

2n
+

p
∑

k=1
k 6=j

|Ωj,k(γ̂k − γ∗
k)|

≤ 3s

2n
+ ‖γ̂ − γ∗‖1

(

sup
k 6=j

|Ωj,k|
)

which implies that

‖γ̂ − γ∗‖∞ ≤ 1

infj Ωj,j

[

3s

2n
+ ‖γ̂ − γ∗‖1

(

sup
j

sup
k 6=j

|Ωj,k|
)]

. (33)

Now, remind that supj supk 6=j |Ωj,k| = ρ is upper bounded by Assumption (A2).
Moreover, Assumption (A2) implies, by Lemma 1, that Assumption (A1) is satisfied
with c = 2/(infj Ωj,j), so we can apply Theorem 2 to upper bound ‖γ̂ − γ∗‖1. This
leads to

‖γ̂ − γ∗‖∞ ≤ 1

infj Ωj,j

[

3s

2n
+ 16cκσ‖γ∗‖0

√

log(p)

n
× infj Ωj,j

14‖γ∗‖0

]

writing c = 2/(infj Ωj,j) and s = κσ
√

n log(p) we obtain:

‖γ̂ − γ∗‖∞ ≤ 3κσ

infj Ωj,j

√

log(p)

n
,
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that is the inequality stated in Theorem 3.

Proof of Theorem 5. The reader can check that the preceding proof is also valid for
Theorem 5. The only slight difference is that, at the point of Inequality (33), one has
to upper bound the l1 norm using Theorem 4 instead of Theorem 2. This replaces
the constant 16 by an 6.
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[17] N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selec-
tion with the lasso. Ann. Statist., 34(3):1436–1462, 2006.

[18] N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for
high-dimensional data. Ann. Statist., to appear, 2006.

[19] M. Osborne, B. Presnell, and B. Turlach. On the LASSO and its dual. J.
Comput. Graph. Statist., 9(2):319–337, 2000.

[20] R. Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Statist.
Soc. Ser. B, 58(1):267–288, 1996.

[21] S. van de Geer. High-dimensional generalized linear models and the lasso. Ann.
Statist., 36(2):614–645, 2008.

[22] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1998.

[23] M. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of
sparsity using l1-constrained quadratic programming. Technical report n̈ı¿1

2
709,

Department of Statistics, UC Berkeley, 2006.

[24] P. Zhao and B. Yu. On model selection consistency of Lasso. J. Mach. Learn.
Res., 7:2541–2563, 2006.

[25] H. Zou. The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc.,
101(476):1418–1429, 2006.

27


