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AN EXAMPLE OF BRUNET-DERRIDA BEHAVIOR FOR A

BRANCHING-SELECTION PARTICLE SYSTEM ON Z

JEAN BÉRARD

Abstract. We consider a branching-selection particle system on Z with N ≥ 1
particles. During a branching step, each particle is replaced by two new particles,
whose positions are shifted from that of the original particle by independently
performing two random walk steps according to the distribution pδ1 + (1 − p)δ0,
from the location of the original particle. During the selection step that follows,
only the N rightmost particles are kept among the 2N particles obtained at the
branching step, to form a new population of N particles. After a large number
of iterated branching-selection steps, the displacement of the whole population of
N particles is ballistic, with deterministic asymptotic speed vN (p). As N goes
to infinity, vN (p) converges to a finite limit v∞(p). Our main result is that, for
every 0 < p < 1/2, as N goes to infinity, the order of magnitude of the difference
v∞(p)−vN(p) is log(N)−2. This is called Brunet-Derrida behavior in reference to
the paper [4] by E. Brunet and B. Derrida, where such a behavior is established
for a similar branching-selection particle system, using both numerical simulations
and heuristic arguments.

1. Introduction

In [4, 5], E. Brunet and B. Derrida studied a branching-selection particle system
on Z enjoying the following property: as the number N of particles in the system
goes to infinity, the asymptotic speed of the population of particles in the system
converges to its limiting value at a surprisingly slow rate, of order log(N)−2. This
behavior was established both by direct numerical simulation of the particle system,
and by mathematically non-rigorous arguments of the following type: having a finite
population of N particles instead of an infinite number of particles should be more or
less equivalent, as far as the asymptotic speed is concerned, to introducing a cutoff
value of ǫ = 1/N , in the deterministic equations that govern the time-evolution of the
distribution of particles in the infinite-population limit. In turn, these equations can
be viewed as discrete versions of the well-known F-KPP equations, and the initial
problem is thus related to that of assessing the effect of introducing a small cutoff
in F-KPP equations, upon the speed of the travelling wave solutions. In turn, this
problem was studied by heuristic arguments and computer simulations (see [4, 5]),
and rigorous mathematical results for this last problem have recently been obtained,
cite [2, 1, 7]. A related problem is to study the effect of adding a small white-noise
term with scale ǫ = 1/N in the Fisher-KPP equation, and rigorous results have
been derived for this model too, see [6, 9]. However, to our knowledge, no rigorous
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1



2 JEAN BÉRARD

results dealing directly with a branching-selection particle system such as the one
originally studied by Brunet and Derrida, are available. In this paper, we consider
a branching-selection particle system that is similar (but not exactly identical) to
the one considered by Brunet and Derrida in [4, 5]. To be specific, we consider a
particle system with N particles on Z defined through the repeated application of
branching and selection steps defined as follows:

• Branching: each of the N particles is replaced by two new particles, whose
positions are shifted from that of the original particle by independently per-
forming two random walk steps according to the distribution pδ1 +(1−p)δ0,
from the location of the original particle;

• Selection: only the N rightmost particles are kept among the 2N obtained
at the branching step, to form the new population of N particles.

In Section 3, it is proved that, after a large number of iterated branching-selection
steps, the displacement of the whole population of N particles is ballistic, with
deterministic asymptotic speed vN (p), and that, asN goes to infinity, vN (p) increases
to a finite limit v∞(p) (which admits a more explicit characterization). Our main
results are contained in the following two theorems:

Theorem 1. For every 0 < p < 1/2, there exists 0 < C∗(p) < +∞ such that

(1) v∞(p) − vN (p) ≥ C∗(p) log(N)−2

Theorem 2. For every 0 < p < 1/2, there exists 0 < C∗(p) < +∞ such that

(2) v∞(p) − vN (p) ≤ C∗(p) log(N)−2

The rest of the paper is organized as follows. In Section 2, we provide the precise
notations and definitions that are needed in the sequel. Section 3 contains a discus-
sion of various elementary properties of the model we consider. Section 4 contains
the proof of Theorem 1, while Section 5 contains the proof of Theorem 2. Section 6
contains some concluding remarks.

2. Notations and definitions

Throughout the paper, p denotes a fixed parameter in ]0, 1/2[. Since the particles
we consider carry no other information than their position, it is convenient to repre-
sent finite populations of particles by finite counting measures on Z. For all N ≥ 1,
let CN denote the set of finite counting measures on Z with total mass equal to N ,
and C the set of all finite counting measures on Z.

For ν ∈ C, the total mass of ν (i.e. the number of particles in the population
it describes) is denoted by M(ν). We denote by max ν and min ν respectively the
maximum and minimum of the (finite) support of µ. We also define the diameter
d(ν) := max ν − min ν. Given two positive measures µ, ν on Z, we use the notation
µ ≤ ν to denote the fact that µ(x) ≤ ν(x) for every x ∈ Z. On the other hand, we
use the notation ≺ to denote the stochastic order between positive measures: µ ≺ ν
if and only if µ([x,+∞[) ≤ ν([x,+∞[) for all x ∈ Z. In particular, µ ≺ ν implies

that M(µ) ≤M(ν), and it is easily seen that, if µ =
∑M(µ)

i=1 δxi and ν =
∑M(ν)

i=1 δyi ,
with x1 ≥ · · · ≥ xM(µ) and y1 ≥ · · · ≥ yM(ν), µ ≺ ν is equivalent to xi ≤ yi for all
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1 ≤ i ≤M(ν). From the order ≺ on C, we define the corresponding stochastic order
on probability measures on C and denote it by ≺≺: given two probability measures
Q and R on C, Q ≺≺ R means that for every bounded non-decreasing function
f : (C,≺) → R, Q(f) ≤ R(f). An equivalent definition is that there exists a pair
of random variables (X,Y ), X and Y taking values in C, such that X  Q, Y  R,
and X ≺ Y with probability one.

In this context, the dynamics of our particle systems can be defined through the
following probability kernels. Let us first define the branching kernel pBr.

N on CN×C2N

as follows. Given ν =
∑N

i=1 δxi ∈ CN , pBr.
N (ν, ·) is the probability distribution of

∑N
i=1 δxi+Y1,i + δxi+Y2,i ∈ C2N , where (Yℓ,i)1≤i≤N, ℓ=1,2 is a family of i.i.d. Bernoulli

random variables with common distribution pδ1 + (1 − p)δ0. Then, we define the

selection kernel pSel.
N on C2N × CN as follows. Starting from ν =

∑2N
i=1 δxi ∈ C2N ,

where x1 ≥ · · · ≥ x2N , pSel.
N (ν, ·) is the Dirac distribution concentrated on the

counting measure
∑N

i=1 δxi .
The kernel pN on CN × CN governing the evolution of particle systems with N

particles is then defined as the product kernel pN := pBr.
N pSel.

N .

In the sequel, we use the notation (XN
n )n≥0 to denote a Markov chain on CN

whose transition probabilities are given by pN , and which starts at XN
0 := Nδ0. We

assume this Markov chain is defined on a reference probability space denoted by
(Ω,F ,P).

Let ∼N denote the equivalence relation on CN defined by ν ∼N µ if and only if
there exists m ∈ Z such that ν is the image measure of µ by the translation of Z

x 7→ x+m. Let πN denote the canonical projection from CN to CN/ ∼N .

3. Elementary properties of the model

Proposition 1. For all 1 ≤ N1 ≤ N2, and µ ∈ CN1
and ν ∈ CN2

such that µ ≺ ν,
pN1

(µ, ·) ≺≺ pN2
(ν, ·).

Proof. The proof is by coupling. Let µ =
∑N1

i=1 δxi and ν =
∑N2

i=1 δyi , with
x1 ≥ · · · ≥ xN1

and y1 ≥ · · · ≥ yN2
such that xi ≤ yi for all 1 ≤ i ≤ N1. Let

(Yℓ,i)1≤i≤N2, ℓ=1,2 denote a family of i.i.d. Bernoulli random variables with common
distribution pδ1 + (1 − p)δ0. By definition, the couting measure defined by µBr. :=
∑2N1

i=1 δxi+Y1,i +δxi+Y2,i has the distribution µpBr.
N1

, and νBr. :=
∑2N2

i=1 δyi+Y1,i +δyi+Y2,i

has the distribution µpBr.
N2

. It is easily checked that µBr. ≺ νBr., owing to the fact that

xi + Yℓ,i ≤ yi + Yℓ,i for all 1 ≤ i ≤ N1 and ℓ = 1, 2. We deduce that µpBr.
N1

≺≺ µpBr.
N2

.

Then, it is obvious from the definition that pSel.
N1

and pSel.
N2

preserve ≺≺. �

Proposition 2. For all N ≥ 1, and all n ≥ 0, d(XN
n ) ≤ ⌈ log(N)

log(2) ⌉+1 with probability
one.

Proof. Letm := ⌈ log(N)
log(2) ⌉+1. The result is obvious for n = 0, . . . ,m, since we perform

0 or 1 random walk steps starting from an initial condition where all particles are
at the origin. Now consider n > m, and let y = maxXN

n−m. Assume first that

minXN
k < y for all n + 1 − m ≤ k ≤ n. Since all the random walk steps that
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are performed during branching steps are ≥ 0, this implies that all the particles
descended by branching from a particle located at y at time n −m, are preserved
by the selection steps performed from XN

n−m to XN
n . Since there are 2m > N such

particles, this is a contradiction. As a consequence, we know that there must be an
index n+1−m ≤ k ≤ n such that minXN

k ≥ y. Since by construction t 7→ minXN
t

is non-decreasing, we deduce that minXN
n ≥ y. Now, since all the random walk

steps that are performed add 0 or 1 to the current position of a particle, we see
from the definition of y that maxXN

n ≤ y + m. As a consequence, d(XN
n ) =

maxXN
n−m − minXN

n−m ≤ m. �

Proposition 3. For all N ≥ 1, the kernel pN is compatible with the canonical
projection πN , that is: for all ν1, ν2 ∈ CN such that ν1 ∼N ν2, and all ξ ∈ CN/ ∼N ,
pN (ν1, π

−1
N (ξ)) = pN (ν2, π

−1
N (ξ)).

Proof. Immediate: everything in the definition of the branching and selection steps
is translation-invariant. �

Proposition 4. For all N ≥ 1, the sequence πN (XN
n )n≥0 is an ergodic Markov

chain on a finite subset of CN/ ∼N .

Proof. The fact that πN (XN
n )n≥0 forms a Markov chain on CN/ ∼N is an immediate

consequence of Proposition 3. Let SN := {ξ ∈ CN/ ∼N ; ∃n ≥ 0, P(πN (XN
n ) =

ξ) > 0}. From Proposition 2, we see that SN is in fact a finite set. On the other
hand, given any ξ ∈ SN , it is quite easy to find a finite path in SN starting at ξ and
ending at πN (Nδ0) that has positive probability. As a consequence, the restriction of
πN (XN

n )n≥0 to SN is an irreducible Markov chain. As for aperiodicity, the transition
πN (Nδ0) 7→ πN (Nδ0) has e.g. a positive probability. �

Corollary 1. There exists 0 < vN (p) < +∞ such that, with probability one, and in
L1(P),

lim
n→+∞

n−1 minXN
n = lim

n→+∞
n−1 maxXN

n = vN (p).

Proof. Note that, in view of Proposition 2, if the two limits in the above statement
exist, they must be equal. Then observe that, for all n ≥ 0, conditionally upon XN

n ,
the distributions of the increments maxXN

n+1 − maxXN
n and minXN

n+1 − minXN
n

depend only on πN (XN
n ). The result then follows by a classical argument using the

law of large numbers for additive functionals of ergodic Markov chains. �

Proposition 5. The sequence (vN (p))N≥1 is non-decreasing.

Proof. Consequence of the fact that, when N1 ≤ N2, N1δ0 ≺ N2δ0, and of the
monotonicity property 1. �

We can deduce from the above proposition that there exists 0 < v∞(p) < +∞ such
that limN→+∞ vN (p) = v∞(p). A consequence of the proofs of Theorems 1 and 2
below is that v∞(p) is in fact equal to the number v(p) characterized as the unique
root of the equation Λ(x) = log(2), where x ∈ [0, 1] is the unknown, and where Λ is
the large deviations rate function associated with sums of i.i.d Bernoulli(p) random
variables, i.e. Λ(x) := x log(x/p)+ (1−x) log(1−x

1−p ) for x ∈ [0, 1]. We note for future

use that p < v(p) < 1 since p ∈]0, 1/2[.
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4. The upper bound

The essential arguments used here in the proof of the upper bound, are largely
borrowed from the paper [10] by R. Pemantle, which deals with the closely related
question of obtaining complexity bounds for algorithms that seek near optimal paths
in branching random walks. In fact, the proof of Theorem 1 given below is basically
a rewriting of the proof of the lower complexity bound in [10] in the special case
of algorithms that do not jump, with the slight difference that we are dealing with
N independent branching random walks being explored in parallel, rather than a
single branching random walk.

To explain the connexion between our model and the branching random walk, con-
sider the following model. Let BRW1, . . . ,BRWN denote N independent branching
random walks, each with value zero at the root, deterministic binary branching, and
i.i.d. displacements with common distribution pδ1 + (1 − p)δ0 along each edge. For
1 ≤ i ≤ N , and n ≥ 0, let BRWi(n) denote the set of vertices of BRWi located at
depth n in the tree, and let Tn := BRW1(n) ∪ · · · ∪ BRWN (n). For every n, fix an
a priori (i.e. depending only on the tree structure, not on the random walk values)
total order on Tn. We now define by induction a sequence (Gn)n≥0 of subsets such
that, for each n ≥ 0, Gn is a random subset of Tn with exactly N elements. First,
let us set G0 := T0. Then, given n ≥ 0 and Gn, let Hn denote the subset of T (n+1)
formed by the children of the vertices in Gn. Then, define Gn+1 as the subset of Hn

formed by the N vertices that are associated with the largest values of the under-
lying random walk (breaking ties by using the a priori order on Tn). It is now quite
obvious that, for every n ≥ 0, the (random) empirical distribution of the N random
walk values associated with the vertices in Gn has the same distribution as XN

n .
Given a branching random walk BRW of the type defined above, and one of its

vertices u, we use the notation Z(u) to denote the value of the random walk asso-
ciated with u. The following definition is adapted from [10]. Given 0 < v < 1 and
m ≥ 1, we say that a vertex u ∈ BRW is (m, v)−good if there is a descending path
u =: u0, u1, . . . , um such that Z(ui)− Z(u0) ≥ vi for all i ∈ [[0,m]]. The importance
of this definition comes from the two following lemmas, adapted from [10].

Lemma 1. (Lemma 5.2 in [10]) Let 0 < v1 < v2 < 1. If there exists a vertex
u ∈ BRW at depth n such that Z(u) ≥ v2n, then the path from the root to u must
contain at least v2−v1

1−v1

n
m − 1/(1 − v1) vertices that are (m, v1)-good.

Lemma 2. (Proposition 2.6 in [10]) There is a constant ψ > 0 such that, given a

branching random walk BRW, the probability that the root is (m, v(p)−m−2/3)−good

is less than exp(−ψm1/3).

Since Lemma 1 admits so short a proof, we reproduce it below for the sake of
completeness. On the other hand, to give a very rough idea where the exp(−ψm1/3)
in Lemma 2 comes from, let us just mention that it corresponds to the probability
that a random walk remains confined in a tube of size m1/3 around its mean, for m
time steps. Dividing the m steps into m1/3 intervals of size m2/3, we see that this
amounts to asking for the realization of m1/3 independent events, each of which has
a probability of order a constant, by the usual Brownian scaling.



6 JEAN BÉRARD

Proof of Lemma 1. (From [10].) Consider a vertex u as in the statement of the
lemma. Consider the descending path root =: x0, . . . , xn := u from the root to u.
Let then τ0 := 0, and, given τi, define inductively τi+1 := inf{j ≥ τi + 1; Z(xj) <
Z(xτi)+ v1(j− τi) or j = τi +m}. Now color x0, . . . , xn−1 according to the following
rules: if Z(xτi+1

) ≥ Z(xτi) + v1(j − τi) and τi+1 ≤ n + 1, then xτi , . . . , xτi+1−1 are
colored red. Note that this yields a segment of m red vertices, and that xτi is then
(m, v1)−good. Otherwise, xτi , . . . , xτi+1−1 are colored blue. Let Vred (resp. Vblue)
denote the number of red (resp. blue) vertices in x0, . . . , xn−1. Then decompose
Z(u) into the contributions of the red and blue vertices. On the one hand, the
contribution of red vertices is ≤ Vred. On the other, the contribution of blue vertices
is ≤ Vblue×v1+m, where the m is added to take into account a possible last segment
colored in blue only because it has reached depth n. Writing that n = Vred + Vblue,
we deduce that v2n ≤ Vred + v1(n− Vred) +m, so that Vred ≥ v2−v1

1−v1
n−m/(1 − v1).

Then use the fact that at least Vred/m vertices are (m, v1)-good. �

In [10], Lemmas 1 and 2 are used in combination with an elaborate second moment
argument. In the present context, the following quite simple first moment argument
turns out to be sufficient.

Proof of Theorem 1. Consider an integer r ≥ 1, and let m := r⌊log(N)3⌋. Let
n ≥ m, and let Bn denote the number of vertices in BRW1 ∪ · · ·BRWN that are
(m, v(p)− 2m−2/3)−good (each with respect to the BRW it belongs to) and belong
to G0 ∪ · · · ∪Gn. From Lemma 1 and the definition of (Gi)i≥0, we see that the fact

that at least one vertex in Gn has a value larger than (v(p)−m−2/3)n implies that,

for large n (depending on m), Bn ≥ nm−5/3. On the other hand, Bn can be written
as
(3)

Bn :=
∑

u∈BRW1∪···BRWN

1( u is (m, v(p) − 2m−2/3)−good)1(u ∈ G0 ∪ · · · ∪Gn).

Now observe that, by definition, for a vertex u of depth ℓ, by definition, the event
u ∈ G0 ∪ · · · ∪ Gn is measurable with respect to the random walk steps performed
up to depth ℓ, while the event that u is (m, v(p) − 2m−2/3)−good is measurable
with respect to the random walk steps performed starting from depth ≥ ℓ. As a
consequence, these two events are independent. Since the total number of vertices
in G0 ∪ · · · ∪ Gn is equal to N(n + 1), we deduce from Lemma 2 and (3) that

E (Bn) ≤ N(n + 1) exp(−ψm1/3). Using Markov’s inequality, and letting n go to
infinity, we deduce that

lim sup
n→+∞

P (Bn ≥ nm−5/3) ≤ Nm5/3 exp(−ψm1/3).

Now, remembering that P (Bn) = P(maxXN
n ≥ (v(p)−m−2/3)n), and using the fact

that maxXN
n ≤ n with probability one, we finally deduce that

lim sup
n→+∞

n−1E(maxXN
n ) ≤ v(p) −m−2/3 +Nm5/3 exp(−ψm1/3).
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Choosing r large enough in the definition of m makes the third term in the above
r.h.s. negligible with respect to the second term, as N goes to infinity. The conclu-
sion follows. �

5. The lower bound

The proof of the lower bound on the convergence rate of vN (p) to v∞(p) is in some
sense a rigorous version of the heuristic argument of Brunet and Derrida according
to which we should compare the behavior of the particle system with N particles,
with a version of the infinite population limit modified by a cutoff at ǫ = 1/N .

Indeed, given a finite positive measure ν on Z, let FBr.(ν) be the measure defined
by: FBr.(ν) := 2ν ⋆ (pδ1 + (1 − p)δ0). This FBr. describes the evolution of the
distribution of particles in the infinite population limit above the threshold imposed
by the selection step. The idea of the proof of the lower bound is to control the
discrepancy between the finite and infinite population models above this threshold.
One important observation is that, to prove a lower bound, one does not necessarily
have to control the number of particles at every site, but may focus instead on sites
where the probability of finding a particle is not too small.

We note the following two immediate properties of FBr.: if µ ≤ ν, then FBr.(µ) ≤
FBr.(ν), and, if g ∈ R+, FBr.(gν) = gFBr.(ν).

5.1. Admissible sequences of measures. Throughout this section, we consider

ǫ > 0, 0 < α < v(p), β > 1, and m ≥ q := ⌈ v(p)
1−v(p)⌉.

We say that a (deterministic) sequence δ0 =: ν1, . . . , νm of positive measures on
Z with finite support, is (ǫ, α, β)−admissible, if the following properties hold:

(i) νi = (2p)iδi for 0 ≤ i ≤ q;
(ii) for all q + 1 ≤ i ≤ m, νi ≤ FBr.(νi−1);
(iii) for all 0 ≤ i ≤ m− 1, and all x ∈ Z such that νi(x) > 0, νi(x) ≥ ǫ;
(iv) for all q ≤ i ≤ m− 1, the support of νi is contained in the interval [(v(p) −

α)(i + 1),+∞[;
(v) νm(Z) ≥ β + 1.

Note that the definition of q makes property (iv) automatic for i = q.
Let B := {min(XN

i ) < (v(p) − α)i for all 1 ≤ i ≤ m}. The interest of admissi-
ble sequences of measures lies in the possibility of bounding P(B) from above, as
explained in the following lemma.

Lemma 3. Consider an (ǫ, α, β)−admissible sequence ν0, . . . , νm. Let K :=
∑m−1

i=0 #supp(νi), and δ := 1 − exp
(

− log(β)
m

)

. Then the following inequality holds:

P(B) ≤ 2K exp
(

−Nβ−1ǫpδ2
)

.

Before proving the above lemma, we recall the following classical estimate for
binomial random variables (see e.g. [8]):

Lemma 4. Let n ≥ 1 and 0 < r < 1, and let Z be a binomial(n, r) random variable.
Then, for all 0 < δ < 1, the probability that Z ≤ (1− δ)nr is less than exp(−1

2nrδ
2).
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Proof of Lemma 3. For k ∈ [[0,m]], let Ak :=
⋂

n∈[[1,k]]{X
N
n ≥ N(1 − δ)nνn}. Note

that A0 is the certain event. For 0 ≤ k ≤ m − 1, and x ∈ Z, define N1
k (x) (resp.

N0
k (x)) to be the number of particles that are created from a particle at position x in

XN
k during the branching step applied to XN

k , and that have a position equal to x+1

(resp. x). By definition, conditional uponXN
0 , . . . ,X

N
k , N1

k (x) (resp. N0
k (x)) follows

a binomial distribution with parameters (2XN
k (x), p) (resp. (2XN

k (x), 1 − p)). For

k ∈ [[0,m − 1]], let Ck := {N ℓ
k(x) ≥ (1 − δ)2XN

k (x)p; x ∈ supp(νk), ℓ = 0, 1}. Note

that, by definition of δ, (1 − δ)k ≥ β−1 for all 0 ≤ k ≤ m. In view of condition (iii),
we deduce that, for k ∈ [[1,m, on Ak−1, X

N
k−1(x) ≥ Nβ−1ǫ for all x ∈ supp(νk−1).

As a consequence, Lemma 4 yields the fact that

(4) P(Ak−1 ∩C
c
k−1) ≤ 2#supp(νk−1) exp

(

−Nβ−1ǫpδ2
)

,

where we have used the union bound and the fact that p ≤ 1 − p to combine the
bounds given by Lemma 4 for all the N ℓ

k−1(x), with ℓ ∈ {0, 1}, and x ∈ supp(νk−1).

Now consider k ∈ [[1, q]]. On B, all the particles counted by N1
k−1(k − 1) must be

kept after the selection step leading to XN
k , since k ≥ (v(p)−α)k. As a consequence,

XN
k (k) ≥ N1

k−1(k − 1), and we deduce that

(5) Ak−1 ∩Ck−1 ∩B ⊂ Ak.

Assume now that k ∈ [[q + 1,m]]. If B holds, we see that, according to (iv), for
all x in the support of νk−1, the particles counted by N1

k−1(x) and N0
k−1(x) are all

kept after the selection step leading to XN
k . As a consequence, on Ck−1, X

N
k ≥

(1 − δ)FBr.(XN
k−11(supp(νk−1))), so that, on B ∩ Ak−1 ∩ Ck−1, X

N
k ≥ (1 − δ)kνk,

since XN
k−1 ≥ (1 − δ)k−1νk−1 and νk ≤ FBr.(νk−1) by assumption (ii). We deduce

that

(6) Ak−1 ∩Ck−1 ∩B ⊂ Ak.

Now observe that, on Am, one must have XN
m (Z) ≥ N(1 − δ)mνm(Z) ≥

Nβ−1νm(Z) > N , a contradiction, so that Am = ∅. From (5), (6), we deduce

that P(B) ≤
∑m−1

k=0 P(Ak−1 ∩C
c
k−1), and, using (4), we deduce the result. �

Let us now relate the above results with estimates on vN (p). Define the random
variable L := inf{1 ≤ i ≤ m; min(XN

i ) ≥ (v(p) − α)i}, with the convention that
inf ∅ = m.

Proposition 6. For all 0 < p < 1/2, for all N ≥ 1,

vN (p) ≥ (v(p) − α)(1 −mP(B)).

Proof. We define a modified branching-selection process (Y N
n )n≥0, composed of a

succession of runs. Start with L0 := 0 and H0 := 0, and i := 0, and do the
following.

1) Set ZN
0 := NδHi and k := 0.

2) Do the following:
{ let k := k + 1 and generate ZN

k from the distribution pN (ZN
k−1, ·). }

3) Return to 2) until k = m or minZN
k ≥ (v(p) − α)k +Hi.
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4) Set Li+1 := Li + k and Hi+1 := minZN
k

5) Set (Y N
Li
, . . . , Y N

Li+1−1) := (ZN
0 , . . . , Z

N
k−1)

6) Let i := i+ 1 and return to 1) for the next run.

One may describe the above process as follows: starting from a reference posi-
tion Hi and a reference time index Li, a run behaves like the original branching-
selection process until either m steps have been performed or the minimum value
in the population of particles exceeds the reference position by an amount of
at least (v(p) − α) times the number of steps performed since the beginning of
the run. Then the current population of N particles is collapsed onto its min-
imum position, the reference position is updated to this minimum position, and
the time index to the current time, and a new run is started. Our modified
process has a natural regeneration structure yielding the fact that the sequences
(Li+1 −Li)i≥0 and (Hi+1 −Hi) are i.i.d. The common distribution of the Li+1 −Li

is that of L, while the common distribution of the Hi+1 − Hi is that of minXN
L .

From the fact that minY N
Li

≥ Hi, it is easy to deduce that, with probability

one, limn→+∞ n−1 minY N
n =

E(min XN
L )

E(L) , and, since 0 ≤ n−1Y N
n ≤ 1, we also

have that limn→+∞ n−1
E(minY N

n ) =
E(min XN

L )

E(L) . Now, by definition, minXN
L ≥

(v(p) − α)L1(Bc), so that E(minXN
L ) ≥ (v(p) − α)(E(L) − E(L1(B))). Using the

fact that 1 ≤ L ≤ m, we obtain that
E(min XN

L )
E(L) ≥ (v(p) − α)(1 −mP(B)).

Now, it should be intuitively obvious that the modified process (Y N
n )n≥0 is in some

sense a lower bound for the original process (XN
n )n≥0, since we modify the original

dynamics in a way that can only lower positions of particles. It is in fact an easy
consequence of Proposition 1 that, for all n, the distribution of Y N

n is stochastically
dominated by that of XN

n . A consequence is that E(minY N
n ) ≤ E(minXN

n ).The
result follows. �

5.2. Construction of an admissible sequence of measures. Let A denote an
integer ≥ 4, and m ≥ q. Then let am := ⌊m1/3⌋, cm := ⌊m2/3⌋, sm := ⌊ am

2(1−v(p))⌋.

Define dm by dm(k) := k for k ∈ [[1, sm]], and dm(k) := v(p)k+am for k ∈ [[sm+1,m]].
Define gm by gm(k) := k for k ∈ [[1, sm]], gm(k) := v(p)(k+1) for k ∈ [[sm+1,m−cm]].
and gm(k) := v(p)k −Aam for k ∈ [[m− cm + 1,m]].

Then define a sequence of measures (νi)i∈[[0,m]] on Z as follows. Let (Si)i∈[[0,m]]

denote a simple random walk on Z starting at zero, with step distribution pδ1 +(1−
p)δ0, governed by a probability measure P , then let

νi(x) := 2iP [gm(k) ≤ Sk ≤ dm(k) for all k ∈ [[0, i]], Si = x] .

The main result in this section is the following:

Proposition 7. For large enough A, there exists χ(A) > 0 such that, for all large

enough m, the above sequence is (exp(−χ(A)m1/3, 2Am−2/3, 2008)-admissible.

We need to establish several results before we can prove the above proposition.
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First, consider the modified probability measure P̂ defined by

dP̂

dP
:=

(

v(p)

p

)Sm
(

1 − v(p)

1 − p

)m−Sm

.

With respect to P̂ , (Si)i∈[[0,m]] is a simple random walk on Z starting at zero, with
step distribution v(p)δ1 + (1 − v(p))δ0.

We now rewrite νi(x) in terms of this change of measure. To this end, introduce

the compensated random walk defined by Ŝi := Si−v(p)i, let also ĝm(k) := gm(k)−

v(p)k and d̂m(k) := dm(k) − v(p)k. Finally, let γ := p/(1−p)
v(p)/(1−v(p)) , and note that

γ < 1 since p < v(p). After a little algebra involving the definition of v(p) in terms
of Λ, we obtain the following expression:

(7) νi(x) = Ê
[

γŜi1
(

ĝm(k) ≤ Ŝk ≤ d̂m(k) for all k ∈ [[0, i]], Si = x
)]

,

where Ê denotes expectation with respect to P̂ . From the definition of ĝm and
d̂m, we see that, for large m, the only values of Ŝi that contribute in the above
expectation are ≤ m1/3. As a consequence,

(8) νi(x) ≥ γm1/3

P̂
[

ĝm(k) ≤ Ŝk ≤ d̂m(k) for all k ∈ [[0, i]], Si = x
]

,

Lemma 5. For some constant ζ1 > 0, as m goes to infinity,

P̂
[

ĝm(k) ≤ Ŝk ≤ d̂m(k) for all k ∈ [[0,m]]
]

≥ exp(−ζ1m
1/3).

We need an elementary lemma before the proof of Lemma 5.

Lemma 6. Consider a random walk (Zi)i≥0 on R, defined by Zi := Z0 +ε1 + · · ·+εi
for i ≥ 1. Assume that the increments εi are i.i.d. with respect to some probability
measure Q and satisfy E(ε1) = 0 and 0 < V ar(ε1) < +∞. Then there exists λ > 0
such that, for all m large enough,

(9) Q [v ≤ Zi ≤ am; i ∈ [[0, cm]], am/3 ≤ Zcm ≤ 2am/3| am/3 ≤ Z0 ≤ 2am/3] ≥ λ.

(10) Q [am/4 ≤ Zi ≤ 3am/4; i ∈ [[0, cm]]| am/3 ≤ Z0 ≤ 2am/3] ≥ λ.

Proof of Lemma 6. We use the convergence of the distribution of the random process
(Mm

t )t∈[0,1] defined by Mm
0 := 0, Mm

i/cm
= a−1

m (ε1 + · · · + εi) for i ∈ [[1, cm]], and

interpolated linearly on each [i/cm, (i + 1)/cm] towards the Brownian motion (on
the space of real-valued continuous functions on [0, 1] equipped with the sup norm).
An easy consequence is that there exists λ1 > 0 such that, for all large m,

Q [−am/7 ≤ Zi − Z0 ≤ am/7; i ∈ [[1, cm]], 0 ≤ Zcm − Z0 ≤ am/7] ≥ λ1.

This estimate proves (9) when Z0 belongs to [am/3, am/2]. A symmetric argument
works when Z0 belongs to [am/2, 2am/3]. The proof of (10) is quite similar. �
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Proof of Lemma 5. First note that, for all large enough m, am/3 ≤ sm − v(p)sm ≤
2am/3. Then,

P̂
[

ĝm(k) ≤ Ŝk ≤ d̂m(k); k ∈ [[0, sm]]
]

= v(p)sm .

Divide the interval [[sm + 1,m]] into consecutive intervals Ij , j ∈ [[1, hm]],
where each Ij for j ∈ [[1, hm − 1]] is of the form Ij := [[sm + 1 + (j −
1)cm, sm + 1 + jcm]], while the last interval is Ihm := [[sm + 1 + (hm − 1)cm,m]],
whose length is less than or equal to cm. For i ∈ [[1, hm]], let bm,j−1 and
bm,j be defined by Ij = [[bm,j−1, bm,j ]]. Now, for i ∈ [[1, hm − 1]], define

the event Γi :=
{

v ≤ Ŝk ≤ am; k ∈ Ii, am/3 ≤ Zbm,i
≤ 2am/3

}

, and let Γhm :=
{

am/4 ≤ Ŝk ≤ 3am/4; k ∈ Ihm

}

.

It is easily checked that, given that Ssm = sm,
⋂

i∈[[1,hm]]

Γi ⊂
⋂

k∈[[sm+1,m]]

{ĝm(k) ≤ Ŝk ≤ d̂m(k)}.

Thanks to Lemma 6 and to the Markov property of Ẑ with respect to P̂ , we deduce
that

P̂
[

ĝm(k) ≤ Ŝk ≤ d̂m(k); k ∈ [[0,m]]
]

≥ v(p)smλhm.

(We use exactly Lemma 6 for intervals Ii with i ∈ [[1, hm − 1]], while, for i = hm,
we use that fact that the length of Ij is ≤ cm, whence the fact that the conditional

probability of Γhm given Ŝ0, . . . , Ŝbm,hm−1
is larger than or equal to the probability

appearing in (10) in Lemma 6.) Using the fact that hm ∼ m1/3 for large m, the
conclusion follows. �

Lemma 7. There exists ζ2(A) > 0 such that, as m goes to infinity,

inf{νi(x); i ∈ [[0,m− 1]], νi(x) > 0} ≥ exp(−ζ2(A)m1/3).

We need the following lemma before giving the proof.

Lemma 8. Let ρ, σ ∈ R, with ρ+ 1 < σ, v ∈]0, 1[ and, let ℓ be an integer such that
σ+ℓv < ρ+ℓ and ρ+vℓ > σ. Then, for all x ∈ Z∩[ρ, σ], and all y ∈ Z∩[ρ+vℓ, σ+vℓ],
there exists a sequence x =: x0, x1, . . . , xℓ := y such that xi+1 − xi ∈ {0, 1} for all
i ∈ [[0, ℓ− 1]], and ρ+ vi ≤ xi ≤ σ + vi for all i ∈ [[0, ℓ]].

Proof of Lemma 8. Consider x ∈ Z ∩ [ρ, σ], and y ∈ Z ∩ [ρ + vℓ, σ + vℓ]. Define
inductively the sequence (τi, hi)i≥0 as follows. Let τ0 := x, h0 := x. Our assumption
that ρ+ 1 < σ guarantees that x or x+ 1 belongs to [ρ+ v, σ + v]. If x+ 1 belongs
to [ρ + v, σ + v], then let d := 0. Otherwise, let d := 1. Then, consider i ≥ 1. If
i+ d is even, let τi := max{j ∈ [[τi−1 + 1,+∞[[; hi−1 ≥ ρ+ vj}, and let hi := hi−1.
If i+ d is odd, let τi := max{j ∈ [[τi−1 + 1,+∞[[; hi−1 + j − τi−1 ≤ σ + vj}, and let
hi := hi−1 + τi − τi−1.

The fact that and ρ + 1 < σ and v ∈]0, 1[ guarantees that every term in the
sequence is finite. Define the sequence (zk)k≥0 by zk := hi−1 for k ∈ [[τi−1, τi]] when
i + d is even, and zk := hi−1 + k − τi−1 for k ∈ [[τi−1, τi]] when i + d is odd. Our
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assumptions yield the fact that ρ+ vk ≤ zk ≤ σ + vk for all k ≥ 0. Now note that,
if y = zm, the path z0, . . . , zm solves our problem. If y > zm, the assumption that
ρ + ℓ > σ + vℓ plus elementary geometric considerations show that there must be
some k ∈ [[0,m−1]] such that y−xk = ℓ−k. From the path x0, . . . , xk, add +1 steps
and stop at length ℓ. The corresponding path solves the problem. Now, if y < zm,
our assumption that σ < ρ+ vℓ plus elementary geometric considerations show that
there must be a k ∈ [[τκ−1,m− 1]] such that xk = y. From the path x0, . . . , xk, add
+0 steps and stop at length ℓ. The corresponding path solves the problem. �

Proof of Lemma 7. In the sequel, let xk := k for k ∈ [[0, sm]], and note that, for large
enough m, gm(k) ≤ xk ≤ dm(k) for all k ∈ [[0, sm]].

Let α > max(v(p)−1, (1 − v(p))−1), and let fm := ⌊αam⌋. For i ∈ [[sm + 1, sm +
2fm]], and x in the support of νi, there must by definition be a sequence sm =:
xsm, . . . , xi := x such that xj+1 − xj ∈ {0, 1} and gm(j) ≤ xj ≤ dm(j) for all
j ∈ [[sm, i]]. As a consequence, for every i ∈ [[0, sm + 2fm]] and x ∈ supp(νi),

(11) P̂ [Sk = xk; k ∈ [[0, i]], Si = x] ≥ (min(v(p), 1 − v(p))sm+2fm .

Now assume that i ∈ [[sm+2fm+1,m−cm]], and consider the distribution of Si−fm

with respect to P̂ , conditional upon gm(k) ≤ Sk ≤ dm(k) for all k ∈ [[0, i − fm]].
This probability distribution is concentrated on the set Z∩ [gm(i− fm), dm(i− fm)],
which contains at most am elements. Consequently, there exists u ∈ Z ∩ [gm(i −
fm), dm(i− fm)] such that

P̂ [Si−fm = u| gm(k) ≤ Sk ≤ dm(k); k ∈ [[0, i − fm]]] ≥ 1/am.

Now let x belong to the support of νi. By definition, x ∈ Z∩ [gm(i), dm(i)]. In view
of the definition of α, we see that, for all m large enough, we can apply Lemma 8 to
obtain the existence of a sequence u =: xi−fm , . . . , xi := x such that xj+1−xj ∈ {0, 1}
and gm(j) ≤ xj ≤ dm(j) for all j ∈ [[i − fm, i]]. Thanks to the Markov property of

(Sk)k≥0 with respect to P̂ , we deduce that

P̂ [gm(k) ≤ Sk ≤ dm(k); k ∈ [[0, i]], Si = x]

is larger than or equal to

P̂ [gm(k) ≤ Sk ≤ dm(k), k ∈ [[0, i− fm]]] (1/am)(min(v(p), 1 − v(p))fm .

From Lemma 5, we have that, for m large enough,

P̂ [gm(k) ≤ Sk ≤ dm(k), k ∈ [[0,m]]] ≥ exp(−ζ1m
1/3),

so that, for every i ∈ [[sm + 2fm + 1,m− cm]],

P̂ [gm(k) ≤ Sk ≤ dm(k), k ∈ [[0, i]], Si = x] ≥ exp(−ζ1m
1/3)(12)

×(1/am)(min(v(p), 1 − v(p))fm .

For i ∈ [[m − cm + 1,m − cm + 2(A + 1)fm]], any x in the support of νi(x) is such
that there exists u in the support of νm−cm and a sequence u =: xm−cm, . . . , xi := x
such that xj+1 − xj ∈ {0, 1} and gm(j) ≤ xj ≤ dm(j) for all j ∈ [[m− cm, i]]. As a
consequence,

P̂ [gm(k) ≤ Sk ≤ dm(k); k ∈ [[0, i]], Si = x]
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is larger than or equal to

P̂ [gm(k) ≤ Sk ≤ dm(k); k ∈ [[0,m− cm]], Sm−cm = u]

×(min(v(p), 1 − v(p))2(A+1)fm .

Using (12), we deduce that, for every i ∈ [[m− cm + 1,m− cm + 2(A+ 1)fm]],

P̂ [gm(k) ≤ Sk ≤ dm(k); k ∈ [[0, i]], Si = x] ≥ exp(−ζ1m
1/3)(13)

×(1/am)(min(v(p), 1 − v(p))(2(A+1)+1)fm .

Then an argument quite similar to that leading to (12) yields that, for any i ∈
[[m− cm + 2(A+ 1)fm + 1,m]],

P̂ [gm(k) ≤ Sk ≤ dm(k); k ∈ [[0, i]], Si = x] ≥ exp(−ζ1m
1/3)(14)

×(1/((A + 1)am + 1))(min(v(p), 1 − v(p))(A+1)fm .

The conclusion follows by using (8) and (11), (12), (13), (14). �

Lemma 9. There exists φ(A) > 0 such that, as m goes to infinity,

P̂
[

ĝm(k) ≤ Ŝk ≤ d̂m(k); k ∈ [[0,m]], Ŝm ≤ −(A/2)am

]

≥ φ(A) exp(−ζ1m
1/3).

We shall need the following elementary lemma.

Lemma 10. Consider a random walk (Zi)i≥0 on R, defined by Zi := Z0+ε1+· · ·+εi
for i ≥ 1. Assume that the increments εi are i.i.d. with respect to some probability
measure Q and satisfy E(ε1) = 0 and 0 < V ar(ε1) < +∞. Then there exists
φ(A) > 0 such that, for all m large enough,

Q [−Aam ≤ Zi ≤ am; i ∈ [[1, cm]], Zcm ≤ −(A/2)am| am/4 ≤ Z0 ≤ 3am/4] ≥ φ(A).

Proof of Lemma 10. We re-use the notations of the proof of Lemma 6. The only
point is to note that, by convergence to the Brownian motion, there exists φ(A) > 0
such that for all large m,

Q [−3Aam/4≤Zi − Z0≤am/4; i ∈ [[1, cm]], Zcm − Z0≤−(A/2 + 3/4)am] ≥ φ(A).

The result follows easily (using the fact that A is assumed to be ≥ 4). �

Proof of Lemma 9. From the proof of Lemma 5, we see that

P̂
[

gm(k)≤Sk≤dm(k); k ∈ [[0,m− cm]], am/4≤Ŝm−cm≤3am/4
]

≥ exp(−ζ1m
1/3).

Then, by Lemma 10, as m goes to infinity,

P̂
[

ĝm(k)≤Ŝk≤d̂m(k); k ∈ [[m− cm + 1,m]], Ŝm≤−Aam/2
∣

∣

∣
am/4≤Ŝm−cm≤3am/4

]

is larger than or equal to φ(A). The conclusion follows. �

Proof of Proposition 7. Properties (i) and (ii) are immediate consequences of the
definition. Property (iii) is a direct consequence of Lemma 7, letting χ(A) := ζ2(A).
From the definition, gm(k) ≥ v(p)(k+ 1) for all k ∈ [[q,m− cm]]. Then, given A, for

all large enough m, it is easily checked that gm(k) ≥ (v(p)− 2Am−2/3)(k+ 1) for all
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k ∈ [[m− cm + 1,m]]. This yields Property (iv). As for Property (v), consider (7).
Clearly, since γ < 1,

νm(Z) ≥ γ−(A/2)am P̂
[

ĝm(k) ≤ Ŝk ≤ d̂m(k); k ∈ [[0,m]], Ŝm ≤ −(A/2)am

]

.

From Lemma 9, the probability in the r.h.s. of the above expression is ≥
φ(A) exp(−ζ1m

1/3), so that, choosing A large enough, the term γ−(A/2)am domi-
nates for large m. As a consequence, for such an A, νm(Z) ≥ 2008 + 1 as soon as m
is large enough. �

Proof of Theorem 2. Consider a parameter θ > 0, and let m depend on N in the
following way: m := ⌊θ log(N)⌋3. For N large enough, we can apply Proposition 7,
and use Lemma 3, which states that

P(B) ≤ 2K exp
(

−Nβ−1ǫpδ2
)

.

It is easily checked from the definition that K ≤ ((A + 1)am + 1)m. Note also that

δ ∼ log(β)/m for large N . Finally, ǫ = exp(−χ(A)m1/3). Choosing θ small enough,

we check that mP(B) << m−2/3 as N goes to infinity. Proposition 6 then implies
that vN (p) ≥ v(p) − 2Am−2/3(1 + o(1)). The result follows. �

6. Concluding remarks

Remark 1. Can we derive a reasonably simple explanation of how the log(N)−2

arises, based on the mathematical proofs presented above ? Broadly speaking, the
key point in both the upper and the lower bound seems to be the following (we re-use
some notations from Section 5): consider a large integer m and look for a scale ∆
such that

(15) 2mP (|Ŝ1|, . . . , |Ŝm| ∝ ∆) ≍ 1/N.

In view of the change of measure, and of the fact that, by Brownian scaling,
P̂ (|Ŝ1|, . . . , |Ŝm| ∝ ∆) ≍ exp(−m/∆2), we see that there are two factors involved
in the above probability: γ±∆, and exp(−m/∆2). Equating the exponential scales of

these two factors yields ∆ ∝ m1/3, and (15) then implies that m ∝ log(N)3, whence
an average velocity shift over the m steps of order ∆/m ∝ log(N)−2.

Remark 2. We have focused in this paper on the case 0 < p < 1/2. The situation
is quite different when p ≥ 1/2. Indeed, v(p) is then equal to 1, and the convergence
speed can be proved to be of order 1/N when p = 1/2, and exponential with respect
to N when p > 1/2.

Remark 3. What we have proved is that the order of magnitude of vN (p)−v∞(p) is
indeed log(N)−2. It would of course be quite interesting to get more precise asymp-
totic results for this quantity, since there is at least compelling numerical evidence
that vN (p) − v∞(p) ∼ c(p) log(N)−2 for some constant c.

Remark 4. Both the upper and lower bound presented here relie upon controlling
the behavior of the particle system for time intervals of length m ∝ log(N)3. This
is the same order of magnitude as the one observed for the coalescence times of
the genealogical process underlying the branching-selection algorithm, from empirical
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studies and heuristic arguments (see e.g. [3]). Although we do not know how to
establish a rigorous relationship between these facts, this at least provides another
indication that the log(N)3 time scale is particularly relevant for the study of these
systems.
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